
opczn CI~(?ICZ r 111/1/ ~

Seventh Edition Volume 2, Number 1 ~uly 1983

Diskette Storage Quadrupled: MICRO-SCI 1 s A143 2

Learning PASCAL 3

Pascal and The MICRO-SCI A143 6

Meeting Minutes:

April 8

May 9

June 10

July 11

Business BASIC:

Business BASIC .002 Disk 12

Business BASIC .003 Disk 12

Business BASIC .004 Disk 13

Beginning BASIC Lesson 3 14

Exploring Business BASIC Part 6 16

STEMS AND SEEDS 16

------------ oriCJinal applcz /// rs

Driving Your Disk:
or

Shortening the Apple ///Daisy Chain

by Gene Wi 1 son

The Apple Ill computer's on-board drive is
not meant to be the only means of access to
stored data/programs. This is no surprise.
It is a fact of life! What then are the
a 1 ternati ve s?

"Getting By"

Any user trying to "get by" with a single
140k capacity on-board drive will have to
make some major compromises while trying to
cope with a machine that can load in various
'system' and program files (with up to a
'current' limit of 256k) that can readily
exceed the diskette's total storage
capacity. Simple tasks such as copying a
diskette can become very frustrating affairs
as the user is introduced to frequent 'disk
swapping'. In all fairness, some programs
wi 11 run if a "two- stage boot" i s used
(which usually involves putting the 'system'
onto the first diskette, then swapping to a
second 'program' disk). PASCAL? No problem;
it simply does not tolerate the single drive
environment. Forget it! Clearly then,
'avoidance' is not a solution.

The Elegant Solution

If you are willing to 'double' the purchase
price of the machine, the ProFile hard disk
is sheer delight. With high speed access to
over five million bytes of stored data and
programs, the ProFile is certainly worth
considering. There is the limitatiun of
disk back-up. How do you channel 5M bytes
through that 140k built-in drive? Depending
on your 'back-up' needs, this could lead to
some "heavy" disk swapping! We'd better
keep 1 ooki ng.

The 'Company' Solution

App 1 e Computer, Inc. i s more than happy to
provide up to three external drives
(daisy-chained, one behind the other), to
give the 'system' up to 560k bytes of
'floppy disk' storage. Just think of the
pile of units three high, the cost of all
that hardware, and 'loading' up to four
diskettes into the drives. This isn't the
optimum solution either.

2

The MICRO-SCI Solution
(The answer to my problems
yours, too!)

MICRO-SCI sells several disk drive

and maybe

models for the Apple/// computer. Their
'hottest' unit is the A-143, which
offers 572k of 'floppy' storage. Don
Norris. President of the Business Apple
Group, provided me with this perfect
solution to the 'daisy chain' problem of
getting adequate storage on-line. (The
Business Apple group sells these units, as a
club function, at a substantial savings from
the $659.00 retail price).

Features include double-density.
double-sided (quad density) operation that
boosts the Apple/// to 700k with the first
external unit (.D2). With three of these
(thru .D4) plugged together, the max.
on-line storage becomes a whopping 1.82M
bytes.

One external drive gives adequate storage
for most applications. PASCAL is completely
'up', requiring NO disk swapping at all!

The drive can also be addressed as .X2, so
that standard 140k diskettes can be read (no
writing, thank you). Th i s enables two disk
copying, or running 'canned' programs
requiring two-drive systems.

Initial setup is easy. The required SOS
drivers are included. The instruction
manual is complete, and gives additional
informative tips. One important note here
is that the manual says (ever so clearly)
that the first 'System Parameter' should be
set to ONE Disk I I I drive. "The
MICRO-SCI SOS DRIVER controls all
external drives". If that number should
read "TWO" (through not reading the
instructions the first time thru) then
little happens when trying to 'read' from
the .D2 diskette.

The system won't find much worth reading,
and there will be a list of I/0 errors
indicating that things aren't going well.
Backing up the ProFile? A maximum of nine
diskettes is required. This is a far cry
from the sheer volume (35 to be exact) of
140k diskettes needed for the same task.

What about "double-sided, double-density
diskettes? Expensive? Exotic? Hard to
find, perhaps?

The answer was provided by a Business Apple
Group member. It seems that most quality

diskettes aren't much different on either
side. They are usually checked on one
surface. Many are certified on that surface,
and for an extra price, certification can
extend to the back side as well.
Certification can be either single, or
double density. The bottom line seems to be
that just because your diskette hasn't been
certified for double-density on both sides
doesn't necessarily mean that it won't pass
muster. The easy way to find out is to
'FORMAT' and then 'VERIFY' the diskette for
full 1120 block operation. If there is a
problem, you will be informed!

A word of warning from MICRO-SCI. There
are two Read/Write heads on the A-143.
They are offset from one another. If a 35
track diskette (one with a smaller length
hole) is used, then one head will 'crash'
into the jacket material if the other is
fully extended. Words of wisdom from the
same friend are that he hasn't seen 35 track
openings for a very 1 ong time. Nearly all
diskette jackets are cut for full 40 track
operation. (Just be aware!)

Conclusion

There are a number of solutions to disk
storage on the Apple/// computer. Not all
are equal in scope or cost. An effective
solution is to shorten the 'daisy chain' by
using a "high density" disk drive for
program and data storage. This solution is
not only cost effective, but allows the
Apple/// computer to perform a variety of
tasks which would normally require a 'hard
di sk' •

-Ill-

Any ~bers Missing Back Issues?

Recently we discovered a bug in our Mail
List Manager program that was excluding
certain names from our mailings. The bug has
since been cured but if you happen to be one
of the "Lost Souls", we apologize for any
inconvenience this may have caused you.
Please drop us a short note informing us of
which issues you did not receive and we will
make sure you get them. Thank you for your
patience.

learning Pascal

by Raymond Sjerven

In this article, I will review the
experiences I had in learning Pascal
progra~ming. I had an excellent background
1 n Bas1 c when I started Pascal. I had just
finished writing a comprehensive medical
office package for the Apple/// in Basic.
I'll review the deficiencies I found in
Pascal, how I overcame them, and
additionally recommend some books for
learning Pascal and give some advice on
getting started.

I wrote my medical office management package
entirely in Basic. It was a big package but
it went very smoothly. After the system was
up and running, it took about six months to
get the bugs out of it. Then, I was left
without a programming project. Since
Basic's big fault is lack of speed, I
decided to rewrite the entire office system
in Pascal. Initially, it seemed like a
simple enough project. After all, I had
already worked out all the system
requirements, I was merely translating it
into another language. Such naivete was
short lived.

Learning Pascal requires a whole lot more
than just learning the Pascal version of
Basic words. Pascal is an entire system and
the entire system must be learned before you
can be proficient in it. Also, Pascal is an
Edsel. It is designed to make everybody
happy and subsequently, it makes nobody
happy. Many key processing procedures and
functions do not exist in Pascal.

My first three months of working with Pascal
were a series of frustrations. I discovered
more what Pasal lacked than what Pascal had.
I found that you could only "CATALOG" a
directory from the System.Filer. There was
no "SUB$(" procedure for strings. You could
neither get or set a "PREFIX$". It was
difficult to "CREATE" a file of the right
type without the System. Filer. The "VAL"
and "CONV" functions were missing. The
Pascal "POS" function would not allow you to
start looking anywhere in a string like the
Basic "INSTR" function would. "HEX" and
"TEN" were missing. There was no "HOME",
"INVERSE", "USING", "WINDOW", "RIGHT$(",
"VPOS", "HPOS", or "NORt~AL".

Also, those Basic words which did have
Pascal counterparts were often difficult to
find or behaved in a different manner. For

3

4

example, "ON KBD" in Basic will set up an
interrupt whenever the keyboard is pressed.
In Pascal, the "KEYPRESS" function has to be
repeatedly checked to see if the user has
typed anything yet. In Basic, "ON ERR" can
be used to mask and detect any error and
report it's type. Pascal error checking is
limited. "§SIOCHECK+t" and "IORESULT" are
only available for disc operations. "LOCK"
in Basic has a distinct meaning. The
meaning of "LOCK" in Pascal is dependent on
how the file was initially opened.

After considerable investigation, it became
apparent that Pascal was inadequate for my
needs. I looked for a new solution, and I
found it. "What is it?", you ask. The
surprise answer is, "The Pascal System". To
their credit, the creators of Pascal
realized that they couldn't devise a
language that would make everybody happy.
Therefore, they made it possible for
programmers to easiJy extend the Pascal
language. Pascal programmers can write new
procedures and functions in Assembly
language or Pascal and make them readily
available to all programs through a
System.L i brary. In effect, Pascal becomes
whatever the programmer wants it to be. I
need a data processing Pascal. In Assembly
language and in Pascal, I wrote the
procedures and functions which will enable
me to do the programming I want to do.

My first language extension project was a
"CATALOG" procedure. I elected to do the
procedure as three separate procedures.
"OpenDir" would just check the validity of a
pathname and return a code. "ReadDi r" would
return the directory information one line at
a time. The data would be returned as a
string, along with a code indicating when
the directory was out of data. "Cl oseDi r"
would clean house. By returning the data as
a string, I could use the same procedures to
output to the screen, output to a printer,
or simply to read the disc. By doing one
line at a time, I could also terminate the
operation whenever the desired information
was located. The procedures were written in
a mix of Assembly language and Pascal to
take advantage of the power of each.

The next procedure was "SHORTEN", an
Assembly language procedure to delete the
trailing spaces from a string. The next was
"UPPERCASE", an Assembly language procedure
to make all the letters in a string upper
case.

