
Sixth Edition Volume 1 , Number 6 May 1983

West Coast Computer Faire Report 2

Formatting BUG squashed! ! 3

Business BASIC:

Beginning BASIC lesson 2

Exploring BASIC part Five
Oi skette

Menu Generation Program

Gameport III

Gameport III User Comments

Word Juggler and ProWriter

Corrections to Software Listing

File Cabi net Notes

Apple Writer Bug

Book Review (Introduct ion to VisiCalc Matrixing)

SOS 1.3 Released

Buffer Cable Pin Assignments

Pascal Work.Text problems

Benchmarking the ///

Catalyst Notes

Tidbits (Stems and Seeds)

3

11
8

22

5

18

6

7

7, 8

9

10

18

19

20

20

21

23

------------- or1q1nal applcz /// rs

West Coast Ca.puter Faire Report

by Richard Hart

Apple /// owners, you now have:

8" drives from 3 manufacturers (SOS
and CP/M compatible)
3" drives from 2 manufacturers
IBM 3270, 2780, 3780 emulation
Proto cards
Printer cards
SOS-to--IBM--to SOS utilities
New software galore

Here's a report from the West Coast Computer
Faire in March.

Imagine backing up a whole ProFile on 4
floppies! The Faire featured a hot contest
between two different manufacturers to sell
8" and 3" drive controllers for Apple ///:

Burtronix
1667 N. O'Donnell Way
Orange, CA 92667
(714)974-6171

Megabyter
11722 Sorrento Valley Rd.
San Diego, CA 92121
(619)452-0101

Both were selling the controllers, with
drivers, for $299 until the end of March.

BURTRONIX designed some of the hardware for
the Apple/// CP/M card. Their card was up
and running under CP/M and SOS side by side
at the show, using Tandon 1/2 height drives.
Their controller will daisy chain 4 8"
drives off of a single controller card!
They claimed that MEGABYTER (a division of
SVA, Sorrento Valley Associates) did not
have its systems demonstrating CP/M because
they couldn't--too many bugs. "Not so,"
said MEGABYTER, "Ours will run CP/M." SVA,
on the other hand, had an Apple/// running
off of dual 3 1/2" Sony drives! BURTRONIX
claims it is writing a driver for 3" disk
drives this week. Both systems claim
support of Backup.

2

The best price I could find on drives was
$950 for two Tandon 1.2MB half-heights,
power supply, enclosure, and cables. If you
go for one drive only (which makes sense for
just backup use), you could be into the
controller card for $299, and a single 1.2
MB 8-incher for $600.

(But why would anyone want to run CP/M,
anyway? That would mean you'd be forced to
use WordStar.)

A MicroSci representative told me the
company had decided against marketing an 8
inch drive for either the Apple II or///.

Elcom Systems Peripherals has a new Netcom
Communications card which will allow the
Apple/// to communicate with:

Any mainframe using IBM 2780, 3780, or
3270 emulation
Wang, DEC, ICL, Prime, Amdahl, Facom,
and Nat Semi systems
SNA programs
OMNINET

It costs $1195. The company reps came to
the West Coast Computer Faire to sell the
cards, but, at the last minute, Apple asked
them not to. Apple is making a bid to buy
the technology and market the boards itself!

Elcom Systems Peripherals
439 Harrison St., Suite A
Corona, CA 91720
(714)734-8220

Miscellaneous other stuff at the Faire
included:

A spectacular parallel card from
Burtronix: 16 color
printer/graphics dump and much
more. (Comes with CP/M graphics
utilities, too, but why would
anyone want CP/M? For chrisakes,
it just got graphics a month ago,
anyway.) $125.00

A spectacular protocard from
Burtronix: 1 serial and 2 parallel
ports with drivers to allow
interface with any hardware device
you chose, and room on the board
for tons of chips. 6522
compatible, 6809 adaptor, too.
Fully SOS rigged. $150.00

SOS--IBM--SOS 8" transfer utility
for all files. From SVA. $150.00

Chuck Colby, of Colby Computers, announced a
box into which an Apple //e motherboard
could fit to become a portable. He said he
is considering doing the same for the Apple
1//.

The Faire featured significant numbers of
mice running under word processors on

machines other than Lisa. Lisa was there,
however. Even though you couldn't see it
for the crowd. This year's Faire was far
better than last year's. Especially for
Apple/// users.

- Ill -

Disk For.atting Bug Cured

by Don Norris

Have you ever had your /// give you the
VOLUME NOT FOUND message when you have tried
to write to a diskette you know you have
previously formatted. Well you are not
alone.

This error message was occuring with 3 out
of every 10 diskettes which I had formatted
for copying club programs onto. Using
another/// produced the same problem. Next
thing to check was the diskettes themselves.
Since I was using bulk pack generic
diskettes with no labels, I tried the fancy
package brand name diskettes. 3 out of 10
of these, produced the VOLUME NOT FOUND
error message.

Checking with a few other/// owners, I
found they were also having the same
problem. I informed some of the people I
knew at Apple to see they were aware of any
formatting problem. Yes, there was an
occassional problem and they were working on
a solution.

Well the solution is now available and it
has been sent to all the . dealers. On the
SOS Revision Utility Version A01, is a new
Format Driver Version 1.3 to put on your
System Utilities Program diskette.

Does it cure the formatting problem? Sure
does. After installing the new format
driver onto my System Utilities Program
diskette, I formatted 100 bulk pack generic
diskettes with only one of them being a
problem, and it turned out to be a bad
diskette.

If your dealer does not have this utility,
order it from the Original Apple ///rs for
$10.00.

- Ill -

Beginning Business BASIC
lesson #2

By Stan Gui dero

One of the powers that a computer has over a
calculator is the ability to repeat things
over and over. A calculation that would
take a person several hours to do may only
take minutes or even seconds to accomplish
with a computer and may be repeated as often
as you wish. One of the commands that
allows you to do this is the GOTO command.
That's not a misprint. GOTO is spelled as
one word. Let's get Business BASIC up and
running on our ///sand type in this
program:

NEW

10 PRINT "Over and "
20 GOTO 10

RUN

Hold down the CONTROL key and press 'C' to
stop the program.

After line 10 prints the string "Over and ",
line 20 tells the computer to return to line
10 and do it again. Pressing Control-C
causes the program to exit the endless loop
and halt.

The command GOTO is considered a
non-argumentative statement. It doesn't
fool around. It goes exactly where you tell
it to, no questions asked. As a review of
lesson one you might try experimenting with
the string in line ten "Over and" . Try
placing a comma or a semicolon at the end of
1 i ne ten.

As a more practical example type in this
program: (First we type NEW to clear the
memory of our old program.)

NEW
5 HOME

30 INPUT "Type in first number: ";A
40 INPUT "Type second number: ";B
50 LET TOTAL=A+B
60 PRINT "The sum of the two numbers

is: ";TOTAL
70 GOTO 30

RUN

Line 5 clears the screen while lines 30 and
40 accept the input for the variables A and
B. As you probably noticed this is a new

3

twist to our INPUT statement. It's actually
a combination INPUT and PRINT command. Line
50 does the math by adding variables A and B
together and places the answer in variable
TOTAL. Line 60 then prints the answer to
the screen and finally line 70 tells the
computer to go to line 30 for another input.
Unfortunately, we are now in one of those
endless loops and the only way out, short of
turning the computer off, is to use
CONTROL-C. If the program seems not to stop
you may also have to press RETURN.

Whenever you write a program you should try
to make it as easy to use as possible.
Using CONTROL-C to stop a program is not the
recommended method. There should be a more
eloquent way, and there is. This is where
our next new command comes in. The IF-THEN.
Let's change some of our existing program by
adding the following line:

10 PRINT "To stop the program, type a 0
for the first number."

20 IF A=O THEN END

LIST the program to make sure that
everything is there. Now type RUN.

The IF-THEN statement in line 20 is what is
called a conditional branch statement. If
the variable 'A' is equal to zero, then the
program ends. If it doesn't the computer
goes to the next line and continues on. One
of the quirks of BASIC is that there is more
than one way to do the same thing. We could
have typed any of the following in instead:

20 IF A<>O THEN GOTO 30:ELSE END

20 IF A<>O THEN 30:ELSE END

20 IF A<>O GOTO 30:END

These all do the same thing. The<> means
'does not equal'. Using the first line 20
we are saying that if 'A' does not equal
zero then go to line 30 and continue,
otherwise end the program. The ELSE command
is an optional command and as you can see
from our last example ELSE is only needed
for clarity. I should also mention that the
LET command isn't needed in line 50 as it
too is also for clarity. Getting back to
our IF-THEN. Which should I use you ask?
The one that uses the least amount of
memory. How do I know which one uses the
least amount of memory? Count how many
characters are in each line. The computer
will have to go through and read each
character one by one. The more there is to

4

read the longer it will take. So use the
least to accomplish the most. Our original
line fits the bill nicely. Incidentally, I
will return in the next lesson with an
explanation of logical expressions like the
aforementioned 'does not equal'.

To show you another example of the
repetitive capabilities of the computer and
introduce you to two more commands, let's
type in this program. (If you wish to save
our little program type: SAVE ADDIT. This
will save the program under the name ADDIT.)

