What’s Where in the APPLE
Enhanced Edition
A Complete Guide to the Apple II Computer

Original Edition:
William F. Luebbert & Phil Daley

Featuring Publishing Legend:
Robert Tripp

Enhanced Edition:
Brian Wiser & Bill Martens

Published by Apple Pugetsound Program Library Exchange (A.P.P.L.E.)

www.callapple.org

ACKNOWLEDGEMENTS

We would like to thank the original authors and publishers for this incredible resource: William F. Luebbert, Phil Daley, and Robert Tripp. Produced in coordination with Robert Tripp.

Special thanks to Antoine Vignau, Javier A. Rivera, Mike Willegal, Paul Hagstrom, and Sean Fahey for technical feedback.

The Cover and Book were designed by Brian Wiser.

PRODUCTION

Brian Wiser → Design, Layout, Editing, Proofreading, Chapter Revisions
Bill Martens → Proofreading, Chapter Revisions, Additional IIe/IIc Chapters

What’s Where in the Apple – eWWA → © 2012 FlexAble Systems, Inc.
Donna Tripp, Robert Tripp, Andrew Molloy, Brian Wiser, Peter Wong

William F. Luebbert, Phil Daley, Robert Tripp,
Emmalyn Bentley, Ford Cavallari, Paula Kramer, Marjorie Morse

DISCLAIMER

No part of this book may be reproduced, distributed or transmitted in any form or by any means, including photocopying, scanning, or other electronic or mechanical methods, without prior written permission of the publisher, except in the case of brief quotations contained in articles and reviews, and program listings which may be entered, stored and executed in a computer system, but not reproduced for publication.

What’s Where in the Apple programs are available on a disk image from: www.callapple.org.
No warranty of disk images is made or implied and should be used at your own risk.

What’s Where in the Apple – Enhanced Edition: A Complete Guide to the Apple II Computer is an independent publication and has not been authorized, sponsored, or otherwise approved by any institution, public or private.

All images are under copyright and the property of Apple Pugetsound Program Library Exchange, or as otherwise indicated. Use is prohibited without prior permission.

Apple and all Apple hardware and software brand names are trademarks of Apple Inc., registered in the United States and other countries. All other brand names and trademarks are the property of their respective owners.

While all possible steps have been taken to ensure that the information included within is accurate, the publisher, producers, and authors shall have no liability or responsibility for any errors or omissions, or for loss or damages resulting from the use of the information and programs contained herein.
AUTHORS

William F. Luebbert

William F. Luebbert was adjunct Professor of Engineering at Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire. He was also president of the Computer Literacy Institute, an organization founded in 1980 to train educators in the uses and applications of computers in education. He received the Automation Educator of the Year Award from Business Automation magazine, the Certified Data Processor Award from the Data Processing Management Association, and the American Society for Engineering Education Award and Prize for excellence in teaching engineering students.

Professor Luebbert, a U.S. Army retired Colonel, served on the faculty of the U.S. Military Academy, West Point, New York, from 1960 to 1978, where he taught Electrical Engineering and headed the Academic Computer Center.

Phil Daley

Phil Daley is a software engineer who was the technical editor and in-house Apple specialist for Micro Ink, Inc., the publisher of MICRO – The 6502 Journal and the original publisher of What's Where in the Apple. He was a high school math and music teacher in Hillsborough, New Hampshire as well as an activist for the Boston Computer Society. In 1984, he created the Apple Ile Appendix (now a revised Chapter 21) for What's Where in the Apple. He holds a Bachelor of Science and a Master of Arts degree from the University of Connecticut.

Robert Tripp

Robert Tripp started The Computerist in 1976 and Micro Ink in 1979. As an original Apple-1 owner, he is in the unique position of having received technical support from both Steve Jobs and Steve Wozniak, the founders of Apple, Inc. He published MICRO – The 6502 Journal from 1978 through 1984, along with a dozen 6502-related technical books. The magazine was a programming mainstay with coverage of many 6502 computing platforms of the time.

