
opczn a~plcz 111/1/

qazczEtcz 0~

Second Ed it ion Volume I, Number 2 May/ June 1982
Spee d ing up y o ur Ap ple Ill

Recently while working with the Apple Writer Word Processing Language I ran across
the command "PND " . This command turns off video output. With video output off, the
6502B microprocessor runs approximately 20% faster . This means that WPL programs
will execute faster .

The Standard Device Drivers Manual on page 139 says that by holding down the CONTROL
key while typing 5 on the numeric keypad you can turn the video display on and off.
So the WPL command "PND" is doing the same thing as CONTROL 5 .

I use VisiCalc extensively in my life insurance business to do calculations for
proposals. Some of my models are fairly large and require several minutes to
recalculate. This raised the question would CONTROL 5 work with VisiCalc . After
pouring through the VisiCalc manual I could find no reference to using CONTROL 5 to
turn off vid eo output to speed up recalculations.

The first time
output I thought
again . Well to
recalculation was

I used CONTROL 5 during a VisiCalc recalculation to turn off video
I would have to manually t urn video output back on using CONTROL 5

my surprise the video output was restored automatically after the
comple t e .

About this same time I was starting to read the Apple /// Pascal manuals . The
Introduction, Filer, and Editor manual explained on page 23 why t he video output was
automatically restored . It also explains why the r e calculation runs faster . The
explanations from page 23 the manual are as follows :

P r essi ng CONTROL 5 causes output to the display screen to be suppressed .
Pressing CONTROL 5 again resumes display updating . This function allows
compilations, assemblies, and programs to run faster since no time is spent in
updating th e screen, and processor time can be used for o t her tasks .

Note
ba ck

that any program that makes a read to the console will turn
on, just like pressing CONTROL 5 the second time .

the screen

VisiCalc after completing the recalcul a tion is looking for input from the
and this explains why the video output is restored automatically.
Loading a model or data using DIF, into VisiCalc triggers a recalculation
CONTROL 5 will speed up the recalculation during this process.

CONTROL 5 also speeds up the following prodedures:
VisiCalc

l. Moving columns or rows
2 . Inserting or deleting columns or rows

Appl e Writer
1 . Global search and replace
2 . Renumbering a mailing list

Mail List Manager
1 . Sorts

k ey board

so using

So the next time you are working with that large VisiCalc model,
file, or ma i ling list use CONTROL 5 t o speed things up.

Apple Writer text

by Don Norris - Ill -
onq1nal appla /// rs

Meetings are
Wednesday of
Board Room o f
offi ces at 555

Original Apple lllrs

CLUB INFORMATION

held
each

the

MEETINGS

at 7:30 PM on the third
month. The location is the
California Bar Association

Frankl i n St. San Franc i sco.

MEMBERSHIP

Annual membe rship dues
application r e c e i ve d.
Original Appl e / / /rs
address below.

are $25 from the date
Your che ck payable to the

may be mailed to the

OPEN APPLE GAZETTE POLICY

All manuscripts, photographs, and other
materials are submitted free and released for
publication. They become the property of the
Original Apple ///rs and the Open Apple Gazette.
Authors should clearly mark all material
submitte d for publication so that credit may be
given.
Th e publishers/editors do not necessarily agree
with, nor stand responsible for, opinions
expressed or implied by other tha n themselves in
this publication.
The Original Apple ///rs is a non-profit
organization comprised of, and supported by,
Apple /// owners and users. The Original Apple
///rs is run by volunteer officers and
committe es, and the club ende avors to aid other
Apple users through this educational publication

"OPEN APPLE GAZETTE". Address all inquiries
to: Original Apple ///rs, P. 0. Box 813, San
Francisco, CA 94101.

REPRINT POLICY

All articles appearing in the Open Apple Gazette
not copywrited by the author may be reprinted by
another non-profit Apple user group so long as
proper credit i s given to both the Open Apple
Ga zette and the author. Proper credit is
define d as article title, author, and the words
"Printed from VOL X, NO Y of the Open Apple
Gazette." Permission to reprint a copywrited
article may be obtained by writing to the author
c/o the Original Apple ///rs.

ARTICLE SUBMISSION POLICY

Th e Open Apple Gazett e welcomes any and all
articles dealing with the Apple /// Computer and
its associated hardware and software. Articles
may be submitted doublespaced and typewritten,
or on the APPLE WRITER/// word processor.
We will send your disk back to you as soon as we
output the article on our printer.

2

PRESIDENT

VICE PRESIDENT

TREASURER

SECRETARY

MEMBERSHIP
CHAIRMAN

CONSULTANTS

OFFICERS

Don Norris (415) 673-7635

Kent Hockabout (415) 521-1771

Julia Ama ral

Charles Coles

Dave Meyer

Randy Fields
Ken Silverman

Ill

Twenty Four

(415) 386-8623

(415) 573-5556

This our second edition is twenty-four pages
long. It is an indication of the information
that is becoming available about the/// from
Ill users. Your user comments and suggestions
will help the Open Apple Gazette become even
bigger and of more value to you.

You will note there are a few blank spaces this
issue. The printing costs are such that it is
more economical to print 24 pages than 20 pages.
Your comments and opinions will fill them up in
future issues.

Your contributions, ideas and suggestions are
needed to enable us to provide you with the kind
of information and services you want.

- II I -

Pascal Apple /// Terminal Program

(c) Copyright 1982 by Stephen Lloyd

All rights
article may
the expressed

are reserved. No part of this
be reproduced in any form without
written permission of the author.

Reproduced wi~h the permission of Stephen Lloyd
as originally printed in the San Francisco Apple
Core Cider Press.

Some time ago, I presented a simple terminal
program for the Apple][. This month, I have
written a modified version of that program for
the Apple ///. It has been modified to increase
its efficiency, speed and features.

This project has its beginnings several months
ago when I contracted to design some system
software for the Apple ///. Since the only
things I knew about this model of the Apple were
some rumors started by their chief competitors,
I had quite a bit of self education to do. The
preliminary results of this education are an
ever increasing respect for the system
architects at Apple and a knowledge that the
detractors of the Apple ///have not taken the
time to understand its capabilities.

I recently had a discussion about the Apple ///
with a PhD friend of mine in San Luis Obispo,
CA. Although he does not own one, he did express
some negative views about the capabilities of
the Sophisticated Operating System (SOS
(pronounced 'sauce'] as it is referred to by
Apple) and its ease of use. After a lengthy
debate, it became obvious that his arguments
wer e based on experience he had gained in the
days of Apple's 'red' book and in the less
enlightened times of DOS 3.2.

He had two basic complaints; 1) SOS is not
compatible with any version of DOS, and 2) The
internal routines and locations used by SOS are
not accessible to the programmer. Since I'd had
similar objections when I first started using
the Apple](language system, I was able to
reply with the following suggestions.

To understand why SOS is not compatible with
DOS, we must first examine a little of the
apparent history of the Apple and its various
operating systems. First carne the cassettes.
They were simple and cheap. The Monitor,
Integer and Applesoft BASIC were designed with
cassettes in mind. The immediate level command
interpreter in any of these three languages was
an integral part of the language being used.
There were also commands executable by a running
program which could save and load data on tape.
Next came the disk systems. If you had one of
the first versions, you will remember that the
BASIC you used with cassettes was the same one
you used with the disk system. This was done by
a command interpreter within DOS which executed
commands meant for DOS (such as catalog and

bload) and sent all others to the BASIC
interpreter. The problem came when a BASIC
program was executing. Since there were no
explicit commands in either of the BASICs, DOS
had no way of knowing what to do. The solution
to this problem was to let the DOS interpreter
intercept all printed output from the program.
Anything which was preceded by a control-D was
executed by DOS. From the viewpoint of advanced
operating systems, these techniques are very
awkward and kludgy.

Next came the language system. With its 16
sector disks, it boosted storage capacity by
over 20 percent. One of its problems was that
it could not be used to read DOS format disks
which were still stuck at 13 sectors. The
solution to this problem was simple, release a
new version of DOS (3.3) which would use 16
sector disks. This made the sector formats
compatible between DOS and the language system,
but it still didn't allow the language system to
direcily use DOS disks.

Recently, there has been a flurry of programs
which allow translation between DOS format files
and language system format files. Depending on
your inclination, you can either spend many
hours of typing and correcting typos from one of
the various articles, or you can spend anywhere
from $50 to $150 to purchase the required
utility. The result is the same, you are adding
another patch to the DOS kludge.

The second objection my PhD friend had was
probably due to his desire to know more about
the operating system than was needed to
accomplish the tasks at hand. I recall my first
experience with DOS and binary files. After a
binary file had been on the disk for more than a
day, the two questions which always carne up
were: 1) How many bytes long is the file? and
2) Where does it go in memory? Both of these
questions could be answered easily by PEEKing at
certain memory locations. This technique is
typical of the way information is stolen from
DOS. There are very few 'regular' DOS
interfaces to provide the required information.
Most of them depend on fixed locations in
memory.

Although this technique works very well, it does
impose severe restrictions on the kinds of
changes Apple can make to improve DOS. If any
of these special locations are moved, lots of
programs will wander off into never never land
when they don't get the right information. If
these locations remain constant in all future
versions of DOS, valuable memory will be lost by
having to jump around them. Clearly, a better
method of communicating with the operating
system is needed.

Before I
mean by
several
Apple.

go any further I should clarify what I
a 'better method'. The past has seen

different operating systems (OS) for the
In addition to the ones mentioned above,

and CP/M come to mind. Each of these have Forth

3

advantages and disadvantages, but mostly the
latter.

An operating system should be similar to an
orchestra conductor. It commands and controls
all of the elements of the computer. It tells
them whe n to become active and when to be
silent. Communication between all of these
elements and the user programs is also handled
by the OS. It routes the data to and from
devices such as printers, keyboards, disks, and
moderns. All of this should be accomplished
automatically without intervention by the user's
programs.

The less the user has to know about how and what
the OS is doing, the better. Now comes the
catch. If the user program needs to know what
the OS is doing, the OS shpuld be willing to
give up this information without a fight. No
peeks, no pokes, just ask. This type of
interface is usually called a system call. If
there is one feature which will make one OS
bette r than another, it is an effective
implementation of system calls.

SOS provides all of these features. It handles
communications between the user programs and the
elements of the Apple ///. It also provides the
system calls necessary to control and determine
the status of these elements. It even gives the
user a uniform set of definitions for these
system calls. Certainly, SOS is a better
method.