The next Assembly language procedure was
"SUB". This is somewhat comparable to the

Basic "SUB$(" but more powerful. You pass
to it elements of two bytestreams and an
integer value up to 255. It replaces the
ASCII codes in the first bytestream with
those from the second bytestream. It
doesn't take strings per se, but rather the
elements of a string. For example:

strl:='Jim is tall.';
str2:='Bob';
sub(strl[l],str2[1],3);

§ strl: = 'Bob i s tall • ' t

"SETLEN" is an Assembly language routine
which changes the length of a string.
"SETASC" sets a designated number of bytes
in a bytestream to a designated ASCII code.
For example:

setl en(strl,lO);
setasc(strl[l],65,10);

§ strl:= 'AAAAAAAAAA' t

"RtJustify" is an Assembly language routine
which sets a string to a designated length.
Excess characters are deleted from the left
end of the string. Needed characters are
added to the left end of the string as
spaces. "RtJustZro" does the same thing,
only it fills with zero's on the left. For
example:
x:=5; str(x,strl);
rtjustzro(str1,3); § ---> strl:='005' t
rtjustify(str1,5); § ---> strl:=' 005' t
rtjustify(strl,l); § ---> str1:='5' t

The prefix procedures are "SETPREFIX",
"GETPREFIX", and "PREFIXADD". Here, it is
important to point out that Pascal keeps
track of a prefix separate from SOS. SOS
does a better job than Pascal, so I used it
alone. In order to use the SOS prefix from
a Pascal program, you must "PREFIXADD" all
Pascal file names before they are used.
Otherwise, the Pascal prefix will be used
instead of the SOS prefix. A pathname which
starts with a device name or volume name
will not be affected by "PREFI XADD".
Prefixing is not the only thing done
independently by Pascal and SOS. In most
cases, SOS will do the job better though it
requires an Assembly language SOS call.
Also, SOS calls are not portable to other
computers, Pascal operations are.

The data conversion routines I wrote are
"VAL" for string to integer, "Vali12" for
string to integer[12], "VALR" for string to
real, "DOLLAR" for integer[l2] to money
string, "ValDol" for string (cents) to
integer[l2], "HEX" for integer to

hexidecimal string, and "TEN" for
hexidecimal string to integer.

The screen control procedures are
"SCREENOFF", "SCREENON", "INVERSE",
"NORMAL II, "BEEP", "HOME", "WINDOW",
"NOSCROLL", "SCROLL", and "CURSOR".
Remember, Pascal's screen coordinates are 0
to 79 and 0 to 23 instead of Basic's 1 to 80
and 1 to 24. "WINDOW" takes four integer
values, same as Basic. "CURSOR" returns the
horizontal and vertical screen positions of
the cursor. The Pascal built-in "GOTOXY"
will take you anywhere on the screen. Since
you cannot change horizontal and vertical
positions independently, you may need to
"CURSOR" before you "GOTOXY". This
concludes my list of Pascal procedures. Next
I'll discuss learning Assembly Language and
Pascal.

When I purchased my Pascal package for my
Apple///, I was totally unfamiliar with
Pascal. I had a heck of a time getting
started doing anything. I bought several
Pascal reference books to try to get me
started. They were all worthless. There
isn't anything to know about Pascal that
isn't included in the manuals supplied with
Apple///

Pascal. The Apple/// Pascal Manuals are
the best available. What finally got me
going in Pascal was the examples in the
Apple Manuals. I typed them in exactly.
They \torked. After that I modified them
over and over until I got the feel for the
system.

Unlike Pascal, the Assembly language
information supplied with your Apple///
Pascal system is inadequate. It is however,
absolutely essentual. There are no manuals
on the 6502 processor in your Apple///.
There are many books available on the
standard 5502 processor. The Apple///
Pascal Manuals readily explain the
differences between the standard 6502
processor and the Apple/// processor, but
they tell you very little about standard
6502 Assembly language. I think I bought
every 6502 Assembly language manual written.
I found t~w of them most useful.

"Assembly Language Programming for the Apple
II" by Robert Mottola explains Assembly
language in the most readable form. None of
the examples work on an Apple///, but it

still is a well written, plain language
description of Assembly language. Once
you're beyond basics, "6502 Assembly
Language Programming" by Lance Leventhal is
the preferred book. Mr. Leventhal's
explanations are well organized and concise.
He shows many examples of advanced
programming techniques. To first get the
feel of Assembly language, use the examples
in the Apple/// Pascal Manuals. Once you
have the examples working, use the books to
figure out what they're doing. When you
understand the examples, modify them. Plan
on making lots of mistakes. If you blindly
do something correctly, you won't learn a
thing. The only way to learn anything is to
mess up bad, then figure out how you messed
up. Be warned, some Pascal and Assembly
language routines can destroy all your
records in a flash, so back up.

I am deeply into Pascal programming now. I
don't think I'll ever have as much fun
programming in Pascal as in Basic, but there
are compensations. The quality of the final
Pascal and Assembly program can be a
beautiful thing. I'm done with the
struggling and fussing and• into highly
productive programming. I have my
System.Library where I want it and I'm into
my medical office package rewrite. The
source code for my System.Library is
included.

If you have any questions about how it works
or why it is written the way it is, please
do the following:

First, write your questions on a
listing of the source code.
Second, mail the listing to me c/o
Business Apple Group, along with a
blank diskette. I'll return the source
code to you with documentation added
which will answer your questions.

Send all inquiries to:
Raymond Sjerven
c/o Business Apple Group
1850 Union Street # 494
San Francisco, CA 94123

- Ill -

5

PASCAL and the MICRO-SCI Al43: Or, A Poor
Person's Profile

by Richard Lawler

The instructions for Apple/// PASCAL say
that an external drive is necessary to use
the language system. As it turns out, a
single external Disk/// drive is barely
adequate to efficiently use the Pascal
system for writing extended programs.

The first problem is that the main program,
SYSTEM.PASCAL, must remain in the built-in
drive almost all the time. If you take it
out, you keep getting zapped with messages
to put the disk back in the drive and press
ALPHA LOCK twice. This, coupled with the
problem that the built-in drive cannot hold
all the files that are needed for program
development, means that your external drive
must hold most of the other files like the
editor and the compiler in addition to the
work and data that you are using. You end
up switching disks in and out of the
external drive while the built-in drive
nurses SYSTEM.PASCAL the whole time. The
result is so much disk switching that you
excuse yourself from executing any large
projects on the system.

A possible solution is to buy a Profile.
First• shell out $2000. Then you can put
Pascal up on the Profile with Catalyst or
John Jeppson's patch program from Softalk
Magazine (February 1983). (We'll come back
to that program in a little bit.) But there
is other secondary storage available for the
Apple/// besides a hard disk. Probably the
best value (at one fourth the price of the
Profile) is the Al43 drive from
MICRO-SCI. It uses standard
double-sided disks and holds 560K (that's
1120 blocks) per disk. That's enough room
for the entire Pascal system plus 745 free
blocks which can hold System Utilities,
Quick File or whatever you wish. It plugs
right into the back of your Apple/// or
Disk I I I.

New problems. So you install the Al43
and you have lots more storage but it's
still not all that it could be.
SYSTEM.PASCAL is still stuck in the built-in
drive. The first time the system goes
looking for programs like the editor or the
compiler, it starts searching in the second
drive, then it tries the built-in drive and
it then proceeds down the daisy chain until
it finds the file. This means that if the

6

MICRO-SCI is configured as .03 the
system reads four directories before it
finds the program on the new drive.

Now the easiest solution to the latter
problem would be to install the Al43 as
the second drive in the daisy chain. But
there are problems with that idea if you
have other Disk ///s: CP/M must have the
Al43 last in the chain, and the Al43
cannot be used in Apple][emulation. If
you want to use two disks drives in
emulation mode then you won't want to have
the Al43 second in the chain. Even if
you don't consider these to be important
setbacks and you do install the
MICRO-SCI as the second drive, the
system disk must still remain in the
built-in drive.

But wait: there's John Jeppson's patch
program to put Pascal up on the Profile.

Why not use it to put Pascal completely on
the MICRO-SCI Al43? The first reason
why not is because the program changes the
system volume to the last block device on
the System Configuration program• s list of
drivers. In a standard Al43 setup the
driver module includes a driver (.X3 or .X2
or whatever) that allows the Al43 to
read standard Apple/// 140K disks. The .Xx
driver is after the .Ox driver in the module
and they cannot be rearranged. But
surprisingly this causes no problems perhaps
because the module is loaded by SOS as a
single driver. You just have to make sure
the module of MICRO-SCI drivers is the
last block device in the System
Configuration list.

The other problem is the dual nature of the
MICRO-SCI Al43. It is addressed and
installed like a standard Disk///, but it
has its own driver. (Remember standard Disk
///'s do not have drivers in the SCP. The
system normally finds out how many Disk
///'s you have configured from the System
parameters.) When using the MICRO-SCI
Al43 you have drivers for all external
drives, and you configure the System
parameters for one disk drive (the
built-in).

The Jeppson patch program does not work with
three or more daisy chained drives
configured this way. It works fine though,
if you have only the MICRO-SCI Al43
driver active in the driver file and
configure the System parameters for the
number of standard drives (this is contrary
to the MICRO-SCI instructions). This

means inactivating the drivers for any Disk
Ills before the Al43 on the daisy chain.

Exa.ple: If you had one Disk Ill and an
Al43 in the chain in that order. You
would inactivate the MICRO-SCI driver
for the Disk Ill (.D2) and leave only the
drivers for the A143 (.D3 and .X3)
active in the module. Then set the System
parameter for the number of Disk Ill's to
two (for the built-in and the Disk Ill).

Once you have got the drivers straightened
out, the patch program should work fine.
The second of Jeppson's programs in the same
Softalk article also works fine with the
A143. It makes a subdirectory to hold
all the Pascal system files. Thus it
unclutters the root directory of the system
volume. It also causes the system to look
first at the new system volume when
searching for a program like the editor.
This avoids the annoying search through the
other directories.