Because of Robert's interest and perseverance, he convinced author Dr. William F. Luebbert to expand the original What's Where in the Apple 7-page article into a highly-detailed, complete book. It was this resulting book, with its accompanying Atlas and Gazetteer, that became such an important resource in Apple II programmer's libraries. From 1982 to 1984, he published several versions of What's Where in the Apple, selling over 40,000 copies before it went out of print. He revisited that book with the eWWA released as a PDF in 2012. Robert has also developed computer-based medical products, including the first FDA-approved device for measuring human tremors, and was an Adjunct Professor at Arizona State University.
CONTENTS

Preface: by Brian Wiser and Bill Martens...$11
Author and Publisher Acknowledgements: 1982-1984 and 2012 Editions$12
Foreword: by Robert Tripp ...$15
The Evolution of “What's Where in the Apple”: by Robert Tripp$17
What's Where in the Apple – the 'Apple Memory Map': by William F. Luebbert$19
Introduction ...$1B

GUIDE

1. There's More In Your Apple II Than You Think

 Overview of the Apple II Series ..3
 Apple-1 (1975)...3
 Apple II (1977)...3
 Apple II Plus (1979)...4
 Apple III (1980-1983)..4
 Apple IIE (1983-1987)..4
 Apple IIc (1984-1988)...5
 Apple IIgs (1986-1989)...5
 The Apple II System Environment – Hardware and Firmware5
 Making Hardware and Firmware Resources Accessible ..6

2. System Specific Programming

 BASIC Doesn't Have To Be a Straightjacket – Neither Does Assembly Language9
 A Programming Approach for BASIC and Assembly Language Programmers9
 A Step-by-Step Approach for BASIC Programmers – Learning to Take Advantage of System-Specific Capabilities ...10
 When Should You Use Assembly Language? ..11
 When Should You Use System-Specific Quasi-BASIC? ..12
 Examples of System-Specific Quasi-BASIC Programming13
3. **PEEKing Can Be Informative**

What Does a PEEK Do? ... 17

The BASIC Idea ... 17

Formal Statement and Hardware Implementation 18

What Can You Learn from PEEKing .. 18

Find Current Cursor Position .. 18

Find Currently Active Peripheral Slot ... 19

Determine Printout Speed-Delay ... 19

Case Study – Screen and Printout Status Inquiry 19

Double PEEKing ... 20

Finding Line Number of a BASIC Error .. 20

Finding Line Number of Current Data Statement 21

Finding Where You Transfer When ‘RESET’ is Pressed 21

More About Using Decimal Numbers –

Modulo 256 and Hexadecimal Numbers to Handle Double-Byte Information .. 22

Memory Pages & Magic Numbers – Decimal 256 or Hexadecimal $100 .. 22

Decimal to Double-Decimal – Conversion Using Hexadecimal Tables .. 22

Table Look-Up Procedure – Hexadecimal-to-Decimal and Decimal-to-Hexadecimal 24

Table Look-Up Procedure – Integer or Decimal Address to Byte-Oriented Decimal

(Using Hex Tables) ... 24

Hexadecimal Addressing for PEEKs, POKEs, and CALLs 25

Hexadecimal PEEKing ... 26

The All-Hexadecimal PRINTed PEEK Capability of the System Monitor .. 26

4. **POKEs Can Make Changes**

What Does a POKE Do? ... 29

The BASIC Idea ... 29

Properties and Hardware Implementation Concepts 29

What a Single POKE Can Do ... 29

POKEing the Hardware – Changing Graphics Modes 29

POKEing the Software – Changing Printout Speed/Window,

Normal/Inverse/Flashing Mode, Cursor Position 31

POKEing Alphabetic/Numeric Information – Changing Screen Display Area 32

Sometimes You Should Double-POKE ... 34

Double-POKEing Without Aids .. 34

Other Ways of Double-POKEing .. 35
5. **CALLs Can Make Things Happen**

What Does a CALL Do? .. 37

The BASIC Idea .. 37

Formal Description of the CALL Statement ... 37

Subroutine Transfer of Control Diagram (Program Mixing GOSUBs, CALLs and JSRs) 38

