WOZ Disk Image Reference
Created by John K. Morris
jmorris@evolutioninteractive.com

Version 0.9

January 14, 2018

Many thanks to the people who helped me prepare this document for release:

John Brooks, David Brown, Bill Martens, Sean McNamara, Antoine Vignau

mailto:jmorris@evolutioninteractive.com

Why yet another Apple |l disk image format?

This is probably the question many of you reading this document are asking. It basically
comes down to the simple fact that none of the currently existing formats accurately represent
the way data is encoded on an Apple II floppy disk. There is a place for a format that is an
accurate representation of a bitstream that is also the exact length of a track so that it can be
looped correctly. And since we are creating a format, it is also a great time to ensure that we
organize the data in the image file in a way that allows for easy unpacking with as little
memory and processing overhead as possible - this provides more performant usage in
hardware and software emulators.

What benefits come with using the WOZ format?

We seem to be doing just fine with the current file formats, why would we want to support
the WOZ format? The big benefit is being able to successfully run copy protected software if
you follow the emulation guidelines presented in this document. The second benefit is that
the WOZ format is actually much simpler to implement than many of the other disk image
formats. WOZ files also contain metadata about the disk image - such as disk name, product
name, publisher, system requirements and language - that you can use to display additional
information in your emulator.

Implementation Details

Integrating WOZ support with your product is more than just loading data from a new type
of container. It is also about how that data is used. Yes, it is possible to just shovel bits from
the WOZ right into your bitstream, and many disk images will work just fine like that. But, by
taking the following guidelines into account, your implementation will enable disk
functionality that is also compatible with all copy protection schemes. Yes, this means you can
run copy protected software in system and disk drive emulators without the need to crack it first!

Cross-Track Synchronization

When Steve Wozniak was hacking up Shugart drives to make the Disk II, one of the parts that
he threw away was the sync sensor. The sync sensor involved a light source on one side of the

WOZ Disk Image Reference 20f13

disk with a sensor on the other. This sensor would allow the drive to know when it made a
full revolution, as the disk media itself had a hole that would let the light pass though as it
passed the sensor. It really wasn’t a necessary part for Wozniak’s soft-sectored design that
was going to be used for storing data on the disk.

A NORMAL UNSYNCHRONIZED DISK VS A SYNCHRONIZED ONE.

When it came to businesses designing copy protection schemes, this was something that they
could use to their advantage. The professional disk copiers could easily write out all tracks
synchronized with each other, something that your average Apple Il floppy drive couldn’t do.
Then, the software would read a known sector on a specific track and, when it jumped to a
neighboring track, it could make sure that the first sector it encountered there was the one it
expected. Later protection schemes even made track widths which were almost 2 standard
tracks wide and were accurate to within 1 bit. As much as the disk copy programs tried, they
could only sync up tracks by sheer luck.

To circumvent these kind of copy protection checks, the WOZ format uses a Track Map (see
the “TMAP Chunk” section below). This allows us to assign a track image to any number of
quarter tracks on a disk. An entire disk could even be a single track if we wanted.

There are a couple of rules to follow with regards to changing tracks within the emulator:

Firstly, if the tracks you are changing between have matching values in the TMAP, then don't
change the track data. This will prevent any hiccups in the bitstream and can be a good
performance gain to boot.

WOZ Disk Image Reference 30f 13

The second rule is that you need to maintain a bit pointer into your bitstream. You always
need to know which bit you are on. When you do change tracks, you need to start the new
bitstream at the same relative bitstream position - you cannot simply start the pointer at the
beginning of the stream. You need to maintain the illusion of the head being over the same
area of the disk, just shifted to a new track.

Also be sure to account for the fact that track lengths are inconsistent on a disk due to
fluctuations in drive speed. Something like this works well to maintain the relative position:

position = (current position * (360.0 / current trk size)) / (360.0 / new trk size)

This is basically just converting the bit position to an angle on the current track and then
converting that angle to a bit position on the new track.

Remember to maintain the bit position even when on an empty track (TMAP value of OxFF).
Since the empty track has no data, and therefore no length, using a fake length of 51,200 bits
(6400 bytes) works very well.