These solutions are not perfect. If you
take the system disk out of the new system
drive you may get an execution error #10
next time Pascal comes looking for the
system disk. It is sometimes a fatal crash.
There is little risk of losing data or files
because this only happens when switching
programs, and Pascal makes sure files are
closed. (You can take the system disk out
when using the filer.)

Also, a few programs will not work right
with the modified Pascal (e.g. The Apple
Writer Utilities). So it is a good idea to
keep a standard set of Pascal disks handy
for some instances. (This is in addition to
the back-ups.) Another word of caution. I
had some trouble with IIO errors and bad
blocks using generic diskettes in the
Al43. I recommend using premium,
certified diskettes (such as Verbatim"
Datal i fe") at 1 east for the new system
volume.

This new set-up works quite well. It
provides two completely free drives and a
total of 840K on line. The large size of
the Al43 makes the use of subdirectories
more practical and thus brings order to
volumes that were once quite chaotic. The
two free drives allow simultaneous access to
applications and data or text without any
restrictions imposed by the Pascal system as
to what can be removed. Only the 1120 block
Al43 drive is partially restricted and
it has hundreds of free blocks. With all
this convenience you'll have no more excuses

not to be productive with the Apple Ill
Pascal system.

Notes: When running the patch program,
be sure to input the number of drives as
listed in the System parameters when asked
for the number of configured drives.

The patch program needs a slight
modification to the two-stage boot error
message. Replace the "procedure newMessage"
with this version:

procedure newMessage:

Place new error message in string
begining at $83BO:

begin

Move cursor to (0,23) and beep:
ctrls1 := 'xxxx';

ctrls1[1] := chr(26); ctrls1[2]
: = chr(0);

ctrls1[3] := chr(23); ctrls1[4]
:= chr(7);

Clears to end of line:
ctrl s2 : = 'x' ;
ctrls2[1] := chr(31);

New error message for use with floppy
drive rather that hard disk:

message := concat (ctrls1, 'Put
Pascal system disk in device
',devname, '-Press
RETURN.' ,ctrl s2

buf[3760] := length (message);

for i := 1 to length (message) do

buf[3760 + i] := ord
(message[i]);

end; (* newMessage *)

- Ill-

7

Business Apple Group

Meeting Minutes
for April 20, 1983

The meeting was held at the California State
Bar Association building on Franklin St. in
San Francisco and brought to order at 7:30
pm by Group President Don Norris.

Don opened the meeting with a discussion of
his trip to the recent Applefest held at
Anaheim. He said that after talking to many
Apple/// owners at this and prior
Applefests, it seems that many Ill owners
feel like 'orphans', in that there is little
promotion being done or software being
written for the///.

Don and Group Treasurer Julia Amaral had a
booth at the 'fest and sold 30 Gameport
III's while signing up 40 new members. They
indicated that the/// owners they talked
with were especially glad to see a user
group and publication for the ///.

Don mentioned several hot new products for
the/// that he saw at Anaheim: the
Burtronix "hi-res" graphics dump; and
from Haba Systems, a hard disk based
telephone time and billing system designed
for accountants and lawyers.

The clock chips are still not out yet from
Apple, but may be by the "middle or end of
May". It seems to be anybody' s guess as to
when they will be released from Apple.
Since installation of the chips is
relatively straight forward and they are
available from several sources, it was
decided to have a clock installation clinic
as one of the features next meeting.

Certain 128K ///' s with serial numbers over
100,000 have empty slots that you can plug
appropriate RAM chips into and upgrade to
256K for only around $100. Note this is only
applicable to SOME Ill's with a serial
number over 100,000.

There was a rumor that the 512K machines
would be out by the end of the year. SOS is
designed to support that amount of memory.

There is a new SOS update, 1.30, which gets
rid of some bugs in hi-interrupt operations.
In addition to updating the SOS.KERNEL, the
diskette also has several new drivers. The
format driver makes sure the disk is up to
speed before formatting the disk, which gets

8

rid of the 'Volume Not Found' error some
users had been getting after formatting
diskettes. None of the members had been
informed by their dealers of the upgrade.

The CP/M card was mentioned and Woody
Liswood was the only club member using it.
There is a 2-page list of things to do to
get Wordstar to run using the card; to
be published in the Open Apple Gazette soon.

Jim Linhart brought in a printout he made on
the PKASO graphics system. The Videx
card was mentioned. It features interlacing
and gives up to 160 columns. Jim has
promised us an article on the PKASO card.

Richard Hart talked about Catalyst, a
$149 hard-disk system which allows you to
use several applications programs
simultaneously. He especially liked the
documentation. Ten.inus is a new program
from Quark that allows terminal connection
from within Word Juggler. Discourse
is a printer spooler for $125. These
products are all from Tim Gill at Quark, and
a relational database management system will
also be available from them around the end
of the year.

A Quickfile update to 256K will be
available soon.

Another Anaheim rumor: one of the largest
selling word processors written for the
Apple][is being upgraded to the ///. Word
is that it will enable the user to work on
two files at once through windows.

Although the majority of Apple/// owners
are serious business and professional
people, there are a significant number who
use the emulation diskette to do what Don
calls a 'frontal lobotomy' to their ///s
and are thereby able to indulge in playing
games written for the][. This frivolity
has been considerably enhanced by
Micro-Sci's Gameport Ill, available from
the club at a reduced price. It was
mentioned that Kraft joysticks are the
control device chosen by the serious
gamester.

SOS Reference Manuals and Device Driver
Writers Manuals are available from dealers.

It was mentioned that there may be a///
upgrade announced in May at NCC; probably
featuring enhanced graphics and interlacing.
Perhaps this is the upgraded/// referred to
by Steve Jobs at the Apple stockholders
meeting in January.

Business Apple Group

Meeting ~~inutes
for Hay 10, 1983

The meeting was held at the California Bar
Association on Franklin St. in San
Francisco, and called to order at 7:30pm by
Group President Don Norris.

Don reported that the group sold 9 Gameport
III's and 4 Micro-Sci disc drives at the
recent Applefest in Boston. He also told of
several rumors that he had picked-up on the
trip, the most notable being that
Microsoft is moving their Multiplan
program to the///, and that Visicorp
was dropping development work on the/// to
concentrate on their IBM market. The latter
was contradicted by opposing rumors. Other
rumors: Pie Writer from Hayden
Publishing is moving to the///. New
Versions of Apple Writer and Apple
Speller will be out soon.

Group Vice President Kent Hockabout reported
on two software packages that he had tried
out; Vis-Bridge-Sort and
Vis-Bridge-Report from Solutions,
Inc., Box 989, Montpelier, VT 05602. One
sorts Visicalc files and the other generates
Vi sicalc reports.

Stuart Forsyth reported that he had gone to
the NCC, a large trade show, and found that
it is becoming a showcase for products
announced in advance. Apple had a large new
booth showing Lisa, the///, and //e.
Stuart felt that the display was heavily
communications oriented. There was a
program called ACCESS 3270 featuring
IBM 3270 emulation, and the Applenet
network was demonstrated, available the last
quarter of this year. Apparently no file
server is available yet, so initially
networking will only be possible between
Lisa to Lisa, ///to///, or //e to //e.
Stuart further reported that a new graphics
development tool is available for the///.
Primarily for software development
companies, it features real interlacing. A
records processing service is also available
for database development work.

It was mentioned that the new version of
DBMaster won't run in emulation on the
1//.

Stuart mentioned that although Profile
was designed for the///, it is being

altered for Lisa. Subsequently, some
Profiles may be incompatible.
If the unit is in for repair the factory
will upgrade it.

Don strongly recommends the Micro-Sci
Al43 disk drive with 572K for $535,
available from the club. In the near future,
Catalyst will work off a Micro-Sci
drive, and they and Quark are working
together.

Frances Upton, a consultant, believes that
the/// is about to take off, much like VW
did in 1954. He pointed to signs in stores
that Apple is about to launch a major
promotion.

Jim Linhart mentioned that his/// kept on
working during a recent brown-out that was
measured at 80 volts. He is working with
the PKASO graphics card, which can print
out fotofiles to the Epson printer.

It was reported that Gene Wilson, a
long-time Apple][owner (how about serial
number 144!) finally got an Apple///,
trading his Corvus for it. Don expects great
things from him on the///.

Richard Lawler reported that Pascal goes up
on the A143 Micro-Sci drive using the
Jeppson patch. dBase //works well ~ith
the CP/M card on the///.

Floppy disks will soon be available from the
club at a good price.

Roy Nierenberg, attorney, brought in a
program called SCAT///, from Expanding
Space Software, 4639 SE 34th Ave., Portland,
OR 97202. It allows a master catalog for up
to 100 disks on 1 disk, and includes a
renumber program. Programmed by Harry M.
Sweeney.

Another program for the/// is FYI (For Your
Information), now called Think Tank,
from Living Video Text.

Don mentioned that several people will be
coming out with 68000-chip boards for the
Ill in the Fall. These will increase the
speed of the/// by 5 to 10 times.

VersaForm is coming out with an update.
It will cost $30.

The Axlon RAM disk was mentioned; it
speeds up compiling.

The group software librarian is Stan

9

Guidero. He has Business BASIC Disk #2
available, and is working on #3.
Contributions are needed and appreciated.

The Jeppson Patch was brought up again; it
works by getting the/// to look somewhere
else when it wants to look at the inboard
drive.

Business Apple Group

Meeting Minutes
for June 15, 1983

The meeting was held at the State Bar of
California headquarters, 555 Franklin St.,
San Francisco. Group Treasurer and Demo
Organizer Julia Amaral announced that
ThinkTank would be the evening's main
demonstration, with BPI accounting
packages next month and Apple's new Lisa
machine at the August meeting.

Thirty-seven people were in attendance.

Four monitors were hooked up to one Apple
Ill for the demos, and it was suggested that
a big screen TV would be nice for demos in
the future.