CALLing System Subroutines... 39

Communication Between BASIC and Machine Language Routines.. 40

Passing Parameters to Monitor Firmware.. 40

 Passing Parameters from the Keyboard .. 40

 Passing Monitor Parameters and CALLing Monitor Routines from Inside BASIC 42

 Case Study: CALLing a Subroutine with Parameters in Monitor-Specified Locations 42

Passing Parameters Between BASIC and Machine Language.. 44

 What Information is Passed... 44

 How Information is Passed... 44

Passing Parameters via Predetermined Memory Locations .. 45

 Overview .. 45

 Areas Which Contain Standard Common-Agreement Locations .. 45

 The Simulated Registers in Addressable Memory ... 46

Discussion of Passing Parameters via Hardware Registers .. 47

 Hardware Registers in the Apple II ... 47

 Options for Passing Parameters To / From Hardware Registers ... 47

The Monitor SAVE / RESTORE Approach.. 48

 The Concept ... 48

 Case Study: Animation Technique Using Fast Copying / Display Change & SAVE / RESTORE Method for Loading Hardware Registers ... 48

Direct Loading of Hardware Registers.. 51

 The Concept ... 51

 Case Study: Fast Data Copy Program Using Direct Method Calling a Subroutine Requiring Parameter Set-up in Hardware Registers .. 51

Modifying the CALL Statement to Include Parameters to be Passed 53

 The Concept ... 53

 The New Applesoft CALL ... 54

Utility Program Which Implements the New CALL ... 55

Using the New CALL with Monitor Subroutine PRTAX as a Quick Decimal-Hexadecimal Converter ... 57
6. Apple Architecture I

Architecture in Perspective – Not Just for Assembly Language Programmers 59
A Simplified Hardware Block Diagram and '6502 Programming Model' of the Apple II 60
Bit-Oriented Information Representation and Addressing
(Abandon Decimal Numbers All Ye Who Enter Here!) ... 62
 Hexadecimal as a Convenient Human-Oriented Method of Abbreviation
 (Not as a Strange Number System) .. 62
 Hexadecimal and Negative Decimal Addresses.. 64
The Stored Program, Program Counter, FETCH / EXECUTE Cycle –
The Heart of the Stored-Program Computer ... 65
 Instructions and Data Both Stored in Memory as Binary Bits .. 65
 The FETCH / EXECUTE Cycle – How the Computer Distinguishes Instructions from Data ... 65
The Repertoire of Hardware Implemented Instructions Built into the Apple II 66
 The Total Repertoire .. 66
 Most Important Instructions for BASIC Programmers .. 74
Data Handling Instructions Equivalent to BASIC PEEKs and POKEs ... 75
 Load Accumulator Instruction – LDA the Machine Language Equivalent of PEEK 75
 Store Accumulator Instruction – STA the Machine Language Equivalent of POKE 75
 An Example of Data Movement Using PEEKs and POKEs and its Machine Language Equivalent Using LDA and STA ... 75
Symbolic Instructions and Programming Machine Language in Symbolic Assembler Format 77
Instructions Which Change the Normal Sequence of Operation
(The Key to Repetition & the Computer’s Decision-Making Capability) 81

7. Apple Architecture II: Addressing in the 6502 Microprocessor

Addressing Modes of the 6502 Microprocessor ... 83
Simple Addressing Modes of the 6502 Microprocessor .. 84
 Implied Addressing (No Address Required) ... 84
 Immediate Addressing (Data Value Included in Instruction) .. 84
 Absolute Addressing (16-Bit Address Specifies Absolute Data Location) ... 85
 Zero Page Addressing (8-Bit Absolute Addressing) .. 85
 Relative Addressing (Relative to the Instruction) ... 85
Overview of Computed Address Concepts ... 86
 The Key to Understanding Computed Addresses ... 86
 Computing Addresses By Treating Them As Data .. 86
8. Machine Language Programs Can Live Happily in a BASIC Environment

The Simple Approach – Using a Binary File for the Machine Language Program Loaded and Called by the BASIC Program...101
POKEing Small Machine Language Programs into BASIC...102
 POKEing Each Byte Individually ..102
 Using Read and Data Statements to Simplify POKEing ...103
Tricking the Apple Monitor to Work Inside a BASIC Program...103
Imbedding Machine Language Transparently in Applesoft ..105
 When Relocatable Machine Language Code is Available...105
 When Relocatable Machine Language Code is Unavailable...106