Freaking Out Like a MC3470

On the Apple II, floppy disk data is written to the disk based on a 4us clock. Whenever there
is a 1 bit to write, the polarity of the magnetic flux under the drive head is transitioned from
its current state to the opposite. If a zero needs to be written out, the 4us clock is skipped (no
transition occurs).

The MC3470 chip is the heart of the Apple II floppy drive. It reads the magnetic flux pattern
off the disk and sends out a pulse for every flux transition it sees. This gives us back our 1 bits
and our 0 bits come from the 4us clock going by with no pulse.

One of the nice features of the MC3470 is that it has an internal amplification system to adapt
to the varying magnetic strengths of each disk. If it has a hard time reading the disk, it can
turn up its amp until it finds the signal. It allows the drive to read a wide assortment of disks.
The Apple I uses GCR encoding to store bits on the disk. It is a very efficient system that was
used widely on many platforms, because it doesn’t use clock bits to frame up your data bits,
giving you more room to write data. This technique also has a drawback though, which is
never being able to record more than two 0 bits in a row. It is why data on an Apple II is
stored as nibbles instead of plain binary bytes.

WOZ Disk Image Reference 4 0f 13

One very popular copy protection is referred to as “fake bits” or “weak bits” - this technique
is actually an exploit against the MC3470. It comes from the idea of what happens when we
make it read more than two 0 bits in a row. What happens is that our poor MC3470 thinks that
it is doing a bad job reading the disk and keeps trying to turn up its amp to find the flux
signal. It does this until it gets to the point that it amplifies background electrical noise so
much that it thinks that it sees a transition and sends out a false pulse, which the computer
happily records as a 1 bit.

So, how can this failure be used as copy protection? The software developers simply put these
blank fake bit areas on the disk where the software knows where to find them. It then reads
some good nibbles followed by the fake bits area. This gives us some good nibbles followed
by some random valued nibble. This in itself is not particularly useful until you do it multiple
times and see that the random nibble changes every time you read it! If the value keeps
changing, then you know that it isn't a copy of the disk. How does it know that? Because
programs like Copy II+ and Locksmith will read those same good nibbles followed by the
random nibble, and then they will promptly write out all of the nibble values that they
captured, thinking that they are all good. The random nibble is no longer random, it will
never change from the value that has been captured, and now the copy protected software
will know that it is actually a copy.

So how does the WOZ format deal with this? Well, the first part of the problem isn’t taken
care of within the WOZ format itself. The WOZ format is an offshoot of the Applesauce

Floppy Drive Controller project. The Applesauce has a way to determine when it is seeing
these fake bits and changes the fake bits back to the 0 bits that existed on the original disk.

Now that we are back to having long runs of Os in the bitstream, we now need to emulate the
MC3470 freaking out about them. The recommended method is that once we have passed
three 0 bits in a row from the WOZ bitstream to the emulated disk controller card, we need to
start passing in random bits until the WOZ bitstream contains a 1 bit. We then send the 1 and
continue on with the real data.

Of course, coming up with random values like this can be a bit processor intensive, so it is
adequate to create a randomly-filled circular buffer of 32 bytes. We then just pull bits from
this whenever we are in “fake bit mode”. This buffer should also be used for empty tracks as
designated with an OXxFF value in the TMAP Chunk (see below).

WOZ Disk Image Reference 50f 13

WOZ File Format Specification

A WOZ file uses a chunk-based file binary format that provides future-proof expandability in
a way that is safe for older software which may not recognize newer data chunks.

All data is stored big-endian.

WOLZ files begin with the following 12-byte header in order to identify the file type as well as
detect any corruption that may have occurred. The easiest way to detect that a file is indeed a
WOZ file is to check the first 8 bytes of the file for the signature. The remaining 4 bytes are a
CRC of all remaining data in the file. This is only provided to allow you to ensure file
integrity and is not necessary to process the file. If the CRC is 0x00000000, then no CRC has
been calculated for the file and should be ignored. The exact CRC routine used is shown in

Appendix A.
Byte Value Purpose
057 4F 5A 31 The string ‘WOZ1".
4 FF Make sure that high bits are valid (no 7-bit data transmission)
5 0A 0D 0A LF CR LF - File translators will often try to convert these.
8| xx xx xXxX XX CRC32 of all remaining data in the file. The method used to
generate the CRC is described in Appendix A.

