
 Volume 28 Number 1		 	 February 2018	 	 www.callapple.org

Apple PugetSound Program Library Exchange

• 40 Years of A.P.P.L.E. – From the Basement to the Tower
• The Founding of APDA – The Apple Programmers and Developers Association:
 Don Williams on How A.P.P.L.E. Created an Institution

• 40 Years On: Bob Clardy's Memories of A.P.P.L.E. Founder Val Golding
• The CRPG Book Project: Role-Playing Game History 1975 - 2015
• Cross Chase: A Multi-platform, Multi-system Game
• Roger Wagner to Keynote KansasFest 2018
• Blankenship BASIC: The Return of the Programmer
• 6502 Assembler Tricks: Self-modifying code based on the 3D-Demo
• 12 Years On: PLASMA 1.0 Released
• VCF Pacific Northwest Recap and Photos
• Freshly Squeezed Reviews:
 HomePod Gives Me Accessibility

The 40th
Anniversary

Issue

http://www.callapple.org
http://www.callapple.org

iApple Pugetsound Program Library Exchange – 540 E. Emerald Lake Dr, Grapeview, WA 98546

A.P.P.L.E. Board of Directors 
Chairman – Bill Martens 
Director – Brian Wiser
Director – Jim Maricondo

Production & Design
Bill Martens
Brian Wiser

Cover Photo
A.P.P.L.E.

Call-A.P.P.L.E. Magazine ISSN
8755-4909 1705-4109

A.P.P.L.E. Staff
Editor-in-Chief – Bill Martens
Managing Editor – Brian Wiser
Staff Writer – Javier Rivera
Staff Writer – Marcus Adams
Disk Digitization – Antoine Vignau

Contributing Authors 
Val J. Golding	 Rick Sutcliffe
Frank Petrie		 Fabrizio Caruso
Bob Clardy	 	 Don Williams
Evan Koblentz Kevin Savetz
Marc Golombeck

Volume 28 Number 1 February 2018 www.callapple.org

Submissions
Call-A.P.P.L.E. is always looking for new and interesting ideas
and articles related to Apple, Linux/Unix, technology of general
interest, technical or editorial, modern or retro. All submissions
must be original works of the person submitting and free of
distribution restrictions. Please email your proposal to:
editor@callapple.org. By submitting materials to us, you agree
to give A.P.P.L.E. the royalty-free right to publish and reuse your
submission with your name in any form in any media. We reserve
the right to edit, change, or not use anything submitted to us.

Membership in A.P.P.L.E.
Membership fees are $27.95 per year, and include a one year
subscription to A.P.P.L.E., user group discounts, and archival
materials including Call-A.P.P.L.E. magazine, Mac-A.P.P.L.E.
magazine, legacy software, and other A.P.P.L.E.-produced
websites. Annual membership dues are always due the
month you first pay.

Subscriptions
Subscriptions to Call-A.P.P.L.E. magazine can be attained by  
joining the Apple Pugetsound Program Library Exchange
(A.P.P.L.E.) user group, founded in 1978. The magazine is
one of the premium benefits. For more information, please
visit the membership page at: www.callapple.org/members

Advertising
If you wish to advertise in Call-A.P.P.L.E. magazine, email
sales@callapple.org for our very competitive rates. We offer
in-magazine, on-site, and full sponsorship for prospective
advertisers.

Copyright
Permission is required before reproducing any material from 
Call-A.P.P.L.E.. Please email editor@callapple.org. Call-A.P.P.L.E.
magazine is an independent publication of Apple Pugetsound
Program Library Exchange (A.P.P.L.E.), not affiliated with Apple
Inc. Contents Copyright © 2018 Apple Pugetsound Program
Library Exchange. All rights reserved. Apple, the Apple logo,
and all Apple hardware and software brand names are
trademarks of Apple Inc., registered in the United States and
other countries. All other brand names and trademarks are the
property of their respective owners.

World’s Largest Apple User Group Magazine – Since 1978

Call–A.P.P.L.E.™

http://www.callapple.org
http://www.callapple.org
mailto:editor@callapple.org?subject=
mailto:editor@callapple.org?subject=
http://www.callapple.org/members
http://www.callapple.org/members
mailto:sales@callapple.org
mailto:sales@callapple.org
mailto:editor@callapple.org
mailto:editor@callapple.org

	 2018! Wow, so soon. And yes, 40 years! Another
grand anniversary comes and we once again are forced to
look into the rearview mirror at the road we have traveled
thus far.

	 From our humble beginnings in Val Golding’s
basement to a prime address in Renton and Kent
Washington, to the closet of Norman Dodge’s home in
Seattle, to the Tower in the Sky in Tokyo and once again
back to the land which gave us our birth, it has been a road
which had a few pot holes and speed bumps along the way.

	 We have persevered and once again are publishing
the magazine which so many of us have grown up with and
grown to love over the years. Call-A.P.P.L.E. magazine
began with Volume 1 Number 1 which in reality is just Val’s
call to arms for the user group which numbered more than
50,000 members at its peak. Now, as we continue to serve
the community, we have an absolutely knowledgeable group
of people who are fervent Apple users and A.P.P.L.E.
members.

	 As for me personally, I find this issue somewhat
melancholy as this will mark the 16th year which I personally
have been at the helm of things. It is a duty I thoroughly
enjoy and actually enjoy getting feedback from those of you
who read my dribble. As for the magazine, Brian Wiser and I
would like to expand it to a full year of issues, but with the
way online publishing is these days, we have made a
decision to publish no more than four times a year in order to
best facilitate the magazine's position in the market.

	 We also publish our A.P.P.L.E. Member News, a
periodic newsletter email to our members, which details the
goings on here at A.P.P.L.E.. Our staff continually posts
news on the website, and sometimes we expand those
particular news articles in the magazine, making them even
more informative and worth reading here.

	 As a member you know that we continue to have a
plethora of unique reviews, detailed technical articles, and
personal histories shared here in the magazine – to make the
magazine an even greater value and resource for our
members. To encourage membership and drive awareness
of the magazine, we are planning to include snippets of each
magazine article on our Web site.

	 We finally migrated to a new server company and are
no longer encumbered by old server software. This means
that we can offer more features on the Web site, along with
our award-winning news sections, there will be an additional
push in the technical realm, giving out readers more of what
Call-A.P.P.L.E. has been known for over the past 40 years.
Our thanks to the authors who have made this technical
push possible.

	 Also this month, we have once again made available
later Call-A.P.P.L.E. issues for the years 2002 and 2003. We
are working on getting the issues through 2010 up and hope
to have them up sometime in April or May prior to the next
edition of our 2018 magazine. While this may seem like an
easy task for issues published in the 2000's, we are actually
going back and correcting the issues which were published

2

40 Years and Counting!

by former president, Mike Pfaiffer who was in charge of
publishing while Bill Martens was serving his country.

	 The changes include placing the proper header on the
issue, including the required ISSN numbers, as well as the
publishing information and table of contents pages. Once
we have completed the updates, we will upload them with
the 2004 issues.

	 This week, we are also starting to reinstall the forums
system. This is due in large part because we are recovering
a lot of the data from the old systems which will hopefully
give us everything that we had from 1987-2001. The data
recovery will be happening in Seattle next month. It is our
hope that the trove of information will be a boon for our
readers and members alike, both in depth and knowledge
long thought to have been completely lost.

	 And now that this 40th anniversary is really upon us,
we take a few minutes to remember the man who many
called simply “The Founder.” Val Golding was a mentor and
friend to many of us and although he has been gone from
this world now nearly 10 years, his legacy lives on. The
meticulous detail that he paid to each item and the time he
took to ensure that things were right, were always traits that
he liked to pass on.

	 Even Kathryn Hallgrimson, former A.P.P.L.E. editor,
called him the “Golden Man” since he always had some

piece of knowledge to impart to those around him. I too
benefited from that benevolence when I first restarted the
magazine in 2002, and continually find little things that have
held over all the years which were items he implemented.

	 But this is a celebration and as part of that celebration
we will be releasing a number of new products that are sure
to delight our members. This will start with a challenge
program we are putting out to the programming community
and will culminate with our completion of our original catalog
in addition to releasing Enhanced Editions of several of our
books and software.

	 We expect to finish the All About Applesoft: Enhanced
Edition in May along with another special book. Also in the
coming months will be eBooks for Cyber Jack and Nibble
Viewpoints, which is no small task for Brian to undertake,
requiring a lot of additional formatting and preparation.

	 Stay tuned as the A.P.P.L.E. staff, now recovered from
our server migration, turns its sights toward production once
again.

3

4

A.P.P.L.E. Presents:
Call-A.P.P.L.E. In Depth

PDFs Available to A.P.P.L.E. Members

Join Today:

www.callapple.org/members

 
The Brutal Deluxe Software

Apple II Cassette Collection

New Cassettes Added!!!

www.brutaldeluxe.fr/projects/cassettes

Gamezyte.com
Vintage	Gaming	
at	its	best!

The Australian Apple Review

AAR.AppleArchives.com

http://beagle.applearchives.com
http://beagle.applearchives.com
http://beagle.applearchives.com
http://beagle.applearchives.com
http://beagle.applearchives.com
http://beagle.applearchives.com
http://www.callapple.org/members
http://www.callapple.org/members
http://www.brutaldeluxe.fr/projects/cassettes/
http://www.brutaldeluxe.fr/projects/cassettes/
http://www.gamezyte.com/
http://www.gamezyte.com/
http://AAR.AppleArchives.com
http://AAR.AppleArchives.com

40 Years:

5

From the Basement to the Tower

by Bill Martens

	 Over the past 40 years, there
have been a multitude of changes in
the computing industry. But, here we
are, after all those 40 years and Apple
Inc. still rules the computing world and
A.P.P.L.E. is still producing books,
software, and of course our old friend,
Call-A.P.P.L.E. magazine. While, we

are not the powerhouse we once were,
we still lead the news world for retro Apple computing and
have over 60 Web sites dedicated to the pursuit of the hobby
and to educate and enlighten.

	 Of course, none of this would have been possible
were it not for the founder Val J. Golding who, in his pursuit
of knowledge, set out to find other like-minded souls all
those years ago.

	 The newsletter which called for a joining of the minds
on February 21, 1978, also became Call-A.P.P.L.E. magazine
volume 1 number 1. However, little did we know that this

was to become one of the largest computer user groups in
the world in a matter of years, just simply based on the idea
that users could help other users learn about their
computers and share software and solutions with others.

	 Of course, even Val Golding really had no idea that
the dream would become the explosion that it became.
Max Cook, who was solely responsible for encouraging Val
to reach out, also became the host of the fledgling users
group with the very first meeting of A.P.P.L.E. held February
21, 1978 at the ComputerLand in Federal Way, Washington –
a computer store run by Cook.

	 Those hearty few who did appear numbered but
13-15 people, but those few would soon number over 50
within two months. As the members piled up, so did the
requirements for more robust plans as well as staffing. Yet
Val continued to push everything from his basement in West
Seattle, all the while attempting to get everything perfecting
the fledgling magazine, do user support, and all the other
things that go with being the driving force behind a
computer user group.

6

	 That basement and its owner, along with the trusty
Apple II computer on the shelf became grand central station.
And with all that effort also came a deluge of responsibilities
– no matter how superhuman Val tried to be, he could not be
efficiently attended to by a single person. But trudge on he
did. Val did most everything and in the process managed to
get completely snowed under by the magnitude of what was
actually going on.

	 Val was responsible for producing the software, the
newsletter, and of course running his increasingly popular
“A.P.P.L.E. Help Line,” which began ringing at all hours of the
day as users began to discover it.

	 Dick Hubert and others rescued Val in September as
they began to go through orders, discovering that they
needed to set up some sort of fulfillment system which
would facilitate production, packing, and shipping in short
order. This all began and thus the real world of A.P.P.L.E.
was born.

	 While there have been many words written over the
years about what A.P.P.L.E. meant and what fun it had been
when Apple was young, there was always an air about things

that it was still a business. And in business, sometimes
things are not as the people involved would like.

	 Now that the Apple II is not much more than a hobby
for most folks, the hobby does still take on an air of business
for those of us who are involved from a vendor standpoint.

	 Val Golding, while he was enthralled about the
possibilities of helping other users and of building A.P.P.L.E.,
he really didn't like the business aspect of things. He was
always first and foremost a computer user, an editor, a
teacher, and most of all, to those of us under his tutelage, a
mentor.

	 I was privileged enough to have been able to re-build
A.P.P.L.E. starting in 1999 with his guidance and the
guidance of the others who were there at the beginning of
A.P.P.L.E. But now, I must and will give Val the floor for his
take on things.

7

http://monsterfeet.com/grue/
http://monsterfeet.com/grue/
http://monsterfeet.com/grue/
http://monsterfeet.com/grue/
http://monsterfeet.com/grue/
http://monsterfeet.com/grue/

My Take on A.P.P.L.E. History

by Val J. Golding

About A.P.P.L.E.

	 I started with the acronym and just played around
with it until I found something that fit. I was never happy with
combining "Pugetsound" but I never figured a better word.
The "Program Library Exchange" of course, was a natural,
because that was what we started out doing. A few of us,
including Mike Thyng and Bob Huelsdonk bought our
computers from Max Cook, a manager at the ComputerLand
where I bought my first Apple II, and naturally I was calling
him with loads of questions at first, most of which he
couldn't really answer.

	 Bob was pretty savvy, having been in the business
(with Honeywell) for quite some time and was able to point
me in the right direction for the answers. Max, although a

nice guy, was "just" a salesman. Eventually he began calling
me (as I started developing some Apple technical expertise)
with questions and that was how the A.P.P.L.E. hot line got
started.

	 After the club was formed I gave out my phone
number as the hot line number and many times I'd answer it
in the middle of the night (like from the east coast, etc.). We
separated about 14 or 15 years ago on the best of terms.
Usually we have her over for dinner and a movie on Sunday.

	 The calls I got most often were from somebody who
had inadvertently or otherwise, deleted their program

8

In the words of our founder – Val J. Golding – as written by him in 2004.

(Integer or Applesoft, either one) and I'd talk them through
manually resetting their program pointers to recover the
program. Todd Rundgren, who is still an active rock star,
used to call the hot line frequently.

The Magazine

	 Call-A.P.P.L.E. Vol I, No. 1 was designated as such
only after the fact, i.e., when the second issue came out. No.
1 in fact was a form letter mailed to customers of a Federal
Way ComputerLand store as an invitation to form an Apple
Computer user group.

	 It seems to me we were just a handful of people and I
offered the name and we all informally said "That's fine with
me" or words to the effect. I'm thinking Call-A.P.P.L.E. Vol. 1
No. 1 may have had that at the top of the page already.

	 I left A.P.P.L.E. in 1984. I was upset with management
which by then had become a corporation with silly rules and
useless meetings, etc. I had the opportunity to found a new
magazine for kids called The Apple's Apprentice, and so I
moved to San Diego to do that but it was never a great
success. Then I became editor of an Apple /// magazine out
of Ventura, so I moved to the Valley and commuted between
there and Ventura, working mostly at home.

	 The Apple /// was a fantastic machine and preceded
the PC with many functions such as drag and drop between
applications, etc. I researched Apple /// BASIC in much the
same way I had Applesoft, which was actually its underlying
engine. The /// Basic was mostly written by Randy Wigginton
who imparted many of its secrets to me.

9

 
	 Their lead programmer left them to work for Apple
and the magazine teetered on the brink of extinction. I got a
phone call with an offer of a job with Softdisk, an Apple
magazine on disk and so packed my bags again and off to
Shreveport, LA for a year.

	 After I managed to get into several disputes with the
owners (mostly my own fault) and back to Seattle. Kathryn
Hallgrimson, who had been assistant editor of Call-A.P.P.L.E.
became editor when I left. She and I were very close and
when it was determined that Call-A.P.P.L.E. was going to go
down the tubes, she called me and asked if I would write for
the last issue in 1990, which I did.  

Postscript by The Editor

I had the privilege of working with Val, seeing him when he
was much older and wiser, and meeting his wonderful
family. In the years I was able to communicate on a
regular basis, it always amazed me that he had seemingly
every little tidbit of information stored that one could use
from icons to fonts to scraps of information that would put
one on a path to more clarity on a topic.

The Founder of A.P.P.L.E. at Work

As it is always best to the the history of a company from
the person who experienced it, I made the decision to get
it from Val and the others who were there during the time
in which it existed. Many of the materials within this
profile came directly from Val and his friends.

He was a prolific writer, whether it was writing about his
beloved street cars in San Francisco and his motorman
years, or writing for his children’s school newspaper, or
writing his article for A.P.P.L.E. each month. He had an
affinity for writing and editing but that was just one side of
his life.

If you gave him the time, he would tell you all about his
Jazz and the band he was with and even the albums he
produced. The French horn was his instrument of choice
and he was particularly talented with it.

Val, sadly left this world in July, 2008. He is survived by
his wife and two daughters, all who still reside in the
Seattle area. Val to this day is a topic for those of us who
continue to work on A.P.P.L.E. items, and as he always
believed in, attention to the details is the order of the day.

10

A.P.P.L.E. History Across 40 Years

Brief A.P.P.L.E. History
	 Apple Pugetsound Program Library Exchange
(A.P.P.L.E.) was one of the first official Apple User Groups in
the United States. The A.P.P.L.E. Users Group was
established February 21, 1978 by Val J. Golding. The first
meeting of the new users group was called to order at 7pm
by Val at ComputerLand in Federal Way, Washington with 13
people in attendance.

	 A.P.P.L.E. published Call-A.P.P.L.E. magazine and
others, published books, and provided software, hardware
and support services for over 50,000 members in the Apple
world through 1990. Distribution of Call-A.P.P.L.E. magazine
reached over 100,000 in the mid 1980s. From 1990 to 2001,
A.P.P.L.E. had a more limited focus providing support to
computer users around the globe with many special
interests.

	 Bill Martens, who worked for the founder Val J.
Golding and A.P.P.L.E. from 1981 to 1982, started preserving
the company’s information and rebuilding the company in
1999 by contacting former writers, board members and
staff. In February 2002, Bill continued this effort with a new
issue of Call-A.P.P.L.E. magazine. However, this could not
have been achieved without the help of Val Golding, Don
Williams, Michael Thyng, Rick Sutcliffe, and Norman Dodge.

Bill continued being a visionary, promoting A.P.P.L.E.,
restoring its archives, and expanding its offerings. Bill is
currently A.P.P.L.E. Chairman of the Board and the Club
President, and is in charge of distributing Call-A.P.P.L.E.
magazine, organizing the web site, and promoting news,
among other things.