NEW

5 HOME
10 PRINT "TRIP COST"
20 PRINT
30 PRINT "Miles","MPG","Time","Fuel

Price","Total"
40 PRINT "Traveled","","for

trip","per.gal.","Expense"
50 PRINT

II II II II II ,
-------·· ··-------··

100 REM

110 REM
120 REM

,

Read values from data

130 READ MILES , MPG , TYME$,
FUELPRICE

200 REM

210 REM
220 REM

Do calculations

230 TOTAL = MILES I MPG * FUELPRICE
300 REM

310 REM
320 REM

Print it out

330 PRINT MILES , MPG , TYME$,
FUELPRICE , TOTAL

400 REM

410 REM
420 REM

430 GOTO 130
500 REM

Do it again

II II

510 REM
520 REM

Here's the data

530 DATA 125,25,"1:30min",1.33
531 DATA 245,25,"2:45min",1.33
532 DATA 578,27,"6:50min",1.33
533 DATA 35,23,"45min",1.34
999 END

LIST
RUN

The REM statements make this program look
much larger than it is. REM statements are
used to help the programmer remember what he
was thinking of when he wrote that section
of the program. REM statements (short for
REMARK) are not acted on by the computer.

Lines 10 thru 50 are used for the header.
Line 130 reads the data from line 530 one
data element at a time and assigns one to
each variable in order. '125' is assigned
to MILES, '25' to MPG and so on. Next, line

"230 does the calculations and line 330
prints out the results. Line 430 sends the
computer back to line 130 to retrieve more
data until there is no more left. When the
program runs out of data it stops with an
OUT OF DATA ERROR message. Try adding a few
data lines of your own, using the other
examples for ideas.

The variables that you use must be of the
same type as the DATA. You must use numeric
variables for calculations or string
variables for string characters. Notice
that a string variable was used for the
'time'. All strings must be in quote marks.
Each variable and each data element must be
separated by commas. Data lines must not be
followed by a line with a statement that can
be acted on by the computer. If you use an
integer variable like MILES% and it reads a
real number (like 1.33) it will round it
off. Also if the number is larger than
32767 the computer will come back with an
ILLEGAL QUANTITY ERROR and stop.

You may have noticed that I spelled the time
variable as TYME$. TIME$ is a reserved word
like PRINT or GOTO; it controls the onboard
clock in your Apple///.

There is one more command that is used with
the READ DATA statement and that's the
RESTORE command. If you wish to use the
same data over again in the program the
RESTORE command is placed at the end of the
data 1 ike this.

700 DATA 124,24."1:34MIN",1.33
710 RESTORE

To try to give you a better idea of how this
works, imagine that there is a pointer that
is first set at the first piece of data. As
the READ command goes along, the pointer is
moved one DATA element at a time until it
reaches the end. It will then halt program
execution and print 'out of data error' on
the screen unless a RESTORE command tells
the pointer to go back to the beginning.

In the next issue we will cover The
IF-THEN-ELSE and IF-GOTO statements in more
detail. Happy programming.

- Ill -

GAMEPORT III

Numerous inquiries have been received from
Apple/// owners about using paddles or
joysticks with the/// in Lobotomy Mode
(Emulation).

Most of you are well aware that paddles or
joysticks will not work with most Apple][
games in the Emulation Mode. T.G. Products
with their special Emulation Diskette and
joystick made some of the games usable on
the ///. However, this was only a partial
answer.

Alan Silver at MICRO-SCI has solved the
problem!!!! The solution is called GAMEPORT
III. GAMEPORT III is a card which fits into
one of the four slots on your Apple ///. On
the card is a connector for an Apple][type
joystick. Alan also modified the emulation
diskette so that some of the games which
previously would not boot in the /// in
Emulation mode now will. As far as we no
there are NO games which will not work with
this modified emulator and the GAMEPORT III.

The Gameport III's are available to members
at a special reduced price. Just another
reason to belong to the Original Apple
II Irs.

- Ill -

5

Word Juggler And Prowriter

By: Rod Whitten

For those Apple ///owners that have Word
Juggler and a dot matrix printer, the
following is a guide to some of the
available features not supported by the
commands on the templates. Specifically it
has been tested using the Prowriter, but
should be applicable to most other dot
matrix printers.

The C Itoh 8510A (Prowriter} and the NEC
8023 printers utilize control/escape codes
similiar to those for the Epson printers
written up in previous editions of the Open
Apple Gazette. The NEC 8023 is to be a
parallel version of the slightly faster (120
CPS} Prowriter, which has serial and
parallel interfaces built-in. As the pins
on the ///'s RS-232 port match exactly with
the Prowriter, so a standard pre-made cable
from an electronics store works without
modification.

Word Juggler has a number of escape commands
already on the keyboard templates. Most of
these are supported with the above printers;
however, the change of pitch and enlarged
characters are not. In order to accomplish
these changes, one must use the PRINTER
CONTROL which is "ESCAPE p". The next line
then must contain a $ followed by a two
digit hexadecimal code. For example, to
turn on the enlarged characters the commands
would be "ESCAPE p <shift> 4 0 <shift> e.
This would appear on the screen as:

PRINTER CONTROL
$0E

Note that the p is lower case, the E and all
other letters in the control codes are be
uppercase and it is a zero as there aren't
any o's in hex codes. A summary of the
control codes to change characters are as
follows:

Pica (10 cpi} .•..•...•..•....• $1B$4E
Elite (12 cpi}•...•....... $1B$45
Proportional•......... $1B$50
Condensed (17 cpi}••.. $1B$51
Enlarged On•.....•...•.. $0E
Enlarged Off•......•..... $OF
Bold On•......•...•..•. $1B$21

6

Bold Off .. ~•..........• $1B$22
Underline On•..•........ $1B$58
Underline Off•....•..•... $1B$59

The last four control codes are better

supported using the Open Apple Key, as they
can be embedded in the middle of a line.
The disadvantage of using the ESCAPE p is
that the command must apply to the entire
line. Also the enlarged, bold and underline
commands must be turned off after being
turned. With the Epson printers the
enlarged mode turns off at the end of the
line automatically. For example, the
following sequence will yield the type of
print shown in parenthesis:.lm+5

PRINTER CONTROL
$0E$1B$45
(Enlarged Elite-See Print Sample #6}

PRINTER CONTROL
$18$51
(Enlarged Condensed-See Print Sample #8}

PRINTER CONTROL
$0F$1B$21
(Bold Condensed-See Print Sample #12}

1. ABCDEFGhijklmno
2. ABCDEFGhijklmno
3. ABCDE!:I'Ghi.i<lmno
4. ABCDEFGh i jkl~no

5. ABCDEFGhiJklmno
6. ABCDEFGhijKlmno
7. AECDE FGhiJklmno
8. ABCDEFGhijklmno
9. ABCDEFGhijklmno
10. ABCDEFGhijklmno
11. ABCDEFGhiJ<lmno
12. ABCDEFGbijkl1111o
1 3. ABCDEFGh i J K 1 mn o •
14. ABCDEFGhijKlmno
15. ABCDE FGhiJKlmno
16. ABCDEFGhijklmno

The use of the four character sets in combination
with the enlarge and/or bold command yields
sixteen different combinations of type styles
within the United States ASCII system. Also
accessible via PRINTER CONTROL is a graphics
symbols table and the Greek letters shown below
in the enlarged mode. These character sets are
accessed using $1B$23 and $1B$26 respectively
while $1B$24 takes one back to the ACSII '
characters. The Japanese Katakana is also
available, but requires resetting three dip
switches.
Another limitation is that the justify command
does not work properly in the proportional mode.
There are many other control codes available,
some are in the C. Itoh and NEC 8023 manuals and
most of the codes for the Epson are the same, if

ABcDEFGHIJKLMNnPQRsTUVWXYZ
1234567890-=,~~#$%-&*()_+
[] ; .-·

--=-----I 1---E-I I
-,--1 I r--~ ~-..

...J - •+ L- .-- , _ _., -·=---- - I I •
-l- ..;.-- --:.±:::!~;:: 2: :$:::;..:; • $-=- _- _ ~~}4 C• 1 :2: :3 4 S 6- 7 ::::: Sa ()

O~U$X~W~rp~~-~~~E~*~~~K/~
+ • e -~---· <> ...-..::: z y ,-l ---J a

one has access to any of the above. Lexicheck,
Quark's spelling checker, works as efficiently as
usual as it skips over the control codes.
Lexicheck as it is the first and only spelling
checker, I am aware of, for the Ill; unless one
performs a lobotomy and runs in emulation or CPM.
While I would prefer to not have the limitations
described above, I am quite happy with such a bug
free program. Perhaps a later version of Word
Juggler will have the control codes redefinable
as part of the edit configuration. It is
possible to do things like super- and subscript,
but it involves many more commands than is
practical to do on a continuing basis.

- Ill -

Corrections to the Software Listing
in Vol 1. Number 5

Kent Hockabout our Vice-President has found
the following corrections to be made to the
software listing in our Vol 1. Number 5.
Product Names: Comments:

Context MBA no plans for Apple Ill

Multi-year planning
(805) 324-6437
Financial Data Services
and other Data-Systems Software

RestAnal location unknown
restaurant analysis
management control concept

Construction loan reporter location unknown
computerized construction
management systems

Strategic simulations
no games for Apple Ill
in native mode

- Ill -

File Cabinet Notes

Dear Don:

I recently ordered and received a copy of
File Cabinet Ill from your library. Upon
using it I found some bugs which I thought I
would bring to your attention if no one else
has already.

