opan appla

/4

qgazette -2

Sixth Edition

Volume 1, Number 6 May 1983
West Coast Computer Faire Report 2
Formatting BUG squashed!! 3

Business BASIC:

Beginning BASIC lesson 2 3
Exploring BASIC part Five 11
Diskette 8

Menu Generation Program 22
Gameport III 5

Gameport III User Comments 18
Word Juggler and ProWriter 6
Corrections to Software Listing 7

File Cabinet Notes 7, 8

Apple Writer Bug 9

Book Review (Introduction to VisiCalc Matrixing) 10
S0S 1.3 Released 18

Buffer Cable Pin Assignments 19

Pascal Work.Text problems 20

Benchmarking the /// 20

Catalyst Notes 21

Tidbits (Stems and Seeds) 23

original apple #/rs

West Coast Computer Faire Report
by Richard Hart
Apple /// owners, you now have:

-- 8" drives from 3 manufacturers (SOS
and CP/M compatible)

-- 3" drives from 2 manufacturers

-- IBM 3270, 2780, 3780 emulation

-- Proto cards

-- Printer cards

-- S0S-to--IBM--to SOS utilities

-- New software galore

Here's a report from the West Coast Computer
Faire in March.

Imagine backing up a whole ProFile on 4
floppies! The Faire featured a hot contest
between two different manufacturers to sell
8" and 3" drive controllers for Apple ///:

Burtronix

1667 N. 0'Donnell Way
Orange, CA 92667
(714)974-6171

Megabyter

11722 Sorrento Valley Rd.
San Diego, CA 92121
(619)452-0101

Both were selling the controllers, with
drivers, for $299 until the end of March.

BURTRONIX designed some of the hardware for
the Apple /// CP/M card. Their card was up
and running under CP/M and SOS side by side
at the show, using Tandon 1/2 height drives.
Their controller will daisy chain 4 8"
drives off of a single controller card!
They claimed that MEGABYTER (a division of
SVA, Sorrento Valley Associates) did not
have its systems demonstrating CP/M because
they couldn't--too many bugs. "Not so,"
said MEGABYTER, "Ours will run CP/M." SVA,
on the other hand, had an Apple /// running
off of dual 3 1/2" Sony drives! BURTRONIX
claims it is writing a driver for 3" disk
drives this week. Both systems claim
support of Backup.

The best price I could find on drives was
$950 for two Tandon 1.2 MB half-heights,
power supply, enclosure, and cables. If you
go for one drive only (which makes sense for
just backup use), you could be into the
controller card for $299, and a single 1.2
MB 8-incher for $600.

(But why would anyone want to run CP/M,
anyway? That would mean you'd be forced to
use WordStar.)

A MicroSci representative told me the
company had decided against marketing an 8
inch drive for either the Apple II or ///.

Elcom Systems Peripherals has a new Netcom
Communications card which will allow the
Apple /// to communicate with:

-- Any mainframe using IBM 2780, 3780, or
3270 emulation

-- Wang, DEC, ICL, Prime, Amdahl, Facom,
and Nat Semi systems

-- SNA programs

-- OMNINET

It costs $1195. The company reps came to
the West Coast Computer Faire to sell the
cards, but, at the last minute, Apple asked
them not to. Apple is making a bid to buy
the technology and market the boards itself!

Elcom Systems Peripherals
439 Harrison St., Suite A
Corona, CA 91720
(714)734-8220

Miscellaneous other stuff at the Faire
included:

-- A spectacular parallel card from
Burtronix: 16 color
printer/graphics dump and much
more. (Comes with CP/M graphics
utilities, too, but why would
anyone want CP/M? For chrisakes,
it just got graphics a month ago,
anyway.) $125.00

-- A spectacular protocard from
Burtronix: 1 serial and 2 parallel
ports with drivers to allow
interface with any hardware device
you chose, and room on the board
for tons of chips. 6522
compatible, 6809 adaptor, too.
Fully SOS rigged. $150.00

-- S0S--IBM--S0S 8" transfer utility
for all files. From SVA. $150.00

Chuck Colby, of Colby Computers, announced a
box into which an Apple //e motherboard
could fit to become a portable. He said he
is considering doing the same for the Apple
/11.

The Faire featured significant numbers of
mice running under word processors on

machines other than Lisa. Lisa was there,
however. Even though you couldn't see it
for the crowd. This year's Faire was far
better than last year's. Especially for
Apple /// users.

-/l -

Disk Formatting Bug Cured

by Don Norris

Have you ever had your /// give you the
VOLUME NOT FOUND message when you have tried
to write to a diskette you know you have
previously formatted. Well you are not
alone.

This error message was occuring with 3 out
of every 10 diskettes which I had formatted
for copying club programs onto. Using
another /// produced the same problem. Next
thing to check was the diskettes themselves.
Since I was using bulk pack generic
diskettes with no labels, I tried the fancy
package brand name diskettes. 3 out of 10
of these, produced the VOLUME NOT FOUND
error message.

Checking with a few other /// owners, I
found they were also having the same
problem. I informed some of the people I
knew at Apple to see they were aware of any
formatting problem. Yes, there was an

occassional problem and they were working on
a solution.