	 In 2003, Mike Pfaiffer joined with Bill, bringing his
Digital Civilization news to the group and the magazine. He
also joined the A.P.P.L.E. team as a director and served both
as Vice President and as President of the group for a number
of years. The content produced by Mike not only pushed the
magazine into the Unix realm, but also allowed the magazine
to continue during several years when Bill was working as a
USMC contractor.

	 At this same time, Bill Martens purchased the remains
of the WAC, Inc. users group from Neal Layton of the
Willamette Apple Connection of Salem Oregon, including
their newsletters and software library. It was brought under
the A.P.P.L.E. umbrella with all of the libraries and
newsletters digitized and placed online. A.P.P.L.E. has also
had a hand in the production of a number of external
projects as well, including the re-introduction of Nibble
Magazine on DVD as well as the Eamon Adventurers Guild
online.

	 In 2008, Brian Wiser joined the executive staff, and
made significant art and manual additions to our official
Beagle Bros site, as well as creating our Applied Engineering
site with his manuals, catalogs, and his self-created
brochures.

	 In 2013, with Bill, he produced The WOZPAK: Special
Edition as A.P.P.L.E.’s first contemporary book. Since then,
Brian continues to design, edit and co-produce all books
published by A.P.P.L.E., encompassing several a year. Brian
is an A.P.P.L.E. Board member, Managing Editor of  
Call-A.P.P.L.E. magazine, and also shares news and his
interviews with many luminaries.

11

Detailed A.P.P.L.E. History

Profile of the Founder

	 Val J. Golding founded Apple Pugetsound Program
Library Exchange (A.P.P.L.E.) in 1978 with the help of Mike
Thyng and Bob Huelsdonk at the suggestion of Max Cook, a
manager at the ComputerLand where Val bought his Apple
II. Val also wrote for Softdisk, On-three and other technology
magazines over the years primarily making his mark in the
early years of Apple computing.

	
	 As the founder, Val was instrumental in guiding the
company to the position it is in now. Val was the Managing
Editor of Call-A.P.P.L.E. magazine and also served as the
chairman of the board of directors. His wife and daughters
were a big part of documenting his stories about his hobby
of Cable Cars, and he was the editor of a highly acclaimed
newsletter for his daughter’s school. He passed away at age
77 on July 2, 2008 after a long battle with cancer.

The New Machine

	 In December 1977, Val Golding took his Christmas
bonus and bought a computer. Although, he originally
intended to buy the Chromeco, he caught a glimpse of the
brand new Apple II computer which ComputerLand had just
gotten in. After purchasing Apple II serial number 759 for
$1,800, he promptly went home and plugged it in.

	 Although the computer was completely self-
contained, in order to connect it to a TV an RF Modulator
was needed. This little item was a bit of a problem at times.

 Once connected, the Apple would produce color the likes of
which the world had not yet seen.

	 Val hacked on the computer for several weeks, calling
Max Cook for questions which Val couldn’t figure out. After
several weeks, however, it became apparent that Val would
have to find another source for information as the number of
questions which Max was able to answer on each call was
becoming fewer and fewer. As this happened, the roles
became reversed with Max calling Val for answers.

A.P.P.L.E. is Born

	 In January, during his usual trip to the ComputerLand
store, Val met another Apple II owner, Bob Huelsdonk. Val
and Bob talked for some length of time with Max Cook and
decided that as information about the Apple II was scant,
that they should start an Apple User Group.

	 Val created a one page notice of a meeting and
distributed it to all of the Apple II owners who were on the
customer lists of ComputerLand, Empire Electronics, and
Omega Stereo. The date that was set for this meeting was
the February, 21, 1978.

	 At that first meeting, about 20 people attended with
12 of them joining the group after the meeting. From this
humble beginning, the group incorporated in 1979 as a non-
profit organization and promptly grew beyond all
expectations reaching the 5,000 member mark by 1980 and
the 12,000 mark by 1981.

	 As for the newly-minted user group name A.P.P.L.E.,
Val said, "I started with the acronym and just played around
with it until I found something that fit. I was never happy with
combining “Pugetsound” but I never figured a better word.
The “Program Library Exchange” of course, was a natural,
because that was what we started out doing."

12

Call-A.P.P.L.E. Magazine

	 The Call-A.P.P.L.E. newsletter, which was established
in February 1978, also continued to grow as did the group
and the availability of information for the Apple II. The initial
flyer, produced for the February 21st, 1978 meeting, became
Call-A.P.P.L.E. Vol. 1 No. 1, and was designated as such only
after the fact, when the second issue came out.

	 According to Val Golding, "No. 1 in reality was a form
letter mailed to customers as an invitation to form an Apple
Computer user group. It seems to me we were just a handful
of people and I offered the name and we all informally said
'That’s fine' or words to that effect. I’m thinking Call-
A.P.P.L.E. Vol. 1 No. 1 may have had that at the top of the
page already."

	 By the end of 1978, the newsletter had reached 20
pages in length. It become a 24-page printed newsletter in
January 1979 and soon thereafter a step further – becoming
a 36-page magazine with glossy covers in April 1979. The
year finished with the November/December issue reaching
58 pages and was on the road to becoming an even more
important technical information resource.

	 Dick Hubert, who became involved early in 1978,
volunteered to help with production of the newsletter. He did
all of the production of the magazine, such as putting labels
on them and preparing them for mailing from his living room
and with the help of his family. Between Val staying up all
night to print the labels for the magazines and his home
production, Dick managed to get the magazine copies to the
post office in time – even in spite of the number of
newsletters reaching almost 4,000 members.

	 This production work generally occurred on the
weekend beginning Friday evening with the mailing taking
place on Monday. But this was all a tough chore which was
done each month and as Dick said, “At this point, we figured
it was time for some changes.”

The Programmers

	 Early on in 1978 and 1979, there were several people
involved with the group who produced many of the software
packages which were made available to the members.
Much of this software was facilitated by the relationship
between Synergistic Software and A.P.P.L.E.. Bob Clardy,
president of Synergistic Software, took on the A.P.P.L.E.
treasurer duties at one of the early meetings, making it clear
that he would do it because no one else wanted to take on
the responsibility.

13

	 However, his move would be the one thing which
made the group get its books in order and also allowed the
group to grow and get out of Val’s basement. It was also
Bob’s influence which led to the hiring of Fred Merchant to
handle the finances of the company on a permanent basis.

	 Upon turning over the responsibilities of the treasury
over to Fred, Bob went back to his focus on the software
side of things. He started Synergistic Software and promptly
hired Darryll and Ron Aldrich as well as Neil Konzen to write
software for the Apple II. Much of the software written by
the three young programmers eventually became the primary
packages used by thousands of A.P.P.L.E. members.

	 Others involved in the creation of software for
A.P.P.L.E. were Bob Huelsdonk and Don Williams. Bob wrote
the very first word processor for the Apple II computer. Don
was primarily a machine language programmer who wrote
software for one of the earliest expansion memory cards
available.

The A.P.P.L.E. Hotline

	 The A.P.P.L.E. Hotline was always a good source of
help when the members were challenged with their
computing needs. Although this was run in Val’s basement,
the fact that he answered the phone directly meant that the
members were benefiting from all of Val’s experience with
the Apple II, as well as any information he could scrape out
of the hands of Apple Computer Inc.

	 On the formation of the hotline, Val said, “A few of us,
including Mike Thyng and Bob Huelsdonk bought our
computers from Max Cook, a manager at the ComputerLand
where I bought my first Apple II, and naturally I was calling
him with loads of questions at first, most of which he
couldn't really answer. A couple of us, including Mike Thyng
and Bob Huelsdonk bought our computers from Max and
naturally I was calling him with loads of questions at first,
most of which he couldn’t answer. Bob was pretty savvy,
having been in the business (with Honeywell) for quite some
time and was able to point me in the right direction for the
answers. Max, although a nice guy, was “just” a salesman.
Eventually he began calling me (as I started developing
some Apple technical expertise) with questions and that was
how the A.P.P.L.E. hot line got started."

	 Val continues, "After the club was formed I gave out
my phone number as the hot line number and many times I’d
answer it in the middle of the night (from the east coast,
etc.). The calls I got most often were from somebody who

had inadvertently or otherwise, deleted their program
(Integer or Applesoft, either one) and I’d talk them through
manually resetting their program pointers to recover the
program. Even Todd Rungren, still an active rock star, used
to call frequently.”

Changing of the Guard

	 By the time Val turned over the editorial duties to
Kathryn Hallgrimson Suther in mid 1984, the group had
grown to an incredible 25,000 members. With this number
of people came an incredible number of problems as well.
 No longer was the group able to maintain the small cozy
feeling of the early meetings.

	 Many of the meetings became too much for Val to
handle and he took the step of leaving to see what else he
could do in life. Thus, he left the group which he founded
and turned over the reigns to another early member, Don
Williams.

	 With the departure of Val came a real change within
the company and many of the associated problems which
are normally associated with such companies. The success
of the group had been noticed.

Apple Programmers and Developers Association

 In 1985, Apple asked A.P.P.L.E. to
create the Apple Programmers and
Developers Association (APDA). Guy
Kawasaki and Dan Cochran came out
to Renton, Washington to sell the idea
of A.P.P.L.E. distributing Apple’s
documentation and code for the
developers – produced up to A.P.P.L.E.

standards. It was at this time that a decision was made and
that APDA was created. With Don Williams at the helm of
the new group, APDA flourished and in 1988, the group was
spun off from A.P.P.L.E. and sold back to Apple.

The Co-op Years

	 In 1985, a taxation dispute with the state of
Washington brought about a change in status of the group
from a non-profit organization to a standard company. The
name was changed from Apple Pugetsound Program Library
Exchange to A.P.P.L.E. Co-Op as the state revoked the non-
profit status of the group.

14

	 The Macintosh was introduced by Steve Jobs in
January 1984 to great fanfare leading A.P.P.L.E.’s Lisa and
Michael Storrrie-Lombardi to create the Lisa / Macintosh
Special Interest Group within A.P.P.L.E.. Lisa and Michael
followed up this interest with a newsletter entitled 32 Little
Apples “News For the Rest of Us.” The newsletter began in
November 1984 and then in March 1986, became Mac-
A.P.P.L.E. magazine with Andrew Himes at the helm.

	 The expanded interests that came with 32 Little
Apples and Mac-A.P.P.L.E. magazine also included the
expansion of the group’s interests into the PC world as well
as the Commodore Amiga. During this expansion time,
Frank Catalano took over as editor of the fledgling magazine.

	 However, the expansion ideas and actions didn’t last
very long. Mac-A.P.P.L.E. ran from that time until November
1987, when the name was changed to Mac Horizons. The
magazine, while filling a need in the market, was not widely
read and publication eventually ceased in October 1988.

	 With the demise of Mac-A.P.P.L.E. / Mac Horizons, a
decision was made to produce Mac Tech Quarterly instead
of the monthly magazine. This too, however, was short-lived
and only five issues of Mac Tech Quarterly were produced
prior to the publication ceasing in 1990.

	 In February 1988, A.P.P.L.E. celebrated its 10th
anniversary with a 16-page extravaganza in Call-A.P.P.L.E.
magazine featuring interviews with many early members of
the group. Dick Hubert, who was the Executive President of

the Co-Op at the time, mentioned the expansion and a focus
of trying to get better speakers for the group.

	 Two years later, the decision was made to change
Call-A.P.P.L.E. magazine to publish quarterly. This decision
essentially put the magazine on a spiral of non-production
and into the historical category. The combination of this
decision, the general decline of computer magazines in the
late 1980s, and the decision by Apple Computer, Inc. to
discontinue selling the Apple IIe and IIGS made interest in
the group wane severely. Additionally, one board member
made it his personal objective to essentially kill the group in
a feeble attempt to acquire its assets. Eventually the office
assets went to auction and the office was closed.

The End of an Era?

	 The August 1989 issue of Call-A.P.P.L.E. magazine
became the Autumn Issue. It was to be the final issue of
1989 with only one further issue coming in late 1990. The
date on the cover of the final legacy issue is Winter 1990. In
the issue, Val wrote a special note about the ending.

	 With the ending of the magazine came the end of the
computing world that had changed from that of the
hobbyists and engineers being the only ones using
computers, to that of a computer being in almost every
home in America. Although this trend would continue in the
1990s with the PC revolution taking over where the Apple
revolution left off, the spirit of the early years would never
return. Or would it…

15

Tech Alliance Years

	 The remaining members of the group formed the Tech
Alliance Co-op, the moniker under which the group
continued to operate, and continued publishing a newsletter
and distributing software and information to about 6,000
members. This information exchange was oriented around
several special interest groups, guided by Dick Hubert and a
number of others who supported the group. It was during
this time in which the Co-Op Spirit newsletter was published
on a monthly basis by various people in the group.

	 The Bulletin Board System, which served as the
group’s main form of communication, continued until 1997
under Norman Dodge with some of the SIG meetings
continuing until 2001 including the Apple II and IIGS SIG
managed by people like Bill Bredehoft.

The Rebirth

	 In 2002, Bill Martens made contact with Norman
Dodge and began recreating the group, eventually forming
what is now the A.P.P.L.E. User Group in coordination with
Val Golding and Rick Sutcliffe, with initial materials supplied
primarily by Michael Thyng, Norman Dodge, Val Golding, Bill
Bredehoft and from Bill’s own collection which was built over
the previous two decades.

	 With Val and Rick’s help, Bill set out to re-start the
magazine, successfully producing the first new generation
issue in April 2002. It marked the first time since 1994 that
an A.P.P.L.E. publication had been produced.

WAC, Inc. Acquisition

	 In 2002. Bill Martens purchased the remains of the
Salem Oregon based Willamette Apple Connection or WAC,
Inc. from Neal Layton. This material was then incorporated
into the A.P.P.L.E. realm of websites and all of the materials
digitized and made available to A.P.P.L.E. members.

Digital Civilization News

	 In 2003, Mike Pfaiffer joined bringing Digital
Civilization news with him. This new material allowed
A.P.P.L.E. to include a spattering of UNIX news in addition to
the retro Apple news that had already been a large part of
the re-invented group. Mike worked with the group until his
passing in 2015, serving for a time as Vice President and
then as President of the user group. He also produced a
number of the group's magazines from 2004 to 2007.

Golden Grail

	 In 2003, Bill Martens and Jim Maricondo began
looking at the possibility of bringing back The Golden
Orchard CD-ROM which was a big seller in the 1990s for
Apple IIGS users. Jim and Bill worked on the project for over
two years, finally making the entire collection available again
and re-formatted for current-day emulation.

	 Their next project was the initial digitization of what
became the Woz Speaks DVD. This project began with a
loan of an original tape of Steve Wozniak speaking to the
A.P.P.L.E. User Group at the monthly meeting in October
1981. The project lasted several months, and with the
resulting DVD, the product returned to the A.P.P.L.E. catalog.

The New Breed

	 In 2008, Brian Wiser joined the executive staff, and
made significant art and manual additions to our official
Beagle Bros site, as well as creating our Applied Engineering
site with his manuals, catalogs, and his self-created
brochures. Brian is an A.P.P.L.E. Board member, Managing
Editor of Call-A.P.P.L.E. magazine, and also shares news and
his interviews with many luminaries.

16

	 In 2013, Brian and Bill produced The WOZPAK:
Special Edition as A.P.P.L.E.’s first contemporary book. The
fully-restored book took over eight months to produce,
starting with a meeting between Bill and Steve Wozniak in
Tokyo, culminating with Brian and Steve, along with Randy
Wigginton introducing the book to crowds at KansasFest
2013.

	 Brian continues to design, edit and co-produce with
Bill all books published by A.P.P.L.E., encompassing several
a year. They go to great lengths for quality, detail, new
features, fresh design, and work with a variety of noteworthy
authors. Between 2013 and early 2018 they published 13
books encompassing:

•	 All About Applesoft: Enhanced Edition

•	 The Apple House: How to Computerize Your Home

•	 The Apple II Monitor Peeled

•	 Call-A.P.P.L.E. Magazine 1978 Compendium

•	 Call-A.P.P.L.E. Magazine 1979 Compendium

•	 Colossal Computer Cartoon Book: Enhanced Edition

•	 Cyber Jack: The Adventures of  
Robert Clardy and Synergistic Software

•	 GBBS Pro Bulletin Board System: Version 2.2

•	 Nibble Viewpoints: Business Insights  
From The Computing Revolution

•	 Synergistic Software: The Early Games

•	 Turtlesoft: Turtle Graphics for Applesoft

•	 What’s Where in the Apple: Enhanced Edition

•	 The WOZPAK Special Edition:  
Steve Wozniak’s Apple-1 & Apple II Computers

	 In 2016, Brian and Bill produced an iOS version of the
Apple II game Structris. They collaborated with original
Apple II programmer Martin Haye, iOS programmer Olivier
Goguel, and neo-classical composer Tomoki Takamori.

	 Brian Wiser and Bill Martens continue to publish
additional materials related to Apple computers, including
managing all of the A.P.P.L.E. websites, creating and editing
Call-A.P.P.L.E. magazine, as well as managing all of the
aspects of the A.P.P.L.E. User Group.

The Future

	 This year marks the return of a host of application
software packages from A.P.P.L.E. in addition to Blankenship
BASIC, the recovery of the original A.P.P.L.E. Crate BBS hard
drives among other items. John Morris, the creator of
Applesauce, is assisting with this. He also assisted with the
recovery of the original Twilight II source code this past year
along with Jim Maricondo.

	 Also on the horizon is All About Applesoft: Enhanced
Edition with additional materials making this book the must-
have book for every Apple II programmer who is using
Applesoft as their primary means of programming. There are
a few eBooks which will also be making their way onto the
scene with their appearances in the Apple iBooks Store.
Stay tuned for more Apple goodness from A.P.P.L.E.!

17

18

Get your copy today in Paperback and Hardback
www.callapple.org/books

The Future Looks Bright

http://www.callapple.org/books/
http://www.callapple.org/books/

19

“I’m excited about my new Nibble Viewpoints book that is an organized
culmination of my editorials from 12 years of Nibble magazine and over
30 years of experiences running large corporations. It contains a timeless
array of shorthand management models that are interesting, powerful,
and easy to use. The models cover a wide range of problems and
solutions for businesses and individuals – they’re short, easy to read, and
sharply focused on workable solutions. Nibble Viewpoints also traces the
rise and fall of the Apple II computer over its amazing history. I’m looking
forward to people reconnecting with Nibble and finding guidance and
insights to help them with their endeavors.”