I. The program refused to acknowledge a
stored report format. Some detective work
uncovered the reason. It was looking for a
"RN" appendage to file while having placed a
"RH" appendage there when storing it. A
little investigative work with the help of
"super sleuth" AppleWriter Ill [F] function
turned up the apparently offending line.
Changing "RH" to"RN" in the line apparently
cured the problem. It's too early to say
whether it caused others.

II. Entry of more than thirteen characters
as a file name caused line #876 to generate
a never ending series of error
messages.(Talk about being chastised
for making a mistake!) Changing the GOTO
from line #870 to 865 in line 876 took care
of that one.

III. The accompanying manual is outdated,
particularly in its reference in using the
built-in clock. There are in fact no
meaningful program lines beyond line 20130,
and those which are there can be deleted.

It is, otherwise, a very nice little program
which I have put to work cataloging and
indexing my barely manageable repertoire of
"floppies".
(Sure wish I had a Profile sometime,
especially since I saw Quark's Catalyst
program in action!)

Keep up the good work, and get those presses
rolling, huh?

Ken Johnson
Amherst, MA.

7

Original Apple ///rs diskettes

OA3. BASIC.001

Business BASIC PROGRAMS ON THIS DISKETTE
ARE:

8

HELLO The HELLO program is the
program on the diskette which you
should run first. After you put this
program onto a Business BASIC boot
diskette it will run automatically when
you boot your///.

DOC.READER This is a file reader that
will allow you to read this file which
was written with Apple Writer ///. You
can use the up and down arrow keys to
view the text. Use the ESCAPE key to
exit and catalog this disk.

DISK.DOC Is a disk which is written
with Apple Writer///. It contains
text file information.

INVENTORY This program utilizes several
formulas to help you figure inventory
costs.

MORTGAGE This and the next three
programs were converted from Applesoft
BASIC with the use of APPLECON
conversion program available through
the Original Apple ///rs. Mortgage
will find out how much that new house
really will cost you!!!!!

CAL.COUNTER This program helps you keep
track of those awful calories. You may
add more (! !) items to the list of
foods if you want ..••

BIORHYTHM Will print out your biorhythm
to a printer or screen. If you need to
dup the information to a Silentype or
an Epson change the line to whatever
device name you wish.

GOLF Practice your golfing strategy
using this program (See you at Pebble
Beach). A text game converted from
Applesoft. The program is originally
from the San Francisco Apple Core
Library.

SURVIVAL Can you survive in the
wilderness??? Take this test and find
out.

MAKE.MENU This is a feature program.

It's a utility that allows you to make
a menu to use in a program. The
program that MAKE.MENU PRODUCES could
be used as a HELLO program. The
documentation for this program is
called:

MAKE.MENU.DOC The documentation for
MAKE.MENU can be read with
Applewriter ///, Word Juggler, or
any text reader.

PICKAFONT. This program donated by Jim
Linhart, enables you to select a font
or character styles or pitches. The
program is designed to run in
conjunction with an Epxon MX-100
printer. You can set the printer to
whatever font or character style you
want and it will remain in this setting
until changed. The menu of this
program is as follows:

1 -- Normal Width
2 --Double-Width
3 Small font. (No underline

available)
4 Compressed font

NOTE:

Most of the programs on OA3.BASIC.001 disk
were converted from Applesoft BACIS using
the conversion program APPLECON. The
programs are from the San Francisco Apple
Core's public domain library and modified by
SAtan Guidero. The original authors names
are included in REM statements in the
listing. The APPLECON program is available
through the Original Apple ///rs' for $10.00
or $8.50 to members.

More File Cabinet Notes

Dear Sirs:

As a member of Original Apple ///rs, we
recently purchased a copy of the public
domain software "File Cabinet///" (version
2.0 dated 7/20/81). It is a nice program
and will have application to several needs
in our organization. After using the
program and becoming familiar with it, we
discovered a couple of items that did not
work properly. They were the routines that

save and delete files containing print
format specifications. It may be that the
others have had this problem or that we
received an older copy of the program or
corrections have been published and not seen
by -us. After considerable
effort, we made changes in the program that
appear to have corected the problem and not
caused other problems. Please bear in mind
that we are not "expert" programmers, and
other corrections may need to be made.

Following are the corrections we made:

Change line 620

OLD-- F$=RN$(RF)+"RN":DELETE F$
NEW-- F$=RN$(RF)+"RF":DELETE F$

Change line 992

OLD-- F$="RN":GOSUB 350:FOR I= 1 TO
NR:DELETE R$(I)+"RH":NEXT

NEW-- F$="RN":GOSUB 350:FOR I= 1 TO
NR:DELETE R$(I)+"RF":NEXT

Add line 7155

OLD-- THIS LINE WAS NOT IN OUR PROGRAM
NEW-- RENAME FR$+""RF", TOO$+"RF":ON

ERR GOTO 7180

Change line 9652

OLD-- PD$=DP$:DP$="":F$=RN$(NN)+
"RH" :GOSUB 350: ...

NEW-- PD$=DP$:DP$="":F$=RN$(NN)+
"RF":GOSUB 350: ...

Change line 9880

OLD-- F$=RN$(NN)+"RN":ON ERR GOTO 9910
NEW-- F$=RN$(NN)+"RF":ON ERR GOTO 9910

AppleWriter /// Bug ??

We had a problem with another software
package for the Apple /// that we wanted to
describe to you to see if you had heard of
others who had encountered the same problem.
The software package is Apple \~ri ter I I I and
it has been failing
intermittently; that is, the keyboard will
"lock-up" and even CONTROL-RESET will not
function. The only way to reboot the
software is to power off the machine. We
use Business Basic, Access Ill, Visicalc
Ill, Systems Utilities,
Emulator, and other programs and have only
had this problem with Apple Writer 111.
Here is what we have done to try and solve

the problem:

1. Cleaned both disk drives.
2. Upgraded SOS.KERNEL to version 1.3
3. Used the backup copy of Apple Writer II

that has been unused since purchase.
4. Traded machines with our local dealer

(he could find no problems with our
machine). His machine would also
"lock-up" intermittently.

5. Ran the confidence program immediately
after failures. This procedure has
produced mixed results. Sometimes a
RAM error is indicated and other times
no problems are detected. When a RAM
error has occccurred, it has always
been the same BNK and one of two ADRs.

6. We have a surge suppressor on the
computer and all accessories.

7. A fan has been installed to help cool
the machine although no accessories
have been added inside the machine.

Any ideas or comments you have on the Apple
Writer Ill problem would be appreciated.

By the way, the Open Apple Gazette has been
most informative to us. Keep up the good
work!
Sincerely,

Joe Pase and Charles Bryant
Lufkin, TX

BUG REPORT

By: James A. Milligan, D.V.M.
Occassionally. in Apple Writer I I I.

when the [P] command is given, instead of
a nice columnar listing of the printing
parameters, the whole list flashes before
my eyes on one line in the upper left
corner of the screen, all in about 2
seconds. I have also had this happen one
time with the listing options for [Q].
Needless to say, this makes checking the
printing settings quite difficult, and
once that quirk happens, it repeatedly
does so until you go to the "Editor Menu"
(pg.3 in manual) by hitting "Open Apple
? 11 • I don•t know what causes the bug to
appear (and it does so quite
infrequently), or why the key sequence of
getting to the Editor Menu fixes it, but I
did stumble on to that fact, and it has
worked every time. I discussed this with
a technical person at the Apple booth at
Applefest, who said yes he had heard of
it, and no, he didn1t know the problem,
but that it was a software problem.

9

An Introduction to VisiCalc Matrixing for
Apple and IBM

by Harry Anbarlian

McGraw-Hill Book Company, New York, NY

252 pp., $22.95.

Reviewed by Stuart A. Forsyth.

VisiCalc --the granddaddy of spreadsheet
programs-- is the best-selling software
program for microcomputers. It replaces
paper, pencil, and calculator with a
flexible, interactive electronic worksheet;
and it does so in a subtly sophisticated
manner which rises to the level of a
microcomputer language. Part of its
popularity is based on the user's ability to
customize the program's power for their
particular applications.

But how does one learn to use VisiCalc?
Some persons are able to avo1d that task by
employing templates or models designed by
others. But many want to build their own
models, or at least modify those already
designed for them. The traditional means of
learning have been user manuals, tutorials,
sample templates and personal training.

Harry Anbarlian has a different idea. He
believes that one can learn to use VisiCalc
by constructing a number of different
matrices (or templates, or models, as they
are called in other books) which embody the
fundamental concepts of VisiCalc, have
varying levels of difficulty, and are
diverse and useful. It is an admirable goal
and a tall order. He brings it off well.

A clear and concise introduction affords the
reader an understanding of the book's
purpose, organization, and use as a hands-on
learning aid. It is intended to be used
interactively with VisiCalc running on the
reader's microcomputer. By page 11 the
reader is ready to boot VisiCalc. The
requisite foundation for using VisiCalc is
built in the next 22 pages where the author
introduces the matrix concept using a "boxes
on a blackboard" analogy and explains the
key VisiCalc commands in both Apple and
IBM-PC dialects.

After only 40 pages the reader is ready to
start using VisiCalc --without wading
through user manuals or tutorials. Now the
fun begins.

10

The examples are broken into two sections,
one for Apple users and another for IBM-PC
users. Each section contains nine exercise
matrices, arrange~ in groups of three
according to complexity.

The simple matrices are: petty cash
voucher, appointment calendar, credit card
record, price earning ratio, inventory cost,
and organization chart (yes, a
titles-in-boxes-connected-by-lines
organization chart done on VisiCalc without
a single mathematical calculation!).