To illustrate some of the features of SOS and
the way it handles communication between a user
program and the various devices attached to the
Apple ///, I have written a terminal simulator
in Pascal. It allows the Apple to communicate
with any of the various timesharing systems
available. I've been using it to communicate
with a n IBM 370 type system and Microne t.

The program uses the Apple Ill's built-in RS-232
interface for connection to an external modem.
It also uses the built-in screen and keyboard
along with the disk system for text file
transfe rs. To allow SOS to use all of these
devices, a fil e called SOS.DRIVER must be
constructed using the SYSTEM UTILITIES diskette
and the SYSTEM UTILITIES DATA diskette. The
procedures required are detailed in chapter 2 of
the Standard Device Drivers Manual. The
specific drivers needed are .RS232, .CONSOLE,
and one or more Disk III drives.

The main section of the program is repeated here
for clarity of explanation.

begin Initialize;
repeat {until Finished}

repeat {until Command}
Process_Remote;
Process Local;
until Command;

Process Command;
until Q~it or Exit;

Finalize;
end.

I have tried to structure this program as much
as possible. Most of the procedures have a
beginning, a middle, and an end. The main
procedure is no exception. The beginning,
Initialize, sets up all of the constants, opens
the required files and defines which devices
will be used. The end, Finalize, closes files
and cleans up the buffers used by the RS-232
driver. The middle is where all of the work
gets done.

In the middle, the repeat •• until Quit or Exit
loop continually processes characters from the
keyboard and RS-232 interface and takes care of
any keyboard command which may be detected.
Characters which come in from the keyboard are
sent to the RS-232 interface by the procedure
Process Local. Characters which come in from
the RS~232 interface are sent to the screen by
the procedure Process Remote. These two
procedures are repeated until a command is
detected by Process Local in which case
Process Command provides the necessary actions
and then returns to the above loop.

Most of the I/O done by this program uses unit
procedures instead of the familiar reads and
writes. This is done to decrease the overhead
r equired for I/O and increase the data rate of
the terminal program. An additional unit
procedure, unitstatus, is used for communication
with the operating system. This is the method
provided by Pascal which allows system calls to
be made to SOS.

Operation

To use this program be certain you have a
modem connected to the RS-232 connector on the
rear of the Apple ///. The modem can be
virtually any type which will operate at 300
baud. I normally use an acousti-coupler, but a
direc t connect modem will work just as well.

Now eX)ecute 'terminal'. After a few moments,
the screen will clear and the cursor will appear
in the lower left hand corner of the screen.
When this h a ppens, dial the appropriate number
for the computer you wish to use. After it
answers, simply use the Apple ///'s keyboard
just as you would a terminal.

All of the characters on the keyboard can be
used for communication with the computer. The
computer can send any of the 128 available in
the ASCII character set. The Apple will only
display those which have values greater than 31.
The characters below 32 are called control
characters and have special effects on the
Apple. One of these is the 'return' character.
It causes the cursor to return to the begining
of the line. Another is the 'bell' character.
It causes the Apple to beep. The exact control
characters that this program uses a re indicated

in the main part of the procedure Display.

In all cases but one, you simply have to press
the key to have it transmitted. The exception
is the escape key. This is used to indicate
to the program that the user is requesting a
special function. To send an escape, you must
press this key twice. Once to indicate that you
are requesting a special function and again to
indicate tnat the function is the transmission
of the escape character.

The other functions which
shown in the main section

are available are
of the procedure

divided into three Process Command. They are
different groups.

1) text file transfers
2) protocol functions
3) stopping the program

Transmission of text files is accomplished by
pressing escape' and then 't' (an escape-t
sequence). The program then requests the name
of the file to be sent. You must respond with
the complete path name of the file, includiing
the '.text' extension. After you press
'return', the file is located and transmission
is begun. If you wish to prematurely terminate
the transmission, simply press escape'.

When the transmission is complete or 'escape' is
pressed, the keyboard is again able to send
characters to the computer. During transmission
of the file, the keyboard is locked (except the
' e scape' key) and will not respond.

Reception of text files
escape-e sequence. The
with the state of the
either on or off. If the
character displayed on
written directly to the
Screen Name variable.

is accomplished by an
program will respond
screen copy procedure,
copy is on, then every

the screen will be
file specified in the

While the screen copy is on, you will notice
that the program seems to pause while the
characters in the file buffer are being written
on the disk. This is normal and does not cause
the loss of any characters sent from the
computer. The reason for this is that the
RS-232 interface is interrupt driven and
receives characters even when the Apple is busy
doing other things.

The protocol used to communicate with the
computer can be set by any of the following:

Full duplex
Half duplex
Simplex

escape f
escape h
escape s

The full duplex protocol is used by many time
systems. Micronet and Tyrnshare are good
of this. It allows characters to be

received at the same time. The
typed at the keyboard are not sent to

instead they are sent directly to
which then has the responsibility

sharing
examples
sent and
characters
the screen,
the computer

of displaying them on the screen. Among other
functions, this allows passwords and other
things which should be kept s e cure to no t be
displayed on the screen.

The · half duplex protocol is used by many of the
IBM based time sharing systems. It requires
that the characters typed at the ke yboard be
immediately displayed on the scre e n. It also
requires that characters only be s e nt in one
direction at a time.

To do this, the keyboard must be locked at the
end of every line (when a return is pressed) and
unlocked when the computer is ready to a c ce pt
more input. To do this, the comput e r s e nds a
unique unlocking character immediately before it
is ready to accept input. In this progra m the
variable Unlock Character is used for unlocking
the keyboard. -While the keyboard is locked, it
will not respond to any characters except the
command sequences.

The Simplex protocol allows characters to be
sent in both directions simultaneously. It is
similar to the half duplex protocol, but i n this
case the characters typed at the keyboard are
also sent to the screen. The distant computer
is not required to provide these characters.
This mode is useful for communication between
two Apple ///s using this program.

Stopping the program is done simply by an e scape
q sequence. It closes and locks the fil e used
for copying the screen. Then returns to the
Pascal system level.

Conclusion

I have been using
months. As bugs
eliminated. Since
structured, these
relatively easy.
easy to make.

this program for the past two
have shown up, they have bee n

most of the program is well
modifications have been

Future additions are just as

In addition to serving we ll as a terminal
program, it also has allowed me to tra nsfer text
from one computer to another. This is
especially convenient because not all of the
people I must deal with have acce ss to the same
computer.

program Terminal;

const

var

Screen Width = 79;
Screen=Length = 23;

Command,Quit,Exit boolean;
Cursor_Vertical,
Cursor Horizontal integer;
Cursor On,Escape : char;
Display FF : (Advance,Home,Clear);
Protocol

: (Simplex,Full Duplex,Half Duplex);
Keyboard : (Locked,Unlocked);
Lock_Character,Unlock_Character : char;

5

6

Screen_Name,Printer_Name : string;
Screen Log,Printer Log : boolean;
Screen-File text;
Remote-File : interactive;
Remote-Name : string[128];
Send Text File : booleah;
Local File interactive;
Loca()lame : string[128];

procedure Clear_Screen;
forward;

procedure Display(var Character
forward;

segment procedure Initialize;

var Character : char;
Control integer;

begin

char);

Screen Log := false; Screen Name :=
'SCREEN. TEXT';
rewrite(Screen File,Screen Name);
Protocol := Half_Duplex; -
Send Text File := false; Local Name ·=
Display FF := Clear; Cursor Vertical := 0;
Cursor Horizontal := 0; -
Keyboard :=Unlocked; Lock_Character := chr(13);

Unlock Character:=')';
Escape-:= chr(27); Cursor On := chr(S);
Command := false; Exit :=-false; Quit := false;
Clear_Screen; unitwrite(1,Cursor_On,1);
end;

procedure Erase_EOL;

var Output_Line : array[0 •• 1] of char;

begin
Output Line[O] := chr(31);
Output-Line[1] :=Cursor On;
unitwrite(1,0utput Line[0],2,8);
Cursor Horizontal == 0;
end;

procedure Clear_Screen;

var Chsracter : char;

begin
Character := chr(28);
unitwrite(1,Character,1);
unitwrite(1,Cursor_On,1);
Cursor Vertical := 23; Cursor Horizontal := 0;
gotoxy(Cursor_Horizontal,Cursor_Vertical);
end;

procedure Display;

procedure Write_Character;

begin
if Cursor Horizontal<Screen Width

then begin
unitwrite(l,Character,1,8);
unitwrite(1,Cursor_On,l,8); begin

end;

Cursor Horizontal
:=Cursor Horizontal+ 1;

end;

procedure Bell;

begin
unitwrite(1,Character,1,8);
unitwrite(1,Cursor On,l,8);
end; -

procedure Backspace;

var Output Line :
packed array[0 •• 3] of char;

begin
if Cursor Horizontal)O

then begin

end;

Output Line[OJ := chr(8);
Output-Line[2] := Output_Line[O];
Output-Line[1] :=
Output-Line[3] := Cursor On;
unitwrite(1,0utput_Line[0],4,8);
Cursor Horizontal

:= Cursor Horizontal - 1;
end;

procedure Linefeed;

begin
unitwrite(1,Character,1,8);
unitwrite(1,Cursor On,1,8);
if Cursor Vertical(Screen Length

then Cursor Vertical
:=Cursor Vertical+ 1;

end;

procedure Return;

var Output_Line array[0 •• 2] of char;

begin
Output Line[OJ := chr(24);
Output-Line [l] := chr(O);
Output-Line[2] := Cursor On;
unitwrite(1,0utput_Line[O] ,3,8);
Cursor Horizontal := 0;
end;

procedure Form_Feed;

begin
case Display FF of

Home begin

Clear
Advance
end;

end;

unitwrite(1,Character,1,8);
unitwrite(1,Cursor On,l,S);
Cursor Vertical :=-0;
Cursor-Horizontal := 0;
end;
Clear_Screen;
Line_Feed;

if Screen Log then write(Screen_File,Character);
if (Character in[' • •• '-'])

and (Cursor Horizontal<Screen_Width)
then Write Character
else case ord(Character) of

end;

7 Bell;
8 Backspace;
10 Linefeed;
12 Formfeed;
13 Return;
end;

procedure Send(Character char);

begin
case Protocol of

Simplex : begin

unitwrite(8,Character,1,12);
Display(Character);
end;

Full Duplex :
unitwrite(8,Character,1,12);

