
Exploring 
Business 
BASIC 

By Taylor Pohlman 



The following document is produced by A.P.P.L.E. with copyright for the 
document based on the release of the articles contained in this book having 
been released into the public domain by the author:


The Third Basic 

By Taylor Pohlman 

A total of 23 articles about Apple III Business Basic originally published in 
Softalk Magazine.  The articles and their accompanying programs are being 
presented in a series of five double-sided disks by Washington Apple Pi's III 
SIG, with the permission of the author.


This document was produced as a result of a necessity to have these articles in 
paper format for ease of access while not online.  Physical production of the 
document was performed by Bill Martens.  No claim to copyright over the 
material is made.




TAYLOR POHLMAN 
                                (Originally published by TAU in its 1987

                                 Phase III Conference Program/Seminar Guide)


        Taylor has worked at Apple Computer at least twice. In his last job (in 1987 
or so), he managed a group of systems engineers, product managers and 
technical  development staff within the Business Development department.


His group  supports technical requirements of programs which will help Apple 
get into new markets. Activities of the group include Strategic Alliances, joint 
development of special products for Apple's markets and other new  
applications of technology.


        He began his career with computers as a high school teacher of math and 
computer science in Texas, after graduating from the University of Texas.


He subsequently held several positions in educational computing, both on the 
administrative side and the instructional side, culminating in managing the 
Instructional Computer Network, a service to public schools in northeast Texas.


        In 1977 he joined Hewlett-Packard Company in education marketing and 
held subsequent positions in product marketing & product support, leaving in 
1979 to join Apple Computer as Education Major Accounts Manager.  Soon 
after, he became Apple ][ Product Marketing Manager, where he was responsible 
for definition of the Apple ][ enhancement program (][e). He then created Apple's


product support group, which had the charter for product training and third 
party development support.  During this time, he developed Apple's third-party 
software licensing and technical support program.  Mr. Pohlman then became 
Apple III Product marketing Manager in 1981, to manage the "Reintroduction" of 
the Apple III computer.  It was at this time that he began the series "The Third 
Basic", a column of programming tips on Apple III Business Basic, which ran for 
two years in Softalk magazine.


        Mr. Pohlman left Apple in late 1982 to found Forethought, Inc. and served 
as its first President, subsequently becoming Chairman of the Board. The 
company was started to focus on the "next generation" of graphic user 
interfaces for application software, and published four products for Macintosh, 
including FileMaker.


        After leaving Forethought in 1985, Mr. Pohlman was co-founder and 
president of Regent Systems. With his partner, he designed and developed MAP, 
the Macintosh-based system currently used world-wide by Bank of America for 
internal auditing. He also managed the development of GS-BASIC, the new 
BASIC language interpreter for the Apple //GS (based on the Apple III's 
Business Basic). Additionally, he developed a Macintosh program for automation 



of medical laboratory test instruments. In 1986, Pohlman sold his interest in 
Regent Systems and rejoined Apple.


        The last we heard, Taylor Pohlman lived in Sunnyvale, California with a 
teenage Daughter and a cocker spaniel puppy.  




NOTES ABOUT THE DISK SET 
        On these disks you will find all 23 articles as written by Mr. Pohlman, as 
well as every BUSINESS BASIC program written for use with those articles.  We 
have placed these articles within subdirectories on each disk. For example, on 
this disk, the first of five, you will find on side one subdirectories for the first two 
articles.  They are "Article1" and "Article2."


        Within those subdirectories, you'll find the articles themselves, in this case 
named "Article.1" and Article.2." and where appropriate additional files that 
include the BUSINESS BASIC programs as described in the article.


The Menu.Maker program will allow you to read each article and to run the 
programs should you so desire.  BUT PLEASE NOTE:  We would recommend 
you copy the programs to a separate disk and run them from that disk. Since 
many of these programs are basically examples to show certain things that 
BUSINESS BASIC can do, the original program could be damaged. Further, you 
may need to include other files, like BGRAF.INV or other invokable module in 
order to properly run these programs.  Where space permits, we will include 
these on the disk at the directory level.  But you will have to use System Utilities 
to transfer them to the appropriate disk.


        Please also note that in order to save space, we have made 3BSB-01 a 
self-booting disk. The rest of the Third Basic disks will include Menu.Maker but 
not the SOS.Kernal, SOS.Driver and SOS.Interp files needed for your Apple III to 
boot up.  Since Menu.Maker will read and run programs from any disk placed 
in .D1, all you have to do is boot this disk (or any other Bootable III SIG PD 
BUSINESS BASIC disk) and then place the proper disk in .D1 to get your menu.