Well the solution is now available and it
has been sent to all the. dealers. On the
SOS Revision Utility Version AOl, is a new
Format Driver Version 1.3 to put on your
System Utilities Program diskette.

Does it cure the formatting problem? Sure
does. After installing the new format
driver onto my System Utilities Program
diskette, I formatted 100 bulk pack generic
diskettes with only one of them being a
problem, and it turned out to be a bad
diskette.

If your dealer does not have this utility,

order it from the Original Apple ///rs for
$10.00.

- /11 -

Beginning Business BASIC
Lesson #2

By Stan Guidero

One of the powers that a computer has over a
calculator is the ability to repeat things
over and over. A calculation that would
take a person several hours to do may only
take minutes or even seconds to accomplish
with a computer and may be repeated as often
as you wish. One of the commands that
allows you to do this is the GOTO command.
That's not a misprint. GOTO is spelled as
one word. Let's get Business BASIC up and
running on our ///s and type in this
program:

NEW

10 PRINT "Over and "
20 GOTO 10

RUN

Hold down the CONTROL key and press ‘C' to
stop the program.

After 1ine 10 prints the string "Over and ",
Tine 20 tells the computer to return to line
10 and do it again. Pressing Control-C
causes the program to exit the endless loop
and halt.

The command GOTO is considered a
non-argumentative statement. It doesn't
fool around. It goes exactly where you tell
it to, no questions asked. As a review of
lesson one you might try experimenting with
the string in line ten "Over and ". Try
placing a comma or a semicolon at the end of
line ten.

As a more practical example type in this
program: (First we type NEW to clear the
memory of our old program.)

NEW
5 HOME
30 INPUT "Type in first number: ";A
40 INPUT "Type second number: “;B
50 LET TOTAL=A+B
60 PRINT "The sum of the two numbers
is: ";TOTAL
70 GOTO 30

RUN

Line 5 clears the screen while lines 30 and
40 accept the input for the variables A and
B. As you probably noticed this is a new

twist to our INPUT statement. It's actually
a combination INPUT and PRINT command. Line
50 does the math by adding variables A and B
together and places the answer in variable
TOTAL. Line 60 then prints the answer to
the screen and finally line 70 tells the
computer to go to line 30 for another input.
Unfortunately, we are now in one of those
endless loops and the only way out, short of
turning the computer off, is to use
CONTROL-C. If the program seems not to stop
you may also have to press RETURN.

Whenever you write a program you should try
to make it as easy to use as possible.

Using CONTROL-C to stop a program is not the
recommended method. There should be a more
eloquent way, and there is. This is where
our next new command comes in. The IF-THEN.
Let's change some of our existing program by
adding the following line:

10 PRINT "To stop the program, type a O
for the first number."

20 IF A=0 THEN END

LIST the program to make sure that
everything is there. Now type RUN.

The IF-THEN statement in line 20 is what is
called a conditional branch statement. If
the variable 'A' is equal to zero, then the
program ends. If it doesn't the computer
goes to the next 1ine and continues on. One
of the quirks of BASIC is that there is more
than one way to do the same thing. We could
have typed any of the following in instead:

20 IF A<>0 THEN GOTO 30:ELSE END
20 IF A<>0 THEN 30:ELSE END
20 IF A<>0 GOTO 30:END

These all do the same thing. The <> means
‘does not equal'. Using the first Tine 20
we are saying that if 'A' does not equal
zero then go to line 30 and continue,
otherwise end the program. The ELSE command
is an optional command and as you can see
from our last example ELSE is only needed
for clarity. I should also mention that the
LET command isn't needed in line 50 as it
too is also for clarity. Getting back to
our IF-THEN. Which should I use you ask?
The one that uses the least amount of
memory. How do I know which one uses the
least amount of memory? Count how many
characters are in each line. The computer
will have to go through and read each
character one by one. The more there is to

4

read the longer it will take. So use the
least to accomplish the most. Our original
line fits the bill nicely. Incidentally, I
will return in the next lesson with an
explanation of logical expressions 1like the
aforementioned ‘does not equal'.

To show you another example of the
repetitive capabilities of the computer and
introduce you to two more commands, let's
type in this program. (If you wish to save
our Tittle program type: SAVE ADDIT. This
will save the program under the name ADDIT.)

NEW

5 HOME

10 PRINT "TRIP COST"

20 PRINT

30 PRINT "Miles","MPG","Time","Fuel
Price","Total"

40 PRINT "Traveled","","for
trip","per.gal.","Expense"

50 PRINT

100 REM

110 REM Read values from data
120 REM

130 READ MILES , MPG , TYMES ,

FUELPRICE
200 REM
210 REM Do calculations
220 REM !

230 TOTAL = MILES / MPG * FUELPRICE
300 REM

310 REM Print it out
320 REM

330 PRINT MILES , MPG , TYMES ,

FUELPRICE , TOTAL
400 REM

410 REM Do it again
420 REM

430 GOTO 130
500 REM

510 REM
520 REM

530 DATA 125,25,"1:30min",1.33
531 DATA 245,25,"2:45min",1.33
532 DATA 578,27,"6:50min",1.33
533 DATA 35,23,"45min",1.34
999 END

LIST
RUN

The REM statements make this program 1ook
much larger than it is. REM statements are
used to help the programmer remember what he
was thinking of when he wrote that section
of the program. REM statements (short for
REMARK) are not acted on by the computer.