Half_Duplex : begin

unitwrite(8,Character,1,12);
Display(Character);
if

Character=Lock Character
then Keyboard := Locked;

end;
end;

end;

procedure Process_Remote;

type Status Info = set of (Output Buffer Size,
Output-Characters,
Input Buffer Size,
Input=Characters);

var Status List

array[Output Buffer Size •• Input_Characters]
of integer;

Remote Character : char;

begin
unitstatus(7,Status List,13);
if Status List[Input Characters]<>O

end;

then begin -
unitread(7,Remote_Character,1,12);
Remote Character

:= chr(ord(Remote Character) mod 128);
Display(Remote Character);
if (Remote Character=Unlock_Character)

and (Protocol=Half Duplex)
then Keyboard :~Unlocked;

end;

procedure Process_Local;

var Keys Available : integer;
Character : char;

procedure Get File Character;

begin
if (Keyboard=Unlocked)

or (Protocol()Half_Duplex)
then begin
if Send Text File

then begin
read(Local File,Character);
if eoln(Local_File)

then begin
Character := chr(13);
if Protocol=Half Duplex

then Keyboard:= Locked;
end;

if eof(Local File)
then Send Text File ·=

Send(Character);-
end
else if Keys Available<>O

then Send(Character);
end;

end;

begin
unitstatus(2,Keys_Available,21);
if Keys Available()O

then begin
unitread(2,Character,1,4);

false;

Character := chr(ord(Character) mod 128);
if Character=Escape

then if Send Text File
then Send_Text_File := false
else Command := true

else Get File_Character;
end
else Get File Character;

end;

procedure Process Command;

var Character : char;

procedure Break;

var Character : char;

begin
unitstatus(8,Character,2);

{ flush output buffer }
Character := chr(2);
unitstatus(8,Character,14);

{ force communications break
end;

procedure Transmit;

begin
gotoxy(O,O); Erase_EOL;
gotoxy(0,1); Erase EOL; gotoxy(O,O);
write('File name :-');

Readln(Local Name);
close(Local File);
(*$I-*) -
reset(Local_File,Local_Name);
(*$I+*)
if ioresul t <>O

then begin
gotoxy(O,O); EraseEOL;

7

8

write(Local Name,' does not exist.');
end -
else Send Text File := true;

gotoxy(Cursor_Horizontal,Cursor_Vertical);
end;

procedure Set Screen_Copy;

begin
gotoxy(O,O); Erase_EOL;
gotoxy(O,l); Erase_EOL; gotoxy(O,O);
Screen Log := not Screen Log;
write(7 The screen is ');-
if Screen Log then else write('not ');
write('befng copied.');

gotoxy(Cursor_Horizontal,Cursor_Vertical);
end;

begin
Command := false;
unitread(2,Character,l,4);
case Character of

'b','B'

'c', 'C'

'e', 'E'

'f', 'F'

'h' ,'H'

'q' ,'Q'

1 5 I) 1 s 1

't', 'T'

file }
'u', ·u·

unlock a

Break;
force a break onto the
communication line fo 500
millisec }
Set_Screen_Copy;
turns screen copy facility
on or off }
Exit := true;
flush remote in and remote out
buffers immediately terminate
program without waiting useful
for malfunctioning host
computers }
Protocol := Full Duplex;
set host protocol to full
duplex }
Protocol := Half Duplex;
set host protocol to half
duplex }
Quit := true;
wait for remote in and remote
out buffers to empty terminate
program normally }
Protocol := Simplex;
set host protocol to simplex
Transmit;
send characters from a disk

Keyboard := Unlocked;
for half duplex protocol,

locked keyboard useful when
Unlock Character gets lost in
communications }

end·
if Characte~=Escape then Send(Escape);
unitwrite(l,Cursor_On,l,8);
end;

procedure Finalize;

var Character : char;

begin

if Exit
then begin
Character := chr(O); {null effect}
unitstatus(7,Character,2);

{ flush input buffer }
unitstatus(8,Character,2);

{ flush output buffer }
end;

close(Screen File,lock);
unitstatus(l~Character,7);
end;

begin
Initialize;
repeat {until Finished}

repeat {until Command}
Process_Remote; Process_Local;
until Command;

Process_Command;
until Quit or Exit;

Finalize;
end.

-Ill-

The Third Basic

By: Taylor Pohlman
Reprinted from Softalk Magazine

Welcome to a series of
Business Basic, to the
Applesoft, the extended
know and love on the Apple

articles on Apple Ill
powerful new cousin to
Basic that many of you
II.

My goal in this series is to make Business Basic
a useful, familiar tool for you. To do this,
I'll pass along ideas that will help make the
task of creating applications programs simpler
and more efficient. Because Business Basic and
the Apple Ill itself are new to many of you,
we'll relate programming hints and techniques
for Business Basic to the more familiar
environment of Applesoft. To get the most out
of this series, you should be fairly familiar
with Basic language commands and keywords and be
able to create simple programs. Without those
skills as a starting point, this series would
quickly grow into the equivalent of a
serialization of War and Peace.

If you are not that familiar with Basic, your
best bet is to start with the Applesoft Tutorial
manual. If you have an Apple Ill, simply boot
the emulation mode disk, select the applesoft
option, and insert the DOS 3.3 Master Diskette.
Presto, you are now in Applesoft and can follow
the Tutorial's instructions to get up to speed
in Basic. Once you are familiar with Basic and
its syntax (a word you are guaranteed to
encounter in learning the language), you'll be
ready to rip through these articles.

If you are already familiar with Applesoft or
another Basic, you should be ready to dig right
in to Business Basic. The series will assume
that you have an Apple Ill in front of you to
try out all the things we'll discuss. For those
of you in that fortunate position, the fun is
just starting.

Many of you have an Apple II and are wondering
if you need a Ill for that big new application
or as an office complement to your Apple II at
home. For you, this series should reveal the
power of the Apple Ill and its relationship to
the II. Hopefully, that will help you make your
decision. · Others of you will just be wondering
what all the fuss is about, and for you we wish
happy reading. No matter what your situation,
you should be able to gain an understanding of
the power of Business Basic and pick up some
hints you can use in programming.

In any case, we welcome your comments,
suggestion, gripes, or whatever concerning this
column and Business Basic in general. If you've
written interesting routines you'd like to
share, have converted programs from another
vari e ty of Basic, or simply would like to do a
core dump about your favorite subject, write to
Open Apple Gazette. Items of general interest

will find their way into these pages, ensuring
immortality for both of us.

One last comment should be made, especially to
those who aren't business programmers. Why is
Business Basic named Business Basic? As any
product manager will tell you, dreaming up a
product name ranks with dodging trolley cars and
escaping from Alcatraz on the all-time "must do"
list. Thus it was with Business Basic.
Certainly it's true that scientists, engineers,
educators, hobbyists, and lots more of you who
are writing nonbusiness applications will find
just what you need in Business Basic. As you
stick with us in this and coming articles,
however, you'll see that many of Business
Basic's most powerful features were specifically
designed to meet the needs of business
applications and permit the easy conversion of
programs written in other business-oriented
Basic dialects.

One of the other things we'll do along our way
is to show how syntax in some of thes e other
Basics can be translated to Business Basic.
This will help you use the many reference and
tutorial manuals on the market that use examples
from other versions of Basic. We'll include
tips on converting from Basic dialects found on
minicomputers and mainframes.

Well, so much for preparation. Now let's get a
look at this dragon we're about to slay.

Setting the Stage. Like any other sophisticated
computer system, the Apple Ill takes a layered
approach to the operating system, languages, and
utilities that animate its hardware. The term
layered refers to the several levels of software
that insulate users from needing to know exact
details of the hardware on which their programs
are running.

Apple Ill's operating system is known as SOS
(pronounced "sauce"), which stands fo r
Sophisticated Operating System. The origin of
the name is curious. Several years ago in the
development of the Apple Ill, the project was
given the code name of Sara, named after th e
daughter of one of its inventors. Thu s SOS
originally stood for "Sara Operating System."
When the time came to make it an official
product, the name SOS stuck, so the marketing
department had to come up with another word
starting with S that made sense. That's how
Apple Ill's operating system became
"Sophisticated." As we explore more of SOS's
capabilities, we hope you'll agree that it
deserves the name.

SOS's layered approach to system control makes
it more than just a disk manager (like DOS) o r
an IIO convention (as are IN# and PR#). SOS
truly manages all of the Apple Ill system
reso~rces to simplify a programmer's life.

In Apple //l's SOS, the lowest level of software
is the hardware driver. The term drive r may seem

strange, but it's very logical. Just as the
driver of a car has to know the operational
details of what's being driven, so the Apple///
drivers need specific information about how the
device is connected, what its features are, how
it's controlled, and what information must pass
back and forth betwe e n the device and th e next
highest level in the system. The beauty of this
scheme is that the driver can be known by some
generic name (l ike ".PRINTER" or ".TCLOCK") so
that the operating system and Business Basic can
use the device without be ing concerned about all
the specific information that the driver must
know. For example, you don't need to know
anything about transmissions and turn signals t o
take a cab across Manhattan (a paid-up insu ranc e
policy will suffice). To extend th e metaphor
even further, you don't even have to know what
taxi company to use; they all work pretty much
th e same.

In the same way, SOS can ref e renc e a ".PRINTER"
for you, which may be a Centronics, a Silentype,
and Epson, a Qume, or any of numerous oth e r
printer, connected via parallel, joystick, or
serial ports. The higher you get in the
operating system layer, the less specific you
must be about the resources you us e since SOS
knows about all the devices you've configured on
your system. Facilities are also provided to
allow managing devices on a demand basis (that
is, when they signal that they want to do
something, called an interrupt). This feature
makes it possible to request that more than one
device be active at a time. To do that on the
Apple II takes some pretty sophisticated
programming.

9

Because of SOS's structured, layered nature,
activities like reading from a remote computer
whil e writing a message to disk and printing out
a report become almost tri~ial.

We'll look at more about that later. It's
sufficient for now that your program runs in
Basic, which runs on SOS, which controls the
hardware drivers, which accomplish the
input/output to receive and deliver data for the
system's devices (including a device called
".CONSOLE," which is the keyboard and screen).
The structure looks something like this:

Interrupt
Manager

10

~vice

Manager

sos Call
Manager

File Memory
Manager Manager

~vice Drivers

Utility
Manager

As you can see, each layer depends on the one
below for services. Since the way the layers
communicate is standardized on the Apple///,
it's possible to make substantia l changes to the
hardware and even to some parts of the operating
system without changing the way Business Basic
operates. This ensures that your programs will
continue to work, even if we make changes later.
Desi gning operating systems this way takes
longer and makes them larger, but, in the long
run, the benefits are enormous.