After the header comes a sequence of chunks which each contain information about the disk
image. Using chunks allows for the WOZ disk format to provide forward compatibility as
chunks can be added to the specification and will just be safely ignored by applications that
do not care (or know) about the information. For lower-performance emulation platforms, the
primary data chunks are all located in fixed positions so that direct access to data is possible
using just offsets from the start of the file.

All chunks have the following structure:

Offset Size Name Usage
+0 | 4 bytes Chunk ID 4 UTF8 characters that make up the ID of the chunk
+4 | uint32 Chunk Size The size of the chunk data in bytes.
+8 ... Chunk Data The chunk data.

WOZ Disk Image Reference 6 of 13

To process the file, you start at the first Chunk ID which will be located at byte 12 of the file,
immediately following the header. You read the Chunk ID and the Chunk Size following it. If
you want to process this chunk, then your file pointer will be at the start of the data. If you
don’t care about this chunk, then skip the number of bytes as Chunk Size indicates and you
will now be at the next Chunk ID.

while (data stream.availableToRead() > 8) {
uint32 t chunk id = data_ stream.readU32();
uint32 t chunk size = data_ stream.readU32();
switch (chunk id) {
case INFO CHUNK ID:
// read the INFO chunk
break;
case TMAP CHUNK ID:
// read the TMAP chunk
break;
case TRKS CHUNK ID:
// read the TRKS chunk
break;
case META CHUNK ID:
// read the META chunk
break;
default:
// no idea what this chunk is, so skip it
data stream.skip(chunk size);

WOZ Disk Image Reference 70f13

INFO Chunk

The first chunk in an Applesauce file is always an ‘INFO’ chunk. This contains some
fundamental information about the contained image. The data of the ‘INFO’ chunk begins at
byte 20 of the file and is 60 bytes long (pad chunk with zeros to full length).

Byte Offset Type Vers Name Usage
12 uint32 INFO’ChunkID 49 4E 46 4F
16 uint32 Chunk Size Size is always 60.
20 +0 uint8 1 INFO Version Version number of the INFO chunk.
Current version is 1.
21 +1 uint8 1 Disk Type 1=525,2=35
22 +2 uint8 1 Write Protected 1 = Floppy is write protected
23 +3 uint8 1 Synchronized 1 = Cross track sync was used during imaging
24 +4 uint8 1 Cleaned 1 = MC3470 fake bits have been removed
25 +5 UTF-8 1 Creator Name of software that created the WOZ file.
32 bytes String in UTF-8. No BOM. Padded to 32 bytes

using space character (0x20).
ex: “Applesauce v1.0

”

The chunk is versioned to allow for adding additional info in the future. The “Vers” field in
the table above indicates at which version the data field became available. When reading data
from the chunk, make sure that value you are looking for actually exists within the version of
the chunk you are reading.

TMAP Chunk

The “TMAP’ chunk contains a track map. This allows you to map physical drive tracks with
the track data contained within the image file ‘TRKS’ chunk. This system is used because, on
a 5.25 drive, the physical drive head is larger than the width of the written track and so the
track is also visible from neighboring quarter tracks. For example, the data of track 1.00 is
actually visible while reading from track 0.75 or 1.25. Instead of storing copies of track data
for every possible quarter track, we use the map to point multiple quarter tracks to a single
track image.

Track 0.00 025 050 075 100 125 150 1.75 200 225 250 275 3.00

Maps (00 00 I 01 01 01 g 02 02 02 Ig 03 03

WOZ Disk Image Reference 8 of 13

The data of the ‘TMAP’ chunk begins at byte 88 of the file and is 160 bytes long.

Each map entry contains an index number for the track data contained within the “TRKS’

chunk. If the map entry is 0, then the correct track data to be using is the first entry in the

“TRKS’ chunk. Any blank tracks are given a value of 255 (0xFF) in the map and the emulator

should be outputting random bits in this case.