Lines 10 thru 50 are used for the header.
Line 130 reads the data from line 530 one
data element at a time and assigns one to
each variable in order. '125' is assigned
,to MILES, '25' to MPG and so on. Next, line
230 does the calculations and line 330
prints out the results. Line 430 sends the
computer back to line 130 to retrieve more
data until there is no more left. When the
program runs out of data it stops with an
OUT OF DATA ERROR message. Try adding a few
data 1ines of your own, using the other
examples for ideas.

The variables that you use must be of the
same type as the DATA. You must use numeric
variables for calculations or string
variables for string characters. Notice
that a string variable was used for the
‘time'. A1l strings must be in quote marks.
Each variable and each data element must be
separated by commas. Data lines must not be
followed by a 1ine with a statement that can
be acted on by the computer. If you use an
integer variable 1ike MILES% and it reads a
real number (1ike 1.33) it will round it
off. Also if the number is larger than
32767 the computer will come back with an
ILLEGAL QUANTITY ERROR and stop.

You may have noticed that I spelled the time
variable as TYME§. TIMES$ is a reserved word
Tike PRINT or GOTO; it controls the onboard
clock in your Apple ///.

There is one more command that is used with
the READ DATA statement and that's the
RESTORE command. If you wish to use the
same data over again in the program the
RESTORE command is placed at the end of the
data like this.

700 DATA 124,24."1:34MIN",1.33
710 RESTORE

To try to give you a better idea of how this
works, imagine that there is a pointer that
is first set at the first piece of data. As
the READ command goes along, the pointer is
moved one DATA element at a time until it
reaches the end. It will then halt program
execution and print 'out of data error' on
the screen unless a RESTORE command tells
the pointer to go back to the beginning.

In the next issue we will cover The
IF-THEN-ELSE and IF-GOTO statements in more
detail. Happy programming.

-/ -

GAMEPORT III

Numerous inquiries have been received from
Apple /// owners about using paddles or
joysticks with the /// in Lobotomy Mode
(Emulation).

Most of you are well aware that paddles or
joysticks will not work with most Apple 1[
games in the Emulation Mode. T.G. Products
with their special Emulation Diskette and
joystick made some of the games usable on
the ///. However, this was only a partial
answer.

Alan Silver at MICRO-SCI has solved the
problem!!!! The solution is called GAMEPORT
TII. GAMEPORT III is a card which fits into
one of the four slots on your Apple ///. On
the card is a connector for an Apple][type
joystick. Alan also modified the emulation
diskette so that some of the games which
previously would not boot in the /// in
Emulation mode now will. As far as we no
there are NO games which will not work with
this modified emulator and the GAMEPORT III.

The Gameport 1II's are available to members
at a special reduced price. Just another

reason to belong to the Original Apple
///rs.

- /11 -

Word Juggler And Prowriter
By: Rod Whitten

For those Apple /// owners that have Word
Juggler and a dot matrix printer, the
following is a guide to some of the
available features not supported by the
commands on the templates. Specifically it
has been tested using the Prowriter, but
should be applicable to most other dot
matrix printers.

The C Itoh 8510A (Prowriter) and the NEC
8023 printers utilize control/escape codes
similiar to those for the Epson printers
written up in previous editions of the Open
Apple Gazette. The NEC 8023 is to be a
parallel version of the slightly faster (120
CPS) Prowriter, which has serial and
parallel interfaces built-in. As the pins
on the ///'s RS-232 port match exactly with
the Prowriter, so a standard pre-made cable
from an electronics store works without
modification.

Word Juggler has a number of escape commands
already on the keyboard templates. Most of
these are supported with the above printers;
however, the change of pitch and enlarged
characters are not. In order to accomplish
these changes, one must use the PRINTER
CONTROL which is "ESCAPE p". The next line
then must contain a § followed by a two
digit hexadecimal code. For example, to
turn on the enlarged characters the commands
would be "ESCAPE p <shift> 4 0 <shift> e.
This would appear on the screen as:

PRINTER CONTROL
$OE

Note that the p is lower case, the E and all
other letters in the control codes are be
uppercase and it is a zero as there aren't
any o's in hex codes. A summary of the
control codes to change characters are as
follows:

Pica (10 cpi)eeeeeeeennnnnnnnn $1B$4E
Elite (12 cpi)eceevninnnnnnnn.. $1B$45
Proportional $1B$50
Condensed (17 cpideeeeeennnnn. $1B$51
Enlarged On ...cvvvvvnennennn. $0E

Enlarged Offcovvvnanns $OF

Bold On ..evviriininiinnnnennn. $1B$21
Bold Off ..ovevvinnniennnnnn.. $1B$22
Underline Oncvvvevenennnn $1B$58
Underline Offccvvinenn. $1B$59

The last four control codes are better

6

supported using the Open Apple Key, as they
can be embedded in the middle of a line.
The disadvantage of using the ESCAPE p is
that the command must apply to the entire
line. Also the enlarged, bold and underline
commands must be turned off after being
turned. With the Epson printers the
enlarged mode turns off at the end of the
line automatically. For example, the
following sequence will yield the type of
print shown in parenthesis:.Im+5