Getting Started. Since booting a disk is worth
a thousand "you're gonna love its," let's get
started by trying some things out. Just put the
Business Basic disk in the built-in drive and
press reset while holding down the control key
(called "control-reset" from here on).

The first thing you may see is a slight flicker
as the onboard diagnostics check out the Apple
Ill circuitry. Next is the SOS display screen,
which indicates that the operating system has
been loaded into memory. SOS's next task is to
load the language from the boot disk. Since
this is the Business Basic disk, that language
is loaded and the hello program is automatically
run (just like DOS in the Apple II).

You'll note that the final thing to
the right parenthesis")". This is
prompt, meaning that Business Basic is
a command.

appear is
the Basic
ready for

At this point, enjoy yourself for a minut e by
typing:

You 128K Apple /// owners will notice that
you've got more than 70K of user space for
programs and data. We'll f ind some fun things
to do with all that room later. The line shown
also illustrates another convention we'll be
using throughout these articles. What you type
will always be underlined to distinguish your
commands from what the computer outputs to you.

There are several items of interest in the
display of the catalog. First, in the upper
lefthand corner of the printout is the name
Basic. This can vary from disk to disk and is
called the volume name. SOS identifies the
diskette you're referencing by a scheme called
the Pathname. The highest level of the Pathname
is the volume name, with any subdirectories
mentioned next and the actual file name last
(lowest) in the hierarchy. More on the subject
appears in the Apple /// Owner's Guide and
Business Basic manual under "Pathnames."

The next thing to notice is the column on file
type. The type SYSTEM is obvious; that 's SOS
and Basic, the system software. Notice that
Basic is named "SOS INTERP," because on this
diskette, it is the interpreter (control

program) currently configured to run on SOS.
Notice also that the "BLKS" column shows the
space occupied on the disk in blocks. There are
512 bytes in each block. The next columns,
alas, alack, are only relevant to those of you
who have working clock chips. The files in the
Business Basic disk directory will be marked
with the date and time of their origin, but,
without a s ystem clock, the files you create
will not. The final column, EOF, lists the
exact number of bytes occupied by the file.

Now back to the TYPE column for minute. It's
easy to figure out that file t ype BASIC stands
for · a Basic program (like TIMESET). What does
PASCOD stand for? Right, it's a Pascal code
fil e , in this particular case created by the
Pascal system's assembler. As you might have
guessed (if you've been reading your Basic
manual), the INV suffix on those files is a way
of indicating that these files are set up as
Basic Invokable Modules. We'll explore these in
more detail later, but for now just remember
that Basic uses assembly language routines
through a mechanism ca l l ed Invoke and Perfo rm.
The r e are some de finit e rule s to follow in
setting up these modules, which we won't go into
now. However, there's no reason why we can't
start using these capabilities right away! Hang
on for a short exercise in using the SOS fil e
sys tem, and we'll give READCRT. INV a workout.

To ge t a glimpse of how Business Basic works
with SOS to manage system r e sourses through
files, let's take a simple example that doesn't
require the disk or a printer . Basic tells SOS
that it wants to use a file by means of the OPEN
command and assigns a number for later reference
to the file . On the Apple / / / , of course,
everything is trea ted as a file, even the
keyboard and display. As we said ea rlier, the
keyboard/displa y device is referred to a s
. CONSOLE. Note that the name s for a ll chara cte r
devices-devices that transmit one character at a
time-start with a period. Type in the following
so we can experiment (as Dr . Frankenstein said
t o Igor):
) _!..2. OPENIIl, ".console" (This sets up a file

number for Basic to use
in communicating to the
console .)

Note that you're already communicating to and
from the console. That's because the console is
the "default" I/0 device. Statement 10
establishes a second path by which to
communicate to the same device.
~ INPUT ~ (This is the good old

ordinary input to the
defa ult input devi ce.)

30 PRINT ~ (Aga in, de f ault output
device is the screen)

40 PRINTI/1; a$ (Now we print to the
screen again, this time
through the console fil e

50 INPUT Il l;
previously opened.)

~ (This time we input f r om
the keyboard, using the
console file.)

60 PRINT~ (Pr i nt to default
scree n.)

!_Q PRINTII l; a$ (Print the same quan tity
t o the console f i le .)

80 END
Now if you LIST a nd RUN the r esult, i t should
look something like this:

file

)list
10 OPENI/1," .console"
20 INPUT a$
30 PRINT a$
40 PRINTI/1 ;a$
50 INPUTIIl; a$
60 PRINT a$
70 PRI NTI/1 ;a$
80 END

)run
?hello default console
hello default co ns ole
hello default console
hello console a s a f i lehe llo con~o le as a

hello console as a file

A couple of inte resting t h ings are a ppa r e nt
here. First, although t he first t h r ee l ine s
work exac tly as you woul rl e xpe c t, the next th ree
line s of output a r e a l ittle di f f e r ent. The
default console prints the ques tion ma r k , as it
should, but on line 4 o f the output the r e i s no
question mark or prompt for input a t a ll. Th i s
is because SOS is treating the conso l e a s a
general i nput fil e and the r e fore ca n't know t ha t
it can acce pt charac t e rs pr i nt e d t o it. It j us t
does a read to the device and wait s fo r a n e nd
of record charac t e r (in thi s case a car r iage
r e turn). The s econd unusual thing is also nn
line 4 the PRI NT command in s t a t ement nO
prints right at the end of the i nput string
(unlike line 2). The s ame r eason a ppli es ~i nce
the carriage return you t yped and the subseque nt
line f eed the system ge nera t e s f o r t he de f a ult
console are suppressed for a n input fil e device .
But line 5 i s printed separa t e l y , s i nce t he
PRINT c omma nd in s t a t eme nt 60 output s a car r iage
r e turn a nd l ine f eed .

In this same way, eve r y device connected t o the
Apple / // is available a s a file. The a bility
to address the console devices separa tely will
come in handy in some futur e articles.

Having e xperimented a li t tle with files , l et ' s
use one of thos e invoka ble module s we me nti oned
earlie r and the OPEN sta t eme nt t o do something
useful. This is a handy utility to use t o make
printouts of the scree n wh e n some thing stra nge
or wonderful happe ns.

11

ln thi s example , I'm assuming that your printe r
is a Si l e ntype. Since SOS doesn't care what
device it writes to, you may substitute any
output f il e name in line 100 , even a disk text
fil e .

)new
) 100 OPEN/It ,". si l e ntype"
)11 0 INVOKE"readc rt.inv"
)120 FOR vertical=! to 23
)130 VPOS=ve rtical
)140 FOR horizontal=! to 80
)1 50 I!POS=ho rizontal
)160 PERFORM r eadc('value %)
)170 PRINT#l;CHR$(value%);
)180 NEXT horizontal
) 19 0 PRINT# l
)200 NEXT vertica l
)1000 VPOS=23:HPOS=l
)1010 CLOSE
)1020 END

Listing this program should show:

100 Ope n /It ," .silentype"
110 INVOKE"readcrt .inv"
120 FOR vertical=! TO 23
130 VPOS=vertical
140 FOR horizontal=! to 80
150 I!POS=horizontal
160 PERFORM readc(~value%)

170 PRINT#l;CI!R$(value%);
180 NEXT horizontal
19 0 PRINT/II
200 NEXT ve rtical
1000 VPOS=23:HPOS=l
1010 END

Not i ce that this r e vea l s another nice feature of
BusLness Basic: it automatically indents
FOR-NEXT loops for cla rity. Ever been jealous
of thos e pr e tt y Pascal li s tings? Business Basic
to the r escue !

On a more se riou s note , let' s look at what this
program does . After OPENing the appropriate
file in line 100 , Basic is told to INVOKE the
f il e r eadc rt. inv. Readcrt . inv i s an assembly
lang~age • r out ine that looks at the current
position of the cur so r. The curso r pos i t i on i s
defined by the current values of the Basic
r ese rved va riables HPOS and VPOS . Readc rt. inv
then modi f i es the value of the variable "value%"
t o contain the de cima l value of the ASCII
characte r at that l oca tion. The INVOKE command
tells Busine ss Basic t o find a place for
r ead c rt.Lnv in memo ry a nd t o set up a table of
a ll its PERFORMable r outines . You can INVOKE
any numbe r of modules, a nd Basic will a lways
ensure that they are located in noninterfe ring
a r eas of memory .

Line 120 sets up a loop that will scan the
vertical lines of the sc r een . Line 140 sets u p
the inne r l oop which will look a t eve r y
ho ri zonta l cha r acte r pos iti on on that line . The
r out ine in r eadc rt. Lnv is then cal l ed using the
PERFORM command . Isn't this eas i e r than a bunch

12

of pokes and a call? Line 170 prints the
character equivalent to f ile one, our output
file, and then takes a look at the next
position . Line 190 makes sure we print a
carriage return at the end of each output line
(s ince that character isn' t p~ysical l y on the
screen). After tha t, line 200 starts scanning
the next line. Lines 1000 through 1020 set the
cursor at the screen bottom, c lose t he output
file, and end.

Now for the fun. Run this program and you'll
get an exac t copy of the first twenty-three
lines of the screen on your output fi l e . By
putting in a n INPUT sta t ement to ask fo r the
file name a nd then OPENing the r esult a nt st ring
variable as the f ile name in line 100 , you can
decide at the time you run where you want the
copy to go . Use this program to docume nt all
the strange and wonderful things you fi nd in
Business Basic as you r ea lly begin to exp lore
the language. But first, be sure t o save the
prog ram to an initialized diskette!

We l l , thaL's it for now. Until nex t t i me , happy
coding with the most powerful BASIC around.

- Ill -

FAITH HOPE and CHARITY

By: M. Kent Hockabout

Whether it was a problem looking for a solution
or a solution looking for a prob l em , the
rationale used by many of us who have purchased
the Apple Ill was not based on def e nsib le logi c .
A good reputa tion, pr ove n performance and a
wealth of software a r e the sort of logica l
r easons one mi ght assume t o be a r equireme nt for
such a purchase.

It would have been nice to have such assurances,
but they were hard l y wha t we had to rel y on for
our decision. What were the r e!lsons which made
us do i t? As much as any thing , I beli eve it was
an act of fait h, a ce rtai n amount of hope a nd
not a n insignificant amoun t of charity .