The moderately complex matrices are:
treasury bill investment yield, payroll,
construction trades equal employment
opportunity, student's budget,
education/selection impact ratio, and travel
expense voucher.

The complex matrices are: bar graph,
electric bill, zero base budget,
departmental age analysis, cost/sales
comparative bar graph, and stock portfolio.

Each is thoroughly explained, containing a
clear statement of the objective, an
explanation of how the task is accomplished
by hand without VisiCalc and a
microcomputer, and step-by-step instructions
for creating the VisiCalc matrix. Each also
includes an illustration of the completed
blank matrix, an example of how to use it,
steps for inserting data, and an
illustration of the completed matrix with
data and resultant calculations. To ensure
that the matrices work and are free from
defects, the author enlisted his wife- who
had no knowledge of microcomputers or
VisiCalc- to test each matrix.

While the examples in each section have been
tailored to the keyboard of either the Apple
II or the IBM-PC, the author has furnished
enough information to enable even the novice
Apple II user to explore, learn from, and
use matrices from the IBM-PC section, and
vice versa. Apple/// users likewise should
have no problem. Using the examples on
other microcomputers may require a little
more familiarity with VisiCalc commands in
order to adapt the matrices.

There is plenty of meat in this fine work.
There is also an unusual and outstanding
dessert, in the form of a final section on
how to create polished matrices by inserting
lines, spaces, titles, names, and dates and
on consolidating and printing matrices.
This seldom discussed topic takes the

VisiCalc user all the way to a
professionally looking printed result.

The author's VisiCalc credentials include
extensive personal use and user group
experience. As a member of the Big Apple
Users Group in New York City, he originated
and was chairman of its VisiCalc Users
Sub-Group. Along the way he learned to
teach and write very well, and readers
benefit immeasurably from his clear, well
organized presentation.

For new users, An Introduction to VisiCalc
Matrixing for Apple and IBM is an excellent
alternative to the traditional ways of
learning to use VisiCalc. It may even be
better because it teaches painlessly,
maintaining a high level of excitement and
rewarding the reader with useful results,
quickly obtained. While it is not designed
to replace user manuals, it will make them
more intelligible by serving as an
experience building introduction to them.

Even experienced VisiCalc users may learn
much from this work. The variety and
imaginative selection of topics for the
eighteen matrices means there is a good
chance that even the most tenured user will
find fresh ideas and techniques.

As just an introduction to VisiCalc, this
book is excellent. But it achieves even
more by also being a source of creativity
and excitement in the use of VisiCalc.
Following an introduction to VisiCalc in
this book, users may well find themselves
continuing to turn to it as a resource and
reference (yes, there is an index). The
author has not only achieved, but also
transcended his stated purpose-- to the
lasting benefit of his readers.

Stuart A. Forsyth is Director of the Office
of the State Bar Court of the State Bar of
California.

Reprinted with permission of SATN
(Software Arts Technical Notes)

- Ill -

Exploring Business Basic - Part Five

By Taylor Pohlman
Reprinted from Softalk Magazine

Last month's column promised the answer to
the question, How many bytes of memory are
available in a 256K Apple III? As you know,
the 256K Apple III has been announced and is
beginning to be available, so the answer can
now be revealed: 191,484 bytes! That's
more than three times the workspace
available in any other personal computer
BASIC. (Aren't you glad you've got an Apple
Ill? Don't you wish everybody did?) We
were discussing some sorting techniques for
our database that can make good use of that
space. This time we'll explore a mixed bag
of items, deferring our discussion of the
"print using" capabilities of Business BASIC
until next time.

Our Mixed Bag. The first bagged item
this month is the mailbag. Several
questions have come my way since this series
started in September; the most interesting
ones have to do with programming style and
philosophy. The most intriguing question
concerned why I always use lower case
variable names in my programs, especially
since the BASIC keywords (like "print") all
seem to be in caps. While it would be easy
to say that I lack the strength or will to
operate the alpha lock key, the real reason
has to do with the way BASIC itself works.

As you probably know, Business BASIC defers
its syntax checking (looking for errors)
until you actually run the program. BASIC
does perform some tasks as each statement is
entered, however; the process is generally
referred to as "tokenizing". Simply stated,
this means that BASIC scans each statement
and converts each keyword, sometimes called
a "reserved word", into a special internal
one-byte code called a "token". This code
not only saves space, but also simplifies
error checking and program execution.

Almost all BASIC interpreters use the
tokenizing technique. One of the
consequences of this method is that program
statements cannot be listed out without the
BASIC "1 i st" command converting these tokens
back to their English-language equivalents.
In converting the tokens, BASIC always
prints out the upper-case version of the
keywords. I type in all BASIC statements
both variables and keywords - in lower case
so that when I list out a program, I can see

11

what BASIC interpreted as keywords. If I
misspell "print", BASIC will not recognize
it as a keyword, and the fact that it
remains lower case makes such an error easy
to spot in a listing. In addition, Business
BASIC requires spaces between keywords and
variable names, to allow variables to
contain keywords themselves.

Ever try to use a variable like "Orange" in
Applesoft, only to discover that "or" is a
reserved word (and therefore your variable
must be renamed to something like "rnge")?
Typing variable names in lower case will
allow you to spot those times you forgot to
space and ended up with "fori=1 TO 10"
instead of "FOR i=1 TO 10". The first
instance will produce an error, since BASIC
will assume you are trying to assign the
value of 1 to the variable "fori" and for
some reason put the phrase "TO 10" onto the
end of the statement. Some examples will
clarify:

Typing: 10 prunt x*53

will result in: 10 pruntx*53

whereas: 10 print x*53

will result in: 10 PRINT x*53

Typing: 10 on xgoto 20,40,50

will result in: 10 ON xgoto20,40,50

whereas: 10 on x goto 20,40,50

will result in: 10 ON x GOTO 20,40,50

See how much easier it is to catch the error
when it's displayed visually?
As with every rule, there are exceptions.
Any variable that starts with the letters
"FN" will be assumed to be a function name.
Again, typing all lower case will help you
spot the problem:

Typing: 10 xval=aval* fnumber

will result in: 10 xval=aval* FNumber

and you'll immediately know something's
wrong (assuming that you really wanted to
use "fnumber" as a variable name).

There's another 1 i ttl e quirk in BASIC that
this technique helped me spot. As you may
know, we've used the on "eof#" statement

12

quite a bit to take action if a program
tries to read past the end of file.
According to the manual, the part following
"eof#n" can be any executable statement. So
far, we've generally used "goto" or "gosub"
statements to take action.

Consider the following:

Typing: 10 on eof#1 goto 20

will result in: 10 ON EOF#1 GOTO 20

as you'd expect. But:

Typing: 10 on eof#1 xval=20

will result in: 10 ON EOF#xval=20

For some reason BASIC treats the whole thing
as one variable. The solution involves
dredging up a bit of BASIC folklore.
Remember in your first class in BASIC when
they told you that all assignment statements
started with the keyword "let"? Most BASIC
dialects have long since made the "let"
keyword optional, and most people have quit
using it altogether. An example of the use
of "let" is:

10 LET x=45 which is usually written
simply: 10 x=45

If there's any ambiguity to the way a
statement can be interpreted, "let" can be
used to clear it up. With our new version
of the "eof" statement:

Typing: 10 on eof#1 let xval=20

will result in: 10 ON EOF#1 LET
xval=20

and everything works fine. The fact that
BASIC failed to upshift the reserved word
"eof" in the example above is very important
to an understanding of the problem. The
technique of entering everything in lower
case has saved me countless hours of
debugging my errors. I recommend it.
Bag Item Number Two. Last month's list
of new goodies in Business BASIC 1.1
completely overlooked one item which, while
it may seem minor, has important
consequences. The change is an extension to
the standard "get" statement. Normally, as
is the case in Applesoft and some other
BASICs, "get" allows reading the keyboard
one character at a time, including all
special control characters and delimiters.
This means you can bypass control-C and
return, read commas, and so on.

Business BASIC 1.1 extends "get" to allow
"get#n". This means you can read any SOS
file one character at a time, without
respect to what kind of file it is. This
can be very handy for reading all characters
from the communications port (via the .RS232
driver) or for reading other character
streams from special devices. One of its
most interesting traits, however, is the
fact that it can be used on disk files as
well. Remember that one file is just like
another in the SOS environment, so if we
open a text file on disk, "get#" will allow
us to read one character at a time from it.

This means that there's now an easy way to
read text files that contain more than 255
characters without a return character.
Normally a string overflow error results if
you attempt to read such text files with the
BASIC "input" statement. Even more
interesting is the fact that we can also
open and read from the BASIC data file.
Remember that I described the data file as
having special tags, called "type bytes",
that enable BASIC to determine what data
type is stored next in the file. Remember
also that numeric data is stored in a data
file in its binary form. Get# allows
reading this binary information, one byte at
a time. One example is worth a thousand
explanations:

5 INPUT"File to dump: ";a$
10 IF a$="" THEN 100
15 OPEN#1,a$
20 ON EOF#1 GOTO 100
25 cr$=CHR$(13)
30 GET#1;a$
40 IF a$=cr$ THEN PRINT
50 PRINT a$;
70 GOTO 30
100 CLOSE
110 END

This simple example will dump any text file
to the screen, no matter how long the
intervals between carriage returns. A good
example of a text file with arbitrarily long
strings is the file I'm creating now, using
Applewriter III. Return characters are
inserted only at the end of paragraphs
which, as you'll notice, tend to run on
i ndefi ni tely.