The demonstration of ThinkTank was
presented by David Greene of Living
Videotext, Inc., 450 San Antonio Road, Suite
56, Palo Alto, CA 94306. Phone(415)
857-0511. The program was written by group
member Jonathan Llewellyn and Dave Winer. It
seems that ThinkTank is an "idea processor"
which allows one to generate, organize,
store, and retrieve ideas and information by
using a dynamic outline structure.

Examples of the way it might be used are as
a notebook, address book, appointment
calendar, card file, secretary, or
administrative assistant. It can be used
for database management on a hard disk. It
has its own BIOS and is written largely in
Apple Pascal with machine-language modules.
It is claimed to be ideally suited for the
front-end work of writing, although it is
not as good as a dedicated word-processor
(it doesn't do formatting). Club member
Stuart Forsyth has had the program for
awhile (it was originally called FYI), and
"uses it quite a bit" for such things as
meeting planning and as a calendar.

10

It was announced that there will be a Board
meeting on Monday, July 11 at 7:30 at the
Bar assaociation.

Julia Amaral was commended for the work
she's done on coordinating future demos, and
Richard Lawler volunteered to be the Pascal
program librarian. Other club needs are for
software reviewers, article writers, a
software list keeper, editorial
contributions, a nationwide article
solicitor, and an advertising coordinator.

Group President Don Norris announced that a
new software list for the/// will soon be
available. He then introduced an employee
from Apple who observed that the Third Wave
promo is starting to take hold at Apple,
pointing out that there are over 400
software packages for the///. It was also
noted that a lot of people who develop on
the /// don't communicate or distribute;
that some of the highest quality program
writing is being done on the///; and that
IBM has belatedly picked up the concepts of
drivers and pathnames.

It was confidentially rumored that a new
thing called "Driver's Aid" will be
available soon for easy installation of
drivers on diskettes. We also learned that
the///+ will be out in August or September.
Carolyn also mentioned that she thinks
Catalyst from Quark is an outstanding
program.

Don pointed out that the Gameport III,
available from the club, will work with all
games including Broderbund's popular
Choplifter. Frances Upton noted that the
card may interfere with Word Juggler
operation, however. Micro-Sci was praised
for its support.

Quark is now advertising Ter.inus, an
$89 communications package which operates
from within Word Juggler.

Richard Hart asked the Apple representative
why Apple dealers don't seem to know
anything about the///, and suggested that
an organized response to the marketing
manager for the/// might bring some
results.

Group member and consultant Woody Liswood
demonstrated a program called Selector,
which runs under CP/M and therefore requires
a CP/M card to run on the///. It is
available from Micro-Ap, Inc., 7033 Village
Parkway, Suite 206, Dublin, CA 94566, phone
415-828-6697.

Selector is a fully relational database
system, in a class with dBase][and Condor
which also run under CP/M. For comparison
purposes, consider Quickfile ($100) from
Apple, which runs under SOS; dBase][
(discounted to $400); and Selector ($495).
dBase is the best seller, and is the
standard by which to compare the others.

The programs are used for custom
installation of accounting, inventory, and
other related business needs. Woody
recommends Selector over dBase for two
main reasons: Selector is nine times faster
than dBase, and Selector can have six files
open at once while dBase can only have two.
Quickfile can only have one file open at a
time, which limits its usefullness
considerably. You can have 89-step modules
with Selector. Woody also pointed out that
a Profile hard disk is essential for
operation of the program.

Business Apple Group

Meeting Minutes
for July 20, 1983

The meeting was held at the California Bar
Association on Franklin St. in San
Francisco, and started early with a
demonstration of Dean Witter's new stock
market software.

The new Apple/// magazine ON THREE was
mentioned, and it seems to be largely
con~erned with BASIC and Pascal programming
art1cles and software reviews. Apple
recently included a promo for the magazine
in a mailing to all ///owners (of record).

Francis Upton of Computerland Oakland
announced that dealers have received
instructions for installing our long-awaited
clock chips.

Group Treasurer and Demo Organizer Julia
Amaral then introduced Pete Levy, product
marketing manager at Apple, who was invited
to show us the new BPI accounting
package.

It was emphasized that the package is a new
product, as some members expressed
dissatisfaction with the old one which ran
on the][.

Mr. Levy opened the presentation by pointing
out that accounting products are second in

complexity only to operating systems.

The BPI system requires a hard disk and a
256K machine.

There are four basic accounting system
functions; general ledger, accounts
receivable, accounts payable, and payroll.
~econdary functions might be job costing and
1nventory control. The BPI system has the
a~ility to keep names, addresses and account
h1story. Pete feels that this system will
be contributing to making the next few
months super exciting for the Apple///.

Promo plans for the ///-BPI package were
revealed, inclucing a national print ad
campaign. The four basic modules will be
~vailable in September, with job costing and
1nventory control becoming available in
January.

Pete then presented a slide show and
discussion in detail of the various
components of the system, accompanied with
extensive literature.

Stuart Forsyth asked if a point of sale
module was under development, and it
apparently is not. Business graphics will
not interface with the system. Stuart also
gave his definition of a small business as a
company that can handle their accounting
function on one keyboard. He suggested that
if your company needs more than one keyboard
to go to Unix on the Lisa machine.

The BPI package works with Discourse and
Catalyst.

The competition for BPI is State of the
Art and Great Plains. Compared to BPI,
they are much more customized and therefore
present additional time in set-up.

Pete concluded the presentation by passing
out his business card to everyone present
and suggested that anyone with questions
call his office. Demo diskettes of the
program may be available.

Randa. notes:
Apple File/// is coming. Data files cannot
be transferred from Ill to Lisa.
The///+ is late.

Respectfully submitted,

Charles Coles
Secretary

11

Business BASIC Disk No. 2

Business Apple Group
Apple/// Software Division

DESIGN ••••.•••••• This program is a Character
Generator written by John Jeppson and
appeared in Softalk magazine. The
version we offer was typed in and
de-bugged by Steve Bowles. You can
create and save your own character set.
Programs that are working parts of
DESIGN are:

NEWDOWNLOAD
NEW SET
READCRT. INV
DOWNLOAD. INV
REQUEST. INV
BACKWARD

NEWSET and BACKWARD are font files that can
be read by DESIGN.

DESIGNLETTER ••••• is a text file letter by
Steve Bowles giving further details on
the program. This may be read using
TEXT.FILE.SCRLL.

TEXT.FILE.SCRLL •• This program will allow you
to use the UP, DOWN, LEFT and RIGHT
ARROW Keys to view a text file. This
program originally appeared in Softalk
magazine and was written by Taylor
Pohlman. It was typed in and improved
by Mike Kramer.

HEX.DEC.CONVERT •• A program that will convert
HEX code to DECIMAL code.

CARD.CONVERTER ••• A Utility that works with
Apple Computer's QUICKFILE ///.

CARD.COL.SPRED ••• Works with QUICKFILE ///.

HEX.ASCII.DUMP •• • Will take a text file and
create another text file but will have
ASCII code included.

LIFE ••••••••••••• Also a program by John
Jeppson that appeared in Softalk. It is
a graphic program that requ1~
BGRAF.INV to be on the same disk.

12

Business BASIC Disk No. 3

Business Apple Group
Apple/// Software Division

HELLO ••••••••••••• The Hello program has some
good programming techniques which you
may find useful.

DOC.READER •••••••• This is a file reader that
will allow you to read this file which
was written with Apple Writer///. You
can use the up and down arrow keys to
view the text. Use the ESCAPE key to
exit and catalog this disk.

DISK.DOC •••••••••• The text file containing
this information. This file is written
with Apple Writer///.

CATALOG.MENU •••••• This program converts the
directory to a program menu. It
displays up to 50 files, 13 per page,
which can be run with a single key.
Pages are turned with the SPACE. You
can return to Business BASIC with
ESCAPE. You can also print the catalog
with <P> (Control-P). Be sure your disk
contains READCRT.INV.

LABELER.1.5.X.4 ••• Tired of wondering which
files are on your disk? This program
will print all of your filenames onto
Avery 1.5-inch X 4.0-inch labels. You
are also prompted to give the disk a
DISK NAME (CR will leave this blank).
You are then given the option to print
to <S>creen or <P>rinter. The program
is set up for an Epson MX-100 with
Graphtrax Plus in lines 605-609 which
can be changed to meet the needs of the
user.

LABELER.3.X.5 ••• •• This is similar to
LABELER.1.5.X.4 except it is for Avery
3-inch X 5-inch labels which look nice
on the disk en- velope. It also has an
additional option <F>ree Text which is
a simple text file maker to write your
on proseon the label.

AUTO.INVOICE •••••• Will format Visicalc(TM)
files for output to invoice forms
Example files are included. They are:

FOBLANI283.VC
FOBKAUAI.46.VC
FOB.SHEET.VC
DEMO.DIF

MAKE.CUST.LIST ••• This program creates the
file called CUSTOMERLIST.

CASE.CONVERTER ••• Will convert text files to
all upper case or all lower case.

COMPARE .••••••••• Will compare two programs
or text files for differences. (You
will use CAPTURE.EXEC when operating
COMPARE)

SORT.OEMO.BASIC •• Demonstrates a typical sort
routine as used in Business BASIC.

READ.CAT.DEMO •••• Will read text files and
output it to the screen.

WAR.AND.PEACE •••• War and Peace, written by a
college student, Chris Handy, is a game
of international conflict which places
you in charge of world-wide affairs by
assigning you the role of the President
of the United States. Your goal is to
act in whatever manner necessary to
sustain world wide harmony in the near
future as you match wits with the
computer-guided Soviet Union. See if
you can save the world. (Your own
version of "War Games", Global
Thermonuclear War)

Business BASIC Disk .004

Business Apple Group
Apple/// Software Division

Donated by Or. Raymond Sjerven

This is a letter writer written in Business
BASIC, enabling you to create a document of
up to 160 characters wide and 100 lines
long. After working with word processors
written in Assembly Language, such as Word
Juggler and Apple Writer, you will find it
is noti-ceably SLOWER. But it was written to
be incorporated as part of an overall
integrated medical office management package
and served a very useful purpose for Or.
Sjerven, since at the time there were no
medical software programs available. Dr.
Sjerven has graciously donated this to the
organization to help others out there get
the most out of their ///sand learn just
what you can do with Business BASIC.