Mike Harvey
Publisher of Nibble Magazine callapple.org/books

http://www.callapple.org/books/
http://www.callapple.org/books/

40 Years On – My Memories of Val

by Bob Clardy

	 I was digging into my old notes
about my earliest days with the
A.P.P.L.E. user group and found a few
things in my Cyber Jack
autobiography were not quite right. I
purchased my first Apple II in August
of 1978 and went to my first A.P.P.L.E.
meeting the following month.
A.P.P.L.E. had been founded in
February of 1978 by Val Golding. By

the time I went to a meeting, Dick Hubert, Bob Huelsdonk,
and Mike Thyng were the only other "grown-ups" I
remember from those earliest meetings. They each worked
with local stores to get the sales folk there to refer new
Apple buyers to the club for support. Dick was club
president while Val was the editor of Call-A.P.P.L.E.
magazine. Val was also the lead evangelist who
corresponded with Apple Computer luminaries and fans,
seeking information to publish and share with other Apple
users. In those days, the folks at Apple were eager to share
their notes and sketches. A.P.P.L.E., in turn, organized,
edited, published and distributed it to everyone they could.
Apple and A.P.P.L.E. both thrived.

	 Today, with Apple being one of the wealthiest
companies on the planet, it is difficult to realize how primitive
that early company was compared to tech startups of more
recent decades. The computer power-houses of 1978 were

Magnavox and Radio Shack with Apple being a rather under-
funded upstart with little time and manpower to spend on
documentation. Clubs like A.P.P.L.E. sprang up to try to fill
that lack and help the aspiring Apple users learn enough
about their hardware to produce the software that would
eventually become a major industry itself.

	 That first meeting I went to in August 1978 had about
30 members attending. Dick was president and Val was the
editor and they were looking to recruit others willing to work
on behalf of the club. Most attending were teenagers, more
interested in how to get more and better games for their
computer, rather than working for the club. I was 26 and one
of the older members present, so I was a target for Dick and
Val to recruit. I became club treasurer at that first meeting. I
tracked dues and deposits and product costs and paying the
bills associated with a magazine. It quickly became a
significant task which I enjoyed immensely for years as I also
started Synergistic Software, my own Apple software
company.

	 As an A.P.P.L.E. officer, one of my minor duties was to
present the treasurer's report to the club members during
each meeting. Since members came to learn about the
Apple, the business bits of the meeting were not overly
popular. We went through them as quickly as we could, but
it was not until I started presenting the reports in
hexadecimal that there was any real enthusiasm from the
members, as they competed to convert my report before
others. It was silly, but made the business part of the
meeting a bit more tolerable.

	 During the following years, a spinoff group called
APDA (Apple Programmers and Developers Association) was
started. It worked very closely with Apple corporate, getting
officially-released documentation that was then published by
APDA. That, eventually, was taken in-house at Apple as their
staffing caught up with the need for such things. As that
side of operations dwindled, A.P.P.L.E. started its own store
(Apple peripherals, mods, software, books, etc.) and started
semi-formal classes to teach programming and game
design. All of us that worked with A.P.P.L.E. taught, wrote
articles and wrote software. Val Golding gathered
everything, organized it, edited it, and published it to share

Bob Clardy looks back at the early years of A.P.P.L.E..

20

Val Golding

http://www.callapple.org/documentation/books/robert-clardys-cyber-jack-released-by-a-p-p-l-e/
http://www.callapple.org/documentation/books/robert-clardys-cyber-jack-released-by-a-p-p-l-e/

with the larger Apple community beyond our little club. At
that time, the Call-A.P.P.L.E. magazine was one of the
premier computer magazines being published. While the
magazine had many contributors, it was Val Golding that
wrote the most, edited it all, and solicited topics from his
many connections around the industry.

	 Val Golding was a real anomaly at the club. Born in
1930, Val was an ancient 48-year-old when I first met him.
He put me in mind of a bohemian poet, with a scraggly
beard and the yellowed teeth and fingers of a hard-core
chain smoker. He looked so out-of-place in the techie
environment that he attracted attention easily. His friendly
charisma and willingness to talk with anyone about the
Apple insured that he always had a host of contacts to mine
for stories and information that he could then share with
others. Of course, there is no telling whether it all actually
got out there. He was certainly prolific. But, when I visited
him at his home, to hand off some report or article, I had to
run the gauntlet that was his work space. His Apple and
desk were in his basement, and 95 percent of that room was
crammed at least waist-high with ... well, stuff. There was
hardware of different sorts, but most of it was the general
detritus that a near hoarder accumulates when they have too
little space to keep it well organized. There were narrow
pathways that one could walk through to get around that
basement. You had to move carefully so as not to tip over
any of the many piles. I always wondered whether letters or
documents that he received may have been lost in some pile
and buried by later accumulations. It was always an
adventure to visit there and see what treasures might be
revealed.

	 One last story I have about Val involved the trip I
shared with him in the early 1980s. It was supposed to be a
business opportunity to form contacts in Japan and China
for A.P.P.L.E., Synergistic Software, and several other early
American software companies. We went to Tokyo, Taipei,
and Hong Kong, attending trade fairs and meeting with local
business folk. I believe Val made good use of the trip and
formed new information sharing contacts. For myself,
though, it was more of a junket. I loved the meetings, but

did not make any new business contacts. It was fun,
though. I have fond memories of the bustling cities, shrines
and architectural wonders, and crowds of friendly people. It
was in some small store in Akihabara that I found my earliest
pirated software – a copy of Odyssey that had been
translated into Japanese, republished and sold openly in the
stores there. I purchased one myself. Maybe I should have
tried a bit harder to ally Synergistic with some local company
so I could at least participate in those sales. But, at the
time, I was just flattered that anyone cared enough to make
that effort.

	 The other cultural awakening we shared was with the
school children of Japan. Any time we went to a shrine,
temple or other relic of Japan's past, we encountered groups
of school children on field trips to see those same sites.
They were always dressed the same and incredibly well
behaved, walking in line behind a chaperone or two holding
flags high. I was amazed that such large groups of young
children were so polite and organized. They were also,
totally fascinated by us. We weren't just foreigners – we had
beards. That was pretty uncommon in those areas and
apparently identified us as somewhat barbaric and exotic.
When a smiling child screwed up the nerve to test his
English on us and say hello, we always stopped to reply.
That inevitably led to the entire line of school kids forming up
to see us, say hello, and shake hands. They were totally
fascinated and we had a blast. Val, with his shaggy hermit
look, was always the biggest draw. The chaperones helped
us with some polite phrases that we could say to the kids
while they, in turn, tried out their English phrases on us. It
would sometimes take 20 minutes or so for an entire group
to greet us, one by one . In some cases, Val and I would
separate a bit so each of us could interact with a different
group. There were a lot of them.

	 Needless to say, we had a great time and I do wish I
had made better use of the opportunity to expand
Synergistic Software. But, it was just too much fun to spoil it
with actual work. I'm afraid I still saw the Apple as a hobby
that paid some bills, rather than business that I could grow
into something international. While that may have been a
poor business decision, it did insure that the memories were
all fond ones. There were no failed deals or anguish about
the software piracy. It was good fun and sharing with others
as best we could and that was what mattered the most.

That's all for now. Best wishes.

21

Val Golding's Office

22

Get your copy today!

Available in 
Paperback and Hardback

www.callapple.org/books

New from
A.P.P.L.E.

and
Robert Clardy

http://www.callapple.org/books/
http://www.callapple.org/books/

23

http://philipbouchard.com/

http://philipbouchard.com
http://philipbouchard.com

by Don Williams

	 It was the best of times and
the worst of times for the A.P.P.L.E.
user group. We, as a club, had a
large group of members who were
all excited about the treasures that
this new Apple personal computer
would surely deliver. Only board-
certified optimists were allowed in
the realm of Call-A.P.P.L.E.. If any
one of us found a pile of road
apples, we would dig through it to

find the pony that had to be in there. And then to rain on this
sanguine parade, Apple's lawyers were telling us our name
infringed on their copyright and we should change it or suffer
the slings and arrows of their outrageous tribulations. We
had grabbed a tiger by the tail and it got our undivided
attention. The Crazy Ones by Rob Siltanen seems to apply
to A.P.P.L.E. back in the day:

	 "Here's to the crazy ones. The misfits. The rebels.
The troublemakers. The round pegs in the square holes.
The ones who see things differently. They are not fond of
rules. And they have no respect for the status quo.

	 You can quote them, disagree with them, glorify or
vilify them. About the only thing you can't do is ignore them.
Because they change things. They push the human race
forward.

	 And while some may see them as the crazy ones, we
see genius. Because the people who are crazy enough to
think they can change the world, are the ones who do."

	 I have a chart on my wall of a poem that was an Apple
product done for APDA in 1985, written by Rich Binell and
produced by Clement Mok. It too captures a feeling of
A.P.P.L.E.'s spirit:

Ode to the Latter-Day Wizard

Sun and stars
are rarely seen,
behind the screen.

All the day
and all the night,
In darkness broken
by flickering light.

Mix rust and dust
and sand and sweat,
And spells that others
don't know of yet.

Journey dark
untraveled roads,
With lead and light
and secret codes.

With yes and no
and no and yes,
Lure much from naught,
and more from less.

With balanced fire
on fingertips,
And words that pass
no mortal lips:

Words that hint
at wealth untold,
From turning bits
and dreams to gold.

	 There was a huge demand for documentation on
Apple internals, yet Apple had none for the masses of club
members that were hungry for them. Dr. Stillman, more as a
favor to Apple and some of the more technically qualified
members of Call-A.P.P.L.E., pencil-whipped a few of the
Apple internal documents. Apple software developers and
engineers had a habit of writing extraordinarily good code
and designing state of the art hardware, but like all good
engineers, documentation was an easy to overlook
requirement. Dr. Stillman was an extraordinarily good

Apple asks A.P.P.L.E. to handle APDA and its distribution to the world.

24

 How A.P.P.L.E. Created an Institution

The Founding of APDA
The Apple Programmers and Developers Association:

technical writer. He took great pride in his work and it
showed. Apple took note and asked for more.

	 In defense of the Apple internal documentation, most
of the things really needed can be written in a few words for
the people who don't really need the documentation for
other than reference. This resulted in documents that were
written in a linguistic landscape somewhere between
technobabble and English. For themselves and fellow
travelers, this was not an issue since most documentation
becomes shelfware, and that is only used to decorate the
shelves of the wizards that flog the code day in and day out.
They needed the documentation only to refresh their
memory of the incantations that they had developed on
those long sleepless nights while they were accomplishing
the magic needed to meet impossible deadlines.

	 Apple had a philosophy that involvement from the
clubs supported their sales. Apple was good to all of the
clubs and provided speakers and the availability of software
support from members of the Apple software teams. In spite
of Apple's positive relationship with the club, they had rudely
sent us cease and desist letters relating to our name.
Exploiting that positive relationship behind the scenes,
Richard Hubert worked out a deal with Guy Kawasaki at
Apple (one of the User Group Gurus) to rewrite technical
material from Apple and sell it to our members and give
them to Apple.

	 Guy came up to the Call-A.P.P.L.E. building in Kent
and pitched the offer to the Board. Most of the board's
questions were related to, "can we pull this off and how will
it affect our magazine and other services to our members?"

	 Guy said Apple would provide whatever equipment
was needed and all of the technical support needed to
produce a quality document, along with any other resources
that we might need like funding for staff. I believe Guy
offered to have the lawyers stop the harassment on the
name issue. The Board was kind of bowled over. Looking
back on it, this was a huge challenge, but angels go where
wise men fear to tread. This sounded like it was too good to
be true. The Board, at the advice of our counsel Bob
Walerious, agreed.

	 The Board, on the advice of Richard, decided to form
a separate organization, with an only slightly better name,
Apple Programmer's and Developer's Association. Apple
came through with everything and more. Everyone was
trying to figure out how to monetize their interest in the

25

Apple Computer, and APDA provided a guiding light to
that process. Before long our user group had 40,000+
members and we were selling Apple technical documents
as fast as we could produce them.

	 You could think of this business model as
someone giving you material in one language and your
translating it to another language and selling it to a
customer set that bought everything that you translated
at whatever price you decided was fair. We were the
media kingpins of our day. Kind of like prostitution, what
was of value came to you organically through no fault of
your own. You could sell it and you still had it to sell
again.

	 We were in fact supporting the largest community
of developers likely ever seen on the planet. These were
the golden years and Apple turned out to be the best
business partner we could have imagined.

26

40 Years of A.P.P.L.E.
www.callapple.org

The CRPG Book Project: Role-Playing
Game History From 1975 - 2015
	 This month, Felipe Pepe announced the availability of
his long-awaited CRPG Book. Felipe, a native of Brazil who
resides in Tokyo, has been hard at work between jobs
putting together reviews of over 400 games and RPG
systems from the 1975 to 2015 time frame. The result is an
almost 600 page book which not only delves into the realm
of the games but also how they affected the overall industry.

	 The project, Which Pepe started in 2014, was derived
in idea from the RPG Codex's Top 70 list. The list focused
on what fans decided were the top RPGs and ran several
reviews from several of the users.

	 Pepe has taken that idea a step further with his book
by including game reviews solely written by the fans of the
games, developers, journalists and a host of other industry
people. Some of the highlights come from Chris Avellone,
Ian Frazier, Scorpia, Ferhegón, Richard Cobbett, Brian
‘Psychochild’ Green, Durante, George Weidman and Tim
Cain, and over 100 other volunteers. This book was truly a
community project with Pepe acting more as the master of
ceremonies and the glue that brought it all together.

	 If you haven't seen the book yet, a PDF of the book
as well as the ePub is available for free download. Pepe has
also announced that there will be a physical printing of the
book which he intends to turn into some type of community
charity fundraiser sometime here soon.

	 True to the spirit of the project, he has also made a
RAR archive of the project's InDesign files available under
the Creative Commons CC BY NC 4.0 licensing. This
project is massive and if you look at downloading it, the file
reaches a whopping 1.3 GB.

	 For those of you who are not native English speakers,
you will be happy to know that there are now also
community efforts to translate the book into four other
languages: Spanish, German, Russian, and Chinese. For
more information about the CRPG Book Project, visit the
website: https://crpgbook.wordpress.com

27

https://crpgbook.wordpress.com
https://crpgbook.wordpress.com

Roger Wagner
to Keynote KansasFest 2018

	 The 2018 rendition of KansasFest is sure to be
another one for the record books. This year, an early
alumnus of the event has been chosen to give the keynote
speech. Roger Wager, publishing giant and programmer
from the 1980s has returned once again to the arena that
made him infamous.

	 When asked about his upcoming appearance at
KansasFest, Roger told A.P.P.L.E., "KansasFest was the real
center of Apple // culture back then, and it had a great
influence on my work, including eventually a HyperStudio
conference that was called HyperFest. This will be a very
meaningful homecoming for me!"

	 According to the press release from the KansasFest
committee, “KansasFest 2018, the premier annual Apple II
convention, is scheduled for July 17 – 22 in Kansas City,
Missouri. This year marks the 30th time that this event has
been held. In July 1989, Resource Central held the first A2-
Central Developer Conference, focused on the individuals
and companies who were still producing hardware and
software for the Apple II and IIGS computers. Within a

couple of years, the event
transformed into a conference for
Apple II developers and users alike.

	 This year, KansasFest welcomes
back one of its alumni, Roger
Wagner. Though 2018 will mark
Wagner’s third time as a keynote
speaker for the event, most current
attendees haven’t had the
opportunity to hear him speak
because his last appearance was
23 years ago. He has deep roots in
the Apple II community, back to the
beginnings of the platform. In 1978,
Wagner started his own software
publishing company, Southwestern
Data Systems (SDS), as a vehicle
for some of his first software
products for the Apple II,
Programmer’s Utility Pack and
Apple-Doc, sold on cassette. He

also wrote a word processor for the Apple II, The
Correspondent. SDS sold software written by other authors,
including Glen Bredon’s popular Merlin assembler, The
Routine Machine by Peter Meyer (Applesoft extensions), and
ASCII Express and Z-Term by Bill Blue, as well as games
such as BEZARE by John Beznard and NORAD.

	 During the years he also wrote articles for the major
publications of the day, including Call-A.P.P.L.E., Nibble,
inCider, A+ Magazine, and GS+. Wagner is best remembered
for his long-running Assembly Lines column in Softalk,
teaching that first generation of Apple II users how to write
software in 6502 assembly language.

	 He later renamed his software company to Roger
Wagner Publishing, and continued to provide quality
software for both the 8-bit Apple II and the 16-bit Apple IIGS.
His most famous contribution to the IIGS was the
HyperCard-inspired program, HyperStudio, which linked
pictures, audio media, and text with clickable links, a
foretaste of the hyperlinked web that was to later arrive in the
1990s. With his original background in teaching, Wagner

28

Credit: Gary S. Stager

http://rogerwagner.com
http://rogerwagner.com
http://rogerwagner.com
http://rogerwagner.com
http://rogerwagner.com
http://rogerwagner.com
http://rogerwagner.com
http://rogerwagner.com
http://rogerwagner.com
http://rogerwagner.com
http://rogerwagner.com
http://rogerwagner.com
http://rogerwagner.com
http://rogerwagner.com
http://rogerwagner.com
http://rogerwagner.com
http://rogerwagner.com
http://rogerwagner.com

continued the HyperStudio legacy by later developing it for
Windows and Macintosh computers, and focusing on its
application in the school environment, to teach students to
create presentations and to learn about computers. He
further developed HyperDuino, an Arduino-based hardware
extension for the HyperStudio to allow students to control
real-world devices with their projects.”

	 For those of us who
grew up with the Apple II in
the 1980s, Roger’s software
was a mainstay, between
Merlin, MouseWrite, and of
course, the unmistakable
HyperStudio for the Apple
IIGS, his hands were
everywhere in the Apple
world.

	 Roger could have quit in the 1980s, but instead he
continues to educate the younger generation, developing
Arduino-type projects. HyperDuino is a project which Roger
uses to teach young people about the merits of engineering.

	 Additionally, HyperStudio 5 for Mac has evolved from
its Apple II roots. He has also released HyperStudio
AUTHOR, that allows for the creation of simple and beautiful
interactive iPad books with HTML5-based media that can be
merged into Apple's iBooks Author.