Note that this program looks for return
characters by loading the variable "cr$"
with a return (decimal 13) and then testing
for it before printing. If you wanted to
reconstruct strings from the file, you could
do so by using a string variable to

accumulate characters, stopping when a
return was encountered. You'd need to test
to be sure you hadn't overflowed the 255
character limit.

This program has one serious deficiency,
however. Printing arbitrary characters from
a file (especially a data file) can have
weird consequences when the output device is
the console, as it is in the example
program. The console uses lots of different
control sequences to perform functions,
including setting windows and changing from
black and white to color text modes. Also,
a byte can contain 256 different characters,
and the ASCII character set defines only
128. Clearly, we need a safe and consistent
way to display any byte readable from a
file. So, like most programs that start out
short and simple, this last one's about to
get complex:

5 INPUT"File to dump: ";a$
10 IF a$="" THEN 95
15 OPEN#1,a$
20 INPUT"Fil e for output: ";a$
25 OPEN#2,a$
30 ON EOF#1 LET eof.occurred=1:

GOTO 80
35 bytes=O:eof.occurred=O
40 line$=""
45 PRINT#2;HEX$(bytes); "-";

HEX$ (bytes+31); "";
50 FOR i=1 TO 32
55 GET#1;a$
57 val=ASC(a$):IF val>127 THEN

val=val-128
60 IF val<32 THEN line$=

line$+".":ELSE:line$=line$+
""+CHR$(val)

65 outhex$=HEX$(ASC(a$))
70 PRINT#2;MID$(outhex$,3,2);
75 NEXT i
80 PRINT#2:PRINT#2;" ";line$
85 bytes=bytes+32
90 IF eof.occurred=O THEN 40
95 CLOSE
120 END

As you scan through the program, note that
in addition to opening the file to be
dumped, we open a second file to which the
output is written. This gives us more
flexibility, and still allows us to use
.console to see the output on the screen.
Line 30 sets up our end-of-file condition,
using the "let" statement to get around the
problem we described earlier, and
demonstrates one other handy thing. We can
embed periods in variable names to improve
readability. It's obvious that
"eof.occurred" is easier to interpret than

13

14

0000-00lF 2E636AOD5420482045202054204820492042204420204220412053204920430D

.cj.T HE T HI R D BAS I C

0020-003F OD6279205461796C6F7220506F686C6D616EODODOD2E6C6AOD4578706C6F7269

.by Taylor Pohlman lj.Explori

0040-00SF 6E6720427573696E657373204261736963202D205061727420666976650DOD4C

n9 Business Basic Part five .. L

0060-00?F 6173742074696D6520492064726F70706564207365766572616C2062726F6164

a s t t i m e I d r o p p e d s e v e r a 1 b r o a d

0080-009F 2068696E74732061626F7574206E657720736F66747761726520616E64206861

h i n t s a b o u t n e w s o f t w a r e a n d h a

OOAO-OOBf 7264776172652068617070656E696E6773206F6E20746865204170706C65202F

r d w a r e h a p p e n i n 9 s o n t h e A p p 1 e I

OOCO-OODF 2F2F2E2020486F706566756C6C79206279206E6F7720796F7520686176652078

I I . H o p e f u 1 1 y b y n o w y o u h a v e h

OOEO-OOFF 61642061206368616E636520746F20676F20646F776E20746F20796F75722064

a d a c h a n c e t o 9 o d o w n t o y o u r d

Fi 9ure 1.

0000-00lF 00120B

0020-003F 2C210943454542453435343214A16617221800034EA713C9C4000000121BC321

,!.CEEBE4542.!f." ... N'.ID C!

0040-00SF 0943444341443130333114Al4CCE1D18000373AD91EOA40000001223F6210944

.CDCAD1031. !KN s-.'$ # v: .D

0060-00?F 4441444538323339149E25AA7B180002FBF1C2308C000000120BDE2109414442

DADE8239 .. % * qBO !.ADB

0080-009F 41433434353014Al35A30818000169EF7321C6000000120EE621094141424544

AC4450. !5# ios!F f! .AABED

OOAO-OOBF 3930353714A007D1D0180002BAAF52D728000000

9057 .. QP ... :IRW{

Fi 9ure 2.

"eofoccurred", and this is especially true
for more complex variable names (remember
that Business BASIC permits 64-character
names).

Lines 35 and 40 initialize variables. We
will be using the "1 i ne$" string to
accumulate the characters read from the file
for later printing. After each line of
"print" we wi 11 rei ni ti a 1 i ze the string.
Since we'll be printing thirty-two
characters at a time from the file, line 45
uses the "hex$" function to set up the
labels for each line.

A note about hex is appropriate here. Hex
stands for hexadecimal, or base-16,
arithmetic. Since any hex digit can be
represented by four binary bits and a byte
can be exactly represented by two hex
digits, it is convenient to use hexadecimal
numbering in many aspects of computing. It
is preferred over decimal and octal notation
and is, of course, much more compact than
binary. What usually throws people is that
to represent all values between 0 and 15
with a single digit, hex uses the numerals
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E,
F, respectively. F thus is equivalent to
decimal 15, and 1F to decimal 31 (the 1 is
in the sixteens place).

We won't try to offer an in-depth
explanation of hexadecimal notation here.
If you aren't familiar with it, any
beginning text on computers usually covers
the subject thoroughly, and readers of Roger
Wagner's column in this magazine have been
inundated with help on hex. Suffice it to
say that the "hex$" function will convert
any reasonable numeric quantity into a
four-byte string of hex digits.

Getting back to our program, the loop from
line 50 to line 75 is the main one where we
dump thirty-two bytes at a time in hex
format, while providing character
representations for those within the
displayable range (hex 20 to 7F, decimal 32
to 127). The back of your BASIC manual
contains an ASCII code chart that will help
you follow along with the decodin~. Line 57
in the program sets the vari ab 1 e ' va 1" to
the ASCII value of the byte just read, and
then an "if" statement checks to see if the
value is in the 128 to 255 range. If so,
128 is subtracted from the original value to
bring it within the normal ASCII range.

Line 60 checks to see if the resulting
character is a control character, and if so,
represents it as a period in "line$" to

signify that it is unprintable. Otherwise,
the character representation is stored. The
characters are right justified in each
two-byte cell, because they'll be printed
below the hex values. Next, the hex value
of the original character is assigned to
"outhex$" in line 65, and printed to the
output file in line 70. Since we want only
the rightmost two hex digits, the "mid$"
function is used. After the loop prints out
the thirty-two values, lines 80-90 print the
ASCII equivalents stored in "line$", bump
the byte count, check for "eof" condition,
and repeat the sequence.

Figure 1 shows how the output from this
little jewel looks when run against the file
for the first draft of this article.

Messy, huh? Let's look more closely at the
output to see if it makes sense. The first
line tells us we are looking at bytes 00
through 1F (0 to 31 decimal), and the top
line is the hex representation of the
characters, two digits per character. The
first character in the file is 2E in hex,
which happens to be a period. Notice that
2E is the character printed below on the
next line. The next two characters in the
file are 63 and 6A which correspond to the
ASCII characters c and j. This is
understandable, since Applewriter III uses
the print format command .cj for
center-justify, which is what I wanted done
with the title. The next character is OD
which translates to decimal 13, or a return
character. Note that a period is
substituted for this character on the print
line, since return is in the control
character range. And so on, and so on.
Practice on a few text files of your own and
get a feel for reading the notation.

It really gets interesting when we begin
reading files whose exact format is normally
pretty obscure. Data files are an excellent
example since, although the "read#"
statement can get data out, things like the
type bytes and string-length bytes are
normally inaccessible. To see how our dump
program would work on a data file, we need a
way to generate an interesting file at which
to look. The following simple program will
do the trick. When we get serious later on
about sorting techniques, we'll need such a
program, so I'll introduce it now:

5 OPEN#1,"junkfile",30
6 INPUT"Number of records to
create: "; n

10 FOR i=i TO n
12 i%=RND(1)*10000

15

13 WRITE#1,i;i%:PRINT i%,
15 a$=""
20 FOR j=1 TO 5
30 a$=a$+CHR$

(65+INT(6*RND(1)))
35 NEXT j
41 FOR K=1 TO 4
42 a$=a$+CHR$

(48+INT(10*RND(1)))
43 NEXT k
45 WRITE#1;a$:PRINT a$,
48 val=RND(1)*1E10:WRITE#1;val:

PRINT val,
49 i&=CONV&(RND(1)*1E15)
50 WRITE#1;i&:PRINT i&
55 NEXT
60 CLOSE
70 END

This program will create a random access
data file of arbitrary length containing an
integer, a string, a real, and a long
integer in each record. What's noteworthy
here are the two small loops that build the
string value . They're set up in such a way
as to insure that the first five characters
are upper-case alpha and the next four are
decimal digits. Type the program in now and
run it to create a small file, say five
records. Although each run will differ, the
output should look something like this:

2092 CEEBE4542 7.72055E+09 930904428626944
7107 CDCAD1031 6.87212E+09 971614244086784
9206 DDADE8239 6.94853E+08 839965717072896
3038 ADBAC4450 6.09472E+09 397952126404096
3814 AABED9057 2.27867E+09 768212125296640

Now for the fun. When you run your dump
program against the file this program
creates, the output should look something
like figure 2.
Well, nobody said computer science was for
the faint of heart! By the way, the term
generally used to refer to this type of
listing of file contents is "formatted
dump". Formatted, because we have organized
the information in the printout, and dump,
because it is a nonselective output of the
exact contents of the file.