PRINTER CONTROL

SOESIB$A5

(Enlarged Elite-See Print Sample #6)
PRINTER CONTROL

(Enlarged Condensed-See Print Sample #8)
PRINTER CONTROL

OF1B$21

(Bold Condensed-See Print Sample #12)

1. ABCDEFGhijkimno

2. ABCDEFGhijkimno

3. ABCDEFGhijlmno

4, ABCDEFGhi jKImno

= . AECDEFGHID K ITmho
& . ABCDEFGhi JKImNno

7. ABCDEF GhijkKlmmno

8. ABCDEFGhi jKimno

9. ABCDEFGhi jK1mno

10. ABCDEFGhi jKImno

11. ABCDEFGhijKimno

12. ABCDEFGhi jKlano

1=2. ABCDEFGh i K ITmNnao *
14. ABCDEFGhiIi JKImno
15. ABCDE FGhijKlmnmno

146. ABCDEFGhijKI1mno

The use of the four character sets in combination
with the enlarge and/or bold command yields
sixteen different combinations of type styles
within the United States ASCII system. Also
accessible via PRINTER CONTROL is a graphics
symbols table and the Greek letters shown below
in the enlarged mode. These character sets are
accessed using $1B$23 and $1B$26 respectively,
while $1B$24 takes one back to the ACSII
Characters. The Japanese Katakana is also
available, but requires resetting three dip
switches.

Another limitation is that the justify command
does not work properly in the proportional mode.
There are many other control codes available,
some are in the C. Itoh and NEC 8023 manuals and
most of the codes for the Epson are the same, if

SBECODEFGHI JELHFNOFOR ST Oy Z
1 22445 S8 7890 — ' OHEIALA 82 3+ |
L 137 4 a4 2" <=7
== ,ulin."ll"dlrilidqu!pilp-:J,ff*~ VN S SR B OO
_— = kil ——e—msas W] B
S - e -

J et oo MKGO 1 EZIASEF = S 0 0
ST UDb>w YAl PETT— B T2 € & ™V LKk K

+ e M S TUEI O]

one has access to any of the above. Lexicheck,
Quark's spelling checker, works as efficiently as
usual as it skips over the control codes.
Lexicheck as it is the first and only spelling
checker, I am aware of, for the ///; unless one
performs a lobotomy and runs in emulation or CPM.
While I would prefer to not have the limitations
described above, I am quite happy with such a bug
free program. Perhaps a later version of Word
Juggler will have the control codes redefinable
as part of the edit configuration. It is
possible to do things 1ike super- and subscript,
but it involves many more commands than is
practical to do on a continuing basis.

-/l -

Corrections to the Software Listing
in Vol 1. Number 5

Kent Hockabout our Vice-President has found
the following corrections to be made to the
software 1isting in our Vol 1. Number 5.
Product Names: Comments:

Context MBA no plans for Apple ///

Multi-year planning

(805) 324-6437

Financial Data Services

and other Data-Systems Software

RestAnal
restaurant analysis
management control concept

Tocation unknown

Construction loan reporter
computerized construction
management systems

location unknown

Strategic simulations
no games for Apple ///
in native mode

- /11 -

File Cabinet Notes
Dear Don:

I recently ordered and received a copy of
File Cabinet /// from your library. Upon
using it I found some bugs which I thought I
would bring to your attention if no one else
has already.

I. The program refused to acknowledge a
stored report format. Some detective work
uncovered the reason. It was looking for a
“RN" appendage to file while having placed a
"RH" appendage there when storing it. A
little investigative work with the help of
"super sleuth" AppleWriter /// [F] function
turned up the apparently offending line.
Changing "RH" to"RN" in the 1line apparently
cured the problem. 1It's too early to say
whether it caused others.

II. Entry of more than thirteen characters
as a file name caused line #876 to generate
a never ending series of error
messages.(Talk about being chastised

for making a mistake!) Changing the GOTO
from 1ine #870 to 865 in 1ine 876 took care
of that one.

III. The accompanying manual is outdated,
particularly in its reference in using the
built-in clock. There are in fact no
meaningful program lines beyond line 20130,
and those which are there can be deleted.

It is, otherwise, a very nice little program
which I have put to work cataloging and
indexing my barely manageable repertoire of
“floppies".

(Sure wish I had a Profile sometime,
especially since I saw Quark's Catalyst
program in action!)

Keep up the good work,
rolling, huh?

and get those presses

Ken Johnson
Amherst, MA.

Original Apple ///rs diskettes

0A3.BASIC.001

Business BASIC PROGRAMS ON THIS DISKETTE
ARE:

HELLO The HELLO program is the
program on the diskette which you
should run first. After you put this
program onto a Business BASIC boot
diskette it will run automatically when
you boot your ///.

DOC.READER This is a file reader that
will allow you to read this file which
was written with Apple Writer ///. You
can use the up and down arrow keys to
view the text. Use the ESCAPE key to
exit and catalog this disk.

DISK.DOC Is a disk which is written

with Apple Writer ///. It contains
text file information.

INVENTORY This program utilizes several
formulas to help you figure inventory
costs.