Given the speed limitation, it is a straight
forward menu driven program which is easy to
use. The menu's are similiar to those of
the System Utilities Program, ie: an inverse
bar is over one of the menu selections; to
choose that option, merely press <RETURN>.
Other menu options can be selected by moving
the inverse bar with the up and down arrows
to the item of your choice and then pressing
<RETURN>.

It is good programming practice to follow a
standard menu selection, such as the one you
see when using System Utilities Program. It
is easier for the end user to move from one
function of the program to another.

The Mailing List Program is also very user
friendly and easy to follow with out
documentation.

Adding this program to your library will
provide you with many useable programming
techiques.

- Ill -

Your favorite Business BASIC programs are
needed for inclusion in future Business
BASIC diskettes featured on our Public
Domain Library. If your program is used on
a future BASIC diskette, you will receive a
free Business
BASIC diskette.

Order your Business BASIC diskettes now
for only $10.00 each, plus $2.50
postage/handling. Foreign orders should add
$2.00, Canadian $1.00. Foreign orders
should be in US Funds drawn on a US bank or
an International Postal Money Order payable
in US funds.

Save time formatting, copying and labeling
and order a back-up at the same time for
only $5.00.

Order from:
Business Apple Group
1850 Union Street,#494
San Francisco,CA.94123

13

Beginning Business BASIC
~s~n3

by Stan Guidera

Before starting this session, I have some
corrections to make to our last lesson. In
our first program example which we named
ADDIT from Volume 1, Number 6, I listed a
change adding lines 10 and 20. Line 20
should have been line number 35. Also, the
REM statements didn't quite come out the way
I wanted due to formatting problems with
printing. The corrected Trip Cost Program
will be reprinted at the end of this lesson.

To continue with our last lesson, we were
discussing decision making with the
IF-THEN-ELSE statement. This statement is
one of the most powerful available to you in
BASIC. Last issue I stated that the ELSE is
used mainly for clarity and is optional.
Although that is true, the ELSE can be used
to extend the power of the IF-THEN
statement, as in the example that follows.
We can take the two statements:

100 IF S=1 THEN GOTO 500
110 IF S<>1 THEN GOTO 600

Can be written:

100 IF S=1 THEN GOTO 500 :ELSE GOTO 600
OR

100 IF S=1 THEN 500 :ELSE 600

which is not only shorter but cl~arer.

Another use of the IF-THEN-ELSE statement is
the look-up table. The following program
will demonstrate this. Have you got
Business BASIC up and running? You don't!
Come on now. Turn off the TV and go to the
Apple///. Place your seat in the seat of
the chair and start up Business BASIC.

(NOTE: If you're reading this on your way to
work or home, put this away or read
another article until you get to your Apple
///.)

If you're at the Apple/// , turn on the
computer and •••••••••••••• hummm!

I think we have a pseudo code here. What's a
"pseudo code"? Using a pseudo code we can
outline the start of a program. If I were to
write a pseudo code based on the above

14

directions, it might look like this:

IF BASIC = running THEN continue ELSE
IF at home = NO THEN go home ELSE
IF commuting GOTO home
IF TV = on
THEN turn TV off goto Apple ///
IF at Apple///
THEN turn on computer with
Business BASIC
CONTINUE -> Apple /// running Business
BASIC

Well, as you can see, just about ~ny
decision making can be handled by this
statement. Now that you have Business BASIC
up and running here is the program:

)NEW
10 REM *A discount table program*
20 HOME
30 INPUT "Customer discount

(A,B,C OR D) "; DISCOUNT$
40 INPUT "What is the retail

price "; PRICE
50 REM -------LOOKUP TABLE-------
60 IF DISCOUNT$ "A" THEN CREDIT .05
70 IF DISCOUNT$ = "B" THEN CREDIT = .1
80 IF DISCOUNT$ = "C" THEN CREDIT = .15
90 IF DISCOUNT$ = "D" THEN CREDIT = .2
110 SALESPRICE = PRICE-(PRICE * CREDIT)
130 PRINT "The discount

999 END
)RUN

price is ";SALESPRICE

This is a very simple and straightforward
look-up table. Lines 30 and 40 get the
information needed for calculation. Lines
60 thru 90 are the actual look-up table.
When DISCOUNT$ equals your input, then
CREDIT will equal the amount on that line.
If you input the letter B for customer
discount, the program will search up the
look-up table until it reaches line 70.
Finding it true will make CREDIT equal .1
for a 10% discount. The program continues
to line 110 where the actual calculation
takes place, and finally to line 130 were
the results are printed to the screen. Let's
save this program for future use:

)SAVE DISCOUNT

The look-up table has many uses. It could be
used as a program menu. An example follows.

)NEW
10 REM * A MENU PROGRAM *
20 HOME
30 PRINT TAB(17);"** MENU**"
40 PRINT

50 PRINT TAB(25);"1) Section One"
60 PRINT TAB(25);"2) Section Two"
70 PRINT TAB(25);"3) Section Three"
80 PRINT TAB(25);"4) Section Four"
90 PRINT TAB(25);"5) QUIT"
100 PRINT
110 INPUT " Make a selection ";SELECT
120 IF SELECT= "1" THEN 200
130 IF SELECT = "2" THEN 300
140 IF SELECT = "3" THEN 400
150 IF SELECT = "4" THEN 500
160 IF SELECT = "5" THEN 999
200 PRINT "Here's One!"
210 GOTO 999
300 PRINT "Here's Two!"
310 GOTO 999
400 PRINT "Here's Three!"
410 GOTO 999
500 PRINT "Here's Four!"
510 GOTO 999
999 PRINT "GOOD BY!!":END
)RUN

Lines 30 thru 110 prompt you for your choice
and lines 120 to 160 are the look-up table
for your selection (SELECT is the variable
used). Lines 200, 300, 400 and 500 are dummy
lines representing the selected section
which could easily be program sections.
This type of look-up table is sometimes
called a CASE Statement. The IF-THEN-ELSE
Statement gives you two ways to go were the
CASE type can give you several choices.

So that you're not confused, there is no
statement in BASIC that uses the word CASE.
However, some other languages like Pascal do
use the word CASE. If you had many
selection paths to use, the IF-THEN
statement could get rather lengthy. Fear
not, for help is at hand in the guise of the
ON-GOTO statement. You can replace lines 120
thru 160 with one statement. But first,
let's save our existing program. Type:

)SAVE MENU1

Now:

)DEL 120-160

This will remove -lines 120 thru 160.

)LIST

To make sure the computer did its job, next
type:

150 ON SELECT GOTO 200,300,400,500,999

)LIST

)RUN

The program should work exactly the same.
The ON-GOTO looks for the value of the
variable SELECT and moves the pointer which
starts at the first line number in the
statement. A "one" would leave it at the
first number. A "three" would move it to
the third line number in the statement and
so on. This statement can be used with GOSUB
instead of GOTO. A GOSUB is similar to a
GOTO except you must use the word RETURN to
return back to the next line. If we had
used ON SELECT GOSUB 100, 200 etc.,we would
use RETURN in place of the GOTO statement in
the dummy 1 i nes.

Thus line 200 PRINT "Here's One!" would be
followed by 210 RETURN and the same for the
rest of the statements thru line 510. One
word of note: the RETURN sends the computer
back to the line following the line with the
last GOSUB. In our program this is
unfortunately back to line number 200. At
this point the computer will print "Here's
One!" and then finding a RETURN without it's
corresponding GOSUB, it will display an
error message. What we have to do is to add
a new line. Lets add:

190 GOTO 20

Now when the computer RETURNS to the next
line, it will be directed to line 20 which
displays the menu again. Of course line 999
remains the same and ends the program if
QUIT is selected. Well, that's all for now.
Next issue we will continue with
error-trapping using the IF-THEN statement.
Happy programming.

Here is the corrected Trip Cost Program as
promised:

5 HOME
10 PRINT
20 PRINT
30 PRINT

40 PRINT

50 PRINT

"TRIP COST"

"Mi 1 es", "MPG", "Time", "Fuel
Price" ,"Total"

"Traveled","","for trip",
"per.gal.", "Expense"
11 ________ 11 II II 11--------11

•
··--------·· ··-------·· •

100 REM ------------------------------
110 REM Read values from data
120 REM ------------------------------
125
130 READ MILES,MPG,TYME$,FUELPRICE
140
200 REM ------------------------------
210 REM Do calculations
220 REM ------------------------------

15

225
230 TOTAL = MILES I MPG * FUELPRICE
235
300 REM ------------------------------
310 REM Print it out
320 REM ------------------------------
325 :
330 PRINT MILES , MPG , TYME$,

FUELPRICE , TOTAL
335
400 REM ------------------------------
410 REM Do it again
420 REM ------------------------------
425
430 GOTO 130
440
500 REM ------------------------------
510 REM Here's the data
520 REM ------------------------------
525
530 DATA 125,25,"1:30min",1.33
531 DATA 245,25,"2:45min",1.33
532 DATA 578,27,"6:50min",1.33
533 DATA 35,23,"45min",1.34
999 END

-Ill-

STEMS AND SEEDS:

Ed. Note: Well, the votes are in and
it's unanimous. The title for this section
will be STEMS AND SEEDS. Please send us
your items to be included among these other
valuable bits of info.