Now the fun begins. The first thing to
notice is that almost the entire first line
is composed of zeros. Remember that
although our dump program starts at the
beginning of the file, the program we used
to create this file began at record 1.
Since the record size was thirty bytes, we
would expect to find an empty record of
thirty bytes at the beginning, and that's
exactly what the dump shows. This means
that the hex 12 in byte 31 of the file must

16

be at the beginning of record 1. Now
something that was mentioned earlier about
type bytes in data files becomes important.
Remember that the general format of a data
file is:

Type byte Data bytes (2,4 or 8)

for numeric values (integer, real and long
integer), and:

Type byte length byte Data bytes (0 to 255)

for strings. This information should enable
us to decode the information in this dump.

Since the first value in the record was an
integer, the hex code 12 must be the type
byte for integer data. Following our
format, this means the next two bytes (hex
codes 08 and 2C) must be the binary integer
value. Evaluating the hex value 082C yields
decimal value 2092, exactly the value our
printout led us to expect.

The next value in the file is a string,
which contained CEEBE4542. Referring again
to our format for strings in data files,
we'd expect the next file byte to be the
type byte. That's the hex code 21. Next is
the length byte, which, since the string is
nine characters long, should be equal to 9.
That's hex code 09, one of those lucky hex
numbers that is the same as its decimal
equivalent. After that, our format line
shows that indeed, the string value is
CEEBE4542.

The next value in the record was real.
Since the next byte after the string should
be the type byte for reals, we can conclude
that the hex 14 found in position 2C (44 in
decimal) is the floating-point type byte.
Floating-point numbers are stored in a
thirty-two-bit internal format in Business
BASIC, so we would expect the next four
bytes to contain the binary value. Proving
that this value (hex A1661722) is equal to
7.72055E+09 is a considerably more complex
task and will be left to the numerically
inclined reader. That phrase "left to the
numerically inclined reader" is this
author's equivalent to the famous line found
in all math texts- "it can easily be shown
that ... "- and is just as big a cop-out.

The last value in the record is a long
integer, and the type byte in position 31

(decimal 49) has the value of hex 18. Long
integers are stored as eight byte
quantities, therefore the next sixteen hex
digits should represent the number. Since
that hex value is 00034EA713C9C400, it
follows that converting this value should
yield the decimal value originally printed
out: 930904428626944.

As a little added bonus in this article, let
me offer a program that demonstrates the
truth of the preceding statement. This
program will convert any reasonable hex
value into decimal and print it out rather
quickly, using the long-integer data type
and Business BASIC's conversion functions.
Forthwith, it is:

5 si xteen&=16
10 INPUT"hex value: ";a$
15 IF a$="" THEN 100
20 cum&=O
25 mult&=1
30 FOR i=LEN(a$) TO STEP-1
35 val&=CONV&

(TEN(MID$(a$;1,)))
40 digit&=mult&*val&
45 cum&=cum&+digit&
50 mult&=mult&*sixteen&
55 NEXT i
60 PRINT cum&
65 GOTO 10
100 END

The program simply brute forces the problem,
one digit at a time, but since the long
integer arithmetic is very fast, program
performance is quite reasonable. This
program knows nothing about sign bits,
though, so it will fail to convert negative
integers expressed as hex constants. A fix
for this limitation would be to check for
the high-order bit and negate the final
result, but the program would then lose its
general nature. Anyway, it's free.

Well, that got us completely off track.
Going back for a second to the formatted
dump, we are now at position 3A hex (58
decimal), which is really position 28
decimal in this record. The remaining two
bytes of the record (remember that we
declared the record to be thirty bytes long)
should be empty; sure enough, they show up
here as zeros. This gets us to position 3C,
the beginning of the next record, and there
we find the integer type byte 12, signaling
that we can start the whole process again.
I leave that to you if you want to try your
hand at decoding. Some of what we have
learned can be summarized in the following
table:

Data type
TYP () function Internal file code

name value hex decimal

Integer 2 12 18
Real 1 14 20
Long Integer 3 18 24
String 4 21 33

Don't forget that the "get#" statement can
be used in lots of other interesting ways
and that its primary function is to process
console input effectively without those
characters being first processed by BASIC.
I just thought the examples above would give
us a chance to explore several interesting
topics at once.

Final Thoughts {Bottom of the Bag). I'd
fully intended to explore one more topic
that had previously generated questions, but
this tome grows overlong. The topic I had in
mind was the use of the "request" invokable
module. Those of you who are writing
programs that do lots of reading and writing
of numeric arrays to disk should tune in
next time when we show how to get at least
twenty times the performance improvement
over using "for-next" loops to accomplish
the same task. That, combined with the huge
memory space available for arrays, provides
some significant capability to the person
interested in data analysis and
sophisticated file indexing.

I a 1 so promi se to get to my the si s on "print
using", especially since Business BASIC
allows some tricks not available in most
other BASICs. One of these days we'll get
to graphics as well, and discuss how to use
"bgraf" and "download" to create some really
interesting stuff.

Until then, just one last note. I looked
back over this article and decided that the
word "hex" was mentioned so many times that
we have left the era of "voodoo economics"
and entered a new era of "voodoo BASIC". Oh
well. Maybe if I wore garlic while typing.

- Ill -

17

GAMEPORT III

User Comments
by Richard Lawler

I have found that the one I have installed
works well with all the games I have tried
(these include some games from Broderbund
that they say will run on the Apple][e).
The Gameport III seems to cause some strange
effects on the Apple Ill in native mode. It
might be a good idea to to tun off the power
to the machine whenever rebooting to native
mode from][mode. This will deactivate the
Gameport. Also be careful not to push the
button on the joystick (which
activates the Gameport) in native mode.

Another problem is the inability of the
Gameport III to work with the Apple Ill
joysticks. I talked to the Micro Sci people
at the West Coast Computer Faire,
and they did not know why the engineers did
not allow for Apple Ill joysticks.
Aside from these minor problems, the
Gameport III does just what it is supposed
to do.

(Editors Note) Micro-Sci did not make
provision for Apple Ill joysticks for two
reasons:

1. Very few Apple Ill owners have Apple
Ill joysticks.

2. The internal construction of an Apple
Ill joystick is different from an
Apple][joystick. This prohibits it
from being used with the GAMEPORT III
under any circumstances.

- Ill -

SOS 1.3 released by Apple

Apple Ill Software Revision Utility, Version
A01 has been sent to all Apple Ill dealers.
This utility diskette is used to replace the
SOS.KERNEL on all your boot diskettes with
SOS 1.3, dated 1-Nov-82. This new
SOS.KERNEL supercedes all previous releases.

The changes include:

18

1. Support for Backup 111. Each time a
file is modified, the operating system
turns on a status flag located in the
file's directory on the disk. Backup
Ill then uses this flag when
performing the Modified Files backup.
This enhancement allows users of the
backup program to save time and reduce
the number of backup diskettes
required.

2. Eliminate the possibilities of data
loss when using the ProFile mass
storage system during high interrupt
operation.

3. Correct calculation of dates during
1 eap year.

Also included on the diskette in a
subdirectory named NEW.DRIVERS are several
updated drivers. These drivers are all
Version 1.3.

PROFILE.DRIVER
FMTDX.DRIVER
CONSOLE.DRIVER
SERPRINT.DRIVER
PARPRINT.DRIVER
RS232.DRIVER
TCLOCK.DRIVER
GRAFIX .DRIVER

Profile Driver
Format Driver
Console Driver
Serial Printer Driver
Parallel Printer Driver
RS232 Serial Driver
Thunder Clock Driver
Graphics Driver

NOTE If you are using Quark's Catalyst,
DO NOT change the .CONSOLE driver or the
.PARALLEL driver on your Catalyst boot
diskettes. You have to have Quark's driver~
and these MUST NOT be changed.

The new format driver for Disk Ill
(FMDX.DRIVER) now has code which will check
the speed of the disk drive. The driver
will generate new device-specific errors if
the drive is too slow (#33) or if too fast
(#34). If you ever receive one of these
errors during formatting the particular
drive should be taken to your dealer for
speed adjustment. The requirement for a
drive to be within speed calibration before
a disk is formatted is anticipated to
prevent creation of bad diskettes and
resultant IIO errors when the disks are read
on other drives.

You can use the System Utilities Program to
check the version numbers of your drivers on
your boot diskettes. If you do not have
these latest versions use your System
Utilities Program to add the new drivers you
need to your boot diskettes.

- Ill -

Cable Pin Assignments

Universal Parallel Card to
Microbuffer to

IDS Microprism Model 480

by Barney Simonsen

As a follow up to my evaluation of the IDS
Microprism Model 480 Printer, I would like
to describe the recent change in it's
configuration. I elected to install the
Apple Universal Parallel Interface Card to
free the RS-232 plug for use with a modem,
and at the same time add the Microbuffer
In-Line Parallel Printer Buffer from
Practical Peripherals, Inc.

The buffer I elected to purchase was
configured with 64K of memory, which I have
found to be ample for the programs and files
I am handling. The unit is able to be
expanded later to 256K.