MORTGAGE This and the next three
programs were converted from Applesoft
BASIC with the use of APPLECON
conversion program available through
the Original Apple ///rs. Mortgage
will find out how much that new house

CAL.COUNTER This program helps you keep
track of those awful calories. You may
add more (!!) items to the 1ist of
foods if you want....

BIORHYTHM Will print out your biorhythm
to a printer or screen. If you need to
dup the information to a Silentype or
an Epson change the 1ine to whatever
device name you wi sh.

GOLF Practice your golfing strategy
using this program (See you at Pebble
Beach). A text game converted from
Applesoft. The program is originally
from the San Francisco Apple Core
Library.

SURVIVAL Can you survive in the
wilderness??? Take this test and find
out.

MAKE.MENU This is a feature program.

It's a utility that allows you to make
a menu to use in a program. The
program that MAKE.MENU PRODUCES could
be used as a HELLO program. The
documentation for this program is
called:

MAKE.MENU.DOC The documentation for
MAKE.MENU can be read with

Applewriter ///, Word Juggler, or
any text reader.

PICKAFONT. This program donated by Jim
Linhart, enables you to select a font
or character styles or pitches. The
program is designed to run in
conjunction with an Epxon MX-100
printer. You can set the printer to
whatever font or character style you
want and it will remain in this setting
until changed. The menu of this
program is as follows:

1 -- Normal Width

2 -- Double-Width

3 -- Small font. (No underline
available)

4 -- Compressed font

NOTE:

Most of the programs on 0A3.BASIC.001 disk
were converted from Applesoft BACIS using
the conversion program APPLECON. The
programs are from the San Francisco Apple
Core's public domain 1ibrary and modified by
SAtan Guidero. The original authors names
are included in REM statements in the
listing. The APPLECON program is available
through the Original Apple ///rs' for $10.00
or $8.50 to members,

More File Cabinet Notes

Dear Sirs:

As a member of Original Apple ///rs, we
recently purchased a copy of the public
domain software "File Cabinet ///" (version
2.0 dated 7/20/81). It is a nice program
and will have application to several needs
in our organization. After using the
program and becoming familiar with it, we
discovered a couple of items that did not
work properly. They were the routines that

save and delete files containing print
format specifications. It may be that the
others have had this problem or that we
received an older copy of the program or
corrections have been published and not seen
by us. After considerable

effort, we made changes in the program that
appear to have corected the problem and not
caused other problems. Please bear in mind
that we are not "expert" programmers, and
other corrections may need to be made.

Following are the corrections we made:
Change line 620

OLD-- F$=RN$(RF)+"RN":DELETE FS$
NEW-- F$=RN$(RF)+"RF":DELETE F$

Change line 992

OLD-- F$="RN":GOSUB 350:FOR I= 1 T0
NR:DELETE R$(I)+"RH":NEXT

NEW-- F$="RN":GOSUB 350:FOR I= 1 TO
NR:DELETE R$(I)+"RF":NEXT

Add 1ine 7155

OLD-- THIS LINE WAS NOT IN OUR PROGRAM
NEW-- RENAME FR$+""RF", TOO$+"RF":ON
ERR GOTO 7180

Change line 9652

OLD-- PD$=DP$:DP$="":F$=RNS(NN)+
"RH":GOSUB 350:...

NEW-- PD$=DP$:DP$="":F$=RN$(NN)+
"RF":GOSUB 350:...

Change 1ine 9880

OLD-- F$=RN$(NN)+"RN":ON ERR GOTO 9910
NEW-- F$=RNS$(NN)+"RF":ON ERR GOTO 9910

AppleMriter /// Bug ??

We had a problem with another software
package for the Apple /// that we wanted to
describe to you to see if you had heard of
others who had encountered the same problem.
The software package is Apple Writer /// and
it has been failing

intermittently; that is, the keyboard will
"lock-up" and even CONTROL-RESET will not
function. The only way to reboot the
software is to power off the machine. We
use Business Basic, Access ///, Visicalc
///, Systems Utilities,

Emulator, and other programs and have only
had this problem with Apple Writer ///.

Here is what we have done to try and solve

the problem:

1. Cleaned both disk drives.

2. Upgraded SOS.KERNEL to version 1.3

3. Used the backup copy of Apple Writer //
that has been unused since purchase.

4. Traded machines with our local dealer
(he could find no problems with our
machine). His machine would also
"lock-up" intermittently.

5. Ran the confidence program immediately
after failures. This procedure has
produced mixed results. Sometimes a
RAM error is indicated and other times
no problems are detected. When a RAM
error has occccurred, it has always
been the same BNK and one of two ADRs.

6. We have a surge suppressor on the
computer and all accessories.

7. A fan has been installed to help cool
the machine although no accessories
have been added inside the machine.

Any ideas or comments you have on the Apple
Writer /// problem would be appreciated.

By the way, the Open Apple Gazette has been

most informative to us. Keep up the good
work !

Sincerely,

Joe Pase and Charles Bryant
Lufkin, TX

BUG REPORT

By: James A. Milligan, D.V.M.