	 While the 2017 rendition of KansasFest limited the
attendance to just 100 people, there will be no such
limitation this year according to KansasFest Committee
member, Sean Fahey. He does note that, “We encourage
people to double up though as single rooms may become
scarce in Corcoran.”

	 This year, Rockhurst University has also agreed to
work with the KansasFest committee to accommodate the
overflow with both accommodations and also venue halls for
any additional attendees that need the additional space.
This is a positive change for the event which sold out
completely last year and left a number of people not being
able to attend. That will not be the case this year.

	 You can read more about Roger Wagner,
HyperStudio, and get the latest news on his HyperDuino
project at: http://rogerwagner.com

29

http://rogerwagner.com
http://rogerwagner.com
https://openlibrary.org/works/OL17078830W/Assembly_Lines
https://openlibrary.org/works/OL17078830W/Assembly_Lines
https://openlibrary.org/works/OL17078830W/Assembly_Lines
https://openlibrary.org/works/OL17078830W/Assembly_Lines
https://openlibrary.org/works/OL17078830W/Assembly_Lines
https://openlibrary.org/works/OL17078830W/Assembly_Lines
http://www.mackiev.com/hyperstudio/select.html
http://www.mackiev.com/hyperstudio/select.html
http://www.mackiev.com/hyperstudio/select.html
http://www.mackiev.com/hyperstudio/select.html
http://www.mackiev.com/hyperstudio/select.html
http://www.mackiev.com/hyperstudio/select.html

30

https://digisoft.callapple.org/
https://digisoft.callapple.org/
https://digisoft.callapple.org/
https://digisoft.callapple.org/
https://digisoft.callapple.org/
https://digisoft.callapple.org/
https://digisoft.callapple.org/

Cross Chase: A Massively
8-Bit Multi-System Game

by Fabrizio Caruso

	 CROSS CHASE is my personal project with a main
purpose and objective to create a simple, yet fun, game for
literally all 8-bit computers/consoles/handhelds from the
1970s and 1980s. By “all” I mean any 8-bit computers with
enough RAM and for which a capable ANSI C cross-
compiler exists.

	 The project is open source and it can be followed at:
https://github.com/Fabrizio-Caruso/CROSS-CHASE where
both the source code and pre-compiled binaries for more
than 60 different systems and configurations are freely
available. Please go back often to the GitHub page if you
want the latest version because I make frequent updates.

HISTORY

	 This idea came to me when I found out about the
CC65 cross-development toolkit for 6502-based systems:
https://github.com/cc65/cc65.

	 I realized that CC65 provided a common language
(ANSI C) for all its supported targets and some common
APIs for most of its targets. I started playing around with it
by modifying the "hello world" example, which is provided
with it. After 1400 Git commits from the "hello world" I have
now an arcade-like game that can run on about 60 different
systems.

	 CC65 was clearly not enough and I had to resort to
other toolkits such as: Z88DK at: https://github.com/z88dk/
z88dk which comes with two ANSI C cross compilers
(ZSDCC and SCCZ80) for Z80-based systems and
WinCMOC and CMOC proper at: https://perso.b2b2c.ca/
~sarrazip/dev/cmoc.html which are development tools for
6809-based computers.

	 I also plan to use GCC for TI for the TMS9000-based
Texas Ti-99/4A, which I intend to support even if it is a 16-bit
system but for the same 8-bit era.

THE GAME

	 The idea of the game is my original idea. You are
chased by some bad guys. You can kill the bad guys by
luring them into some mines that they do not see. While I
believed my idea was original and I was not particularly
inspired by anything or any other program, I later found out
that similar games do exist. The closest one may be Robots
(https://wiki.gnome.org/Apps/Robots) as included in Gnome.

	 This did not deter me and I pushed on with my
project. The main difference between my game and Robots
is that my game is an action game and Robots is turn-
based. With respect to the gameplay the game has three
versions in order to fit into as many different memory (and in
some cases video) configurations as possible.

	 The VERY SAME code (or meta-code) produces all
three versions:

TINY: 	 just you, the bad guys chasing you and the mines;

LIGHT: 	 same as TINY but: 1. there is an enemy (the skull)
who does not die on the mines and 2. you can get
some power-ups including a gun that can kill all
including the skull;

FULL: 	 as as LIGHT but with different enemy types, more
power-ups and multiple levels with different walls
and missiles.

THE FRAMEWORK

	 A very important by-product of this project is a C
library/framework that I have written to create an abstraction
layer so that the very same code can be used for all
systems.

	 This means that it is already possible to create other
universal 8 bit games within the graphical and sound
limitations of the framework.

31

https://github.com/Fabrizio-Caruso/CROSS-CHASE
https://github.com/Fabrizio-Caruso/CROSS-CHASE
https://github.com/cc65/cc65
https://github.com/cc65/cc65
https://github.com/z88dk/z88dk
https://github.com/z88dk/z88dk
https://github.com/z88dk/z88dk
https://github.com/z88dk/z88dk
https://perso.b2b2c.ca/~sarrazip/dev/cmoc.html
https://perso.b2b2c.ca/~sarrazip/dev/cmoc.html
https://perso.b2b2c.ca/~sarrazip/dev/cmoc.html
https://perso.b2b2c.ca/~sarrazip/dev/cmoc.html
https://wiki.gnome.org/Apps/Robots
https://wiki.gnome.org/Apps/Robots

THE APPLE VERSIONS

	 The game supports quite a number of systems (see
next section) including the Apple][and Apple //e systems.

	 Currently, the Apple versions currently only use the text
mode and have no sound. Both sound (through the bit
banging technique), as well as graphics (through the CC65's
TGI libraries) are planned. Nevertheless the game is already
fully playable in these versions.

THE SUPPORTED SYSTEMS

	 The supported systems are in principle all 8-bit
systems but the game currently only works for just about 70
different systems and configurations.

	 I have been actively adding new systems, with the list
of supported systems changing all the time. Thus I am only
providing a partial list of the supported systems in each
category:

Partial List of FULL Versions:

• Sega SC 3000

• Luxor ABC80 32k

• Jupiter Ace 16k

• Apple //c

• Apple][e

• Mattel Aquarius 16k

• Atari 5200 (console)

• Atari 400/800 (color low resolution)

• Atari 400/800 (high resolution)

• Tangerine Atmos and Oric 1 48K

• Commodore 128 (native 40 column mode)

• Commodore 128 (native 80 column mode)

• Commodore 16/116/+4 (32k min)

• Commodore 64

• Commodore CBM 510

• Commodore CBM 610

• CoCo 1/2/3 and Dragon 32/64 (multiple versions)

• Amstrad CPC

• Galaksija 22k

• Gamate (console)

• Lambda 8300 16k

• CCE MC-1000 48k

• MicroBee

• MSX 32K (cassette and rom version)

• MTX

• Nascom computer series 32k

• NES (console)

• Ohio Scientific 1P 32k

• Philips P2000

• PC-6001 32K

• Commodore PET 16k

• Sam Coupe

• Sharp MZ series

• Sinclair Spectrum 48K

• Spectravideo SVI 328

• VG-5000 with 16k expansion

• Vic 20 with 16k expansion

• VZ 200 family (Vtech Laser 200/310 & VZ 200/300) with 32K

• Robotron Z 9001 32k

• Sinclair ZX80 with 16k expansion

• Sinclair ZX81 with 16k expansion

32

•

Partial List of LIGHT Versions:

• Atari Lynx (handheld)

• Luxor ABC80 16k

• Atari 400/800 (high resolution)

• Commodore 16/116 (unexpanded)

• CCE MC-1000 16k (unexpanded)

• MSX 16k

• Nascom computer series 16k

• Oric 1 16k (unexpanded)

• Philips P2000 16k (unexpanded)

• Spectravideo 318 16k (unexpanded)

• VG-5000 16k (unexpanded)

• Vic 20 with 8k expansion

• VZ 200 family (Vtech Laser 200/310, VZ 200/300) with 16K

• Robotron Z 9001 16k

Partial List of TINY Versions:

• Mattel Aquarius with 4k expansion

• PCEngine (console) 8k rom version

• Creativision (computer/console hybrid) 8k rom version

• Ohio Scientific 1P 8k

• Commodore PET 8k

• Sinclair Spectrum 16k (unexpanded)

• Commodore Vic 20 with 3k expansion

•

SAME CODE FOR MORE THAN 100 SYSTEMS

	 I am using the very same code for all systems. This is
possible because:

	 I am using ANSI C, which is a universal language,
which is compiled by multiple cross-compilers into
executables for the specific systems.

	 I have created a universal 8-bit framework for very
simple graphics and sounds. The framework provides an
abstraction layer so that hardware-specific code is used for
graphics and sounds.

ACKNOWLEDGEMENTS

	 This is a personal project but I have been helped and
supported by different people.

	 I have had a lot of support and help from Stefano
Bodrato from the Z88DK team. I have also been supported
by some people from the "scene" (Simon Jonassen from the
CoCo/Dragon scene) and from some of the authors of the
other toolkits (Christian Groessler from the CC65 team and
Pierre Sarrazin who is the author of the CMOC).

ABOUT THE AUTHOR

	 Fabrizio Caruso is a software engineer and a retro-
computing enthusiast and collector, who has amassed a
collection of about 80 computers from the late '70s, '80s and
early '90. His primary computer interest is those machines
which are from the 8-bit era or computing.

33

34

Huibert-Aalbers
Software

Jigsaw!
A very simple game, written in less
than a week. It was never meant to
be published but my editors at
Britannica liked it and convinced me.
Jigsaw! sold over 100,000 copies on
multiple platforms.

LaserForce
A 3D high speed action game for the
Apple II gs with sound using the
Ensoniq chip.

SoundSmith
This is probably the most rewarding
program I have written to date.
SoundSmith became an instant hit.
People had purchased their Apple
IIGS to enjoy their Ensoniq chip and
there wasn't a decent music
application. SoundSmith filled that
gap.

AZERTY
A simple NDA that allowed French
IIGS users to fully use their keyboard
when working with GS/OS
applications.

Jigsaw Deluxe
An improved version of my best
selling game, Jigsaw! This
application was lost for almost 30
years and is now finally available for
download.

Get These Titles at:
www.huibert-aalbers.com/AppleIIgs

Turtlesoft

DOS	&	new	ProDOS	version
free	for	Members:
www.callapple.org

	
Manual	for	Everyone

Just	$11.25	
www.callapple.org/books

www.forth.org

for	iOS	–	Just	$1.99
www.structris.com	

http://www.huibert-aalbers.com/AppleIIgs
http://www.huibert-aalbers.com/AppleIIgs
http://www.callapple.org/
http://www.callapple.org/
http://www.callapple.org/books/
http://www.callapple.org/books/
http://www.structris.com
http://www.structris.com

A.P.P.L.E. In Depth Vol. 1:  
All About Applesoft

Coming Soon to the A.P.P.L.E. Book Store! 
Complete with all programs available on FREE floppy disk Image

Enhanced 40th Anniversary Edition

35

https://www.callapple.org/books/
https://www.callapple.org/books/
https://www.callapple.org/books/
https://www.callapple.org/books/
https://www.callapple.org/books/
https://www.callapple.org/books/

6502 Assembler Tricks:
Self-modifying code
based on the 3D Demo

by Dr. Marc A. Golombeck 
Neukirchen/Erzgebirge, Germany 

Introduction

	 Many programmers are of two minds about self-
modifying code. Some are awed by its mere existence and
considering it being the Holy Grail of assembler
programming. Other users deem it to be sorcery, which
should not be used in 6502 assembler programming at all.

	 In this article I want to give some insight in the
technique of programming self-modifying 6502 assembler
code. The coding examples given are taken from my current
development project: a 3D-engine for the Apple II so there is
a close connection to a real life project. Detailed general
background information on this 3D-engine can be found in
the Fall 2017 issue of Call-A.P.P.L.E.

	 In the early 3D-engine versions there was no self-
modifying code at all. This issue came into play at a later
time when I came across two general coding problems:

	 1. Algorithm execution time 
	 2. Code size

	 And these two points really sum up the main reasons
why one would benefit from using self-modifying code in a
program: to make the algorithm faster and/or to save RAM
space.

	 More about these benefits follow later in this article.
First let’s answer the most important question: “What is self-
modifying code?”

	 The answer is quite simple: self-modifying code is
code that changes itself at run time in order to fulfill a certain
task. That means that the code patches itself at well-defined
memory locations during execution.

	 Let me illustrate this concept using a very simple
example 6502 assembler listing. Think about a loop where
data is read from a certain memory address into the
accumulator using the X-register as an index that is
incremented:

myLOOP LDA DATA,X  

 INX  

* do something in the loop body...  

*  

*  

 JMP myLOOP ; jump back to loop start

	 Simply put, this loop reads a byte from the location
DATA + X into the accumulator. X is incremented and then
there might be a lot of arbitrary other commands in the loop
body to fulfill a certain task as well as branches out of the
loop. At the end the loop is restarted with the JMP command
and the incremented X-register (which we of course assume
to be preserved in this example despite of the other
operations performed in the body of the loop).

	 Now we have created a loop with increasing X-
register. However, what if we need a loop with a decreasing
X-register with the rest of the loop body staying the same?

	 We could introduce some branches with conditions
and switch between an INX and DEX for incrementing or

36

decrementing the X-register as needed. This is possible but
makes the code more complicated and always costs some
additional cycles since we need to put the branching
conditions inside the loop body. If you want your code to be
fast you should not waste cycles for checking conditions
and doing branching inside a loop!

	 Another possibility is to duplicate the loop code and
just exchange the INX by a DEX. If you can spend the extra
space in RAM for the duplicate code then you may go for
that very fast solution.

	 However, you might have noticed that the required
code change of the loop body is pretty small. To be more
precise: you just need to change one byte of the code. As I
have written in the paragraph above you need to exchange
the INX by a DEX-opcode in order to change the X-register
from counting up to counting down. What if we just change
this single byte during runtime to the opcode we need?

	 Self-modification takes place before the loop is
entered. We need a small piece of code that decides
whether we should put an INX or a DEX at the required
position in the loop body. So we have a small additional
overhead requiring some extra cycles and RAM space but if
we do not need to change too often between INX and DEX
we save processor cycles in the end and get a very
reasonable compromise between algorithm speed and RAM
usage.

	 How do we realize the self-modification part in our
example? First we should introduce a label (modi1) at the
position we want the modification to take place:

myLOOP LDA DATA,X  

modi1 INX  

* do something...  

*  

*  

 JMP myLOOP ; jump back to loop start

	 Then we need to add some code with condition
checks in order to choose which opcode we need in the loop
body and last but not least do the code modification before
the loop is executed. I do not want to go into details of the
condition checking since this is part of the individual
algorithm logic and must be designed to your individual

needs. The self-modification part is rather simple and
straightforward:

* condition for INX true  

 LDA #$E8 ; hexadecimal value for opcode INX  

 STA modi1 ; store the opcode for INX  

*...  

* condition for DEX true  

 LDA #$CA ; hexadecimal value for opcode DEX  

 STA modi1  

*...

	 And we are done! This is a tiny example for self-
modification as a starter but it already demonstrates how
powerful self-modification can be. If you run into RAM
shortages or want to make your algorithm faster by
optimizing loops without using too much additional RAM this
is a simple but powerful solution.

	 However, there are also some drawbacks when using
self-modifying code. First of all the source code gets more
complex and debugging of the modified code at runtime is
more complicated. Secondly, you need to make sure that the
mechanism, which checks the conditions and performs the
self-modification, is working properly under all
circumstances. If something goes wrong the self-
modification can screw up your code leading to program
crashes or other funny behavior during runtime.

	 This is particularly true if you are using self-
modification techniques with relative addressing, which will
be illustrated later. The above example uses direct
addressing, i.e. the memory address where the new opcode
is stored is defined by a label (here: modi1) with a fixed
address at compilation time.

	 After this short introduction with a simple example I
want to demonstrate this technique based on solutions that I
have integrated into my 3D-Demo assembler code.

Coding Examples

	 Changing a line drawing routine to an undrawing
routine: Drawing HIRES lines on an Apple II computer is
quite an ordeal. Using the integrated HPLOT-ROM-routines
is possible, however, drawing speed is mediocre at most.
Therefore I decided to implement a faster line drawing
algorithm in my 3D-Demo.

37

	 I was pointed to Andy McFadden’s fdraw high-speed
drawing routines and I deduced my FASTLINE-
implementation from his library. Before we take a closer look
on an interesting self-modification part of this routine I want
to give a short overview on how HIRES pixel are set.

	 HIRES screen data is not organized in a coherent way
on the Apple II. As you might recollect each HIRES line with
280 pixels is stored in 40 consecutive bytes of memory.
Each byte represents 7 pixels on the screen in x-direction (in
reverse order to be more precise and different for even
versus odd “columns” when considering colored pixels – but
I do not want to get more into these details here!). The 8th bit
of each byte encodes the color palette.

	 To make it even more complicated consecutive HIRES
lines in Y-direction are not stored sequentially in memory so
you need to implement a function that gives you the base
address of the first byte of the desired HIRES line number.
After determining the base address you need to figure out in
which of the 40 bytes the pixel information has to be stored.
Since every byte holds 7 pixels you need to divide the X-
position of the pixel by 7 in order to get the position of the
corresponding byte in the row of 40 bytes and use the
remainder of the division for determining the pixel position
inside the byte. A fast way to perform these tasks is using
lookup tables and a pixel mask.

	 So basically the following steps have to be performed
to plot a pixel at (x,y):

•	 Calculate the base address of the desired line
number

•	 Divide the pixel number by 7 to determine the
corresponding byte of the line and load that byte

•	 Calculate the remainder to determine the pixel
position inside the byte

•	 Load the corresponding pixel mask

•	 Do an OR-operation of the corresponding screen
byte with the pixel mask this preserves the current
screen content and sets an additional pixel.

•	 Save the modified byte back to the corresponding
HIRES screen memory location.