Since none of the three components {UPIC,
buffer, or printer) had any cables to
connect this configuration, I was forced to
use the manuals provided. The IDS manual
had the most detail, including a mapping of
the pin positions in a standard Centronics
compatible cable. The UPIC Operating Manual
also provided ample mapping of the expected
pin functions, although the terms utilized
were different from those used by IDS. That
left the buffer as the unknown, and after
reviewing the manual, ~here were few clues.
At the time I was having the cables
prepared, I also wanted to have a cable to
connect the UPIC directly to the printer in
case of failure of the buffer. This turned
out to be the easiest of the cables to
create because of the mappings indicated
above. I am providing a listing of the pin
positions which resulted from this exercise
in case anyone is interested in duplicating
the installation.

I have been very pleased with this
configuration. The buffer allows complete
printing times of less than one minute for
lengthy runs, allows duplicate copies to be
printed without use of the computer, and
frees the RS 232 port. Once the cables were
properly prepared, the system has operated
for the last month with no problems.
Control characters for the IDS printer are
passed with no difficulty.

Cable Pin Assignments

UPIC Buffer
Pin # Function Pin #

1 Signal Ground 19-30,
14,16,33

2 ACKNOWLEDGE INPUT 10
3 Data Input Bit 0
4 Data Input Bit 1
5 Data Input Bit 2
6 Printer in Check Input
7 Printer Ribbon Out Input 32
8 STROBE OUTPUT 1
9 Printer Out of Paper Input 12
10 Data Output Bit 0 {LSB) 2
11 Data Output Bit 1 3
12 Data Output Bit 2 4
13 Data Output Bit 3 5
14 Data Output Bit 4 6
15 Data Output Bit 5 7
16 Data Output Bit 6 8
17 Data Output Bit 7 9
18 Printer Online Input 13
19 Printer Power On Input
20 Signal Ground 17

Buffer IDS Printer
36 pin
Centronics
Female Function
Pin #
1--
2
3
4
5
6
7
8
9
10
11
12
13
14,16,
19-30,
33
17
32

UPIC
Pin#
r-
2
3
4
5
6
7
8
9

{DB-255)
Strobe Output
Data Output Bit 0
Data Output Bit 1
Data Output Bit 2
Data Output Bit 3
Data Output Bit 4
Data Output Bit 5
Data Output Bit 6
Data Output Bit 7
ACKNOWLEDGE INPUT
Busy 19

Pin #
--3

14
13
12
11
10

9
15
16
22

Printer Out of
Printer Online
Signal Ground

Paper Input 24
Input 4

7

Chassis Ground 1
Printer Ribbon Out Input 18

Function

Signal Ground
ACKNOWLEDGE INPUT

IDS Printer
Pin#
--1

Data Input Bit 0
Data Input Bit 1
Data Input Bit 2
Printer In Check Input
Printer Ribbon Out Input
STROBE OUTPUT
Printer Out of Paper Input

22

18
3
24

19

10 Data Output Bit 0 14
11 Data Output Bit 1 13
12 Data Output Bit 2 12
13 Data Output Bit 3 11
14 Data Output Bit 4 10
15 Data Output Bit 5 9
16 Data Output Bit 6 15
17 Data Output Bit 7 16
18 Printer Online Input 4
19 Printer Power On Input
20 Signal Ground 7

I hope the above can save someone the effort
to search out the names and positions of
these functions.

- Ill-

Problems with Updating SYSTEM.WRK.TEXT
or

Wonder why I can't save it?

When you first used the Apple Ill PASCAL
Editor and decided to use the default file
name SYSTEM.WRK.TEXT for saving your work,
it very likely did what you wanted. After
you made the usual mistakes, made
corrections to the file, and decided to save
the changes back into SYSTEM.WRK.TEXT, you
probably got the message:

ERROR:Opening the file.
Please press <space> to continue.

When this happened to me, I immediately
concluded that I had a bad disk or the
PASCAL system had a bug. After talking to
my good friend Jon Stevens and being accused
of being a dummy, I realized that there was
not enough room on the PASCAL!: disk to
save the updated file, presumably because
the old file is not deleted until the new
one is successfully saved. The solution to
the problem is to open the manual "Pascal
Introduction, Filer, and Editor" and,
following the instructions on Page 9, use
the PASCAL!: disk to create NEWPASCALl:
and NEWPASCAL2:. As explained there, the
SOS.KERNEL, SOS.DRIVER, and SOS.INTERP files
needed to boot the Apple ///essentially
fill up the available space on the disk, so
a two-stage boot has to be used . Maybe
someone can explain why the disks don't come
set up this way.

Reprinted from HAAUG Apple Barrel.

- Ill -

20

Bench Marking the Apple Ill

by Arthur Anderson III

"Eratoshenes Revisited", Byte Magazine, Jan.
1983, page 283, benchmarked a large number
of computer systems using various languages.
Spurred by this recent article, I made my
own measurments on the Apple///. I am sure
the Original Apple ///rs would be interested
in my recent measurements on the Apple///
combined with its software.

PASCAL///

TEST
CONDITIONS

STANDARD DEFAULTS
NO RAINCHECK
NO RAINCHECK/DIS
PLAY OFF.

COBOL///

LOOPS
ONE TEN

37.9 379
33.5 335
26.5 265

STANDARD DEFULTS 338 3380
'COMP.' VARIABLES 317 3170
'COMP.' /NO DISPLAY 266 2660

BASIC///

SIMILAR TO BYTE 363 3630
ARTICLE
ABOVE & NO DISPLAY 287 2870
SLIGHTLY REWRITTEN 313 3130
FOR SPEED
ABOVE & NO DISPLAY 247 2470
ENHANCED BUT UN- 186 1860
TESTED

ACTUAL
TIME

TEN LOOPS

6:19
5:35
4:25

ONE LOOP

5:38
5:17
4:26

5:17

4:47
5:13

4:47
SEE BYTE

MAG. 1/83
P. 294

These measurements bring to mind several
Apple/// observations:

1. Pascal is 10 times faster than BASIC
or COBOL. About 30 seconds compared
to 5 mi nu te s!

2. One can gain a 20% to 30% improvement
in execution by turning the display
off (Control 5 on the numeric keypad).

3. One can gain a 7% to 17% improvement
in execution by compiler directives.
(i.e. turn-off rangechecking, enable
compact variables, etc.)

4. One can gain 15% and more, by cleverly
rewriting a program.

These observations lead me to these (rather
sweeping) generalizations for Apple ///
code:

1. Use Pascal if possible. (Of course
assembler is better still ...)

2. Turn the display off, when the Apple
I I I is very busy. (Hence, design
programs to turn the display "on" when
they are ready for human interface.)

3. For about the same speed improvement,
it is easier to use a compiler
directive than to cleverly rewrite the
code. However, this is not a license
to write code poorly. Proper usage of
algorithms and data structure are
mandatory. (But who really cares
which BASIC variables are used most
frequently and who really wants to use
variables instead of constants?)

In relation to measurements appearing in the
Byte article, the authors appear to want the
fastest possible timings. The barebones
minimum is illustrated by the "Range check
off" statement in the ADA program, the use
of native code generators (rather than
p-code), the "COMP" variables in the COBOL
program, and the myriad of (of almost
inexplicable) timing variations. Thus the
Apple ///with Pascal /// should be compared
with range checking off and, probably, with
the display off. COBOL should use the
"COMP" directive and, probably, the display
off. Clearly Mr. R.W. Shore's contribution
for Apple/// BASIC timing is better than my
hasty efforts and nas been included in the
table above.

The Apple /// in Pascal (265 s) performs
similar to a Mill-enhanced Apple// (273 s),
but not quite as fast as an Apple//
programmed in Forth (190 to 208 s). The
Apple/// in Pascal lags the 68000 family in
Pascal (4.28 to 11.2 s)
No performance measurements of Pascal or
COBOL were available for the IBM PC.
An IBM PC programmed in BASIC (1950 to 2400
s) runs similar to the Apple /// Business
Basic (1860). The IBM PC programmed in "C"
(22.1 s) or in Forth (70 s) are quick, but
lag behind the 68000 family. The lack of
Apple/// timings in these languages (and
the lack of IBM PC timings in Pascal or
COBOL) presently make these machines hard to

compare, except in BASIC. The Apple ///
COBOL (2660s) is faster than the Z80, CP/M,
Microsoft V2.2 COBOL (5115 s). Most other
COBOL comparisons are based on the
minicomputer to maintain classes: HP3000
(58s), IBM3033 (0.0824),IBM Series 1 4995
(38.7s), Prime 300 (50.4), etc.

- Ill-

Catalyst Notes

Dear Don:

In the "Public Domain Software" section of
Open Apple Gazette, you've mentioned a "DOS
to SOS Text Fi 1 e Convertor," a 1 ways with the
annotation that the Apple Writer Utility
diskette does the same thing. Gee, I hope
not. Some of the additional notes that I've
added to my Quark Catalyst file include the
following:

DO NOT INSTALL
APPLE WRITER UTILITIES

ONTO PROFILE

The Apple Writer Utilities diskette
transfers DOS/SOS files back and forth, and
it converts Mail List Manager files into
source files for Apple Writer form letter
names and addresses. Given a felt need for
any of those functions, one is
understandably tempted to add the program to
Catalyst.
DO NOT, UNDER ANY CIRCUMSTANCES, SUCCOMB TO
THAT TEMPTATION. Why? Let me tell you a
story.

My wife has a //e, and my Ill has the family
letter-quality printer. For her
convenience, I installed Apple Writer
Utilities as a Catalyst main menu selection.
No problem at all. Then I tested it, to see
if one of my Apple Writer/// files could be
successfully converted to Apple Writer][e
format. Wrong test. It clobbered my
Profile.