APPLE WRITER ///And CONTROL-0: -------
When using APPLE WRITER///, sometimes after
attempting the Glossary function
(Control-0), only one line of information
from the Catalog will appear on the screen.
I have found a way to reset the command back
to its normal function. Press Control-0,
chose option 1 and then give a letter like
"E" for the drive number. You will get an
error message. Press return and the system
returns to normal without erasing your text.
You can then Catalog and see the full
catalog instead of only one line.

Gaston Savoie
St. Bruno, Quebec
Canada

16

- Ill -

Exploring Business Basic - Part Six

By Taylor Pohlman
Reprinted from Softalk Magzine

Last episode covered a mixed bag of topics
and ended with a promise to cover some parts
of the new "request" invokable module and
techniques on using "print using." Fear
not all that and more is covered herein,
inciuding some tips on long integer decimal
arithmetic. But first, a few digressions
based on comments some of you made on
previous articles.

Digression Number One. One of the first
articles asserted that random record files
were limited to 32,767 records, the maximum
positive integer value. In fact, ther~ is
no particular limit in SOS on which th1s
Basic limit is based. Basic even allows a
real number to be used as a record number,
but because Basic uses an integer type
internally to keep track of the record
number the value still cannot exceed
32,767: The actual position in the file is
determined by multiplying this record number
by the record size assigned when the file
was originally created (default is 512
bytes). This 32,767 limit on record numbers
does not hold for Pascal. Now that the
Profile hard disk is available, some thought
is being given to removing this restriction.
Speak up if it's been a problem for you.

Digression Number Two. As demonstrated
last time, the "get#" statement in Basic can
be used to read the exact contents of most
files on the Apple Ill, one byte at a time.
We even created a special formatted dump
program to investigate the con~ents . of Basic
"data" files. Some types of d1 sk f1les
cannot be opened by Basic, however. Most
notably, these include Pascal "code" and
"data" files. If you need to examine the
contents of those files from Basic, you can
do so by using the Pascal Filer to change
the file type to ASCII, which Basic knows as
the "text" file. You Pascal prorammers will
enjoy Basic once you try it!

There is another file type which is very
interesting to examine, and Basic will allow
you to open it directly. Those are the
"Catalog" or "Subdirectory" fi 1 es, which you
create from Basic or the Utilities program.
The subdirectory capability of SOS is one of
its most powerful features. If you ~ren't
using subdirectories to group your f1les and
programs logically, you might want to read

the relevant sections of the Basic manual
and the Apple III "Owner's Guide." One
problem with files in Basic, however, is
that it is difficult to discover from a
running program whether or not a given file
or program already exists. There are some
ways using "on err" to work up a solution to
this problem, but nothing very tidy.
However, being able to open and read a
directory or subdirectory allows us to check
on everything before opening a file or
chaining to another program.

Those of you who read last month's article
know about our handy-dandy fi 1 e dump program
using "get#." Let's pick a typical
subdirectory named "my sub" containing the
files "myprogram" and "directorydump."
Using the formatted dump program from last
time, the file contents look something like
Figure 1.

For those of you who did not read last
month's column, this may look bizarre, but
it's really easy. Remember that this is a
byte-by-byte image of the file. The numbers
to the left (like 0000-001F) are the byte
numbers in hexadecimal of that particular
row. Each row contains thirty-two bytes.
The top row in each pair is the actual hex
contents of the file, and the next row is
t he ASCII equivalent characters. If the
byte is a nonprinting character, it is
reresented by a period. This is all fine,
but you will immediately protest that other
than being ab 1 e to spot the subdirectory
name and the file names, the printout is a
big mystery. Business Basic to the rescue!
It turns out that Basic is knowl edgeable of
the contents of directory files, so that
when you open a directory or subdirectory
file, Basic will automatically format the
contents for you, just as it does in the
"catalog" command. The following simple
program will illustrate , on the same
subdirectory we just looked at:

1 INPUT"!Jirectory to dump: ";a$
10 OPEN#1,a$
15 ON EOF#l GOTO 60
20 INPUT#l;a$
30 PRINT LEN(a$) ": "a$
50 GOTO 20
60 CLOSE
70 END

The only thing unusual here is that we
arranged to print the length of each string
that is read, to check for any special
format t ing. The output looks like Figure 2.

Since ,111 the columns are in very

predictable places, it is possible to
extract the information desired easily by
judicious use of the "mid$" function. Also,
since this is a subdirectory, there is no
line showing blocks free and blocks in use.
Try using this program on a volume
directory. The last string read from the
file will contain this information, very
useful if you want to check for imminent
disk full errors. Also, since the volume
directory lists all the subdirectories
(labeled CAT in the file type column) , it is
possi ble to get a full list of all the files
on a volume by successively reading t he
i ndi vi dua 1 subdirectory files. Another
treat for the esoteric members of the
audience is to compare the information in
the hex dump with the formatted output to
discover where and how SOS hides all the
information about files.

New Stuff. As promised last time, we'll
now go briefly into one of the most powerful
new capabilities of Business Basic, the
"request" invokable module. Normally, all
access to SOS files is done through the
"input," "print," "read," "write," and
"get" statements of Basic. Basic interprets
your desires and performs operations called
SOS "calls" to do the actual work of reading
and writing to physical devices. There are
times, however, when the programmer needs
direct access to the information which SOS
has about files, and other times when
certain status and control information needs
to be interrogated or set. More information
about what this information consists of for
a particular driver can be found in the
appropriate reference manual for that
driver.

Of greatest interest t o us now, however, is
the ability to use SOS directly to read and
write data to files. A single SOS "fwrite"
command can transfer up to 64K bytes of data
to a file. Normally Basic allows writing
only one variable at a time, and although it
is possible to put more than one value in a
single "print" or "input" statement, there
are real limits on the amount of data which
can be transferred at one time. This
generally means that arrays of data get
written using "for-next" loops--adequate ,
but hardly a speed-burner.

To hel p solve t his problem in situation s
where performance is at a premium, the
"request" module contains two procedures :
"filread" and "filwrite." They are
documented in tl1e "reque st.doc" file on the
Basi c disk, but for reference, here are the
formats:

17

PERFORM FILREAD(%filnum,@array$,%num-
bytes,@count)

PERFORM FILWRITE(%filnum,@array$,%num-
bytes)

"Filnum" refers to the file number you used
in the "open" statement for the file to be
read or written. It can be any file which
Basic is allowed to open. This includes
device files like .console as well as
disk-based "text" and "data" files. The
percent symbol in front of the "filnum"
indicates that you should either use an
integer variable, or put the % in front of
any constant you use, to insure that an
integer value is passed to the procedure.
"Array$" refers to a string variable which
contains the name of the array which you
wish to read or write. The@ character on
the front of the string variable name
instructs Basic to pass the memory address
of the string, not the actual contents of
the string itself. The invokable module is
responsible for finding out what array name
is in the string, and then locating the
array in memory. The "numbytes" parameter
tells the procedure how many bytes are to be
read or written from the array. In the
"filread" procedure, the extra parameter
"count" allows the procedure to pass back
information about how many bytes were
actually read, in case an "eof" or other
event prevented the reading of the full
amount of data specified. It must be an
integer variable.

One note is important here. These
procedures read and write the exact contents
of arrays. In the case of disk files, there
is no way to read this data back once it is
written, except by using the "filread"
procedure. That is, if you write an integer
array to a "data" file, no type bytes are
placed in the file, just the binary integer
values, one after the other. The same is
true for "text" files. Normal writes to
"text" files convert the binary internal
format to ASCII character format. If you
write a "text" file using "filwrite," the
exact binary data is written. You can
position the file pointer using random
access statements, but once a "filwrite"
starts, it does not respect record
boundaries. Great care must be taken if you
have any ideas about mixing this kind of
data with the normal contents of "text" and
"data" files. A good approach is to use
record 0 of the file to document the use of
"filread" and "filwrite" within an ordinary
file by putting information there about the
types of arrays, their location within the

18

file, their length, and so forth.

Now that we've documented how it works,
let's look at an example which will
demonstrate how it can improve the
performance of your programs.

The following program represents a benchmark
of the time it takes to write a real and an
integer array to a data file:

10 DIM realarray(10,100),intarray%(10,
100)

20 OPEN#1,"test.request"
30 REM fill arrays with random data
40 FOR i=1 TO 10
50 FOR j=1 to 100
60 val=RND(1)*30000:valint%=INT(val)
70 realarray(i,j)=val:intar-

ray%(i,j)=valint%
80 NEXT j,i
90 PRINT" Arrays filled."
100 PRINT"Writing real array with

FOR-NEXT."
110 PRINT"Start time: ";TIME$;
120 FOR i=1 TO 10:FOR j=1 TO 100
130 WRITE#1;realarray(i,j)
140 NEXT j,i
150 PRINT" Stop time: "; TIME$
160 PRINT"Writing integer array with

FOR-NEXT."
170 PRINT"Start time: "; TIME$;
180 FOR i=1 TO 10:FOR j=1 TO 100
190 WRITE#1;intarray%(i,j)
200 NEXT j,i
210 PRINT" Stop time: "; TIME$
220 CLOSE
230 END

As you can see, this is a relatively
straightforward program that writes a
1000-element real array and a 1000-element
integer array to disk. Apologies to those
of you without clock chips. If you run this
program, the timings should look something
like this:

)RUN
Arrays filled.
Writing realarray with FOR-NEXT.
Start time: 13:37:42 Stop Time: 13:38:17
Writing integer array with FOR-NEXT.
Start time: 13:38:17 Stop time: 13:38:38

All this adds up to about thirty-five
seconds to write the real array, and
thirty-one seconds to write the integer
array. A great deal of this time is spent
in the "for-next" loop and in writing each
element separately. Now let's look at the
same program using "filwrite":