In 6502 assembler this can be represented for example as:

* Get base address of HIRES line  

 LDX YPOSN ; line number  

 LDA YADRLO,X ; get low address byte from table  

 STA YBASE ; store low-byte in zero page  

 LDA YADRHI,X ; get high byte  

 STA YBASE+1 ; store high-byte  

*  

* Get byte number & pixel position for desired x-value  

 LDX XPOSN ; assume x-position <= 255 here  

 LDY DIV7,X ; get byte number from div-by-7 table  

 LDA MOD7,X ; get pixel number from remainder  

 TAX ; move accumulator to X-register  

 LDA PIXMASK,X ; load pixel-mask  

 STA PIXEL ; temporarily save pixel-mask  

*  

* Get desired HIRES-byte and set new pixel  

 LDA (YBASE),Y ; load HIRES byte  

 ORA PIXEL ; set new pixel preserving content  

 STA (YBASE),Y ; store byte back to HIRES memory

	 Basically this is the way that a pixel is drawn in the
3D-Demo. Please note that this draw routine does not
consider a color mask and hence only is a monochrome
algorithm. Nevertheless this is sufficient for e.g. black &
white wireframe models. If we would want to consider
colored pixels we would need to pay more attention on how
we set the pixel-mask.

Some more remarks on certain steps in the algorithm:

•	 The base address YBASE is a two-byte pointer
somewhere in the zero page. I use indirect-indexed
addressing for retrieving the appropriate byte from HIRES
memory. The two byte zero page pointer holds the
memory base address for the desired line number. This
value is loaded via a fast double table lookup.

•	 The x-position of the pixel is assumed to be 255 or less
here for the sake of simplicity in this example. In the 3D-
Demo the algorithm is capable of drawing to all 280
possible x-positions.

•	 As stated above 7 pixels are stored per byte so a division
by 7 gives the byte number which has to be changed in
order to draw a pixel. The determination of the byte
number is again done using a lookup table. The
corresponding byte number is stored in the Y-register for
further use as an index offset of the base address YBASE.

•	 The pixel position from 1 to 7 from in the corresponding
byte is given by the remainder of the division by 7 and is

38

also provided by a fast table lookup. This value is then
moved to the X-register in order to be used as an index
for loading the corresponding pixel mask (PIXMASK).
Examples:

Remainder = 1 set pixel no. 1 PIXMASK = $01 = % 0000 0001

Remainder = 2 set pixel no. 2 PIXMASK = $02 = % 0000 0010

Remainder = 3 set pixel no. 3 PIXMASK = $04 = % 0000 0100

And so on…

Note: pixel positions are stored in reverse order in the HIRES
memory!

•	 The corresponding byte for the pixel-mask is loaded and
stored in a temporary zero page location.

•	 Setting the new pixel is rather straightforward after the
slightly complicated way in retrieving the correct pixel
mask. First the HIRES byte is read using indirect-indexed
addressing. Then the magic is done using the ORA-
opcode which performs a logical OR of the HIRES byte
with the pixel mask. Spirit and purpose of this operation is
to preserve the already stored pixels in the byte and only
adding the new pixel. The logical OR preserves all bits
that are already set to 1 in the HIRES byte. If we would
use a logical AND instead we would delete all other bits in
the HIRES byte. This leads to unwanted graphical effects
if there are more than one line of the wireframe model
intersecting the HIRES byte.

	 This was a very short side trip into Apple II HIRES
screen programming with many simplifications but no word
about self-modifying code yet. I am sorry about taking this
detour but I needed to prepare what I am talking about in the
next paragraphs.

	 The routine for setting pixels given above is pretty fast
but it has a major drawback: it can only set new pixels! What
if one wants to delete a certain pixel in a HIRES byte?
Storing a zero in memory would delete all 7 pixels, which
would do for a general screen erase (see below) but what
can we do to only delete one pixel and leave the others
unaltered?

	 Yes, the answer is we need to store a zero at the
corresponding bit position and leave the other bits
unchanged. This could be done by using a logical AND-
operation with a special delete pixel mask where the bit to
change is set to 0 and all the other bits are set to 1, for
example:

•	 Delete pixel 1 DELMASK = $FE = % 1111 1110
•	 Delete pixel 2 DELMASK = $FD = % 1111 1101
•	 And so on

	 We would need to do an exclusive-or of the PIXMASK
with $FF in order to get the delete mask and exchange the
logical OR opcode (ORA) with a logical AND-operation.

	 We could copy the FASTLINE-routine and implement
the changes to create a FASTDELETE-routine or insert
conditions and branches inside the FASTLINE-routine in
order to switch logical operations when we want to delete a
line. The first solution is fast but needs a relevant amount of
extra RAM, the second approach slows the line drawing
speed down significantly. Hence, this is a good example for
introducing some self-modifying code.

	 We are adding code which patches the appropriate
opcode-location changing ORA to AND and vice-versa.
Furthermore we need to patch the PIXMASK to become the
DELMASK. Since line deleting and drawing can be organized
to be strictly sequential for each animation frame we only
need to change the PIXMASK twice per frame (first to
DELMASK then back to PIXMASK).

	 First we add a label in front of the ORA-opcode and
then we add the code which changes the ORA to AND and
back again:

* Get desired HIRES-byte and set new pixel  

 LDA (YBASE),Y ; load HIRES byte  

modiORA ORA PIXEL ; set new pixel preserving content  

 STA (YBASE),Y ; store byte back to HIRES  

 ; memory  

*  

...  

* change ORA to AND  

 LDA #$25 ; opcode for AND zero page  

 ; addressing  

 STA modiORA ; modify ORA to AND  

39

...  

* change AND to ORA  

 LDA #$05 ; opcode for ORA zero page  

 ; addressing  

 STA modiORA ; modify AND to ORA

	 This is very short and simple but highly efficient! You
just need to distinguish between lines deleted and drawn in
an animation frame and patch the appropriate opcode in the
FASTLINE routine and change the PIXMASK to the
DELMASK.

	 You might claim that deleting an area by just storing
zeros into appropriate memory locations is faster. Yes, that is
true, but there are use cases where you just need a single
line in a wireframe model to disappear without the need to
redraw all the other lines. In this case you need a
FASTDELETE option!

Considerations About Data Management

	 After the detailed description of the HIRES line
drawing and undrawing algorithm I want to discuss some
niceties regarding data management. When it comes to
displaying several 3D-objects in an animation frame one
needs a method for a fast data access and management in
order to load and store 3D-object data.

	 The 3D-object data is loaded at different locations in
memory and needs to be accessed every time an animation
frame is drawn. The general solution accessing array-like
data in RAM is by using a zero page pointer that is updated
to the new data location for the next 3D-object to be drawn.

	 Let pDATA be the pointer to the storage location of
the 3D-object then data access is usually realized by using
indirect-indexed addressing, e.g. like:

 LDA (pDATA),Y

	 This solution is very handy but has a small drawback.
To be honest for most applications this is not really an
important drawback but if you are short of CPU cycles and
need to squeeze out every microsecond of processor time
you should think about the cycle count needed for an
opcode.

	 The given LDA with indirect-indexing addressing
needs at least 5 cycles (and 6 cycles if memory page
boundaries are crossed). If we choose LDA with absolute
indexed addressing we can save one cycle! Almost the same
is valid for a STA-command: 6 cycles if we use indirect-
indexed addressing and 5 cycles if we use absolute indexed
addressing.

	 This sounds very nitpicking but if you consider that
during an animation frame a lot of LDA- and STA-commands
are necessary the change of addressing mode to save
cycles can be useful.

	 So we should preferably write LDA DATA,Y in order to
access the 3D-object data but we still need to find a solution
on how to set DATA to the correct address. You got it right –
we can again use self-modifying code to accomplish this
task!

	 A first step would be to label the respective line of
code in order to make it accessible for self-modification.
However, this time we do not need to change the opcode we
need to change the address i.e. the value of DATA to the
desired memory location. Hence we could write the following
lines of code:

*  

modiDATA LDA DATA,Y  

*  

...  

*  

* change high byte of address of DATA  

*  

 LDA newADDRESS  

 STA modiDATA+2  

*

40

	 As you may have noticed a value of 2 is added to the
label modiDATA. This is done to patch the location where the
high byte of the address of DATA is stored. If you also want
to change the low byte of DATA you need to add only a value
of 1 to the label (remember byte order is little endian!):

 STA modiDATA+1

	 If you do not add a value to the label modiDATA then
the opcode (in this example LDA) will be changed
unintended and lead to unexpected results of the program at
runtime. This is a bug that is often introduced when trying to
fiddle around with address bytes!

	 If we assume that we use absolute addressing with
LDA newADDRESS and an absolute STA we need 2 + 4
additional cycles for the self-modification. This would pay off
if we issue at least seven consecutive modified LDA- or STA-
commands e.g. in a loop for saving cycles.

	 If we stick to the truth we need to consider also the
necessary branching logic to handle the switching between
different objects before the self-modification takes place.
This needs also to be considered in the cycle balance of the
algorithm.

	 This approach might seem to be inefficient at a first
glance but it really makes sense to take a closer look onto
addressing modes and to balance out the two addressing
methods described above.

Optimized HIRES-screen Erase

	 One of the most time-consuming algorithm parts of
the 3D-Demo with direct impact on the frame rate is the
HIRES screen erase. The basic idea is to erase the old
animation frame and draw the new wireframe or raster-filled
3D-objects. The first approach was to use the HIRES screen
erase which is implemented in the Apple][ROM. This,
however, takes about 240ms for a screen erase with
HCOLOR=0 (black1), which is far too slow.

	 Basically, the ROM routine is a nested loop making
this piece of code very compact. One solution in order to
gain more execution speed is to unroll parts of the nested
loops and limit the part of the screen that needs to be
erased to certain boundaries.

	 To clear a screen to black it is necessary to store the
value zero ($00) into specific HIRES RAM locations. As we
have already learned that a HIRES line consists of 40
consecutive bytes in memory we just need to know the base
address of the desired line and store zeros in consecutive
bytes beginning with the base address.

	 The base address of a line can be retrieved via a
simple table lookup operation. Since the FASTLINE
algorithm already uses a lookup table for the base addresses
we can easily reuse it for this purpose.

	 However, if we still want to be faster and we are
willing to spend some extra RAM storage we can improve
our algorithm by explicitly including the line base addresses
with STA-commands in the source code.

41

	 This means that we unroll the loop in the y-direction
hence omitting the table lookup for the line base address
and only loop over the x-coordinate. The following source
code shows parts of the large amount of necessary STA-
commands, which I refer to as STA-slide in the following
paragraphs. The arrangement of the address byte values of
the single STA-commands corresponds to the sequential
order of HIRES lines on the screen, i.e. address $2200
corresponds to line 32 on HIRES page 1, address $2600 to
line 33, address $2A00 to line 34 and so on.

* loop over X-coordinate and store zero in HIRES RAM  

 LDA #$00  

 STA $2200,X  

 STA $2600,X  

 STA $2A00,X  

 STA $2E00,X  

 STA $3200,X  

 STA $3600,X  

 STA $3A00,X  

 STA $3E00,X  

...

	 This routine is pretty fast. A screen erase only takes
about 20 – 40ms depending on the size of the HIRES screen
part that is going to be erased. In the 3D-Demo the active
drawing area is about 200 x 128 pixels large and earlier
versions of the demo always deleted the whole active
drawing area in every frame. I was wondering if this brute
force erase is always necessary especially if objects are
drawn that are relatively small so most of the screen gets
erased for no purpose. How can the screen erase become
even faster?

	 A solution came to my mind when I was coding the
3D-object bounding box algorithm, which calculates the
screen dimensions of each object (XMIN, XMAX; YMIN,
YMAX). Why not using the bounding box information for
achieving a faster screen erase? The basic idea was to erase
only the bounding box area of each object on the screen,
which is in most use cases significantly smaller than the total
active drawing area.

	 Evaluating the bounding box information could be
done by two nested loops with a table lookup for the line
base address. However, I wanted to keep my fast STA-slide
solution since nested loops would be relatively inefficient if
the bounding boxes reach a certain size and hence there
wouldn’t be any advantage anymore in using the bounding
box erase approach.

	 This again is the point where self-modification is
playing an important role in the game! Considering the x-
coordinate there is only a small change in the code
necessary since the x-loop can be easily adapted to the
XMIN and XMAX values of each bounding box taking XMAX
as the starting value for the x-loop and decrement until XMIN
is reached.

	 The idea for the y-coordinate is the following: what if
we can modify the code in a way that we jump into the STA-
slide according to the value of YMIN and jump out of the
STA-slide at YMAX omitting all HIRES lines that are not part
of the bounding box?

	 The solution is to modify the address bytes of a JMP-
command to jump into the STA-slide and to insert an exit
branch in the STA-slide. The easy part is to calculate the
jump into the STA-slide. The proper branch out of the slide is
a bit more complicated, as you will learn in the next
paragraphs.

Branching In…

	 Branching in the STA-slide is relatively easy compared
to do the branching out. The idea is to skip the line numbers
that are lower than YMIN. In order to perform the correct
jump forward in the STA-slide we need to calculate the
appropriate relative jump size in bytes. Since one STA-
command with address bytes uses three bytes we just need
to multiply the number of lines we want to skip with three
and add the base address of the first STA-command in the
STA-slide.

	 The multiplication by three is done using a lookup
table. The correct target address is calculated by a simple
16-bit addition of the relative jump size and the base
address of the STA-slide. The generated jump address is
then simply patched into the code after the JMP-command.
The source code is structured as follows:

* calculating the relative jump size and store as

YJUMP1  

 LDA YMIN  

 TAX  

 LDA MULT3LO,X  

 STA YJUMP1  

 LDA MULT3HI,X  

 STA YJUMP1+1

42

	 YJUMP1 holds the relative jump size in bytes. This
value is now added to the base address of the STA-slide and
patched after the JMP-command:

 CLC  

 LDA #<STASLIDE ; low-byte of STA-slide start  

 ADC YJUMP1  

 STA jmpSLIDE+1 ; modify JMP-address low-byte  

 LDA #>STASLIDE ; high-byte next  

 ADC YJUMP1+1  

 STA jmpSLIDE+2  

...  

jmpSLIDE JMP STASLIDE ; address STASLIDE gets patched  

...  

STASLIDE STA $2200,X ; beginning of STASLIDE

	 The code example reveals the “magic”: the JMP-
command initially points to the beginning of the STA-slide
but the target address is modified every time when new
object bounding box parameters are available.

	 This approach allows for a fast skip of a desired
number of HIRES lines. But what about branching out of the
STA-slide? You might think that we could also simply use the
JMP-address change approach as just described. Yes, that
is possible in principle but it is very cumbersome.

	 Not only would we need to patch three consecutive
bytes in the STA-slide (one STA-command with its
corresponding two address bytes) but it is also necessary to
undo the patch of the STA-slide and restore the former STA-
command with its address bytes! This would need to store
the address bytes before patching the STA-slide or do some
other tricks using the line base address lookup table. We
can do this in a more elegant way, as I will describe in the
next paragraphs.

Branching Out…

	 As described above we need a good idea in order to
achieve a cycle-saving solution for an early exit out of the
STA-slide when we reach YMAX. The first step is to calculate
the exit address where we should branch out of the slide by
determining the memory address of the last STA-command
(corresponding to line YMAX) to be executed. This is
straightforward by calculating a jump distance and adding it
to the STA-slide base address much like it has been
described above about branching in the STA-slide. So at first
there is no artifice yet:

* calculating the relative jump size for the slide

exit  

 LDA YMAX  

 TAX  

 LDA MULT3LO,X  

 STA YJUMP2  

 LDA MULT3HI,X  

 STA YJUMP2+1

	 The variable YJUMP2 holds the relative jump width
referring to the beginning of the STA-slide. Hence we need
to add the STA-slide base address in order to receive the
address where we need to put our exit code into the STA-
slide. This time we store the two address bytes in the zero
page so we can use it later as a pointer:

 CLC  

 LDA #<STASLIDE ; low-byte of STA-slide exit  

 ADC YJUMP2  

 STA zpPOINTER ; store into zero page  

 LDA #>STASLIDE ; high-byte next  

 ADC YJUMP2+1  

 STA zpPOINTER+1

	 The crucial point is to patch the STA-opcode at the
calculated address to an RTS ($60) operation in order to exit
the STA-slide:

 LDA #$60  

 LDY #$00  

 STA (zpPOINTER),Y  

*  

* this STA-operation conforms to 6502 coding standards  

* using 65C02 operations this can be written shorter

saving  

* some cycles:  

* LDA #$60  

* STA (zpPOINTER)

43

	 An RTS might be rather unexpected at this point since
patching an RTS in the STA-slide would cause a return from
the subroutine which performs the screen erase back to the
calling routine and hence would lead to an unfinished screen
erase!

	 In order to prevent this unwanted subroutine exit we
need to do a little trick. Remember how the RTS-command
works: an RTS normally follows a JSR (jump to subroutine)
and performs a jump back to the location where the JSR-
command is located in the code continuing execution
directly after the JSR-command.

	 In order to perform the JSR the return address is
pushed on the stack before executing the subroutine code -
to be more precise this is the address of the next operation
after the JSR minus 1 byte! When an RTS is encountered the
two address bytes are pulled back from the stack and
moved to the program counter which is then incremented by
one resulting in the address of the next command executed
by the processor.

	 If we manage to push an appropriate address for
further program execution after leaving the STA-slide onto
the stack, an RTS inside the STA-slide would work like a
JMP command e.g. branching to code which follows at the
bottom of the STA-slide! The advantage of this method is
that we just need to modify one opcode in the STA-slide that
is to replace one STA by an RTS and we can leave the
following address bytes of the STA-command untouched.
This makes it a lot easier to restore the slide for the next
erase operation with modified YMIN/YMAX-values since we
do not need to restore the address bytes after the STA which
would have been overwritten if we inserted a JMP-
instruction instead of a simple RTS!

	 So preparing the stack with return address bytes is
rather straightforward. We just need to define an entry point
in the code where we want to branch out of the slide and
subtract 1 and push these bytes onto the stack:

 LDA #>staRTS-1 ; generate pseudo-jump address  
 PHA ; first high-byte then low-byte 
 LDA #<staRTS-1  
 PHA ; low-byte 
...

	 The label staRTS is defined at the bottom of the loop
where the loop management is done for example:

* loop bottom: X-register is loop variable  

staRTS INX ; entry point from RTS in unrolled loop

...

	 When the stack is prepared in this manner an RTS will
lead to a jump to the loop bottom (staRTS) and the X-
register will be incremented which holds the loop variable in
this example.

	 After we have left the STA-slide we need to tidy up a
bit which means to remove the RTS-opcode from the slide
and restore the original STA-command:

 LDA #$9D ; STA-opcode, absolute indexed

 LDY #$00 ; set index-variable to zero

 STA (zpPOINTER),Y ; revert the RTS-entry to STA

	 This could also be abbreviated using 65C02-opcodes
without the need of using the Y-register by just writing a STA
(zpPOINTER).