Faith in the ability of Apple to rep l ica te it s
Apple][successes. Hope in a favora ble market
for the Ill against the comi ng tide of IBM,
Xerox, NEC a nd a ll. And charity, i n our
willingness t o forgive a nd forget the wat e r
unde r the brid ge since the introduction of the
II/ .

So specifically why did I decide t o buy the
Apple Il l ? The process bega n with the pu r chase
of a TRS-80 Model I Le ve l II l 6K . Af ter many
volume settings between 4 and 6, I decided that
the r e must be a better way of f inding out how
the compu t e r could make work a little easie r.

The alternatives seemed to boil down to machines
of promise, compromise or the Apple][. The][
seemed to offer the widest range of applications
with an entry price which didn't look too bad.
The price began to climb howeve r, as I started
tacking on the various features which seemed
appealing, 10 key pad, 80 column card, modem,
softcard and so on.

Without any prompting from the dea l e r - to my
surprise I suddenly realized that for a few
more dollars I could buy a Ill which had what I
wanted and more. Although at the start I would
never have thought of aiming at the Ill, it now
felt like the most natural thing to do. The
machine looked good, felt good and the Visicalc
program performed its mira cles . Plus, l have
always felt that the colorful Apple has a
certain pizzaz not shared by ei ther the Pet or
TRS-80.

Thus, I became the possessor of an Apple Ill, or
the possessed if you listen to my wife, a nd the
fun begins. I started reading all of the
manuals a t once. Visicalc was a snap to get up
and running. Business Basic, on the other hand,
only proved what was painfully obvious - the
Law rence Hall of Science beginning Basic course
wasn't e nough. What about graphics or is it
graphix? Either way, graphics seemed t o be a
thing of the future. The success rate I had

with the SYSTEM
much better. And
pop a chip.

CONFIGURATION PROGRAM was not
then La Machine proceeded to

In an attempt to reduce the mounting
frustration, I began to r e read the stack of
magazines gathering complaints in the corner.
Surely the re would be a product review and
perhaps an article or two from joyous owners
which could solve some of the riddles . No, I
did not go back to my dealer for help. The
dealer had already sold me three programs which
would not work in emulation so I figur e d we wer e
in the same boat. (The dealer took back the
programs.)

What little information I found was not very
reassuring, reliability and supply problems.
Apple Computer even dropped its ad which
featured the 111. This was hardly a time of
r ejoic ing about my decision. In spite of the
picture in a we ekly news magazine of what looked
like thousands of Apple Ill computers on an
assembly line, I felt that I must be the only
person to have bought an Apple 111.

Then there was the article in the International
Apple Core magazine about the Ill and the
beginning of a users group, and the world didn't
seem to be such a lonely place after all.

With the reintroduction of the Apple Ill- PLUS
SOrTWARE -and the beginning of the Apple lllrs,
we re finally on our way. 'Course I always knew
it was just a matter of time.

-Ill-

Public Domain Software for the Ill

Public domain software for t he Apple][was
undoubtedly one of the primary reasons for its
success. This software enabled owners to learn
more about their machines and how to use them
profitably. Public domain software for the Ill
has been slow in coming but here are some of the
first tha t are available . The Applecon program
from Apple Computer Inc. will g r ea tl y add t o the
library of public domain software f or th e 111 .
You can help with this by sending us pr og r a ms
you have conver t ed to o r written for the 111.

Appl eco n from Apple Comp u ter Inc .

Applecon is a new utility fo r the Apple Ill
which conver t s Applesoft BASIC programs to Appl e
Ill Business BASIC programs to the e xtent that
they can be machine converted . Thi s program
will not co nvert any copy protected programs or
diskettes. This uti lity will take an Applesoft
(Apple II) program and move it up to SOS a nd
into Apple Business BASIC a nd then will make the
proper changes. Those lines it cannot conve rt
directly into Busine ss BASIC will he flagged
into a REM statement for you to correct . The
disk comes with several pages of documentation
on the disk in a t ext file. Th e fil e ca n be
read by Apple Writer Ill , o r you ca n output it
via the Pascal System .

File Cabinet I I I

This i s a s ma ll gene r al purpose data base
management system written in Business BASIC .
Th e use of File Cabine t Ill is simpl e and most
of it is se lf documenting. File Cabine t
provid es a means of int e ractively de fining data
files, entering data, sorting , retrieving
r ecords co ntaining s pecific data, de l et in g
r eco rds, and printing reports. Because all of
th e data in Fil e Cabi ne t i s me mory resident th e
size of the data ba se is limit e d to a r e lative ly
small amount hut the handling of this data is
very fast.

DOS to SOS t ext File converter.

This program e nabl es yo u to move DOS 3 . 3 text
files to SOS. lt i s usef ul in movin g VisiCal c
Models from th e 1 r to the I I I. If you own Apple
Writer th e Apple vlriter Utility di. s kette a lr" ady
will do thi s for you.

These
$8.50.
add $
foreign
the:

diskettes are available to member s for
Non Members $ 10 .00. Canadian Resid e nts

l.O O for postage, add $2 .00 for ot he r
postage. Make your chec ks payabl e to

Original Apple lllrs
P. 0. Box 813
San Francisco, CA
94101

- II I -

13

APPLE /// PASCAL UTILITY LIBRARY

By Wil liam J. Cheeseman

After a long wait, my office fi nally received
the Apple Ill Pascal Utility Library. This is a
brief note on its features, a nd instructions on
converting it for use on the Apple][.

The package comes with two disks a nd a
typewritten, spi ral-bound manual. The manual is
not a tutorial, but for the most part a
procedur e-by-p r ocedur e list of the input and
output parameters of the utility procedures (and
functions, of course). There are one or two
brief examples of how to call most of the
procedures and functions in your programs. The
sou r c e text fil es fo r all of the utilities , as
well as f or several demonstration prog r ams, are
included on the disks. They are well commen t e d,
and thus provide a tutorial of sorts in their
own right. A LIBRARY incorporating the
utilities is included on one of the disks, so
you c an begin programming with them immediately,
without any need t o compile them or t o construct
the library yourself.

The ut ilities are organized int o three sepa rat e
UNITS. The fi rst, GENUTIL, contains a
hodge-podge of generall y useful routines,
ranging from the very complex to the
ridiculously simple. It appears that several of
the simplest routines (e.g., SOUNDBELL, which
rings the bel l once) a re provided because they
are nee ded by the more comp l ex routines -- no
quarrel with that, and if you would prefer them
t o work a little differently, all you have to do
is edit the source code and recompile your own
version.

This is not the place to list them all, but here
are some e xamples which will give you the
flavor:

1. PROMPT is an e laborate procedure for placing
a prompt on the screen whereve r you want it,
defining default values, and formatting the
des i r ed r esponse in any of 17 ways, including
DOLLARS, STDDATE, etc. Spec ial edit features
using the OPENAPPLE key are provided for edi ting
a r esponse before it is fina lly sent to the
computer, such as inserting characters at any
point, jumping to the begi nning o r e nd of the
response , r es tore to default, etc.

2. RESPOND is a simpler procedure to prompt for
and act on yes/ no and similar inputs.

3. GETCHR is a more elabor ate version of
eve rybody's ge t ch r routine . Bes ides the usual
t es ting against a ny defined set of allowed
characters, it provides for optional delay and
termi na tion if a response is not received, bell,
and so on. Op tionally, the global variable
ESCTYPED will b e defined to aid in processing
the ESCAPE key.

14

4. There are several standard scree n a nd r eport
forma tting r outine s which I haven't yet
explored, but which appear to be useful at l eas t
for programming quickies where you are willing
to live with the built-in formats and
conventions.

5. DATECOMPARE retu rns a -1, 0 or 1 t o indicate
whether a date is before , at or afte r a nother
date. Too bad it doesn't tell you how far
before or after.

6. VALIDDATE is a boolean function which te s ts
a date string in the fo rm MMDDYY for validi ty
(Feb. 29 in a non-leap year, and so on).
Several o ther procedures and functions allow
input, ou tput and compacted sto r age of dates.

7. FMTNUM is a procedure t o convert a numeric
string to any of eight provided formats,
including DOLLAR, TRAILMINUS, COMMAS, and so on.

8. EVALINT and EVALUATE convert input strings
to integers or long integers. Good tools for
bullet proof input routines.

9. There are several othe r routines, inc l uding
a number of string , character and numeric
primitives to fill in the ga ps in pure Pascal.

The second UNIT is FILEACCESS, a nd the third is
BTREE. I won't go into detail, as their
purposes are apparent from their names . Suffice
it to say that these routines appear to be mo re
sophisticated and flexible than most. The file
access routines handle most of the drudgery of
opening, maintaining and closing files using
virtually any record format you wish to design.
Flexible fil e headers a r e provided for g lobal
fil e informatio n, i nc luding an op tional binary
map of which r ecords are ac tive and which
inactive. Files are sequential and unty ped, for
rapid s t o r age and retrieval by block. The BTREE
routines may be used for quickly loca ting and
retrieving the r e cord you want.

Severa l demonstration programs a r e provided in
source and p-code, including a nice TESTUNIT
which lets you try out each of the GENUTIL
utilities inte r ac tively. There are 4
demonstration programs relating to file access,
includi ng a simple INVENTORY program.

I use my Apple ll at home to write programs for
my office Apple // /. Hence, I need t o be able
to use these Appl e Ill Pascal utilities on my
Appl e][. It turns out to be no problem (but a
little tedious to set it up the firs t time!).
The Apple /// l ibra ry, when transferred bodily
to an Apple][formatted disk, will n o t work
correctly as is. You must recompile each of the
source t ext files, either using the Apple][
compiler option on your Apple///, or using you r
actua l App le][compiler after transfe rri ng the
t ext fi les to an Apple][formatted disk. Then

construct your own Apple j[SYSTEM LIBRARY in
the usual way.

There is a kink, of course: the Apple Ill
Pascal screen control codes are not the same as
those used by Apple Jl Pascal, but instead are
the Apple Ill SOS codes. Thus, you must make a
couple of changes to the text files before you
compile them for the Apple J[. I use a Videx
Videoterm 80-column card at home, which conforms
to the Apple J[Pascal specificatiqns. You may
have to do the following a little differently
for your own Apple Jl setup. (I wish the
program author had define d his screen and
keyboa rd control codes in the global CONST
declarations it makes modification for
transportability much easier.)