Occassionally, in Apple Writer ///,
when the [P] command is given, instead of
a nice columnar listing of the printing
parameters, the whole list flashes before
my eyes on one line in the upper left
corner of the screen, all in about 2
seconds. | have also had this happen one
time with the listing options for [Q].
Needless to say, this makes checking the
printing settings quite difficult, and
once that quirk happens, it repeatedly
does so until you go to the "Editor Menu"
(pg.3 in manual) by hitting "Open Apple
", 1 don't know what causes the bug to
appear (and it does so quite
infrequently), or why the key sequence of
getting to the Editor Menu fixes it, but |
did stumble on to that fact, and it has
worked every time. | discussed this with
a technical person at the Apple booth at
Applefest, who said yes he had heard of
it, and no, he didn't know the problem,
but that it was a software problem.

An Introduction to VisiCalc Matrixing for
Apple and IBM

by Harry Anbarlian
McGraw-Hi11 Book Company, New York, NY
252 pp., $22.95.

Reviewed by Stuart A. Forsyth.

VisiCalc -- the granddaddy of spreadsheet
programs -- is the best-selling software
program for microcomputers. It replaces
paper, pencil, and calculator with a
flexible, interactive electronic worksheet;
and it does so in a subtly sophisticated
manner which rises to the level of a
microcomputer language. Part of its
popularity is based on the user's ability to
customize the program's power for their
particular applications.

But how does one learn to use VisiCalc?

Some persons are able to avoid that task by
employing templates or models designed by
others. But many want to build their own
models, or at least modify those already
designed for them. The traditional means of
learning have been user manuals, tutorials,
sample templates and personal training.

Harry Anbarlian has a different idea. He
believes that one can learn to use VisiCalc
by constructing a number of different
matrices (or templates, or models, as they
are called in other books) which embody the
fundamental concepts of VisiCalc, have
varying levels of difficulty, and are
diverse and useful. It is an admirable goal
and a tall order. He brings it off well.

A clear and concise introduction affords the
reader an understanding of the book's
purpose, organization, and use as a hands-on
learning aid. It is intended to be used
interactively with VisiCalc running on the
reader's microcomputer. By page 11 the
reader is ready to boot VisiCalc. The
requisite foundation for using VisiCalc is
built in the next 22 pages where the author
introduces the matrix concept using a "boxes
on a blackboard" analogy and explains the
key VisiCalc commands in both Apple and
IBM-PC dialects.

After only 40 pages the reader is ready to
start using VisiCalc -- without wading
through user manuals or tutorials. Now the
fun begins.

10

The examples are broken into two sections,
one for Apple users and another for IBM-PC
users. Each section contains nine exercise
matrices, arranged in groups of three
according to complexity.

The simple matrices are: petty cash
voucher, appointment calendar, credit card
record, price earning ratio, inventory cost,
and organization chart (yes, a
titles-in-boxes-connected-by-lines
organization chart done on VisiCalc without
a single mathematical calculation!).

The moderately complex matrices are:
treasury bill investment yield, payroll,
construction trades equal employment
opportunity, student's budget,
education/selection impact ratio, and travel
expense voucher.

The complex matrices are: bar graph,
electric bill, zero base budget,
departmental age analysis, cost/sales
comparative bar graph, and stock portfolio.

tach is thoroughly explained, containing a
clear statement of the objective, an
explanation of how the task is accomplished
by hand without VisiCalc and a
microcomputer, and step-by-step instructions
for creating the VisiCalc matrix. Each also
includes an illustration of the completed
blank matrix, an example of how to use it,
steps for inserting data, and an
illustration of the completed matrix with
data and resultant calculations. To ensure
that the matrices work and are free from
defects, the author enlisted his wife - who
had no knowledge of microcomputers or
VisiCalc - to test each matrix.

While the examples in each section have been
tailored to the keyboard of either the Apple
IT or the IBM-PC, the author has furnished
enough information to enable even the novice
Apple II user to explore, learn from, and
use matrices from the IBM-PC section, and
vice versa. Apple /// users likewise should
have no problem. Using the examples on
other microcomputers may require a little
more familiarity with VisiCalc commands in
order to adapt the matrices.

There is plenty of meat in this fine work.
There is also an unusual and outstanding
dessert, in the form of a final section on
how to create polished matrices by inserting
lines, spaces, titles, names, and dates and
on consolidating and printing matrices.

This seldom discussed topic takes the

VisiCalc user all the way to a
professionally looking printed result.

The author's VisiCalc credentials include
extensive personal use and user group
experience. As a member of the Big Apple
Users Group in New York City, he originated
and was chairman of its VisiCalc Users
Sub-Group. Along the way he learned to
teach and write very well, and readers
benefit immeasurably from his clear, well
organized presentation.

For new users, An Introduction to VisiCalc
Matrixing for Apple and IBM is an excellent
alternative to the traditional ways of
learning to use VisiCalc. It may even be
better because it teaches painlessly,
maintaining a high level of excitement and
rewarding the reader with useful results,
quickly obtained. While it is not designed
to replace user manuals, it will make them
more intelligible by serving as an
experience building introduction to them.

Even experienced VisiCalc users may learn
much from this work. The variety and
imaginative selection of topics for the
eighteen matrices means there is a good
chance that even the most tenured user will
find fresh ideas and techniques.