	 This example shows how self-modifying code can be
used to break down the execution of a long static code to its
really needed parts and save a lot of execution time by only
erasing on screen what is really needed. We have seen a
simple technique to branch into code by manipulating the
target address of a JMP-operation and we have learned how
we can easily patch an exit branch in a routine by using an
RTS-operation, which in fact behaves like a JMP.

	 Remark: Using the zero page as storage for the
pointer and the 65C02 indirect STA-opcode seems to be the
fasted method to patch the RTS-command into the slide if
one can afford to spend two bytes in the zero page as
temporary storage. Alternatively one could use absolute
STA-commands and patch the address information directly
in the code which needs more cycles and write:

 CLC  

 LDA #<STASLIDE ; low-byte of STA-slide exit  

 ADC YJUMP2  

 STA modiSTA ; store into zero page  

 LDA #>STASLIDE ; high-byte next  

 ADC YJUMP2+1  

 STA modiSTA+1  

 LDA #$60  

*  

modiSTA STA rtsADDRESS ; address gets overwritten

44

	 But remember that you also need to spend some
extra cycles when changing the RTS back to the STA-
opcode when cleaning up after you branched out of the
STA-slide if you are not using the zero page pointer method
as described above!

Conclusion

	 This article covers some examples of using self-
modifying coding techniques with 6502 assembler. The
coding examples should illustrate that self-modifying
strategies get handy if one wants to reduce both code size
and execution time. Sometimes only small changes are
necessary in order to get rid of branches and conditional
logic in loops or subroutines that are called often resulting in
a noticeable saving of processor cycles.

	 Self-modification is not vicious or evil at all. It can be
of great help if you want to do things even faster or a little bit
different without the need of introducing a lot of branches or
almost duplicate code. However, the major drawback of this
approach to me should not be concealed: debugging self-
modifying code can be very exhausting – but it really
recompenses if the algorithm finally works as expected!

6502 Assembler Listing

	 The following listing shows the main part of the fast
screen erase routine with both self-modification techniques
for branching in and out of the long STA-slide as described
in the corresponding paragraphs of the article.

	 The code given in this listing erases the bounding box
area of a 3D-object on HIRES page 1. For page 2 the line
base addresses need to be adjusted accordingly.

* fast bounding box erase of a *  
* 3D-object on HIRES page 1 *  

*  
bbERASE  
*  
* calculating the relative jump size for branching in  
*

 LDA YMIN ; minimum y-value of box  
 TAX  
 LDA MULT3LO,X ; multiply by 3  
 STA YJUMP1 ; store relative jump size  
 LDA MULT3HI,X  
 STA YJUMP1+1  

*  
 CLC ; patch branch-in  
 LDA #<STASLIDE ; low-byte of STA-slide start  
 ADC YJUMP1  
 STA jmpSLIDE+1 ; modify JMP-address low-byte  
 LDA #>STASLIDE ; high-byte next  
 ADC YJUMP1+1  
 STA jmpSLIDE+2  
*  
* calculating the relative jump size for the slide
exit  
*  
 LDA YMAX ; maximum y-value  
 TAX  
 LDA MULT3LO,X ; multiply by 3  
 STA YJUMP2 ; store relative jump size  
 LDA MULT3HI,X  
 STA YJUMP2+1  
*  
 CLC ; store exit address in zero page  
 LDA #<STASLIDE ; low-byte of STA-slide exit  
 ADC YJUMP2  
 STA zpPOINTER ; store into zero page  
 LDA #>STASLIDE ; high-byte next  
 ADC YJUMP2+1  
 STA zpPOINTER+1  
*  
 LDA #$60 ; patch RTS in STA-slide  
 LDY #$00 ; needed for STA-addressing mode  
 STA (zpPOINTER),Y  
*  
* setting of XMIN, XMAX for inner loop  
*  
 LDY XMAX ; get maximum x-value of box  
 LDX DIV7LO,Y ; divide by 7 to get byte number  
 INX ; offset correction  
 STX XCOMP ; store as X-loop limit  
*  
 LDY XMIN ; get minimum x-value of box  
 LDX DIV7LO,Y ; get loop variable in X-register  
*  
eraseLOOP  
 LDA #>staRTS-1 ; generate pseudo-jump address  
 PHA ; first high-byte then low-byte  
 LDA #<staRTS-1 ; for patched RTS & push it on  
 PHA ; the stack  
 LDA #$00 ; put 0 in accumulator  
jmpSLIDE JMP STASLIDE ; address STASLIDE gets patched  
STASLIDE STA $2200,X ; beginning of STASLIDE  
 STA $2600,X  
 STA $2A00,X  
 STA $2E00,X  
 STA $3200,X  
 STA $3600,X  
 STA $3A00,X  
 STA $3E00,X  
*  
* abbreviated here: a total of 128 STA-lines as STA-
slide  
*  
 STA $21D0,X  
 STA $25D0,X  
 STA $29D0,X  
 STA $2DD0,X  
 STA $31D0,X  
 STA $35D0,X  
 STA $39D0,X  
 STA $3DD0,X  
*  
* loop bottom: X-register is loop variable  
*  

45

staRTS INX ; entry point from STA-slide RTS  
 CPX XCOMP ; XMAX reached?  
 BEQ eraseRTS ; YES -> exit loop  
 JMP eraseLOOP ; erase next column  
eraseRTS LDA #$9D ; revert patched RTS to STA  
 LDY #$00 ; patch address is still in ZP!  
 STA (zpPOINTER),Y  
*  
 RTS ; all done  
*  
* end of fast erase  
*  
Contact information:  
* http://www.golombeck.eu use the online contact form

Downloads for the Program

YouTube Video: 
https://youtu.be/goNGzdJIVAI

DSK image: 
http://golombeck.eu/fileadmin/downloads/PLOT3D_242.dsk

General Information on the 3D-Demo: 
http://golombeck.eu/index.php?id=34&L=1

46

WRITERS and PROGRAMMERS!
We're Looking for People Like You

If you are an experienced programmer or author for
the Apple / Macintosh computers or iOS, please

consider submitting your work to Call-A.P.P.L.E.. for
possible publication in Call-A.P.P.L.E. magazine.

 
Read more and submit at:

www.callapple.org/contact

https://youtu.be/goNGzdJIVAI
https://youtu.be/goNGzdJIVAI
http://golombeck.eu/fileadmin/downloads/PLOT3D_242.dsk
http://golombeck.eu/fileadmin/downloads/PLOT3D_242.dsk
http://golombeck.eu/index.php?id=34&L=1
http://golombeck.eu/index.php?id=34&L=1
http://www.callapple.org/contact
http://www.callapple.org/contact
https://www.callapple.org/books/
https://www.callapple.org/books/
https://www.callapple.org/books/
https://www.callapple.org/books/
https://www.callapple.org/books/

Happy Birthday Steve Jobs!

by A.P.P.L.E. Staff

	 A special program this
month comes across our desks
just in time to celebrate the life
and times of Steve Jobs whose
63rd birthday would have been on
the 24th of February.

	 Artist Pinot W. Ichwandardi
of Jakarta, Indonesia has taken
the time to sit down and do a
point by point pencil type photo,
giving everyone a bit of a glimpse
of his artistic talents via the Apple
II with this program which plots
the face of Steve Jobs in low
resolution graphics.

10	TEXT:HOME:	GR	
20	COLOR=	15
30	ROW	=	1
40	HLIN	0,39	AT	ROW
50	ROW	=	ROW	+1

60	IF	ROW	<40	THEN	GOTO	40
90	COLOR=	0
100	HLIN	7,8	AT	0
110	PLOT	32,0
120	PLOT	34,0
130	HLIN	6,7	AT	1
140	PLOT	9,1
150	PLOT	31,1
160	HLIN	33,34	AT	1
170	HLIN	5,6	AT	2
180	PLOT	8,2
190	HLIN	32,34	AT	2
200	HLIN	5,7	AT	3
210	PLOT	31,3
220	HLIN	33,34	AT	3
230	HLIN	5,6	AT	4
240	PLOT	32,4
250	HLIN	34,35	AT	4
260	PLOT	5,5
270	PLOT	7,5
280	HLIN	33,34	AT	5
290	PLOT	36,5
300	HLIN	4,6	AT	6
310	HLIN	9,10	AT	6
320	HLIN	30,31	AT	6
330	HLIN	34,35	AT	6

340	HLIN	3,5	AT	7
350	PLOT	7,7
360	PLOT	11,7
370	PLOT	13,7
380	HLIN	27,29	AT	7
390	PLOT	32,7
400	HLIN	34,35	AT	7
410	HLIN	3,6	AT	8
420	HLIN	11,16	AT	8
430	HLIN	23,31	AT	8
440	HLIN	33,36	AT	8
450	HLIN	4,5	AT	9
460	PLOT	7,9
470	HLIN	10,12	AT	9
480	HLIN	14,15	AT	9
490	PLOT	17,9
500	HLIN	23,27	AT	9
510	HLIN	31,32	AT	9
520	HLIN	34,36	AT	9
530	HLIN	4,5	AT	10
540	PLOT	8,10
550	PLOT	10,10
560	HLIN	12,13	AT	10
570	HLIN	16,23	AT	10
580	HLIN	25,28	AT	10
590	PLOT	30,10

47

600	HLIN	32,36	AT	10
610	PLOT	5,11
620	PLOT	7,11
630	PLOT	9,11
640	PLOT	15,11
650	HLIN	18,19	AT	11
660	HLIN	22,25	AT	11
670	PLOT	28,11
680	PLOT	29,11
690	PLOT	31,11
700	HLIN	33,36	AT	11
710	PLOT	5,12
720	PLOT	7,12
730	PLOT	18,12
740	HLIN	22,23	AT	12
750	PLOT	25,12
760	PLOT	32,12
770	HLIN	35,36	AT	12
780	PLOT	4,13
790	PLOT	7,13
800	HLIN	18,19	AT	13
810	HLIN	22,23	AT	13
820	PLOT	33,13
830	HLIN	35,36	AT	13
840	HLIN	4,5	AT	14
850	PLOT	9,14
860	PLOT	18,14
870	PLOT	22,14
880	HLIN	32,36	AT	14
890	PLOT	4,15
900	PLOT	6,15
910	PLOT	9,15
920	PLOT	17,15
930	HLIN	22,23	AT	15
940	PLOT	31,15
950	HLIN	33,35	AT	15
960	PLOT	4,16
970	PLOT	6,16
980	PLOT	10,16
990	PLOT	16,16
1000	HLIN	22,24	AT	16
1010	PLOT	30,16
1020	PLOT	35,16
1030	HLIN	5,6	AT	17
1040	HLIN	11,15	AT	17
1050	HLIN	22,23	AT	17
1060	HLIN	25,29	AT	17
1070	HLIN	33,35	AT	17
1080	PLOT	6,18
1090	HLIN	22,23	AT	18
1100	PLOT	32,18
1110	PLOT	34,18
1120	PLOT	7,19
1130	HLIN	22,23	AT	19
1140	PLOT	33,19
1150	PLOT	9,20
1160	HLIN	22,23	AT	20

1170	HLIN	32,33	AT	20
1180	PLOT	7,21
1190	PLOT	9,21
1200	HLIN	22,23	AT	21
1210	PLOT	31,21
1220	PLOT	33,21
1230	PLOT	8,22
1240	PLOT	19,22
1250	HLIN	22,23	AT	22
1260	PLOT	32,22
1270	PLOT	9,23
1280	PLOT	20,23
1290	HLIN	22,24	AT	23
1300	HLIN	31,32	AT	23
1310	PLOT	8,24
1320	HLIN	20,23	AT	24
1330	PLOT	25,24
1340	PLOT	30,24
1350	PLOT	32,24
1360	PLOT	9,25
1370	PLOT	11,25
1380	PLOT	22,25
1390	PLOT	24,25
1400	HLIN	31,32	AT	25
1410	PLOT	8,26
1420	PLOT	10,26
1430	PLOT	19,26
1440	PLOT	21,26
1450	HLIN	23,25	AT	26
1460	PLOT	28,26
1470	HLIN	30,31	AT	26
1480	HLIN	8,9	AT	27
1490	PLOT	11,27
1500	PLOT	15,27
1600	PLOT	24,27
1610	HLIN	28,29	AT	27
1620	PLOT	31,27
1630	PLOT	8,28
1640	PLOT	10,28
1650	PLOT	12,28
1660	HLIN	16,26	AT	28
1680	HLIN	30,31	AT	28
1690	PLOT	9,29
1700	PLOT	11,29
1710	PLOT	15,29
1720	HLIN	24,26	AT	29
1730	PLOT	29,29
1740	PLOT	31,29
1750	HLIN	9,10	AT	30
1760	PLOT	15,30
1770	PLOT	19,30
1780	PLOT	21,30
1790	PLOT	23,30
1800	HLIN	25,26	AT	30
1810	PLOT	28,30
1820	PLOT	30,30
1870	PLOT	9,31

1880	PLOT	11,31
1890	PLOT	14,31
1900	PLOT	18,31
1910	PLOT	20,31
1920	PLOT	22,31
1930	PLOT	24,31
1940	HLIN	26,27	AT	31
1950	HLIN	29,30	AT	31
1960	PLOT	10,32
1970	PLOT	12,32
1980	HLIN	14,15	AT	32
1990	PLOT	21,32
2000	PLOT	23,32
2010	HLIN	25,26	AT	32
2020	HLIN	28,30	AT	32
2030	HLIN	12,13	AT	33
2040	PLOT	16,33
2050	HLIN	20,25	AT	33
2060	HLIN	27,30	AT	33
2070	PLOT	10,34
2080	PLOT	13,34
2090	PLOT	17,34
2100	PLOT	19,34
2110	PLOT	21,34
2120	HLIN	23,31	AT	34
2130	PLOT	14,35
2140	PLOT	16,35
2150	PLOT	18,35
2160	PLOT	20,35
2170	HLIN	22,31	AT	35
2180	PLOT	10,36
2190	PLOT	15,36
2200	PLOT	17,36
2210	PLOT	19,36
2220	HLIN	21,32	AT	36
2230	HLIN	9,12	AT	37
2240	HLIN	16,32	AT	37
2250	HLIN	8,14	AT	38
2260	HLIN	19,36	AT	38
2270	HLIN	7,39	AT	39
2280	GET	A$:END

48

https://www.facebook.com/applemuzeum
https://www.facebook.com/applemuzeum
https://www.facebook.com/applemuzeum

PLASMA 1.0

by David Schmenk

	 After 12 Years, PLASMA version 1.0 is finally here!
You might be asking yourself, “What is PLASMA?” Well,
PLASMA is the Grand Unifying Platform for the Apple-1,][,
and ///.

	 Here in, you will find a bit about PLASMA and its
associated compiler. You can download the four disk
images from the following links (You only need three if you
don't plan to boot an Apple ///):

	 • PLASMA 1.0 System

	 • PLASMA 1.0 Build Tools

	 • PLASMA 1.0 Demos

	 • PLASMA 1.0 Apple /// SOS Boot

	 PLASMA can be run from floppies, System in Drive 1,
and Build or Demos in Drive 2. Mass storage is the

recommended installation that looks like (replacing HARDISK
with your volume name of choice):

	 • System Files => /HARDISK/PLASMA/

	 • Build Files => /HARDISK/PLASMA/BLD/

	 • Demo Files => /HARDISK/PLASMA/DEMOS/

Use the System Utilities to copy the floppy images into the
above mentioned directories.

Apple-1

	 The Apple-1 is a very constrained system compared
to the][and ///. It is required to have the CFFA1 disk adapter
installed to provide file storage and a full 32K of RAM. To get
the files onto the CompactFlash card required the use of
CiderPress, they must be placed in one directory. Most
PLASMA programs won't work on the Apple-1 due to limited
filesystem support, video/graphics capabilities, and lack of
audio output. It does, however, make a good place to start
when porting PLASMA to a new platform.

50

Programming Language Released

Apple][

	 To boot directly into PLASMA, you will need to put the
system files in the root prefix of the boot device and make
sure PLASMA.SYSTEM is the first SYSTEM file in the
directory. Otherwise, start PLASMA.SYSTEM from your
program launcher of choice. All Apple II models with 64K
and two floppy drives are supported up to a maxed out IIGS
with accelerator and hard drive.

65802/65816 Support

	 PLASMA can use the 16-bit features of the 65802 and
65816 processors to improve performance of the PLASMA
VM operation. This is transparent to the programmer/user
and doesn't make any additional memory or capabilities
available to PLASMA. Launch PLASMA16.SYSTEM to use
the 16 bit PLASMA VM. If you don't have the right CPU, it
will print a message and restart.

Apple ///

	 The Apple /// gets the environment it always wanted:
The ability to navigate the filesystem with a command line
interface. The Apple /// always boots from the floppy drive,
even if a hard disk is installed. The PLASMA.SOS floppy
should be updated with the SOS.DRIVER configured for your
machine. Once booted, type S /HARDISK/PLASMA (or your
install directory of choice) to change to, and set, the system
directory. This can be automated by creating an AUTORUN
file on the boot floppy with the above command in it.

PLASMA Command Line Shell

	 PLASMA incorporates a very basic command line
shell to facilitate navigating the filesystem and executing
both SYSTEM/SOS programs and PLASMA modules. It has
a few built-in commands:

COMMAND 	 	 	 OPERATION

C [PREFIX] 	 	 	 	 Catalog prefix

P <PREFIX> 	 	 	 	 change to Prefix

/ 	 	 	 	 	 change to parent prefix

V 	 	 	 	 	 show online Volumes

S <PREFIX> 	 	 	 	 set System prefix*

+SOS <SOS.INTERP> [PREFIX] 	 launch SOS interpreter*

-<SYSTEM PROGRAM> [PARAMS] 	launch SYSTEM program**

+<PLASMA MODULE> [PARAMS] 	 exec PLASMA module

Key to the Above Statements:
[Optional parameters] <Required parameters>

* Apple /// only

** Apple][only

	 The shell is very brief with error messages. It is meant
solely as a way to run programs that accept command line
parameters and take up as little memory as possible. It does,
however, provide a rich runtime for PLASMA modules.