The mapping changes slightly between 5.25 and 3.5 disks. This is the format for the table for
the layout of a 5.25 disk. The table only shows to track 35, but can also accommodate 40 track
disks. All unused map entries should have a 255 (0xFF) value.

Byte Offset Type Name Usage
80 uint32 ‘TMAP’Chunk ID 54 4D 41 50
84 uint32 Chunk Size Size is always 160.
88 +0 uint8 Track 0.00 Index of TRKS entry to use for Track 0.00.
89 +1 uint8 Track 0.25
90 +2 uint8 Track 0.50
91 +3 uint8 Track 0.75
92 +4 uint8 Track 1.00
228 +140 uint8 Track 35.00

This is the mapping for 3.5 disks:

Byte Offset Type Name Usage
80 uint32 ‘TMAP’ChunkID 54 4D 41 50
84 uint32 Chunk Size Size is always 160.
88 +0 uint8 Side 0, Track 0 Index of TRKS entry to use for Side 0, Track 0.
167 +79 uint8 Side 0, Track 79
168 +80 uint8 Side 1, Track 0
247 +159 uint8 Side 1, Track 79

WOZ Disk Image Reference

90of 13

TRKS Chunk

The “TRKS’ chunk contains the data for all of the unique tracks. Each track has a fixed length
of 6656 bytes and are tightly packed into the chunk. The data of the “TRKS’ chunk begins at
byte 256. For more efficient track data copying, all track data starts on 256 byte boundaries
relative to the file start. Starting locations of tracks can be calculated using (tmap_value *
6656) + 256.

Byte Offset Type Name Usage
248 uint32 ‘TRKS’ChunkID 54 52 4B 53
252 uint32 Chunk Size
256 +0 TRK Track 00 First track in track array. TMAP value of 00.
6912 +6656 TRK Track 01 Second track in track array. TMAP value of 01.
13568 +13312 TRK Track 02 Third track in track array. TMAP value of 02.

The structure of the TRK type in the previous table is as follows:

Offset Size Name Usage
+0 6646 bytes Bitstream The bitstream data padded out to 6646 bytes
+6646 uint16 Bytes Used The actual byte count for the bitstream.
+6648 uint16 Bit Count The number of bits in the bitstream.
+6650 uint16 Splice Point Index of first bit after track splice (write hint). If no
splice information is provided, then will be OxFFFF.
+6652 uint8 Splice Nibble Nibble value to use for splice (write hint).
+6653 uint8 Splice Bit Count Bit count of splice nibble (write hint).
+6654 uint16 Reserved for future use.

The bitstream data is the series of bits recorded from the floppy drive and normalized to 4us
intervals. The bits are packed into bytes, but the bytes will not necessarily be representative of
nibble values as timing bits are also represented within the bitstream. Since this bitstream is
the flow of data directly from the floppy drive, it will need to pass through a Logic State
Sequencer as found on the Disk II Interface Card, Apple 5.25 Drive Controller Card or INM
chip to create nibbles. But since the bitstream timing has already been normalized, you can
use a very lightweight implementation of one. The Logic State Sequencer performs the

WOZ Disk Image Reference 10 of 13

function of converting the bitstream to a nibble stream as well enforcing the proper nibble
timing that many copy protection schemes will check.

If you are creating a floppy drive emulator for use with a real Apple II, then you will simply
be stepping to the next bit in the bitstream every 4us. If the bit has a 1 value, then you send a
1us pulse on the RDDATA line.

If the Cleaned value of the ‘INFO’ chunk is 1, then any fake bits generated by the MC3470
during the imaging process will have been removed and replaced with 0 bit values (see the
Implementation Details section for proper handling of these).

The Splice information in the TRK structure is used when writing the track to a physical
floppy disk. It points to the bit where you should start the write stream. To ensure a clean gap
1, you are also provided with a nibble value and bit count for the nibbles that you should be
writing as the leader before the write stream. For a normal DOS 3.3 disk, the leader would be
128 FF/10 nibbles.