10 DIM realarray{10,100),intarray%{10,
100)

20 OPEN#1,"test.request"
25 INVOKE".d1/request.inv"
30 REM fill arrays with random data
40 FOR i=1 TO 10
50 FOR j=1 TO 100
60 val=RND{1)*30000;valint%=INT{val)
70 realarray{i,j)=val:intar-

ray%{i,j)=valint%
80 NEXT j,i
90 PRINT"Arrays filled."
95 array$="real array"
100 PRINT"Writing real array with FIL-

WRITE"
110 PRINT"Start time: ";TIME$;
120 PERFORM filwrite{%1,@array$,%4000)
150 PRINT" Stop time: "; TIME$
160 PRINT"Wri ti ng integer array with

FIL-WRITE"
165 array$="intarray%"
170 PRINT"Start time: "; TIME$;
180 PERFORM filwrite{%1,array$,%2000)
210 PRINT" Stop time: "; TIME$
220 CLOSE
230 END

Notice in the filwrite "perform" statements,
that %1 was used to denote the fact that we
wanted to write to file number 1, and the
string "array$" first contained the array
name "real array" and then "intarray%."
Also, a length of 4000 was used in the case
of the real array {1000 elements at 4 bytes
each) and 2000 in the case of the integer
array {1000 elements at 2 bytes each). The
result when this version is run is quite
dramatic:

)RUN
Arrays filled.
Writing real array with FILWRITE
Start time: 13:54:45 Stop time: 13:54:48
Writing integer array with FILWRITE
Start time: 13:54:48 Stop time: 13:54:49

That's right! Approximately three seconds
were required for the real array, and only
one second for the integer array, between
ten and twenty times faster than the
previous example. Remember, though, that
data written with this technique is readable
only with a similar "filread" statement, and
if you ever lose track of the way in which
it was written, it's tough toenails. Even
with those minor difficulties, you're sure
to find lots of good uses for this new
invokable module.

New Stuff-Part Two. For several months
now you've been promised some information
about the "print using" capabilities of
Business Basic. Rather than go into detail
about every little feature, we'll take a
quick look at the main features, and then
examine a program that shows off some of the
power of "print using." We'll also explore
the use of the long integer data type for
financial accounting applications. That's a
lot to stuff for one section, but here goes:

Like most "print using" implementations in
various dialects of Basic, Business Basic
permits the printing of a list of variables
according to a format described in an
"image" statement. In fact, if you have
programs in Microsoft Basic, Cbasic or most
others with simple "image" statements, they
should convert readily. It is in the
extensions to these simple capabilities
where Business Basic really starts to shine.
The standard format is, as was said, like
the fo 11 owi ng:

10 PRINT USING 20; first$,firstnum,
secondnum%

20 IMAGE AAAAAAAAAAAAAAA,XXX, #####.
##,XXX,#####

In the "image" statement, A reserves a space
for one alphabetic character, X inserts a
blank space, # reserves a space for one
numeric digit, and. tells Basic where to
align and print the decimal point in a
numeric field. Therefore, the example in
line 20 is interpreted as follows:

"Print the string variable "first$" in the
first fifteen positions of the output
record, skip three spaces, then print the
real variable "firstnum" with five digits to
the left of the decimal point, and two
decimal places to the right. Then skip
another three spaces and print the integer
variable "secondnum%" right justified in a
five-digit field."

Assuming the values "t~y test string" for
"first$," 123.443 for "firstnum," and -2345
for "secondnum%," the output would look like
this:

My test string 123.44 -2345

Other questions, like what happens when the
number or string is too big to fit, are best
left to a careful reading of the Basic
reference manual. Now the fun begins.
Business Basic allows considerable
flexibility in the way the simple example

19

20

0000-001F OOOOOOOOE540595355420000000000000000000076000000000000009DA3060F

• • • • e M Y S U B • • • • • • • • • • v • • • • • • • • # • •

0020-003F 000000270D020009000227194D5950524F475241400000000000000982000100

• • I • • • • • • I • M y p R 0 G R A M

0040-00SF A301009DA3070FOOOOE300029DA3070F8100204449524543544F525944554050

••• # •••• c ••• # •••• -DIRECTORYDUMP

0060-007F 000004840006007609009DA3090FOOOOE300029DA3090F810000000000000000

••••••• v ••• # •••• c ••• # •••••..••..

(Figure 1.)

68: MYSUB

68:

(12/29/81) vo

68: TYPE BLKS NAME MODIFIED TIME CREATED TIME EOF
12/29/81 15:07 12/29/81 15:07 419
12/29/81 15:11 12/29/81 15:09 2422

65: BASIC 00001 MYPROGRAM
66: TEXT 00006 DIRECTORYDUMP
68:

(Figure 2.)

Literal Spec

X
I

prints a space
prints a carriage return

"any text" inserts literal strings in the output

Digit Spec

Reserves one digit, leading zeros are suppressed
& Reserves one digit or comma. Commas are inserted every 3 digits
Z Reserves one digit, leading zeros are printed

Special Numeric Specs

+

++

$
$$

**
E

Reserves position for a sign
Prints sign only if negative (default)
Prints "floating sign" in rightmost unused position
Prints "floating sign" only if negative
Reserves position for dollar sign ("$")
Prints "floating dollar sign"
Fills leading spaces with asterisks
Prints the number in scientific or engineering notation

String Specs

A Prints string left-justified in the field
C Prints the string centered in the field
R Prints the string right-justified in the field

(Figure 3.)

above can be expressed. For one thing, it
can be simplified by placing repeat factors
on the specification characters, like this:

20 IMAGE 15A,3X,5#.2#,3X,5#

Another feature is that the "image" string
can be a string value replacing the line
number reference in the "print using"
statement. The following are equivalent:

10 PRINT USING
"15A,3X,5#.2#,3X,5#";first$,firstnum

second-num%
10 format$="15A,3X,5#.2#,3X,5#"
20 PRINT USING format$;first$,firstnum

second-num%

It is this last variation, and the power it
gives us to change the format under program
control, that we will explore in depth a
1 ittl e 1 ater.

So far we have covered the X specification,
called a "literal" spec, the A spec, called
a "string" spec, and the # spec, called a
"digit" spec. Others available are shown in
Figure 3.

As you can see, these options give the
programmer quite a bit of flexibility in
outputting information, especially in
business and scientific applications. What
gives even greater flexibility is the fact
that "print using" works with files, by
using the "print using#n" form of the
statement, and even works with random access
text files by substituting "print
using#n,rec."

One other feature of "print using" is
important to mention. Many business
programmers, especially in accounting
applications, must use integer arithmetic to
ensure "penny accuracy"--no round-off errors
from floating-point calculations. Ordinary
Basics hamper this effort, however, because
"print using" cannot insert decimal points
in integer values. Business Basic has a
special function, used only in "print using"
output lists, to solve this problem. The
function is called "scale," and can be used
with any numeric value to apply a relative
power of ten (decimal point shift) to the
number being printed. The format looks like
this:

SCALE(scalefactor,numericvariable)

For example, the following:

10 longnum&=12345678

20 PRINT USING "7#.2#";SCALE(-2,long
num&)

would result in the outpu.t:

123456.78

To illustrate the use of these features in
business applications, the following program
will be used. We'll set it up to accept
numbers with decimal points in them, convert
them to long integers with a scale factor
based on the number of places to the right
of the decimal point, and then create a
subroutine which can add any two scaled
integers to~ether without loss of precision.
Finally, we 11 set up a routine which uses
"scale" and a "print using" spec in a string
variable to print out the result with the
correct number of decimal places.

First, the routine to input two numbers and
do the conversion and scaling:

10 PRINT:INPUT"First number: ";a$
12 IF a$="" THEN END
15 GOSUB 905
17 IF errorcode THEN PRINT"Range exceed

ed,try again.":GOTO 10
20 seal e. fi rst%=scal e%: fi rst&=a&
25 INPUT"Second number: ";a$
30 GOSUB 905
32 IF errorcode THEN PRINT"Range exceed

ed,try again.":GOTO 25
35 scale.second%=scale%: second&=a&
40 PRINT USING 45;first&,scale.first%
45 IMAGE " first value= ",20#," scale

factor= ",3#
50 PRINT USING 55;second&,scale.second%
55 IMAGE "second value= ",20#," scale

factor= ",3#
60 END
899 REM
900 REM subroutine to convert input to

long integer plus scale
905 errorcode=O:ON ERR errorcode=

ERR:OFF ERR:RETURN
915 x=INSTR(a$,".")
920 IF x=O THEN a&=CONV&(a$):scale

%=0:0FF ERR:RETURN
925 scale%=-(LEN(a$)-x)
930 a$=MID$(a$,1,x-1)+MID$(a$,x+1)
935 a&=CONV&(a$):0FF ERR:RETURN

The subroutine is really pretty simple. It
uses the trusty "instr" function in line 915
to look for a decimal point in the input
string. If none is found (the number is an
integer), then the string is converted to a
long integer, the scale factor is set to
zero, and a return is taken. Note that
conversion errors (such as overflow) are

21

handled by the "on err" statement, which
passes back the errorcode to the calling
program. If a decimal point is found, the
scale factor is set to the number of digit
positions from the point to the end of the
string (line 925) and line 930 and 935
scrunch out the decimal point and convert
the resulting integer to a long integer
value. Once back in the input routine, the
errorcode flag is checked, and if everything
is okay, some simple "print using"
statements print out the result for
comparison. It should be noted that these
routines are not bulletproof but were
deliberately kept simple to illustrate the
major points involved.