Included Modules

	 PLASMA comes with many library modules used by
the tools, demos and sample code. The PLASMA system
volume must remain in place for the duration of PLASMAs
run otherwise it won't be able to find CMD or the system
libraries. Probably the most useful included module is the
editor. It is used for editing PLASMA source file, assembly
source files, or any text file. Execute it with:

	 +ED [TEXT FILE]

Compiler Modules

	 The build disk includes sample source, include files
for the system modules, and the PLASMA compiler
+optimizer modules. The compiler is invoked with:

+PLASM [-[W][O[2]] <SOURCE FILE> [OUTPUT FILE]

	 Compiler warnings are enabled with -W. The optional
optimizer is enabled with -O and extra optimizations are
enabled with -O2. The source code for a few sample
programs are included. The big one, RPNCALC.PLA, is the
sample RPN calculator that uses many of PLASMA's
advanced features. The self-hosted compiler is the same
compiler as the cross-compiler, just transcribed from C to
PLASMA (yes, the self-hosted PLASMA compiler is written in
PLASMA). It requires patience when compiling: it is a fairly
large and extensive program.

Demos

	 There are some demo programs included for your
perusal. Check out ROGUE for some diversion. You can find
the documentation here: https://github.com/dschmenk/
PLASMA/blob/master/doc/Rogue%20Instructions.md. A
music sequencer to play through a MockingBoard if it is
detected, or the built-in speaker if not. A minimal Web server

51

https://github.com/dschmenk/PLASMA/blob/master/doc/Rogue%20Instructions.md
https://github.com/dschmenk/PLASMA/blob/master/doc/Rogue%20Instructions.md
https://github.com/dschmenk/PLASMA/blob/master/doc/Rogue%20Instructions.md
https://github.com/dschmenk/PLASMA/blob/master/doc/Rogue%20Instructions.md

if you have an Uthernet2 card (required). Bug reports
appreciated.

Source Code

	 Most sample source code is included from the
project. They build without alteration and should be a good
starting point for further explorations. The header files for the
included library modules are in the INC directory.

Video Playlist

	 There is a YouTube playlist created for learning
PLASMA. It is a WIP, with updates every week or so.

Issues

	 All the modules and runtime are written mostly in
PLASMA; the compiler and editor as well. This means that
there may be some startup delay as the PLASMA module
loader reads in the module dependencies and performs
dynamic linking. But a 1 MHz, 8-bit CPU interpreting
bytecodes is never going to match a modern computer. As
noted earlier, an accelerator and mass storage are your (and
PLASMA's) friend.

	 All the project modules are included. They have been
tested, with the exception of the Uthernet2 driver. I seem to
have misplaced mine. If someone can try the Web Server
demo in /PLASMA.DEMOS/NET and leave feedback would
be very appreciated.

	 The Apple /// may not always report errors properly or
at all.

	 The documentation is sparse and incomplete. Yep,
could use your help...

Changes in PLASMA for 1.0

	 If you have been programming in PLASMA before, the
1.0 version has some major and minor changes that you
should be aware of:

1.	 Case is no longer significant. Imported symbols were
always upper case. Now, all symbols are treated as if
they were upper case. You may find that some symbols
clash with previously defined symbols of different case.

Hey, we didn't need lower case in 1977 and we don't
need it now. You kids, get off my lawn!

2.	 Modules are now first class citizens. Translation:
importing a module adds a symbol with the module
name. You can simply refer to a module's address with
it's name. This is how a module's API table is accessed
(instead of adding a variable of the same name in the
IMPORT section).

3.	 Byte code changes means previously compiled modules
will crash. Rebuild.

4.	 BYTE and WORD have aliases that may improve
readability of the code. CHAR (character) and RES
(reserve) are synonyms for BYTE. VAR (variable) is a
synonym for WORD. These aliases add no functionality.
They are simply syntactic sugar to add context to the
source code, but may cause problems if you've
previously used the same names for identifiers.

5.	 When declaring variables, a base size can come after the
type, and an array size can follow the identifier. For
instance:

	 	 res[10] a, b, c

	 will reserve three variables of 10 bytes each. Additionally

	 	 res[10] v[5], w[3]

	 will reserve a total of 80 bytes (10 * 5 + 10 * 3). This
would be useful when combined with a structure
definition. One could:

	 	 res[t_record] patients[20]

	 to reserve an array of 20 patient records.

6.	 Ternary operator. Just like C and descendants, ?? and ::
allow for an if-then-else inside an expression:

	 	 puts(truth == TRUE ?? "TRUE" :: "FALSE")

7.	 Multiple value assignments. Multiple values can be
returned from functions and listed on variable
assignments:

	 	 def func#3 // Return 3 values

52

 	 	 return 10, 20, 30

	 	 end

	 	 a, b, c = 1, 2, 3

	 	 c, d, f = func()

	 	 x, y = y, x // Swap x and y

8.	 DROP allows for explicit dropping of values. In the
above func() example, if the middle value was the only
one desired, the others can be ignored with:

	 	 drop, h, drop = func()

9.	 The compiler tracks parameter and return counts for
functions. If the above func() were used without
assigning all the return values, they would be dropped:

	 	 a = func() // Two values silently dropped

	 To generate compiler warning for this issue, and a few
others, use the -W option when compiling.

10.	Lambda (Anonymous) Functions. The ability to code a
quick function in-line can be very powerful when used
properly. Look here, https://en.wikipedia.org/wiki/
Anonymous_function, for more information.

11.	SANE (Standard Apple Numerics Environment) Floating
Point Library. An extensive library (two, actually) of
extended floating point (80 bit IEEE precision)
functionality is suported. A wrapper library has been
written to greatly simplify the interface to SANE. Look at
the RPNCALC.PLA source code as an example.

12.	Library Documentation. Preliminary documentation is
available on the Wiki: https://github.com/dschmenk/
PLASMA/wiki

13.	Significant effort has gone into VM tuning and speeding
up module loading/dynamic linking.

14.	The VM zero page usage has changed. If you write
assembly language routines, you will need to rebuild.

Credits and Thanks

	 I wish to thank the people who have contributed the
the PLASMA project. They have greatly improved the
development of the language and documentation:

Martin Haye: PLASMA programmer extraordinaire. Mr.
Lawless Legends has requested many of the crucial features
that set PLASMA apart.

Steve F (ZornsLemma): Has taken the optimizer to new
levels and his work on porting PLASMA to the Beeb are
amazing: http://stardot.org.uk/forums/viewtopic.php?
f=55&t=12306&sid=5a503c593f0698ebc31e590ac61b09fc

Peter Ferrie: Assembly optimizer extraordinaire. He has
made significant improvements into the code footprint in
PLASMA so all the functionality can exist in just a few bytes.

David Schmidt (DaveX): His help in documentation have
made it much more accessible and professional. Of course
any errors are all his. Just kidding, they're mine ;-)

Andy Werner (6502.org): Catching the grammatical errors
that I ain't no good at.

John Brooks: Apple II Guru par excellence. His insights got
10% performance increase out of the VM.

Dave Schmenk 
http://schmenk.is-a-geek.com

53

https://github.com/dschmenk/PLASMA/wiki
https://github.com/dschmenk/PLASMA/wiki
https://github.com/dschmenk/PLASMA/wiki
https://github.com/dschmenk/PLASMA/wiki
http://stardot.org.uk/forums/viewtopic.php?f=55&t=12306&sid=5a503c593f0698ebc31e590ac61b09fc
http://stardot.org.uk/forums/viewtopic.php?f=55&t=12306&sid=5a503c593f0698ebc31e590ac61b09fc
http://stardot.org.uk/forums/viewtopic.php?f=55&t=12306&sid=5a503c593f0698ebc31e590ac61b09fc
http://stardot.org.uk/forums/viewtopic.php?f=55&t=12306&sid=5a503c593f0698ebc31e590ac61b09fc
http://schmenk.is-a-geek.com
http://schmenk.is-a-geek.com

The Northern Spy: The X-Factor –
X Stands for... 

by Rick Sutcliffe

Wrong About the iPhone X 
	 Well, it has happened before…back in ’83. See, from
a feature point of view, the iPhone 8 looks doomed beside
the iPhone X. But price points do come into play in such
matters. Apple is curtailing the production of the X, and the
Spy assumes it will be discontinued once the X year is done.
As the physician said to the 12-year-old Spy when he came
into his office looking like scarlet fever, “Allergic to the
phenobarb, eh?" Well, back to the old drawing board.
Somehow anniversary special products just don’t do well.
Are they too hastily conceived?

Wrong About Grammar 
	 A local radio ad grates on the Spy every time (often!)
he hears it. It’s a plug to take out a second mortgage on
one’s home equity for immediate spending wants (high
interest contract no doubt, and very high risk behavior) that
ends with “our criteria is less strict”. Has no one ever been
told about singular and plural noun-verb agreements? And
don’t let’s get started on the correct pronunciation of
“Wednesday” and February”, much less split infinitives. Yes
and the Spy votes against Churchill in that the rule that one
must not end a sentence with a preposition is one up with
which he will indeed put.

OS X 
	 Though announced well before, it was shipped in
spring 2001. The Spy still has the black leather jacket with

the Aqua X between the shoulder blades that was given to
the first 1200 registrants at WWDC that year. Like his copy of
the red book, a “forever” keepsake. Will there ever be an OS
XI? Stay tuned. The Spy is once again expecting big things
at WWDC – perhaps more than just a new Mac Pro.
Seriously, though, it may be time for a revamp.

Wrong About Toasters 
	 PC’s running W*nd*s did indeed become
commoditized – interchangeable (and cheap) parts, dime-a-
dozen plain-joe designs and a practical desk-life in constant
use of perhaps three years before parts begin to fail. Trash
and start over. The Mac avoided this fate because its
designers thunk different. (Bonus question for old-time
dweebs: What is/was a “thunk”?) Even under very heavy
use, one can count on a Mac to retain value for years after
most PCs bought the same year have been moved to a
landfill.

	 But the main point here is that even in the worst (PC)
case, computers are not, and never will be, toasters. They
are compound sliding miter saws – versatile tools without a
predefined or locked-in task set so the craftsperson can
experiment, innovate, and find never-thought-of ways to use
the tool for creative tasks. Assume the hardware will outlast
any PC in comparative use. It’ll be the desire to run updated
(and often bloated) software bigger and faster that obsoletes
a Mac. The Spy has fifteen-year-old machines that still work
– with the software of a past era.

	 But speaking of saws, the Spy has just given away his
older 10″ blade compound sliding miter saw (still works) and
purchased (today) a Bosch 12″ dual-bevel-compound-
gliding miter saw in its place. He was lured by the increased
capacity, the ability for the articulation mechanism to sit
against the wall, glowing reviews online, and a pretty good
(though still expensive) price at KMS tools (last day of the
sale, though). A review will follow in a few months. However,
what letter of the alphabet does the promo picture make
with the bevel ghosted in both left and right positions?

54

Wrong About the Stock Market – So Far 
	 The Spy was convinced last summer that the stock
market was overpriced and due for a big fall. Not. The
euphoria over tax breaks for business and the super rich at
others’ expense has sent the markets to dizzying highs. All
this sometimes physics fellow can say is, “What goes up
must come down.” Thing is, the downslide could be steep
and unprecedentedly deep – 2008 was just practice. Yikes!
Other thing is, in the information friction-free and
instantaneous happenings of our electronic age, when it
starts, everyone will want out at once. If (when) this scenario
does play out, the very advantages of our rapid info society
will turn against us big time.

Crossover 
	 No, not crosswalks. The Spy wants to retrieve his old
Apple][files, bring the over to a Mac, and run them in a
simulator. Ah….why? Well, he’s teaching the hardware
course, which includes among many other things, sections
on machine language, op codes, and their ilk. Last few times
through, the students had a very hard time getting their
minds around the low-level ideas when expressed in the rich
(but therefore complex and confusing to the novice) Intel op
code set and assembler. He thought a nice simple 6502…
Well, that might not work out, but it’s worth a try.

	 The software link between an Apple][(though in this
case it’s an Apple IIGS) is ADTPro by David Schmidt. The
hardware link is a pair of cables–a null modem (crossover
cable don't ya know) from the Apple modem port to a DB-9
connector and a serial adapter from there to USB on the
Mac. In the old days, one analyzed the transmit and receive
signals (to determine whether the two sides wanting to
transact information exchange had been designed as

senders or receivers) and built a cable for such purposes.
Yup, every computer to printer cable was an adventure…
could tell stories… But the Spy has forgotten where he
stored his breakout box, so gave up that project and ordered
a ready made null modem cable. Will let'cha know.

	 ‘Course he’s a CP snow-defying crossover himself,
having one foot firmly planted in computing, another in pure
mathematics, and a third in the semi-literary world of an SF
author – not to mention many other interests (such as
working on a merger of two churches). Good thing there’s
only thirty hours in the day, eh?

URLs for Rick Sutcliffe:

Northern Spy Home Page: www.TheNorthernSpy.com

Author Site: www.arjay.ca

Arjay Blog: www.arjay.bc.ca/blog

Publisher's Site:
www.writers-exchange.comRichard-Sutcliffe.html

The Fourth Civilization--Ethics, Society, and Technology (4th
2003 ed.) : www.arjay.bc.ca/EthTech/Textindex.html

URLs for resources mentioned:  
 
ADTPro: adtpro.com

Bosch: www.boschtools.com

KMS Tools: www.kmstools.com

55

www.applearchives.com 

http://www.applearchives.com
http://www.applearchives.com

http://beagle.applearchives.com/
http://beagle.applearchives.com/
http://beagle.applearchives.com/
http://beagle.applearchives.com/

Blankenship BASIC: 
The Return of the Programmer

by Bill Martens

	 This past month, I was communicating with John
Blankenship on the possibility of bringing back the flagship
product of his 1980s production, Blankenship BASIC.
Originally produced in 1984, Blankenship BASIC offered a
highly-expanded version of BASIC for the Apple II computer,
using the Ampersand hooks in the the BASIC Interpreter to
create something that not only gave the programmer a
greater power over their programs, but also allowed highly-
structured programming to be performed on a machine
known for its unstructured Applesoft II.

	 Out of the blue, a package arrived in the mail with the
original manual for Blankenship BASIC as well as a printout
of the entire source listing for Blankenship BASIC 2.7, the
current version of the program.

	 Since we have access to all this information and data,
we set about actually re-producing the original manual in an
effort to not only make it more readable but also to make it
more useful to more people.

	 As we were beginning our quest to locate both copies
of the program, a surprise appeared on Facebook. Robert
Knepp had found the ProDOS version of the program
amongst his disks. Initially, we were a bit skeptical due to

the fact that most of the copies of the program we had seen
were of version 2.6 or 2.7.

	 But sure enough, Robert’s copy was the ProDOS
version, meaning that we now had both versions in hand as
well as the source code. Instead of just typing the manual,
we decided to put Siri to the test to see if she was capable
of transcribing a computer manual in a usable form.

	 Once again, I was reading computer data aloud. The
effort from Brian Wiser and I with What’s Where in the Apple
in 2015 had been the other time where reading the memory
locations for the Atlas and Gazetteer sections proved to be
the fastest way to handle things. Only in that case, Brian
was performing the transcription.

	 Thus, with a bit more cleanup, we will have a brand
new manual for BBASIC 2.7 that Brian is laying out and
assembling into an easy-to-read publication, along with DOS
and ProDOS versions of the software.

	 We must thank John Blankenship for allowing us to
distribute the package as well as Robert Knepp for finding
the ProDOS version of the program. The source code for the
program will also be available sometime in the summer.

57

58

EAMON
Adventurer's Guild Online

www.eamonag.org

http://micro.applearchives.com
http://micro.applearchives.com
http://micro.applearchives.com
http://micro.applearchives.com
http://micro.applearchives.com
http://micro.applearchives.com
http://www.eamonag.org/
http://www.eamonag.org/

VCF Pacific
Northwest 2018
by Evan Koblentz

Seattle has 1,000 kinds of coffee,
several professional sports teams,
and even a volcano – but until now
it lacked a Vintage Computer
Festival. That changed on

February 4-5 this year with the
Vintage Computer Federation's

inaugural Vintage Computer Festival Pacific
Northwest, hosted at Living Computers: Museum+Labs
owned by Microsoft co-founder Paul Allen.

	 The original festivals began in the 1990s. Today, the
Federation as a 501(c)(3) non-profit organization operates
VCF East (May 18-20 at the official VCF museum in Wall,

New Jersey), VCF West (August 4-5 at the Computer History
Museum in Mountain View, California), and the new Seattle
event. Planning is underway for additional locations. Other
regional editions such as VCF Southeast (Atlanta, April
21-22), VCF Midwest (autumn: dates TBD) and the European
shows are independent.

	 Twenty exhibitors signed up for VCF-PNW. Two were
of special interest to Apple II hobbyists: the Alpha Syntauri,
by Jason Howe of Lake Forest Park, Washington, and the
MOnSter6502 by Eric Schlaepfer of Sunnyvale, California.
Jason's exhibit of the hard-to-find digital synthesizer brought
a great background soundtrack to the exhibit hall, while
Eric's discrete homebrewed 6502 added its own excitement.

	 Not exhibiting but spotted in the audience was John
Morris of Applesauce fame. We're sure he gave many
elevator pitches and answered many questions about the
latest-and-greatest approach to Apple II disk cracking.
Living Computers: Museum+Labs also had their own
exhibits open for everyone to see, including their Apple-1
setup for use!

	 We know there are plenty of Apple II hobbyists who
live not-so-far from the Seattle region. Our intention is for
Vintage Computer Festival Pacific Northwest to be an annual
event around the same time of year. So, if you live within a
day's drive of Seattle – or if you're willing to fly there, as
other exhibitors and attendees did from all over the U.S. and
Europe – then consider bringing the Apples out in force for
this show next year.

Thank you to all who attended in the Apple II community!

Evan Koblentz 
Executive Director 
Vintage Computer Federation 
evan@vcfed.org
http://vcfed.org

A glimpse into the excitement in Seattle.
For the first time, VCF comes to us!

59

VCF

http://vcfed.org
http://vcfed.org

VCF Pacific Northwest in Photos

60

by Kevin Savetz

61

62

Available at: www.callapple.org/books
Complete with all programs on FREE floppy disk image

http://www.callapple.org/books/
http://www.callapple.org/books/

VCF Southeast gets
its First Vendor

by A.P.P.L.E. Staff

	 Vintage Computer Festival Southeast announced that
they had a confirmation of their first confirmed vendor for the
forthcoming VCFSE. David Greelish, famous for his book,
Classic Computing: The complete Historically Brewed, has
confirmed that he will indeed be the first vendor going to the
event. The event has been announced for April 21 in
Roswell, Georgia.