As just an introduction to VisiCalc, this
book is excellent. But it achieves even
more by also being a source of creativity
and excitement in the use of VisiCalc.
Following an introduction to VisiCalc in
this book, users may well find themselves
continuing to turn to it as a resource and
reference (yes, there is an index). The
author has not only achieved, but also
transcended his stated purpose -- to the
lasting benefit of his readers.

Stuart A. Forsyth is Director of the Office
of the State Bar Court of the State Bar of
California.

Reprinted with permission of SATN
(Software Arts Technical Notes)

- 111 -

Exploring Business Basic - Part Five

By Taylor Pohlman
Reprinted from Softalk Magazine

Last month's column promised the answer to
the question, How many bytes of memory are
available in a 256K Apple III? As you know,
the 256K Apple III has been announced and is
beginning to be available, so the answer can
now be revealed: 191,484 bytes! That's
more than three times the workspace
available in any other personal computer
BASIC. (Aren't you glad you've got an Apple
III? Don't you wish everybody did?) We
were discussing some sorting techniques for
our database that can make good use of that
space. This time we'll explore a mixed bag
of items, deferring our discussion of the
“print using" capabilities of Business BASIC
until next time.

Our Mixed Bag. The first bagged item
this month is the mailbag. Several
questions have come my way since this series
started in September; the most interesting
ones have to do with programming style and
philosophy. The most intriquing question
concerned why I always use lower case
variable names in my programs, especially
since the BASIC keywords (1ike "print") all
seem to be in caps. While it would be easy
to say that I lack the strength or will to
operate the alpha lock key, the real reason
has to do with the way BASIC itself works.

As you probably know, Business BASIC defers
its syntax checking (looking for errors)
until you actually run the program. BASIC
does perform some tasks as each statement is
entered, however; the process is generally
referred to as "tokenizing". Simply stated,
this means that BASIC scans each statement
and converts each keyword, sometimes called
a "reserved word", into a special internal
one-byte code called a "token". This code
not only saves space, but also simplifies
error checking and program execution.

Almost all BASIC interpreters use the
tokenizing technique. One of the
consequences of this method is that program
statements cannot be listed out without the
BASIC "1ist" command converting these tokens
back to their English-language equivalents.
In converting the tokens, BASIC always
prints out the upper-case version of the
keywords. I type in all BASIC statements -
both variables and keywords - in lower case
so that when I list out a program, I can see

1

what BASIC interpreted as keywords. If I
misspell "print", BASIC will not recognize
it as a keyword, and the fact that it
remains lower case makes such an error easy
to spot in a listing. In addition, Business
BASIC requires spaces between keywords and
variable names, to allow variables to
contain keywords themselves.

Ever try to use a variable 1ike "Orange" in
Applesoft, only to discover that "or" is a
reserved word (and therefore your variable
must be renamed to something 1ike "rnge")?
Typing variable names in lower case will
allow you to spot those times you forgot to
space and ended up with "fori=1 TO 10"
instead of "FOR i=1 TO 10". The first
instance will produce an error, since BASIC
will assume you are trying to assign the
value of 1 to the variable "fori" and for
some reason put the phrase "TO 10" onto the
end of the statement. Some examples will
clarify:

Typing: 10 prunt x*53

will result in: 10 pruntx*53

whereas: 10 print x*53

will result in: 10 PRINT x*53

Typing: 10 on xgoto 20,40,50
will result in: 10 ON xgoto20,40,50

whereas: 10 on x goto 20,40,50
will result in: 10 ON x GOTO 20,40,50

See how much easier it is to catch the error
when it's displayed visually?

As with every rule, there are exceptions.
Any variable that starts with the letters
"FN" will be assumed to be a function name.
Again, typing all lower case will help you
spot the problem:

Typing: 10 xval=aval* fnumber

will result in: 10 xval=aval* FNumber

and you'll immediately know something's
wrong (assuming that you really wanted to
use "fnumber" as a variable name).

There's another little quirk in BASIC that

this technique helped me spot. As you may
know, we've used the on "eof#" statement

12

quite a bit to take action if a program
tries to read past the end of file.
According to the manual, the part following
"eof#n" can be any executable statement. So
far, we've generally used "goto" or "gosub"
statements to take action.

Consider the following:

Typing: 10 on eof#l goto 20

will result in: 10 ON EOF#1 GOTO 20
as you'd expect. But:

Typing: 10 on eof#l xval=20

will result in: 10 ON EOF#xval=20

For some reason BASIC treats the whole thing
as one variable. The solution involves
dredging up a bit of BASIC folklore.
Remember in your first class in BASIC when
they told you that all assignment statements
started with the keyword "let"? Most BASIC
dialects have long since made the "let"
keyword optional, and most people have quit
using it altogether. An example of the use
of "let" is:

10 LET x=45 which is usually written
simply: 10 x=45

If there's any ambiguity to the way a
statement can be interpreted, "let" can be
used to clear it up. With our new version
of the "eof" statement:

Typing: 10 on eof#l let xval=20

will result in: 10 ON EOF#1 LET
xval=20

and everything works fine. The fact that
BASIC failed to upshift the reserved word
"eof" in the example above is very important
to an understanding of the problem. The
technique of entering everything in lower
case has saved me countless hours of
debugging my errors. I recommend it.