Now that we have long integer
representations of these decimal numbers,
with appropriate scale factors, it is
possible to create a routine which will
perform arithmetic on them, even though they
may have different seale factors. The
following routine will illustrate addition:

1000 REM add a& and b& and return result
in sum&

1001 REM use scalea% and scaleb% to re
turn seal esum%

1005 errorcode=O:ON ERR errorcode= ERR:
OFF ERR:RETURN

1010 IF seal ea%=scal eb% THEN sum&
=a&+b&:scalesum%=scalea%:0FF ERR:
RETURN

1020 IF scalea%>scaleb% THEN 1070
1030 factor%=scaleb%-scalea% ·
1040 b&=b&*CONV&(1Q©factor%)
1050 sum&=a&+b&:scalesum%=scalea%:0FF

ERR:RETURN
1070 factor%=scalea%-scaleb%
1080 a&=a&*CONV&(10©factor%)
1090 sum&=a&+b&:scalesum%=scaleb%:0FF

ERR:RETURN

The first thing checked for is if the two
numbers have the same scale factor. If so,
then simple addition is all that is
required, and "scalesum%" (the resulting
scale factor from the operation) is set to
the common scale. If the scale factors are
unequal, then the two scale factors must be
adjusted to be the same by multiplying the
one with the larger scale by the power of
ten required to make them equal in scale.
An example will clarify:

Initial no. Integer value Scale factor

12345.6789 123456789 -4
98765.43 9876543 -2

22

Obviously, just adding the two integers will
produce meaningless results. But
multiplying the second number by 100 and
adjusting the scale factor correspondingly
to -4 will make it possible to add them
directly. The situation now looks like
this:

New format Integer value Scale factor

12345.6789
98765.4300

123456789 -4
987654300 -4

The sum of the integer values is 1111111089
and, after applying the scale factor of -4,
the result is 111111.1089. You should
realize that most floating-point Basics, no
matter how many digits they allow in double
precision mode, have extreme difficulty with
these types of problems. The reasons are
complex, but they have to do with the fact
that there are some decimal fractions which
cannot be represented exactly with a binary
floating-point (real) number. This leads to
potential loss of precision in the last
decimal place, rendering the answer
inaccurate. While one place out of ten or
fifteen mi ght not be critical in an
empi ri cal scientific calculation,
accountants are fussy about all the pennies
(or in the example above, tenths of mils)
adding up exactly. Note also that scale
factors can just as easily be positive.
That is, 567890000 could be represented as
56789 with a scale factor of 4. The
principles of addition would work exactly
the same as in the example with decimal
fractions.

With the techniques described above, you can
now figure out the way the subroutine works.
One final note, though. In line 1040 and
1080 we use an expression "10©factor%" to
represent the power of ten to be multiplied
by the long integer value. Mixed mode
expressions are not allowed between long
integers and other data types, so the
"conv&" function was used first to convert
the power of ten expression to a long
integer.

Now that we have a subroutine which will
correctly add two scaled numbers, we can put
it into our previous input program. The
combination looks like this:

5 PRINT"Test of extended precision add
routines" :PRINT

10 PRINT:INPUT"First number: ";a$
12 IF a$="" THEN END
15 GOSUB 905
17 IF errorcode THEN PRINT"Range exceed

ed, try again.":GOTO 10
20 seal e. fi rst%=seal e%: fi rst&=a&
25 INPUT"Seeond number: ";a$
30 GOSUB 905
32 IF erroreode THEN PRINT"Range exceed

ed, try again.":GOTO 25
35 scale.second%=scale%: second&=a&
40 PRINT USING 45;first&,scale. first%
45 IMAGE " first value= ",20#," scale

factor=" ,3#
50 PRINT USING 55;second&,scal e.sec

ond%
55 IMAGE"second value=",20#,"scale fac

tor= ",3#
60 sea 1 e%= seal e. first%: seal eb%= seal e.

second%
65 a&=first&:b&=second&
70 GOSUB 1010
72 IF errorcode THEN PRINT"Range of

precision exceeded, try again." :
GOTO 10

75 PRINT"sum= ";sum&;" scale factor
=";seal esum%

105 GOTO 10
899 REM
900 REM subroutine to convert input to

long integer plus scale
905 errorcode=O:ON ERR errorcode=

ERR:OFF ERR :RETURN
915 x=INSTR(a$,".")
920 If x=O THEN a&=CONV&(a$)

:seale%=0:0FF ERR :RETURN
925 scale%=-(LEN(a$)-x)
930 a$=MID$(a$,1,x-1)+MID$(a$,x+1)
935 a&=CONV&(a$):0FF ERR:RETURN
999 REt~

1000 REM add a& and b& and return re
sult in sum&

1001 REM use scale% and scaleb% to re
turn seal esum%

1005 errorcode=O:ON ERR errorcode=
ERR:OFF ERR:RETURN

1010 IF scalea%=scaleb% THEN sum&=
a&+b&:scalesum%=scalea%: 0FF
ERR :RETURN

1020 IF scalea%> scaleb% THEN 1070
1030 factor%=scaleb%-scalea%
1040 b&=b&*CONV&(10©factor%)
1050 sum&=a&+b&:scalesum%=scale

a%:0FF ERR:RETURN
1070 factor%=scalea%-scaleb%
1080 a&=a&*CONV&(10©factor%)
1090 sum&=a&+b&:scal esum

%= scaleb%:0FF ERR :RETURN

Notice that, in addition to adding the
subroutine at line 1000, we have some codes
at 60 through 105 to set up the call to the
subroutine and then print out t he results.
Th i s is all fine, but this was supposed to
be an exercise in advanced uses of the
"print using" statement. An ideal use of

"print using" here would be to print out the
results of the addition, with the decimal
point in the proper place. But, since our
answers can range from nineteen digits to
the left of the decimal place to nineteen
digits to the right, and only a total of
thirty-two positions are allowed in a single
numeri c "image" f i eld, i t is not possible to
create a si ngle format which will handle all
possible variations. Here's where Business
Basi c 's ability t o have variable format
definitions really comes i n handy. The
fol l owi ng rout ine can be added t o t he
program above to print the result correctly,
no matter what the scal e factor:

80 x%=LEN(CONV$(sum&)):neg%=CONV
%(sum&<O)

85 IF x%+scal esum%-neg%<=0 THEN
form$="2#" :ELSE:form$=CONV $(x%+
seal esum%)+"#"

90 IF seal esum%>=0 THEN 97
95 form$=form$+" .• "+CONV$(ABS(scalesum

%))+"#"
97 PRINT "scaled result of sum:";
100 PRINT USING form$; SCALE

(seal esum% , sum&)

Line 80 gets the length of the number to be
printed in "x%" and "neg%" is a flag to tell
if the number is negative (the minus sign
will require an extra position in the
output). Line 85 uses this information,
including the value of "scalesum%," to
figure out how many positions are needed to
the left of the decimal point. Line 85 then
creates "form$," the output format
specification, to match. Line 90 checks to
see if "scalesum%" is positive (if value is
a true integer). If so, it's finished.
Otherwise, line 95 creates the rest of the
forma t spec by including the proper number
of positions to the right of the decimal
point. Lines 97 and 100 then print out the
long integer using the "seale" function to
place the decimal point properly.

Voila! This routine should give exactly
correct answers over its range of values.
One thi ng you mi ght want to add to help in
tracing what the program is doing i s to
print out the value of "form$" along with
the result in line 100 . Also, for your
personal entertainment, you might want t o
create subroutines for subtraction and
multiplication. Division can be done using
a combination of the "div" and "mod"
operators, but you will become embroi 1 ed in
what t o do about rounding off the results of
certain divisions. Multiplication ha s the
virtue of being exactly correct with i n the
possible range of values.

23

opczn a~plcz ~
qazcz~tcz lQJ

1850 Union Street

San Francisco CA 94123

Original Apple I /Irs

CLUB INFORMATION

MEETINGS

Meetings are held at 7:30 PM on the third WedneSday
of each month. The location is the Board room of the
California Bar Association offices at 555 Franklin Street
in San Francisco.

MEMBERSHIP

Annual membership dues are $30 from the date applica
tion received. Your check payable to the Original Apple
//Irs may be mailed to the address below.

OPEN APPLE GAZETTE POLICY

All manuscripts, photographs, and other materials are
submitted free and released for publication. They be
come the property of the Original Apple I I Irs and the
Open Apple Gazette. Authors should clearly mark all
material submitted for publication oo that credit may
be given.
The publishers/editors do not necessarily agree with, nor
stand responsible for, opinions expressed or implied by
other than themselves in this publication.
The Original Apple ///rs is a non-profit organization
comprised of, and supported by, Apple I I I owners and
users. The Original Apple I I Irs endeavors to aid other
Apple I I I users through this educational publication -
"OPEN APPLE GAZETTE." Address all inquiries to:
Original Apple I I Irs, 1850 Union Street #494, San Fran
cisco, CA 94123.

REPRINT POLICY

All articles appearing in the Open Apple Gazette not
copyrighted by the author may be reprinted by another
non-profit Apple user group so long as proper credit is
given to both the Open Apple Gazette and the author.

Proper credit is defined as article title, author, and the
words "Printed from VOL X, NO Y of the Open Apple
Gazette." Permission to reprint a copyrighted article
may be obtained by writing to the author c/o the Original
Apple I I /rs.

ARTICLE SUBMISSION POLICY

The Open Apple Gazette welcomes any and all articles
dealing with the Apple /// Computer and its associated
hardware and software. Articles should be submitted
on diskette as an ACSll text file, such as those produced
by either Word Juggler, Apple Writer /// or the Pascal
Editor. Typewritten double spaced articles are also
acceptable.

PRESIDENT
VICE PRESIDENT
TREASURER
SECRETARY
CONSULTANTS

ASSISTANT EDITOR

OFFICERS

Don Norris
Kent Hockabout

Julia Amaral
Charles Coles
Ransom Fields
Ken Silverman

Stuart Henderson

Back Issues

Volume 1, Number 1
Volume 1, Numbers 2-6

(415) 921-377 4
(415)521-5414

(415) 383-3088
(415) 386-8623

$3.00 each
$4.00 each

Mail Requests for Back Issues to:

Open Apple Gazette
1850 Union Street, #494
San Francisco, CA 94123

-Ill-

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024