	 In 1993, David Greelish created the Historical
Computer Society, where he published a fanzine named,
“Historically Brewed.” The HCS was an online, international
user group for fans of computer history, and “HB” was the
newsletter communications tool. Ultimately, nine issues of
“HB” were printed and distributed, with a tenth issue never
completed. This last issue was to be called, “Classic
Computing.”

	 In 2011, he ran a successful Kickstarter campaign,
garnering the funding for the project and publishing all ten
issues into one book. The book also included his story of
what brought about the magazine.

David Greelish becomes the first
confirmed vendor for the 2018
rendition of VCFSE

64

	 David was basically a pioneer in the field of becoming
an amateur computer historian and in computer collecting.
He was also involved in the independent “zine” community
of the 1990s, prior to the widespread use of the internet,
websites or blogs. In 1994, “HB” was chosen in the “Wired
Top 10” by Wired magazine: https://www.wired.com/
1994/06/top-ten-29/

	 In the last regular issue, issue nine, David interviewed
Ed Roberts, creator of the MITS Altair 8800, and generally
considered the “Father of the Personal Computer,” which he
saw as a high point of his magazine publishing career. Years
later, he converted the analog audio recording of this
interview into digital. The interview is now archived at the
Computer History Museum in Mountain View, California:
http://www.classiccomputing.com/CCPodcasts/CC_Show/
Entries/
2010/10/11_Classic_Computing,_Ed_Roberts_interview_199
5.html

	 Classic Computing isn't just stories of computer
history. It’s primary focus is the full computer history
nostalgia. This feeling that many of us get when we harken
back to those simpler days where computers took up entire
racks or even rooms is also a major part of this book.

	 Actually, now that we stop to think about it, the book
really is the history of computer history nostalgia! Between
David’s book and places like The Living Computer Museum
in Seattle, Washington, one can easily experience what it
was like in the early days of when most people thought of
obsolete computers as nothing other than trash.

	 For those of you who are interested in the history of
the early computing industry, this is a book which you will
not want to pass up. To get a copy of David’s book, visit the
Classic Computing website:
http://www.classiccomputing.com/CC/My_Book.html

	 David will be displaying a number of A.P.P.L.E. items
at VCFSE on behalf of A.P.P.L.E. and Call-A.P.P.L.E.
magazine. To register for VCFSE as an attendee or as a
vendor, visit their website: 
http://vcfed.org/wp/festivals/otherevents/vintage-computer-
festival-southeast/

65

https://www.wired.com/1994/06/top-ten-29/
https://www.wired.com/1994/06/top-ten-29/
https://www.wired.com/1994/06/top-ten-29/
https://www.wired.com/1994/06/top-ten-29/
http://www.classiccomputing.com/CCPodcasts/CC_Show/Entries/2010/10/11_Classic_Computing,_Ed_Roberts_interview_1995.html
http://www.classiccomputing.com/CCPodcasts/CC_Show/Entries/2010/10/11_Classic_Computing,_Ed_Roberts_interview_1995.html
http://www.classiccomputing.com/CCPodcasts/CC_Show/Entries/2010/10/11_Classic_Computing,_Ed_Roberts_interview_1995.html
http://www.classiccomputing.com/CCPodcasts/CC_Show/Entries/2010/10/11_Classic_Computing,_Ed_Roberts_interview_1995.html
http://www.classiccomputing.com/CCPodcasts/CC_Show/Entries/2010/10/11_Classic_Computing,_Ed_Roberts_interview_1995.html
http://www.classiccomputing.com/CCPodcasts/CC_Show/Entries/2010/10/11_Classic_Computing,_Ed_Roberts_interview_1995.html
http://www.classiccomputing.com/CCPodcasts/CC_Show/Entries/2010/10/11_Classic_Computing,_Ed_Roberts_interview_1995.html
http://www.classiccomputing.com/CCPodcasts/CC_Show/Entries/2010/10/11_Classic_Computing,_Ed_Roberts_interview_1995.html
http://www.classiccomputing.com/CC/My_Book.html
http://www.classiccomputing.com/CC/My_Book.html
http://vcfed.org/wp/festivals/otherevents/vintage-computer-festival-southeast/
http://vcfed.org/wp/festivals/otherevents/vintage-computer-festival-southeast/
http://vcfed.org/wp/festivals/otherevents/vintage-computer-festival-southeast/
http://vcfed.org/wp/festivals/otherevents/vintage-computer-festival-southeast/

66

http://www.6502workshop.com
http://www.6502workshop.com

www.tindie.com/stores/option8

Accessories and Cables for Your Apple II Computer

http://www.tindie.com/stores/option8
http://www.tindie.com/stores/option8

It’s Either Ultimate...Or It’s Not!
www.ultimateapple2.com

https://www.ultimateapple2.com/
https://www.ultimateapple2.com/

Call-A.P.P.L.E. Compendiums
The complete Call-A.P.P.L.E. magazine in its original glory – but better!

69

All issues from 1978 and 1979 
Call-A.P.P.L.E. magazine

in Paperback and Hardback. 

Get your copy through the A.P.P.L.E. Bookstore: 
www.callapple.org/books

http://www.callapple.org/books/
http://www.callapple.org/books/

Freshly Squeezed Reviews:
HomePod Brings Me Accessibility
by Frank Petrie

	 Just a quick one. Apple has long been in the forefront
of making their software accessible. They've done fantastic
work for the visually impaired. And to show how seriously
they take this, there's an Accessibility Preference in System
Preferences on the Mac OS. And under General > Settings >
Accessibility in iOS 11 there are adjustments that benefit the
hearing impaired.

	 Now, as I have mentioned before, I have MS and am
wheelchair bound. I'm independent but some things require
extra effort and forethought. One example is getting into bed.
Because I still retain some tone in my legs, I can perform
standing transfers. It requires a bit of gymnastics and
engineering to get into my bed each night but I manage to
accomplish it.

	 For pragmatic reasons, I'm considering purchasing
Apple's HomePod. Not for it's musical abilities (I love
listening to music through a set of Sennheiser cans and
purchase uncompressed music every now and again) but for
how it can help me with my independence day-to-day.

	 Let me set up my scenario. I live alone but can cook,
do my laundry, bathe, drive, etc. But once I'm in bed, there I
stay. If I have to get out of bed repeatedly (as little as two
times, some nIghts) my legs become fatigued and become
less responsive. Then what happens is I take the easy way
out; lean against the wall in my power chair for the night.

	 HomePod would enable me to avoid these situations.
Say I'm in bed and forgot to shut off a light or something of
that nature. Instead of going through all the physical steps
necessary to accomplish the task, I merely ask Siri to take
care of the issue for me, allowing me to return to sleep. In
this case, the hardware provides my accessibility.

	 Now, I know that I can accomplish this for a fraction of
the cost with similar devices but I've been steeped in the
Apple ecosystem for two and a half decades now. And I
want to keep everything that way. I don't want to introduce
other OSs.

	 Of course, I could accomplish simple things with my
iPhone and HomeKit. But I'm intrigued by what else I may be
able to do in the future when AirPlay 2 arrives on the scene.
Will I not only be able to use it with my Apple TV but
somehow with my regular HDTV? And you know that people
are already are thinking of work arounds for that! And if I can
afford a second one, will FullRoom provide me with a better
listening experience in my studio apartment?

	 Even though my iPhone rests in my Qi charger every
night on my nightstand, I could listen from bed to audio
podcasts or the day's news with better sound quality than
my iPhone could provide.

	 Plus, truth be told, it gives me an excuse to buy
another toy. Funny, I'll bet Apple never envisioned that the
HomePod could be an an important accessibility device. But
there you are. That's my driving force to acquire one. 
 
© 2018 Frank Petrie
 

 

anovaprint.com

70

ADTPro	2.0.2

ADTPro,	which	allows	users	to	image	Apple	II	and	Apple	III	disks,	
using	either	a	serial	connec:on	or	an	ethernet	connec:on.		The	
program	also	allows	boot	strapping	of	a	machine	via	those	same	
methodologies.

Download	ADTPro	from:		h@p://adtpro.com 

AppleCommander	1.3.5.14

AppleCommander	is	a	disk	image	file	manipula:on	package	which	
allows	conversion	of	files	between	formats	as	well	as	the	export	of	
files.	AppleCommander	is	available	as	a	JAR	file	and	runs	on	most	
major	plaHorms	that	run	Java.

Visit	Dr.	John	B.	Ma@hews	site: 
h@ps://sites.google.com/site/drjohnbma@hews/applecommander

Ciderpress	4.0.3

Ciderpress	is	an	Apple	II	disk	image	manipula:on	package	which	
allows	users	to	copy	images	and	files	between	disks,	both	virtual	as	
well	as	physical.		Compact	Flash	media	can	also	be	wri@en	and	
updated	with	the	Ciderpress	package.

Key	Features:

•		Full	support	for	ShrinkIt	archives. 
•		Full	support	for	all	disk	image	formats	and	Apple	II	filesystems. 
•		Direct	access	to	hard	drives,	removable	media,	and	CF	cards. 
•		Converters	for	text	and	graphics	files. 
•		Disk	image	crea:on	and	conversion	u:li:es. 
•		Some	handy	disk	manipula:on	tools.

Version	4	is	intended	to	run	on	Windows	XP	and	later	OSes.

The	previous	version	of	Ciderpress,	version	3.0.1,	which	runs	on	
Windows	98,	ME	and	2K,	has	been	le\	on	the	server	as	the	current	
official	release	version	of	the	so\ware	will	not	work	on	these	older	
opera:ng	systems.	

Download	Ciderpress	from:		h@p://a2ciderpress.com 

71

Apple II Disk and File Utilities

http://adtpro.com
http://adtpro.com
https://sites.google.com/site/drjohnbmatthews/applecommander
https://sites.google.com/site/drjohnbmatthews/applecommander
http://a2ciderpress.com
http://a2ciderpress.com

Apple	Game	Server	3.1

Apple	Game	Server	allows	users	to	boot	their	Apple	II	computers	
without	floppy	disks.		The	only	requirement	for	this	is	a	func:onal		
serial	connec:on	to	a	computer	running	the	Apple	Game	Server	
so\ware.

Check	out	the	Apple	Game	Server	file	repository:
h@ps://sourceforge.net/projects/a2gameserver 

A2Command	1.1

A2Command	is	a	file	manager	which	runs	on	any	Apple	IIe	or	
newer	Apple	II	series	machine	and	many	Apple	IIe	clones.		The	
program	allows	you	to	manage	files	on	the	disk	in	the	same	
manner	as	Norton	Commander	and	includes	the	following	
features:

	 •		Dual	Panel	Opera:on	 
	 •		Text	File	Viewing	 
	 •		Copy	single	files	and	batches	of	files	 
	 •		Delete	single	files	and	batches	of	files 
	 •		Rename	files	 
	 •		Create,	delete	and	navigate	directories	 
	 •		Write	Disk	Images	to	Physical	Disks	 
	 •		Write	Physical	Disks	to	Disk	Images	 
	 •		Copy	Physical	Disk	to	Physical	Disk	

Download	A2Command	from:
h@ps://github.com/A2Command/a2command

Apple	II	Browser	1.0.24

Denis	Molony,	the	author	of	Apple	II	Disk	Browser,	has	come	up	
with	a	ni\y	tool	for	Apple	II	users	who	want	to	get	to	the	guts	of	
their	floppy	disk	images	in	a	hurry.		Apple	II	Disk	Browser	is	a	tool	
which	allows	you	to	flip	through	several	of	your	disk	images	at	a	
:me	and	see	the	actual	contents	of	those	images	right	down	to	the	
sector	level.

It	also	include	a	very	nice	disassembler	which	makes	viewing	
assembly	language	files	all	the	more	enjoyable	and	educa:onal.		
The	source	code	for	Apple	II	Disk	Browser	has	also	been	made	
available.

Download	Apple	II	Disk	Browser	from:  
h@ps://github.com/dmolony/diskbrowser/releases

72

https://sourceforge.net/projects/a2gameserver/
https://sourceforge.net/projects/a2gameserver/
https://github.com/A2Command/a2command
https://github.com/A2Command/a2command
https://github.com/A2Command/a2command
https://github.com/A2Command/a2command
https://github.com/dmolony/diskbrowser/releases
https://github.com/dmolony/diskbrowser/releases
http://computist.applearchives.com
http://computist.applearchives.com
http://computist.applearchives.com
http://computist.applearchives.com
http://computist.applearchives.com

https://www.reactivemicro.com/
https://www.reactivemicro.com/

74

https://digisoft.callapple.org/
https://digisoft.callapple.org/
https://digisoft.callapple.org/
https://digisoft.callapple.org/
https://digisoft.callapple.org/
https://digisoft.callapple.org/
https://digisoft.callapple.org/

Article Submission Guidelines
Do you have content which you would like to share with the A.P.P.L.E. community?

75

Join A.P.P.L.E. Today!
Access every legacy PDF issue of 

Call-A.P.P.L.E. magazine!

With your membership, the new, current issues of
the magazine are included along with access to
many back issues, articles, books, software and
discounts for products.

Only $27.95 Per Year!
callapple.org/members

Call-A.P.P.L.E. is always looking for new and interesting ideas and articles
related to Apple, Linux/Unix, technology of general interest, technical or
editorial, modern or retro.

All submissions must be original works of the person submitting and free
of distribution restrictions. Please email your proposal to:
editor@callapple.org.

By submitting materials to us, you agree to give A.P.P.L.E. the royalty-free
right to publish and reuse your submission with your name in any form in
any media. We reserve the right to edit, change, or not use anything
submitted to us.

http://www.callapple.org/members/
http://www.callapple.org/members/
mailto:editor@callapple.org?subject=Article%20Submission
mailto:editor@callapple.org?subject=Article%20Submission

Primary Sites:

Apple Pugetsound Program 
Library Exchange (A.P.P.L.E.) 
https://www.callapple.org

A.P.P.L.E. – New Books 
https://www.callapple.org/books

Structris 
https://www.structris.com

Apple Archives  
https://www.applearchives.com

Virtual Apple][ 
https://www.virtualapple.org

Gamezyte 
https://www.gamezyte.com

Applied Engineering  
https://ae.applearchives.com

Beagle Bros Official Repository  
https://beagle.applearchives.com

Minnesota Educational Computing Consortium  
https://www.mecc.co

WOZ Speaks 
https://wozspeaks.callapple.org

GBBS Pro – The Official Archive 
https://gbbs.applearchives.com

Additional Sites:

Take-1 Movie Site  
https://take1.applearchives.com

Willamette Apple Connection 
https://wac.callapple.org

Digisoft Innovations 
https://digisoft.callapple.org

Australian Apple Review 
https://aar.applearchives.com

Computist Project 
https://computist.applearchives.com

A2-FS1 Flight Simulator Site 
https://fs1.applearchives.com

A2-FS2 Flight Simulator Site 
https://fs2.applearchives.com

A2-PB1 Night Mission Pinball Site 
https://pb1.applearchives.com

Ancestorworks Repository 
https://anw.applearchives.com

The Apple /// Resource 
https://apple3.applearchives.com

Apple II Hackers 
https://hackers.applearchives.com

Terry Allen’s Apple II Page 
https://apple2.callapple.org

76

https://www.callapple.org
https://www.callapple.org
https://www.callapple.org/books
https://www.callapple.org/books
https://www.structris.com
https://www.structris.com
https://www.applearchives.com
https://www.applearchives.com
https://www.virtualapple.org
https://www.virtualapple.org
https://www.gamezyte.com
https://www.gamezyte.com
https://ae.applearchives.com
https://ae.applearchives.com
https://beagle.applearchives.com
https://beagle.applearchives.com
https://www.mecc.co
https://www.mecc.co
https://wozspeaks.callapple.org
https://wozspeaks.callapple.org
https://gbbs.applearchives.com
https://gbbs.applearchives.com
https://take1.applearchives.com
https://take1.applearchives.com
https://wac.callapple.org
https://wac.callapple.org
https://digisoft.callapple.org
https://digisoft.callapple.org
https://aar.applearchives.com
https://aar.applearchives.com
https://computist.applearchives.com
https://computist.applearchives.com
https://fs1.applearchives.com
https://fs1.applearchives.com
https://fs2.applearchives.com
https://fs2.applearchives.com
https://pb1.applearchives.com
https://pb1.applearchives.com
https://anw.applearchives.com
https://anw.applearchives.com
https://apple3.applearchives.com
https://apple3.applearchives.com
https://hackers.applearchives.com
https://hackers.applearchives.com
https://apple2.callapple.org
https://apple2.callapple.org

www.callapple.org

^ - - - - - - - - - - CallAPPLE.org/books - - - - - - - - - - ^

virtualapple.org

applearchives.com

^ - - - - - - - - - - - - Our Web Sites - - - - - - - - - - - - - ^

.co

Join our User Group – Read our Magazine

Retro & Current NEWS
callapple.org

World’s Largest Apple User Group – Since 1978

Call–A.P.P.L.E.™

http://www.callapple.org
http://www.callapple.org
http://www.callapple.org
http://www.callapple.org
http://www.callapple.org

	Cover
	Publication Information
	The Editor Still Bytes Back!
	40 Years: From the Basement to the Tower
	My Take on A.P.P.L.E. History (by Val J. Golding)
	A.P.P.L.E. History Across 40 Years
	40 Years On – My Memories of Val (by Bob Clardy)
	The Founding of APDA: How A.P.P.L.E. Created an Institution (by Don Williams)
	CRPG Book Project: Role-Playing Game History 1975-2015
	Roger Wagner to Keynote KansasFest 2018
	Cross Chase: A Massively 8-Bit Multi-System Game (by Fabrizio Caruso)
	6502 Assembler Tricks: Self-modifying code based on the 3D Demo (by Dr. Marc A. Golombeck)
	Happy Birthday Steve Jobs!
	PLASMA 1.0 Programming Language Released (by David Schmenk)
	The Northern Spy: The X-Factor – X Stands for...
	Blankenship BASIC: The Return of the Programmer
	VCF Pacific Northwest 2018 (by Evan Koblentz)
	VCF Pacific Northwest in Photos (by Kevin Savetz)
	VCF Southeast gets its First Vendor
	Freshly Squeezed Reviews: HomePod Brings Me Accessibility (by Frank Petrie)
	Apple II Disk and File Utilities
	Article Submission Guidelines
	Join A.P.P.L.E. Today!
	Call-A.P.P.L.E. Sites
	Call-A.P.P.L.E. Books & Resources