9. Apple System Memory Allocation

Ways to Look at Apple System Memory Organization...107
The First Cut – RAM, ROM and SPECIAL I/O ..108
The Second Cut – Functional Allocation of Pages ..110

10. The System Quick-Access Area – Memory Page 0 ($0000~$00FF)

 Zero Page Addressing to Save Memory and Computation Cycles ..115
 Zero Page Usage..115
11. The System Stack Page – Memory Page 1 ($0100~$01FF)

Introduction to the System Stack – A Last-In, First-Out Storage Area .. 117
Subroutines, The Program Counter Store, Pushing and Popping .. 117
Combined Operations of the S-Register and Stack Page ... 118
Use of the Stack by the Programmer .. 121
Interrupts ... 123
 Overview .. 123
 What Happens When an Interrupt Occurs? .. 123
 Programming Concepts and Techniques .. 123
Interrupts for the BASIC Programmer ... 125

12. The Keyboard Input Buffer – Memory Page 2 ($0200~$02FF)

Introduction to the Keyboard Input Buffer and GETLN ... 127
 Keyboard Input in the Default Case ... 127
 Concept of Operation .. 127
 Variations on the Theme of Keyboard Input ... 128
GETLN and Related Routines ... 129
 Survey of Services Provided by GETLN ... 129
 The Routines .. 129
 Replacement of KEYIN .. 139
 Automatic Capitalization in GETLN .. 140

13. The Monitor and DOS Vector Page – Memory Page 3 ($0300~$03FF)

The Monitor Special Locations ($03F0~$03FF) ... 141
The DOS Vector Table ($03D0~$03FF) ... 142
Page 3 Space Available to Users ($0300~$03CF) and How It is Typically Used for Machine Language Programming ... 144

14. Text and Low-Resolution Graphics Display – Memory Pages 4~7 ($0400~$07FF) and 8~11 ($0800~$0BFF)

Introduction to Text Output to the Screen ... 145
 Representation of Text Characters – The ASCII Code ... 146
 How Text Character Screen Locations and Memory Locations Map Into Each Other 148
Controlling What Appears Where on the Display Screen ... 151
 The Low-Resolution Graphics Mode ... 152
16. High-Resolution Graphics Display – Memory Pages 32~63 ($2000~$3FFF) and 64~95 ($4000~$5FFF)

- **Introduction** ... 193
- **Using High-Resolution Graphics** .. 194
 - The Simple Way – Using the Applesoft BASIC Commands 194
 - Information Useful in Pseudo-BASIC and Machine Language Programming ... 196
- **Similarities and Differences in Organization and Memory Mapping Between High-Res Graphics and Text / Low-Res Graphics** ... 200
- **Getting 560-Position Horizontal Resolution** .. 208
- **A Procedure for Overcoming Memory Allocation Conflicts** 211
 - **Overview** .. 211
 - The Procedure Step-By-Step ... 211
- **Imbedding in Applesoft User Memory Space** 216

17. The Disk Operating System – Memory Pages 150~191 ($9600~$BFFF)

- **Introduction** ... 217
- **How Information is Organized on Apple II Floppy Disks** 218
 - **Introduction** .. 218
 - **Tracks** .. 219
 - **Sectors** .. 219
 - **Standard Overhead of Stored Information on Disks (Copy of DOS, VTOC, Directory)** .. 220
 - **Summary of Diskette Track/Sector/Byte Capacity** 221
- **Diskette Organizational Concepts** .. 221
 - **Volume Table Of Contents (VTOC)** 221
 - **Bit Maps of Free Sectors in Each Track of the Diskette** 224
 - **Diskette Catalog (Directory)** .. 224
 - **Catalog File Descriptions and File Types** 225
 - **Track/Sector List** .. 228
 - **Text Files** ... 229
 - **Binary Files** .. 230
 - **BASIC Program Files (Applesoft and Integer)** 231
 - **Other File Types: R, S, A, B** ... 232
 - **Recap of the DOS Method of Finding Information on Diskette** ... 233
 - **Deleting and Resurrecting Files** 233
 - **Disk Space Allocation to Files and Simple Rules for Improving Disk Response** ... 235
- **How Diskette User Space is Allocated to User Files (Programs, Text and Data)** ... 236
18. Specialized Input/Output Memory – Memory Pages 192~207 ($C000~$CFFF)