1. In GENUTIL2.TEXT, the proce dure INITCTRL
must be changed so that CONST OPENAPPLE = -64.
This enables the openapple edit keystrokes of
procedure PROMPT to function with the equivalent
CTRL characters; i.e., treat the Apple][CTRL
key as if it were the Apple Ill OPENAPPLE key.

2. In GENUTIL3.TEXT, the CASE options in
procedure SCREENMSG must be changed to CLRLINE :
WRITE(CHR(29)); and CLRSCREEN
WRITE(CHR(ll));.

I am
p-code
on the

aware of no other r eq uired changes. The
files for the demonstration programs run

Apple J[without recompiling.

- II I -

User Comments On The Word Juggler

By: Dr. R. Smail ST0823

WORD JUGGLER is extremely user friendly. The
program disks come with templates that fit over
the Apple Ill keyboard. The templates make using
WJ as easy as playing an organ with lighted keys
to show you what comes next. Printer format keys
are on the top keyboard row and editing keys are
on the numeric keypad. The layout is simple,
powerful, and easy to learn.

All of the usual word processor commands are
supported. These include block moves, loads,
deletion-string search and replace etc. Text can
be saved as an ASCII file for downloading over a
modem. That should save some money when using
data bases such as SOURCE. Text can be displayed
in the form it will have at printout so that any
changes can be made in column alignment etc.
Printer enhancements such as multistrike and
underline are supported. Text can be right or
left justified, centered, or a semiproportional
space. Automatic headers and page numbering are
supported. Printout can be by entire document,
one or several pages in a document, or multiple
copies of any combination of these. Documents
previously prepared can be inserted
automatically at run time.

The software hooks are in place to support the
internal clock if you are lucky enough to have
one. A simple data file merge capability is
provided on the WJ disk fo r the preparation of
form letters and mailing labels. There is also a
simple sort routine provided for the data files
that are used in this manner.

I have used WJ to prepa re over 100 pages of text
so far. It seems to be most f unctional and is
bug free as far as I can determine.

The spelling checker, LEXICHECK, is also
excellent. Lexicheck is invoked with a single
key stroke and works well with WJ. More about
that later.

More specific detail on the WJ commands e tc. can
be obtained from QUARK.

I can answer any questions as a user of WJ
(Smail ST0823), but I am no programmer and
wouldn't be of much u se regarding t echnical
questions. I used AppleWriter /// at my dealer,
and I liked WJ becaus e it was user friendly.

I reall y only have two complaints ahout the
total package.

First, WJ does not support true micro-spaced
proportional printing (as yet) on my Qume Sprint
9. They use a semiproportional spacing by
inserting extra spaces between words when
"justify" is s elected. This is a kind of
micro-spaced emmulation •••• ok, but I 'd like
more. They say the programming for that is VERY

complicated and who am I to say different .

Second,
insertion
automatic
supported.

footnote
with text

numbering

formatting
line count

(anything

and automatic
adjustment and
else) is not

Now, for some good news. When I wrote t o QUARK
about these possible enhancements they replied
that a new version of WORD JUGGLER is in the
works which will include both true proportional
spacing and automatic footnoting. If they can
pull it off that will just about top it out for
me with this word processor.

That is it
{ST0823}.

I would be
useful user
this file.

for this file. Smail any remarks to

quite interested
experience with

- II I -

in incorporating
WJ in updat es to

15

MX-100 Manual Revisited

By: M. Kent Hockabout

In the Premier issue, all twelve type styles for
th e MX-100 were ' identified, as well as the
necessary control/escape codes. However, the
procedures for using these character types with
both Apple Writer /// and Visicalc /// was not
spelled out.

A numbe r of calls have been r eceived , one from
Hawaii, asking about the specifics of how these
codes are e ntered for both Apple Writer /// and
Visicalc ///. So fo r those who have not found
the right sections in the manuals or who have
just bought a MX-100, here is how it is done.

-----APPLE WRITER///

For those of you who like to follow along, turn
to page 50 in your Apple Writer/// manual, top
of the page starti ng with "CONTROL-V
CONTROL-characters as Text Entries:". The
CONTOL-V is toggled on a nd off in o rd e r to ente r
the Control/Escape codes. When you e nter a
CONTROL-V, a "V" appears in th e Data Line just
to th e right of the "Z". Apple Writ e r///
a llows th e use of commands to th e printer to be
e mb edded in the text. If you wish to use the
same c haract e r type for the whole document,
place the Control/Escape code at the begi nning
of the t ext. I sugges t that you get in th e
habit of turning off what eve r charac ter type
you are using at the e nd of the text. The first
a rt icle included the necessary codes. This is
especially important if you are using more than
one c haracter type in a document.

Control Escape codes are en t e red as follows for
Apple Writer///:

<control) -V'control/escape-letter'
<con t rol>-V

You will note, if e verything is right, that the
above procedure will place your print command
for an <escape>-CAPITAL l e tter on the screen as
an inverse l ef t bracket "[" and a non-invers e
capital letter. For a '(control>-lett e r' you
will see a n inverse capital l et ter. NOTE, if
you make a n er ror while entering thes e commands
after the CONTROL-V, just enter another
CONTROL-V a nd perform your usual deletion
command to e rase th e error. If you attempt to
corre ct an error with the CONTROL-V on, you will
merely e nt e r a string of control characters.

Onc e you start using the various combinations of
character types in a document, you may notice
strange things happening. Enlarged characters
will throw off margins or centering and some
character types just do not seen to work. The
r easons for all of these strange goings-on will
have to wait for ano ther day. There are also the
various e mbedded commands for form feeds and
other printer commands in addition to these
commands for type styles. If anyone feels like
tackling the combination of formatting and type

16

style commands, please do.

Visiclac ///

Now for Visicalc Ill and its special commands
for the print e r. Turn to page 208 in your
Visicalc Ill manual, beginning with the heading
"The Setup String. "

/PP"<return>.

This will produce
for you to enter
codes. But be fore

The sequence is as follows:

the blank prompt line , ready
the desired Control/Escape

you enter the now-familiar
codes, it is neces sary to enter a carat "~".

The is a <shift)-6. With the "~" entered,
you are ready to enter the Control/Escape codes.

As an aside, you may wish to mark your calendar
so a year from now you may recall this occasion
because we are in the "Good Ole Days" when each
program had a different command structure.

The Control/Escape code for Emphasized is:

~<shift> E <shift> E <return>

The letters for each type style as well as the
"C" for control and "E" for escape are
capitalized. If you make an error or wish to
change your mind, you DO NOT have to go back to
the beginning. Enter the edit mode by entering
control E, the using <escape> or control H to
delete the unwanted characters. When you press
<return> the prompt line will then request the
lower right coordinate.

For those character types which are compound
Control/Escape codes, you may enter each one
individually, or all on the same line. If you
wish to do eve rything at once, which is easier,
seperate each Control/Escape code with a carat

As mentioned before, the enlarged character
automatically turns off at the end of th e line.
If you forget this piece of trivia, and you
expec t to have your complete spread sheet
printed in condensed-enlarge (#7 in previous
article) you may wonder what's wrong now.

However, this feature may be useful for printing
a one-line-at-a-time title on a Visicalc report.
Otherwise you would have to print the title
line(s) first and then reset the character type
to standard, if necessary, and then enter the
character type you wish to use for the body of
the model.

Experimentation is neces sary if the type style
used in the title is a different size than the
type style used in the body.

In the "things move fast" department I mentioned
the lack of italics for the MX-100 in the
previous article. Within hours of the ink
drying the EPSON ads appeared for the

GRAFTRAX-Plus giving Italics and other goodies
to the MX-100.

- II I -

Manual & Documentation

User Comments from Sam H. Bell

Why Apple would produce a nice machine like the
Ill and not supply the user an owner-oriented
publication to use it effectively and easily is
beyond me. I refer to simple, complete, and
useful examples of the machine's hardware and
software functions. Their Business Basic
r e fer e nce manual is not a tutorial (Apple even
says so) and one is sorely needed.

I am c e rtain some group of Apple employees have
the smarts and inside design details on these
units but management or marketing does not make
them available to the purchasing customer. If
the "Open Apple Gazette" can change this, all of
us will be better off.

Witness the head bashing that Mr. Norris spoke
about in the March 1982 issue. We ran into this
same problem with Business Basic and it is only
Mr. Taylor Pohlmans recent series of Business
Basic articles in "Softalk" magazine that have
shed some light on this programming language
nearly a year after the unit was introduced.

APPLE UPGRADABILITY

As a side issue, if Apple does not make the Ill
upgradable to Lisa or something close to it, I
will be disappointed. I may have to buy one of
their 68000 units anyway, but I will complain
before I do so to their Cupertino headquarters.

DISK STORAGE

I have found that the 5 114 inch floppy disks
are not of large enough capacity for serious
business use. I sort of knew that before we
purchased our Ill but still hoped my instincts
were wrong. The only simple alternative is a
hard disc. Two brands known to me are off the
shelf as of May 1982. Are there more?

1. I have looked into the Profile disk that
Appl e sells and cannot rationalize anything of 5
megabite capacity without realistic backup media
built into it. I fault Apple for the
engineering execution behind that piece of
hardware.

2. For this reason, backup, the only disk I can
justify is a Corvus with the Mirror video tape
option. We have not bought one yet but if we do
I will review its performance for the readers.
I have heard only good about the Corvus
reliability. Has anyone used it with their Ill?

- Ill -

APPLEWRITER ///

By: Dr. R. Sma il ST08 23

APPLEWRITER Ill is a vast improve me nt ove r th e
word processors (then r e ally only text e d i tors)
found on small computers.

Commands are entered by control characters,
which is fairly common (the othe r c ommon me thod
is the use of modes--in which you cannot insert
unless you are in the insert mode, e tc.).
Deleting unwanted text is done with a CTRL-back
arrow, which is perfectly logical, but do e s not
allow for forward deletions. Retrieving lost
(deleted) characters is done with CTRL-ri ght
arrow.

Word wrap-around is handl e d fairly well, with
two glaring peculiarities. First, if a s e ntence ,
~hich is customarily started with two space s,
starts a line, it is prece ded by a blank.
Fortunately, it corre cts this flaw whe n he i ng
printed. Second, when a s e gment of the t ext
buffer is filled, all the scre en will compact
(at least th i s is the only explanation I c an
come up with for this bizzare occurance), and
the cursor and text will jump--usually half a
line. The text isn't harmed, i t's mere ly
visually distracting.