Bag Item Number Two. Last month's list

of new goodies in Business BASIC 1.1
completely overlooked one item which, while
it may seem minor, has important
consequences. The change is an extension to
the standard "get" statement. Normally, as
is the case in Applesoft and some other
BASICs, "get" allows reading the keyboard
one character at a time, including all
special control characters and delimiters.
This means you can bypass control-C and
return, read commas, and so on.

Business BASIC 1.1 extends "get" to allow
“get#n". This means you can read any SOS
file one character at a time, without
respect to what kind of file it is. This
can be very handy for reading all characters
from the communications port (via the .RS232
driver) or for reading other character
streams from special devices. One of its
most interesting traits, however, is the
fact that it can be used on disk files as
well. Remember that one file is just like
another in. the SOS environment, so if we
open a text file on disk, "get#" will allow
us to read one character at a time from it.

This means that there's now an easy way to
read text files that contain more than 255
characters without a return character.
Normally a string overflow error results if
you attempt to read such text files with the
BASIC "input" statement. Even more
interesting is the fact that we can also
open and read from the BASIC data file.
Remember that I described the data file as
having special tags, called "type bytes",
that enable BASIC to determine what data
type is stored next in the file. Remember
also that numeric data is stored in a data
file in its binary form. Get# allows
reading this binary information, one byte at
a time. One example is worth a thousand
explanations:

5 INPUT"File to dump: ";a$
10 IF a$="" THEN 100

15 OPEN#1,a$

20 ON EOF#1 GOTO 100

25 cr$=CHR$(13)

30 GET#1;a$

40 IF a$=cr$ THEN PRINT
50 PRINT a$;

70 GOTO 30

100 CLOSE

110 END

This simple example will dump any text file
to the screen, no matter how long the
intervals between carriage returns. A good
example of a text file with arbitrarily long
strings is the file I'm creating now, using
Applewriter III. Return characters are
inserted only at the end of paragraphs
which, as you'll notice, tend to run on
indefinitely.

Note that this program looks for return
characters by loading the variable "cr$"
with a return (decimal 13) and then testing
for it before printing. If you wanted to
reconstruct strings from the file, you could
do so by using a string variable to

accumulate characters, stopping when a
return was encountered. You'd need to test
to be sure you hadn't overflowed the 255
character 1limit.

This program has one serious deficiency,
however. Printing arbitrary characters from
a file (especially a data file) can have
weird consequences when the output device is
the console, as it is in the example
program. The console uses lots of different
control sequences to perform functions,
including setting windows and changing from
black and white to color text modes. Also,
a byte can contain 256 different characters,
and the ASCII character set defines only
128. Clearly, we need a safe and consistent
way to display any byte readable from a
file. So, like most programs that start out
short and simple, this last one's about to
get complex:

5 INPUT"File to dump: ";a$

10 IF a$="" THEN 95

15 OPEN#1,a$

20 INPUT"File for output: ";a$
25 OPEN#2,a$

30 ON EOF#1 LET eof.occurred=1:

GOTO 80
35 bytes=0:eof.occurred=0
40 line$=""

45 PRINT#2;HEX$(bytes);"-";
HEX$(bytes+31);"";
50 FOR i=1 TO 32

55 GET#1;a$

57 val=ASC(a$):IF val>127 THEN
val=val-128

60 IF val<32 THEN 1ine$=
Tine$+".":ELSE:Tine$=1ine$+
""+CHRS$(val)

65 outhex$=HEX$(ASC(a$))

70 PRINT#2;MID$(outhex$,3,2);

75 NEXT i

80 PRINT#2:PRINT#2;" "+1ine$

85 bytes=bytes+32

90 IF eof.occurred=0 THEN 40
95 CLOSE

120 END

As you scan through the program, note that
in addition to opening the file to be
dumped, we open a second file to which the
output is written. This gives us more
flexibility, and still allows us to use
.console to see the output on the screen.
Line 30 sets up our end-of-file condition,
using the "let" statement to get around the
problem we described earlier, and
demonstrates one other handy thing. We can
embed periods in variable names to improve
readability. It's obvious that
"eof.occurred" is easier to interpret than

13

14

0000-001F

0020-003F

0040-005F

0060-007F

0080-009F

00AO-00Bf

00C0-00DF

00EO-OOFF

0000-001F

0020-003F

0040-005F

0060-007F

0080-009F

00AO-00BF

2E636A0D5420482045202054204820492042204420204220412053204920430D
.cj.T H E T H I R D B A S I C
0D6279205461796C6F7220506F686C6D616EODODOD2E6C6A0D4578706C6F7269
.by Taylor Pohlilman....1jJ.Explori
6E6720427573696E657373204261736963202D205061727420666976650D0D4C
ng Business Basic - Part five..lL
6173742074696D6520492064726F70706564207365766572616C2062726F6164
ast time I dropped several broad
2068696E74732061626F7574206E657720736F66747761726520616E64206861
hints about new software and ha
7264776172652068617070656E696E6773206F6E20746865204170706C65202F
rdware happenings on the Apple /
2F2F2E2020486F706566756C6C79206279206E6F7720796F7520686176652078
/ /. Hopefully by now you have h
61642061206368616E636520746F20676F2064<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>