WOZ Disk Image Reference 11 of 13

META Chunk

The ‘META’ chunk contains metadata for the disk image. The metadata is stored as a tab-
delimited UTF-8 list of keys and values. Rows are separated by a linefeed character (‘\n’
0x0A) and columns by the tab character (“\t" 0x09)

Byte Offset Type Name Usage

- uint32 ‘META'Chunk ID 4D 45 54 41

- uint32 Chunk Size Length of the metadata string in bytes.
- +0 String Metadata Metadata string in UTF-8. No BOM.

This is the list of standard metadata keys. Multiple values are pipe-separated. If a key has no

value, then the value will be an empty string.

Key Purpose Example Value
title Name/Title of the product. Prince of Persia
subtitle Subtitle of the product.

publisher Publisher of the software. Broderbund
developer Developer of the software. Jordan Mechner
copyright Copyright date 1989
version Version number of the software. 1.0
language Language English
require S _ram RAM requirements 64K
requires machine Which computers does thisrunon? 2+2el2cl2gs
notes Additional notes.

side Disk side Disk 1, Side A
side name Name of the disk side. Front
contributor Name of the person who imaged the Mr. Pirate

image date

WOZ Disk Image Reference

disk.
ISO8601 date of the imaging.

2018-01-07T05:00:02.511Z

12 of 13

Appendix A: CRC Routine

The integrity of the WOZ files are protected by a standard 32-bit CRC. The routine that has
been chosen for use originated with Gary S. Brown in 1986 and is implemented as follows:

static uint32 t crc32 tab[] =

bi

0x00000000,
Oxe963a535,
0x09b64c2b,
0xf3b97148,
0x136c9856,
0xfa0£3d63,
0x3c03e4dl,
Oxdbbbc9do6,
0x26d930ac,
Oxcfbad599,
0x2f6f7c87,
0x98d220bc,
0x7807c9%a2,
0x91646c97,
0x6c0695ed,
Ox8bbeb8ea,
0x4db26158,
Oxaddlc4ded,
0x44042d73,
0xbe0b1010,
0x5edef90e,
0xb7bd5c3b,
Oxeadb54739,
0Ox0dedoa3le,
0xf00£9344,
0x196¢c3671,
0xf9b9dfef,
0x38d8c2c4,
0xd80d2bda,
0x316e8eef,
Oxcc0c7795,
0x2bb45a92,
0x9b64c2b0,
0x72076785,
0x92d28e9b,
0x68ddb3f8,
0x88085ae6,
0x61l6bffd3,
0xa7672661,
0x40df0b66,
0xbdbdf2lc,
0x54de5729,
0xb40bbe37,

0x77073096,
0x9e6495a3,
0x7ebl7cbd,
0x84bedlde,
0x646ba8c0,
0x8d080df5,
0x4b04d447,
Oxacbcf940,
0x51de003a,
Oxb8bdab0f,
0x58684cll,
0xefd5102a,
0x0f00£934,
0xe6635c01,
0x1b0la57b,
0xfcb9887c,
0x3abb551ce,
0xd3d6f4fb,
0x33031de5,
0xc90c2086,
0x29d9c998,
OxcObabcad,
0x9dd277af,
Ox7a6abaa8,
0x8708a3d2,
Ox6e6bl6e7,
0x8ebeeff9,
0x4£dff252,
Oxaflalbdc,
0x4669be79,
0xbb0b4703,
0x5cb36a04,
Oxec63f226,
0x05005713,
0xe5d5be0d,
0x1fda836e,
0xff0fe6a70,
0xlo66ccfds,
0xd06016£f7,
0x37d83bf0,
Oxcabac28a,
0x23d967bf,
0xc30c8eal,