Most formatting functions are support e d, a nd are
implemented with menu commands or text-imbedde d
dot commands (commands that start a line with a
period). Text can be formatted to print howeve r
you please. Some consider this a disadvantage,
but I personally prefer this approach. A nice
feature is that the printing de faults c a n be
saved to files, so several di ff e rent
configurations can be ready-at-hand.

The load and save commands both have defaults.
If an "=" is entered, when a file na me is
displayed on the Data Line, it me ans u s e the
file listed on the Data Line. This procedure is
not as nice as the scrolling of file na me s in
VISICALC Ill.

APPLEWRITER Ill can also be used in conjunc tion
with MAIL LIST MANAGER, but there i s a
conversion process required. Th e mail list
cannot (to my knowledge, at least) be filter e d
in any way prior to conversion without creating
another MLM diskett e . Any field or combination
of fields can be used anywhere in the
APPLEWRITER file, which is a handy feature. I
do not know if other word processing systems
have this--the only other one I've s een only
allowed the whole mailing label to be inserted.

Other unusual features: the font s can h e changed
(four are provided), the screen can he split, a
glossary of commonly-used terms can be crea ted,
control charact e rs are shown on the scree n when
inserted into text, and it has its own word
processing language (WPL) for batch jobs. There
is also a provision for changing the case

17

(upper or lower) of ~ny text.

All in all, Applewriter Ill isn't perfect, but
for $225 it is one of the better bargains I have
seen. I have not experienced any flaws I
couldn't live with.

-Ill-

Business Basic Software Library

By: Stan Guidera

If you've had your Apple Ill for awhile, you
probably noticed that there is very little
public domain software available. Well we hope
to change that in the near future with your
help.

What kind of programs do we need? Well, any
program that you wrote (authored) in Business
BASIC, Pascal or even COBOL, (the source code
must b e included with Pascal and COBOL
programs), invokable modules, Visicalc templates
or device drivers. The programs can be very
simple or complicated. Games, utilities, demos,
graph ics, business or home programs are all
accep table and in demand.

If you wrote a small (or big) program to handle
that special task, send it in. It might be just
what someone was looking for. Incidently, there
are many many programs written for other
computers that may be easily changed to work on
the Apple II I.

And now some suggestions or conventions, if you
will on what we need in or with each program.
DOCUMENTATION, documentation, and more
documentation, inside and outside your program.
A program may be useless if we don't know how to
us e it. A set of instructions within your
program is very helpful. Your name should be
included in the REM statements or in the title
page.

Note: Please do not send in commercial
copyright programs as we cannot use them.

To send in your program use a floppy disk mailer
with a return address so we may return a disk
with programs from our library. Your original
program may not be returned. Please send to:

Th e Original Apple lllrs
Attention: Basic Librarian
P.O. Box 813
San Francisco, CA 94101

Then watch this space for the announcement of
which should sell for

we can develop the
any club.

our first library disk
about $7.50. Between us
finest library of programs of

-Ill-

18

Letter Fro. Apple //lr Ralph Merrikin

Dear Don:

Here is the $25 for membership and the comments
on Apple I agreed to send. I enjoyed chatting
with you at the Applefest 82 in Boston. I have
the March issue of the Open Apple Gazette and if
there are any since that time I would appreciate
the back issues.

I have now owned four Apple Ills and feel that
Apple has done me an injustice. The first three
units I owned had many problems. This is not
earth shaking news to anyone I'm sure! Like
many others, I too spent many hours trying to
get my system up and operating. The trips to
the dealer were many, quite distant, and
aggravating. This includes trips to the
r egional Apple office in Westboro Massachusetts
to cure intermittant problems which the dealer
was unable to correct.

And still I don't complain! But what reall y
upsets me is after all my trials and good faith,
Apple lowers the price of the system without
compensation to the original owners. Just
think •••• all I had to do was wait for a year
while all you Apple-nuts debugged the product
for Apple Company, and I could have saved wear
and tear on my car, not used all that gasoline,
not paid turnpike tolls, etc. And I would have
gotten a working system at a much lower price!

Better yet, I would have gotten an All Apple
system including the nice monitor which goes
with the system. And my extended warranty would
then cover the monitor. Are you early Apple Ill
owners aware that your Sanyo Monitor sold with
the early systems is not covered by the Apple
extended warranty, even though it came i n a box
with an Apple label?

Now I am willing to admit that the Apple Ill is
a very fine piece of engineering, and it will
probably do everything I ever want to
do •••••• but, how come the dealer keeps getting
all the technical bulletins and I can't even get
a return phone call from the "Hot- Line" I read
about in the Apple advertisements? The dealer
has the information I require, but because
nobody at the dealership keeps up to date on the
Apple Ill the information is filed away and
forgotten.

To all this I must add that I took my case
directly to Apple via letters to all major
officers of the corporation. I never got a
single letter in return, nor phone call nor
note ••• nothing! Almost a year of writing to
Apple about the /// problems and never a
response. I came to call this phenomenon the
"Cupertino Black Hole." Everything goes in and
nothing comes out!

At Applefest 82 in Boston, I grabbed a front

seat i n the auditorium and waited for Steve Jobs
t o appear . At the proper Q & A time I s tood and
told Mr . Jobs that I had a sugges tion t o
a lleviate some grievances of the earlier Apple
Ill users. Mr . Jobs asked me to speak with him
later a nd proceeded to r ehash the same story
about the early Apple Ill manufacturing errors.

My suggestion t o Mr. Jobs would have been to l e t
the early Apple Ill owners selec t software equal
t o the price difference be tween the new Apple
Ill and the early Apple 111 . I will fi ni sh by
adding t hat I waited 45 minutes for Mr . Jobs t o
finish g1v1 ng autographs •••• a t which t ime he
walked away saying "I'll have your dealer get in
touch with you about your problem." Would you
buy a new compu t er model f r om Apple? Not Me !

Yours truly,
Ralph Merrikin
280 East Stree t
Brockton, MA 02402

- Ill-

Changing The Text Mode On The Apple ///

By Paul S . Trueblood

The Apple Ill comes with a standard display of
80 columns of black and white t ext, which is
prefe rred in most applications . However, there
are times when it is desirable t o have larger
c h a r acters on the display , to make it easier to
r ead , or t o have the characters appea r in color
t o add interesting effects to programs, o r to
match the appearance of a graphics program. In
such cases it is quite easy to tell the Apple
Ill to change the mode in which it is displaying
t ext.

In a BASIC program, you must PRINT a control
character t o the console driver (chr$(16)),
followed by a on e character argument spec ify ing
in which mode you wish the t ext t o be displayed.
To change to 40 column black & white send
chr$(0), to change to 40 c o lumn color send
ch r $(1) . The following program demonstrates how
to change text mo des i n a BASIC program:

)10 REM Cl ea r textsc reen
)20 Print chr$(28)

) 30 REM Set text mode t o 40x24 black & white
)40 Print chr$(16); chr$(0)
)45 Vpos=l2
)50 Print"Now is the time for all great Apples"
)60 Ge t ch$
)65 REM c lea r t ext screen
)70 Print chr$(28)

)90 REM Set text mode to 40x24 Color
)100 Print ch r $(16);chr$(l)
)110 REM Se t foreground color to yellow
)120 Pr i nt chr$(19);chr$(13)
)130 REM Se t Backgroun d color t o brown
)140 Prin t chr$(20) ; ch r $(8)
)145 REM clear screen
)150 Prin t chr$(28)
)160 Vpos=12
)170 Pri nt "When in the course of Apple events"
)180 ge t ch$
)185 REM se t text mode to 80x24 black & white
)190 Print chr$(16);chr$(2)
)200 end

Chang ing t he t ext mode from a PASCAL prog ram
r equires a slightly different technique because
the PASCAL language intercepts many of the
control characte r s before they can ge t t o the
console drive r. In order to smuggle these
contro l charact ers through the Pasca l
interpreter they must be embedded inside a data
structure, the n transmitted to the conso le
driver using the UNI TWRI TE procedure. The
fol l owi ng PASCAL prog r am illustrates the use of
t h is technique:

Program Text Mode Demo ;
va r Smuggler: pack;d array[l •• 2] of 0 •• 255;
begin
writ e (chr(28)); (c lear t ext screen)

Smugg l er [1] :=1 6 ; (informs
wish to change t ext modes)
Smuggler [2] : 0 ; (selec t s 40x24
UnitWrite(1,Smuggler,2,,12) ;
cha r s to console d r iver)

console drive r you

black & wh ite)
(sends control

gotoxy(0 , 12);
writeln('Now is
readln;

t he time fo r all g r eat Apples') ;

write(chr(28)); (clear text screen)
Smugg ler[2] :=1; (selects 40x24 color)
Un i tWrite (l ,Smuggler , 2, ,1 2) ;
Smuggle r[l]: =l9; (inform conso l e drive r you wish
t o set foreg r ound color)
Smuggler[2] :=1 3 ; (selec ts yel low as foreground
color)
UnitWrite(l,Smuggle r,2,,1 2) ;
Smuggl er[l] :=20; (inform console driver you wi s h
to se t backg r oun d color)
Smuggler[2]:=8; (select
color)
unitwrit e (l,Smuggler,2,,12);

b r own

write(chr(28)); (clear t ext screen)
go t oxy(O , 14);

as background

writeln('When i n the cour se of Appl e events') ;
r eadln ;
e nd.

If you run either of these programs you will
notice that a ny text present on the screen when
you change t o a di fferent t ext mode will revert
t o a strange combination of symbo ls and l ette r s .
It is therefore advisable that you clear the
text mode options re fer to the Apple Ill
Standard Device Drivers Manual, pages 34- 42 .
The PASCAL UnitWrite procedure is discussed in
the Pascal Programme r' s Manual Volume 1, pages
207-210 .

- Ill -

19

Access ///

By: Dr. R. Smail ST0823

Access /// is a terminal software program
supplied by Apple Computer for use with the
Apple ///. It comes in the "Special Delivery"
package - one diskette and a manual. The disk is
not copy-locked.

This program can be used either from Business
Basic or from Pascal. The diskette must be
configured to your system and is not boatable as
supplied. The user prepares a boatable diskette
using the Apple supplied utilities programs. The
process is not difficult and is clearly
described.

System requirements include an Apple /// and a
modem. Acoustic or direct connect modems (such
as the Hayes SmartModem) are fine.

Access Ill allows preparation and storage of
data or text off-line. This allows down-loading
during connect time at speeds of 110 to 9600
bits per second (software selectable) for
considerable savings in usage fees on-line. This
feature really makes one wish for a 1200 baud
modem. Special protocols are not required as
this is handled by Access///.