Introduction to 16 Pages of Specialized Input/Output Addresses.. 237
The Strange Page – Built-in I/O Locations ($C000~$C07F), Slot (Peripheral Card) I/O Space ($C080~$C0FF) ... 238
The First Half ($C000~$C07F) in Context with the Rest of the Apple I/O System 238
Anomalous Characteristics of Locations in the First Half ($C000~$C07F) 238
Bit Versus Byte Anomaly .. 239
Full-byte Input Locations in the First Half ($C000~$C07F) Work Differently from Conventional Full-byte Memory Locations ... 239
The Incompletely Decoded Address Anomaly in the First Half ($C000~$C07F) 240
Data Change on Read Access Anomalies in the First Half ($C000~$C07F) 240
The Second Half ($C080~$C0FF) .. 242
The Strange Page In Depth .. 242
Tabular Summary/Overview .. 242
Hardware Perspective of the Strange Page ... 243
Keyboard Data Input ($C00x) and Clear Keyboard Strobe ($C01x). 244
Cassette Output Toggle ($C02x) and Speaker Output Toggle ($C03x) 245
Utility Strobe ($C040x) ... 246
Video Screen Display Mode Selection Soft Switches ($C050~$C057) 246
Annunciator Output Soft Switches ($C058~$C05F) ... 247
Cassette and Pushbutton/Flag Inputs ($C060~$C063 or $C068~$C06B) 248
Analog/Game Controller Inputs ($C064~$C067 or $C06C~$C06F), Analog Clear/Game Controller Strobe ($C070) .. 248
Slot or Peripheral Card I/O Space ($C080~$C0FF) ... 249
Slot/Peripheral Card I/O Locations ($C100~$CFFF) ... 249
Overview of Memory Assigned to Each Peripheral Slot ... 250
Peripheral Slot Scratchpad RAM .. 250
Peripheral Card I/O Space ... 251
Peripheral Card ROM Page ... 252
Shared Exclusive-Use Expansion ROM .. 253
19. Applesoft BASIC Interpreter – Memory Pages 208~247 ($D000~$F7FF)
 The Applesoft Dialect of BASIC ... 255
 Features of the Applesoft Dialect ... 255
 Variations in the Applesoft Interpreter for Different Hardware/Software Environments 255
 How the Interpreter Functions .. 257
 Overview .. 257
 BASIC Cycle of Functional Operation for Applesoft Interpreter .. 257
 Functional Utilization of Memory Space by Applesoft Programs ... 257
 Structure of the Applesoft Interpreter .. 260
 The Interpreter as Simulator of a Computer Whose Machine Language is BASIC 260
 Program Structure of the Interpreter .. 261

20. The System Monitor – Memory Pages 248~255 ($F800~$FFFF)
 Overview ... 265
 Two Varieties of the System Monitor .. 265
 Communicating with the System Monitor ... 266
 Summary of System Monitor Commands .. 267

 Memory Pages 192~207 and 248~255 ($C000~$CFFF and $F800~$FFFF)
 Overview ... 271
 A Third Apple Monitor ... 271
 The Apple IIe Display ... 272
 Hardware Locations ... 272
 Software Status ... 273
 Programming Considerations ... 273

 Overview ... 275
 Special Features of Newer Apple IIe Models ... 275
 Double Lo-Res Graphics .. 276
 Double Hi-Res Graphics .. 276
 MouseText Characters .. 276
 Control Characters ... 279
23. **Apple IIc and IIc Plus**

Overview ... 301
Differentiating the Models .. 301

Apple IIc Slot Assignments ... 302
Apple IIc ROM 255 .. 302
Apple IIc ROM 0 ... 302
Available in Paperback and Hardback: callapple.org/books
Join Our User Group & Get Our New Magazine: callapple.org/members

^--- Programming ---^