{

Oxeelebl2c,
0x0edb8832,
0xe7b82d07,
Oxladad47d,
0xfd62f97a,
0x3b6e20c8,
0xd20d85fd,
0x32d86ce3,
0xc8d75180,
0x2802b89%¢,
Oxclelldab,
0x71b18589,
0x9609a88e,
0x6b6b51£4,
0x8208f4cl,
0x62dd1lddf,
0xa3bc0074,
0x4369e906a,
Oxaaladc5f,
0x5768b525,
0xb0d09822,
0xedb88320,
0x04db2615,
0xe40ecfOb,
0x1le01f268,
0xfed41b76,
0x17b7be4d3,
0xdlbb67f1,
0x36034afe6,
Oxcb61b38c,
0x220216b9,
Oxczd7ffa’,
0x756aa39c,
0x95bfda82,
0x7cdcefb’7,
0x81lbelb6cd,
0x66063bca,
0xa00ae278,
0x4969474d,
Oxa9bcaeb3,
0x53b39330,
0xb3667a2e,
0x5a05dflb,

0x990951ba,
0x79dcb8a4,
0x90bf1do1l,
Ox6dddedeb,
0x8a65c9ec,
0x4c69105e,
0xa50ab56b,
0x45df5c75,
0xbfdO6ll6,
0x5£058808,
0xb6662d3d,
0x06b6b51f,
0xel0e9818,
0x1lc6c6l62,
0x£f50fc457,
0x15da2d49,
0xd4bb30e2,
0x346ed9fc,
0xdd0d7¢cc9,
0x206£85b3,
0xc7d7a8b4,
0x9abfb3bo,
0x73dcl683,
0x9309f£9d,
0x6906c2fe,
0x89d32be0,
0x60b08ed5,
0xabbc5767,
0x41047a60,
Oxbc66831a,
0x5505262f,
0xb5d0cf31,
0x026d930a,
0xe2b87al4,
0x0bdbdf21,
0xf6b9265b,
0x11010bb5c,
0xd70dd2ee,
0x3e6e77db,
Oxdebb9ec5,
0x24b4a3a6,
0xcd4614ab8g,
0x2d02ef8d

0x076dc419,
Oxe0db5e91le,
0x1db71064,
0xf4d4b551,
0x14015c4f,
0xd56041e4,
0x35bba8fa,
Oxdcdo60dcf,
0x21b4f4b5,
Oxc60cd9b2,
0x76dc4190,
0x9fbfedas,
0x7f6a0dbb,
0x856530d8,
0x65b0d9c6,
0x8cd37cf3,
Ox4adfab41,
0xad678846,
0x5005713c,
0xb966d409,
0x59b33d17,
0x03b6e20c,
0xe3630b12,
0x0a00ae27,
0x£762575d,
0x10da7aba,
0xded6a3e8,
0x3fb506dd,
0xdfe60efc3,
0x256£d2a0,
Oxc5ba3bbe,
0x2cd99%e8b,
0x9c0906a9,
0x7bbl2bae,
0x86d3d2d4,
0x6fb077el,
0x8f659%eff,
0x4e048354,
Oxaedlobada,
0x47b2cf7f,
0xbad03605,
0x5d681b02,

uint32 t crc32(uint32_t crc, const void *buf, size t size)

{

WOZ Disk Image Reference

const uint8_

p = buf;
crc = crc

~

while (size-

crc =

~

return crc

t *p;

~0U;

=)

~0U;

crc32_tab[(crc

N Xptt)

& OxFF] 7

(crc >> 8);

0x706af48f,
0x97d2d988,
0x6ab020f2,
0x83d385c7,
0x63066cd9,
0xaz2677172,
0x42pb2986¢,
Oxabdl13d59,
0x56b3c423,
0xb10be924,
0x01db7106,
Oxe8b8d433,
0x086d3d2d,
0xf262004e,
0x12b7e950,
0xfbd44c65,
0x3dd895d7,
0Oxda60b8d0,
0x270241aa,
Oxceb6led9f,
0x2eb40d81,
0x74b1d29a,
0x94643b84,
0x7d079%ebl,
0x806567chb,
0x67dd4acc,
0xaldl937e,
0x48b2364Db,
0xa867df55,
0x5268e236,
0xb2bd0b28,
Ox5bdeaeld,
Oxeb0e363f,
0x0cb61b38,
Oxfld4e242,
0x18b74777,
0xf862ae69,
0x3903b3c2,
0xd9dé65adc,
0x30b5ffe9,
0xcdd70693,
0x2a6f2b94,

13 0of 13