Minimum memory required is 128K. The modem
connects to the RS232 port or, direct
connection via this port from Apple/// using
Access Ill to a remote computer is also allowed.
One problem with the use of the single RS232
port on the Apple Ill for the modem is that a
printer requiring this port can't be used at the
same time for printing on-line. There are
hardware solutions for that problem however.
(ed. note: an Apple Universal Parallel Interface
Card and the parallel version of the printer
will get around this problem.)

Access /// allows recording of received
transmissions into disk files when the user is
on-line. The default recording file is on the
internal disk and storage space there is
limited when this is the boot diskette.
Recording can be done on formatted storage disks
prepared in advance. Formatting cannot be done
from within Access /1/. The recording file can
be filtered (software toggle) to eliminate all
received control characters with values less
than ASCII 32 except for tab, return, and line
feed.

Set-up mode allows selection of a wide range of
options that allow specific configuration of
ANSI mode, VT52 mode, LF after CR, 7 or 8 bits
per character, enable/disable XON/XOFF, normal
or inverse video, full or half duplex, normal or
application keypad (allowing keypad sequences
identical to those used by the VT100), normal or
application cursor keys, wraparound if more than
80 characters are written per line, standard or
graphics character set (replaces lower case with

20

special symbols), speea, parity, and tab stops •

The current set-up configuration can be saved
for automatic insertion on boot-up.

In transmission mode previously prepared files
can be transmitted to the remote computer.
Options include setting line delays of 0 to 25
milliseconds, and character delays of up to 255
milliseconds. These delays may be required by
the remote computer (Source does not require
them at 300 baud I don't know about 1200
baud). The ESC key will abort transmission and
return the user to terminal mode. On return to
terminal mode the CRT screen will be blank
except for the cursor - so, you must remember
what you were going to do next after you send
the data of text.

Files prepared using WORD JUGGLER or APPLEWRITER
Ill can be used as the transmission file without
any difficulty.

There are some special considerations in using
this program that have emerged so far. These are
items known by this author. Other special
problems may also exist and will turn up as user
experience with this program grows.

USING ACCESS/// WITH SMARTMODEM:

It is very important to be sure the internal
switch (Sl) is set to pull DTR to logic TRUE. If
you don't do this, or use a hardware fix that
has been suggested, you CANNOT leave terminal
mode without disconnecting. What happens here is
that Access ///closes the RS232 driver and DTR
goes FALSE. The Smartmodem then disconnects. The
solution is simple set S1 correctly and you
are home free.

TAB SETTINGS:

Apparently you must set the tabs or remote tabs
will scroll to the extreme right edge of the
screen and the cursor will stay there until a CR
is received. Again, the solution is simple : set
your tabs. A tab set every 10 characters works
fine for me.

Any user input re the use of this program for
the Apple ///would be welcome. Smail to ST0823.

One last thought - I should have mentioned that
the keyboard con-figuration can be changed. This
downloadable feature allows use of the Dvorak
keyboard for those of you who are progressive
enough to be willing to relearn your typing.

-Ill-

Word Juggler ///

User Comments from Sam H. Bell

Word Juggler /// is a word processing package
which we like and found affordable. It was made
available several months before the Apple Writer
Ill software last year (1981) and has been
reliable since it was first up and running. We
use it in a business application with all areas
of customer service mailings, governmental
forms, handings, and correspondence.

I would rate the Quark customer support
excellent if our own experience is any measure
of the service they give others. We have
written them with several questions, and all
have been answered quickly and correctly by
return mail. I even called their office and was
given the needed answers to my questions by
their staff. Mr. Tim Gill of their office has
gone out of his way to help us and when we
needed a version of the program re-configured to
support the Silentype printer, they did so at no
cost to us.

The first time user of Word Juggler will find
that the main menu has 9 features.

1. New : begin text entry mode
2. Catalog : of a disk
3. Load : file from a disk
4. Store : file to a disk
5. Purge : a file from a disk
6. Format : disk
7. Define Disk Drive Prefix
8. Edit Printer Configuration
9. Reboot

The program is copy-protected and therefore not
easy to customize.

There can only be one choice of a printer on a
single program disk at one time. Since we have
to use the Silentype when our IDS 440 is in the
shop, we have the Silentype drivers on our
backup disk.

The Word Juggler program has combinations of
express keys which give the user very fast
movement through text. Whereas the IBM programs
(especially the one that is currently the most
popular) take forever to move up and down, the
Word Juggler travels as fast as I can compose .
No one should have to wait for a program to the
point of boredom.

Another point that instantly endeared the
Juggler to me was its solid error handling and
recovery. I have never had the program bomb or
hang in my 8 months of using it daily. Every
mistake is recoverable with the escape key.

Quark's policy is to provide a backup disk at
This is a must for
business environment
must be avoided.

the time of purchase.
programs operating in a
such as ours where downtime

The operator's manual supplied with the disks is
in the form of a loose leaf binder, and seems to
be free of errors and typos. The instructions
and tutorial are in conversational form. At
times I would rather have step by step
directions but again both my staff and I learned
to use the program on the first try.

The best feature about the Juggler is one that
Apple Writer/// lacks: a set of keyboard
overlays. I cannot say enough about their
usefulness to me. If you do not have such an
aid, you must ref e r costantly to a manual.
Quark has implemented both the escape/numerical
keys above the keyboard and the
shift/numerical keys on the keypad to the right
side of the keyboard. This is good creative use
of the ///'s capabilities, and about 40 special
abilities are thus supported.

Most of the needed word processing functions one
looks for are provided for in the Juggler
package. Juggler runs with keys or inserted
commands nested between and amongst the t ext
being edited . Because of this what you see is
not what you get unless you move to the display
document mode. One then steps through the CRT
display of the text a page at a time. On our
128 K machine we can edit a document of 799
lines of text in memory at once.

Functions provided for are :

Centering
Jus tif ica t ion
Allowing spaces at the end or beginning of
a page
Changing pitch for printing control
Insertion of documents
Replacing strings in text
New Page form coomand
Indenting
Double spacing or single s pacing
Pause in output
Setting page l e ngth, ma rgins, width of
text.
Skipping lines
Block stores and loads
Find commands
Display cursor moveme nt key de f initions
Deletion of nex t and previou s characters
Deletion of word or line
Print of Document
Display of document
Menu return

The new revision we have (2.2) supports more
functions and special a bilities which I will
review when I am more familiar with them. If
you need a word processor that you can depend on
and that has good support, call or writ e to
Quark for more details. Th ey have a winner!

Sam Be 11
1378 Freeport Rd.
Pittsburgh, PA. 15238

- I II -

21

WHYA//1

by Don Norris

A few wee ks ago I attended lAC President Ken
Silverman's hous ewa rming .in Santa Clara and
visited with lAC Chairman Bernie Urban. When I
t old Bernie that the Ill wa s my first computer
and yes I had one of the earlier Ills which was
s ubs equently replaced by Apple, he asked me
would I buy a Ill again. The answer is an
emphatic yes .

Why? There were several reasons for my purchase
in February 19 81 .

1. It was an Apple Computer, not a TR--S- 1111,
purchased from R-d-o, Shack. After all have you
ever hea rd of the San Francisco TR(What Ever)##
Core, or is the re a Publication called the R-d-o
Shack Orchard.

2. VisiCalc. As a life insurance agent working
with lots of numbe rs I was looking for number
c runching a nd VisiCalc on the Ill was head and
shoulders above VisiCalc o n the][. Primarily
because it was 80 full columns . Plus it had
Upper and Lower Case. I ordered my Ill from the
Computer Connection here in San Francisco, and
since my o rder was placed during some of the
"turbulent " times of the I I I, delivery of my I I I
was delayed . While I was waiting I used the ir
demo Ill (while it was healthy) or one of their
]['s in the store. Changing the dire ction of
the cursor on the][with the space bar was a
real pain.

3. Built in numeric keypad. I work with a lot
of numbe rs and this was a must.

22

4. A word processor was supposed to be released
shortly. (What ever happened to Word Painter
anyway.)

5. In addition to the larger memory the Ill is
faster and easier to use than the][.

Perhaps some of my initial decision was based
upon blind faith that it was not an Edsel, and
would be supported by Apple. Additionally I
believed other software produce rs would begin to
produce sof tware written to take full advantage
of the features of the 111 . The replacement of
Apple I I/' s with a serial number lower than
14000 tells me that Apple is commited to the
111. Software is being written by several
companies now.

Admittedly my Ill may not create the image of an
integrated professional system with my Sanyo
Monitor as it would with the Monitor Ill, and my
second disk drive is noisier and not as
aesthectically pleasing as the new ones . The
system works and has been a profitable addition
to my business.

Owning an Apple and becoming involved with user
groups I have greatly expanded my realm. I have
made friends and contacts which would have been
impossible otherwise. Additionally the
intellectual challenge to learn to use even some
of the computer 's potential is the greatest one
I have found .

- I II -

A CALENDAR FOR APPLE Ill

Do you need a calendar for your Apple ///? This
program written in Business Basic will print a
calendar for you starting with the year and
month of your choice. Known as APPLE CAL it was
originally written for the][by Glen Ternan and
has been revised by Dwight Norris. The Apple][
version was published in NIBBLE MAGAZINE Vol.3
No.2.
To get the program,
$3.00, and a disk
program(s) on it to:

Dwight Norris
5295 Belle Isle Dr.
Dayton, Ohio
45439

send
with

an address label,
your best Apple ///

The disk will
library case.
diskettes send
Librarian. Ed.)

be returned to you in a new
(As long as you are sending

one to our Business Basic

- Ill -

Source Users Group

Several of the articles for this issue are used
with permission from a users group on the
Source. There comments are greatly appreciated.
We were unable to obtain their names so we used
their Source numbers.

- Ill -

DIF /II to][

DB Master is a very popular Data Base program
used by many Apple /// owners in the emulation
mode. DR Master supports the Data Interchange
Format, which means you can transfer information
between it and VisiCalc.

Fine you say, but I want to use VisiCalc ///
with all of its memory, etc.

The solution is to transfer the files from DOS
to SOS using the text file converter since DIF
is a text file. Those of you who own Apple
Writer can use the Apple Writer utilities
diskette to transfer files from DOS to SOS and
from SOS to DOS.

- II I -

23

opczn apr;»lcz ~
CJC1ZCZEtcz Qj

P 0 BOX 813 SAN FRANCISCO 94101

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024