The Apple Writer Utilities program requires
that the Apple][disk, no matter the
direction of transfer, be in ".D1," the
internal drive. That's what the
documentation says. Actually, the program
requires its presence in Pacal Unit #4.

21

The Apple/// disk, on the other hand, may
be in any other drive, and the program
references it by its SOS device name
(.D2, .D3, etc). This 1 ack of consistency
was fatal. The program correctly found the
Apple Writer/// file in .D2 and then
blythely went about writing the converted
DOS file to Pascal Unit #4 - the Profile.
Good-bye. One otherwise perfectly good five
megabyte disk written to in Apple][format.
As I said, I'm a terrific systems tester.

The disaster could easily have been averted
by good programming practice. If the
program had been consistent in its disk
drive references, the worst that would have
happened would have been a "file not found 11

error message. Had SOS device names been
used consistently, there would have been no
problem. Had Pascal Unit Numbers been used
consistently, the program would have looked
for the Apple /// file in the internal drive
and not found it. In any event, the program
should have had the courtesy to see whether
the output file was really a DOS disk. I
will continue to wish several uncomfortable
and improbable occurences to befall the
author of Apple Writer Utilities.

The safest thing that you can do with Apple
Writer Utilities-- at least
if you have a version that doesn't know
about Profile--is to leave it alone as a
separately booted disk. Even if you only
use it to convert Mail List Manager
files, just having the other, deadly option
available is a disaster waiting to happen.

If the program y'all are offering doesn't
engage in deadly embrace with Profile, it is
(1) an improvement and (2) well worth the
money.

Yours truly,

Allan M. Bloom

Editors Note: We returned his check.

MENU GENERATION PROGRAM

by R. D. Biggs

Since the summer of 1980, when my wife and I
purchased our first personal computer, an
Apple][, I have been intrigued with the
variety of problems that can be solved. A
few months ago, we moved up to an Apple ///.
I have written and rewritten many programs,

22

and I have come to appreciate the advantages
to the user of a well-conceived, menu-driven
program.

It occurred to me recently that a utility
program designed to create or write a
skeleton program conta1n1ng a menu would be
handy and time-saving . The concept was to
have the utility program write a text file
with the format of the desired BASIC
program. After the text file is saved on a
disk, the text file could be converted to a
BASIC program using the EXEC command.
Hence, the utility program MAKE.MENU was
born.

When the program is run, it prompts you for
two title or header lines for the menu to be
created, the creation date, from 1 to 10
menu labels and the path name for writing
the text file to a disk. After you complete
the data input, you are presented with four
choices:

1. Print to console
2. Print to disk
3. Edit/Review entries
4. Exit orogram

Choice 1 prints the text version of the
desired menu program to the console, which
allows you to review the text file before
writing to the disk.

Choice 2 writes the text file to the disk
using the specified path name. This choice
must be exercised before exiting the program
Tt:You wish to save the menu program .

Choice 3 allows you to review and edit any
or all of the original input data before
saving the text file.
Choice 4 closes the file and console driver,
deletes the main body of the generator
program, executes the EXEC command to
convert the text file to a BASIC program in
memory and runs the menu program. The
program, as created, contains dummy lines to
branch to when menu options are selected.
As you develop the body of your program, you
replace the dummy lines with appropriate
1 ines of code.

Before saving the BASIC program, you will
want to delete the extraneous lines 1
through 9 and lines 50000 and 50010.
MAKE.MENU is documented and should be easy
to read and modify. I am sure that there
are many improvements to be made, and I am
looking forward to feedback from interested
Original Apple ///rs.

- Ill -

Tidbits

by Paul Wilson

Tidbits is a column which is designed to
alJow you to send in things of general and
specific interest which do not warrant a
whole article. Send in your ideas related
to Apple ///s, and the use thereof, and this
will be a very helpful and interesting
column indeed. Please limit your
submissions to one or two paragraphs, but
send in as many as you like.

Tidbit 1

The first tidbit relates to the use of
control characters in Apple Writer. Control
characters can be very useful in modifying
the printed output for certain printers (see
your manual). The Apple Writer manual says
that the only way to enter control
characters into your text is by the use of
control-V. This is not so! Pressing the
open-apple key as well as the control key
when typing characters has the same effect
as being in control character mode
(control-V). Escape characters can also be
generated easily by pressing the open-apple
key and the <escape> key simultaneously.
Try it.

For those of you who don't like paying lots
of money for backups of those important and
uncopyable programs like Visicalc and Apple
Writer, you can use Locksmith to make
backups. That's right, now you can pay lots
of money for Locksmith 4.1 (about $200) and
make backups for the cost of a diskette.
This Apple II program runs fine in emulation
mode and quite easily handles SOS diskettes.

In no way am I suggesting that you may make
copies for your friends and relatives.
Those of you who write programs to sell will
be quite aware of the frustration and
financial loss that this type of thing
causes. Not only is it against the law but
it is unfair. 'Nuff said.

As to what is copyable, I sat up late one
night and copied Apple Writer (no problem),
Business Graphics (medium difficult), and
Advanced Version Visicalc (not too hard,
easier than Business Graphics). It took me
about three hours. It is also not too
consistent. As an experiment I have copied
Visicalc three times, each time I ran into
different problems. You must use your
ingenuity.

Editors Note: $200 buys a lot of backups and
you don't have to stay up late at night
trying to crack the copy protection. What
is your time worth?

The manual assumes a bit more knowledge than
that of the Average Apple /// user, but
should be useful nevertheless. Along with
the program you get a listing of the
techniques which must be used when copying
certain programs .

Fortunately all of the above mentioned
programs are listed and it was much easier
than starting from scratch. Locksmith also
contains a few very helpful utilities such
as a disk rotation speed check and disk
surface certification.
All in all very helpful.

This also works in Business Basic. The
DOWNLOAD program on the Basic disk (1981
version) allows you to load different
character sets. Try downloading the "apple"
character set. Then using the open-apple
key type all the control characters. You
will notice that there are some useful
characters for those who like to write
blackjack programs.

Tidbit 2

This tidbit is for all those Pascal system
users (Business Graphics, Utilities) who are
a bit miffed at the fact that the Alpha lock
key is inactive when running Pascal
programs. This is an attribute of the
particular .console in the SOS.DRIVER in the
boot diskette. If you want the Alpha lock
key to be active, use SYSTEM CONFIGURATION
to delete the .console of the present
SOS.DRIVER for the particular program
diskette, and replace it with Apple Writer's
.console. This did not seem to work with
BASIC's .console, although I cannot figure
out why. Any ideas?

Editors Note: We are looking forward to
receiving contributions for this column.
"Stems and Seeds" has also been suggested as
a name for this column. Indicate on your
contributions whether they are for "Stems
and Seeds" or "Tidbits". We will use the
name which is most popular.

- Ill -

23

opczn ap~lcz ~
qazczftcz lQJ

1850 Union Street

San Francisco CA 94123

Original Apple I I Irs
CLUB INFORMATION

MEETINGS

Meetings are held at 7:30 PM on the third Wednesday
of each month. The location is the Board Room of the
California Bar Association offices at 555 Franklin Street
in San Francisco.

MEMBERSHIP

Annual membership dues are $30 from the date applica
tion received. Your check payable to the Original Apple
I I Irs may be mailed to the address below.

OPEN APPLE GAZETTE POLICTY

All manuscripts, photographs, and other rna terials are
submitted free and released for publication. They be
come the property of the Original Apple I I Irs and the
Open Apple Gazette. Authors should clearly mark all
material submitted for publication so that credit may
be given.
The publishers/editors do not necessarily agree with, nor
stand responsible for, opinions expressed or implied by
other than themselves in this publication.
The Original Apple I I Irs is a non-profit organization
comprised of, and supported by, Apple I I I owners and
users. The Original Apple I I Irs is run by volunteer
officers and committees, and the club endeavors to aid
other Apple use rs through this educational publication
- "OPEN APPLE GAZETTE." Address all inquiries to:
Original Apple I I Irs, 1850 Union Street #494, San Fran
cisco, CA 94123.

REPRINT POLICY

All articles appearing in the Open Apple Gazette not
copyrighted by the author may be reprinted by another
non-profit Apple user group so long as proper credit is
given to both the Open Apple Gazette and the author.
Proper credit is defined as article title, author, and the

words "Printed from VOL X, NO Y of the Open Apple
Gazette." Permission to reprint a copyrighted article
may be obtained by writing to the author c /o the Original
Apple I I Irs.

ARTICLE SUBMISSION POLICY

The Open Apple- Gazette welcomes any and all articles
dealing with the Apple /// Computer and its associated
hardware and software. Articles should be submitted
on diskette as an ACSII text file, such as those produced
by either W01·d Juggler, Apple WRiter /// or the Pascal
Editor. Typewritten double spaced articles are also
acceptable .

PRESIDENT
VICE PRESIDENT
TREASURER
SECRETARY
CONSULTANTS

OFFICERS

Don Norris
Kent Hockabout

Julia Amaral
Charles Coles
Ransom Fields
Ken Silverman

Back Issues

(415)
(41 5)
(415)
(415)

Volume 1, Number 1
Volume 1, Numbers 2-5

$3.00 each
$4.00 each

Mail Requests for Back Issues to:

Open Apple Gazette

921-3774
521-5414
383-3088
386-8623

1850 Union Street, #494
San Francisco, CA 94123

-Ill-

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024