AGAIN:  WE WOULD RECOMMEND YOU COPY ANY APPROPRIATE BASIC 
PROGRAMS TO A SEPARATE DISK AND SET THEM UP TO RUN PROPERLY 
FROM THERE.


FINALLY 

        These articles on BUSINESS BASIC are excellent and are, perhaps, the 
best series ever published about the language.  They will also serve as an 
excellent beginning point for anyone interested in learning the new GS-BASIC, 
which was developed from BUSINESS BASIC.  Many of the programs written 
with the III version should, with few changes, work on the GS version.  GS-
BASIC programs, however will not work on the III in many cases because it is 
much more powerful and was designed to take advantage of the GS Toolkit and 
other features of that machine (which are not in the III). 



ARTICLES BY SUBJECT: 
ARTICLE 1:  Introduction; Business Basic and SOS; Program to read text files.


ARTICLE 2:  SOS file system revisited; File-to-file transfer program; Screen print 
program.


ARTICLE 3:  Indexing techniques; Data files; Parts distribution program.


ARTICLE 4:  Parts program continues; Business Basic 1.1; New Invokables.


ARTICLE 5:  Mixed bag: Programming style and philosophy; Get statement; Hex 
to decimal dump program.


ARTICLE 6:  Random record files; Get# statement; Request Invokable and 
programs to illustrate.


ARTICLE 7:  Graphics introduction and programs to illustrate.


ARTICLE 8:  More on Graphics; Flashing cursor; Writing on the screen.


ARTICLE 9:  Hashing records (producing a random record number from an 
arbitrary collection of characters called a key value).


ARTICLE 10: The Apple III Console Driver; Request.Inv Invokable.


ARTICLE 11: More on the Console: Four way scrolling through text files.


ARTICLE 12: More on the Console: Data entry screens.


ARTICLE 13: General purpose keyboard read program.


ARTICLE 14: Sorting techniques in Basic.


ARTICLE 15: More sorting techniques in Basic.


ARTICLE 16: Data base manager program showing how binary tree data 
structures can be used for data access.


ARTICLE 17: High Res character set and shape/font editor.


ARTICLE 18: Character set animation; Bug Mania.


ARTICLE 19: More on character set animation.


ARTICLE 20: More on Apple III graphics: Bit mapped displays (140x192 color).


ARTICLE 21: Proportional spacing and text font appearance.


ARTICLE 22: Insert mode editing in Basic.


ARTICLE 23: More on insert mode editing: Making the underline "wink" and 
shifting up the five lower-case characters.




CONTENTS 

Exploring Business BASIC, Part I  1
Setting the Stage	 
.....................................................................2
Getting Started	 
........................................................................4

Exploring Business BASIC, Part II  11
The SOS File System Revisited	 
.............................................11
More on Files	 
.........................................................................14
A Final Challenge	 
...................................................................17

Exploring Business BASIC, Part III  21
Looking Back	 
.........................................................................21
The new Parts Program	 
.........................................................22
Business Basic "DATA" files	 
..................................................27

Exploring Business Basic - Part IV  31
The Program as it Currently Stands	 
.......................................31
INDEXING AND SORTING	 
.....................................................38
THE NEW GOODIES	 
..............................................................41
New language additions	 
........................................................41
NEW INVOKABLE MODULES	 
...............................................42
Closing thoughts	 
....................................................................42

Exploring Business Basic - Part V  45
Our Mixed Bag	 
.......................................................................45
Bag Item Number Two	 
...........................................................47
Final Thoughts (Bottom of the Bag)	 
.......................................55

Exploring Business Basic, Part VI  57
Digression Number One	 
........................................................57
Digression Number Two	 
.........................................................57
New Stuff	 
...............................................................................59



New Stuff - Part Two	 
..............................................................62
Literal Spec	 
...................................................................64
Digit Spec	 
......................................................................64
Special Numeric Specs	 
.................................................64
String Specs	 
..................................................................64

Exploring Business Basic, Part VII  71
The BGRAF Invokable Module	 
..............................................71
Getting Around in Business Basic	 
.........................................74

Exploring Business Basic, Part VII  83

Exploring Business Basic - Part IX  93
Department of Good Ideas	 
....................................................93
Slinging the Hash	 
...................................................................93
Summing up	 
..........................................................................99

Hash rule number 1	 
.......................................................99
Hash rule number 2	 
.......................................................99
Hash rule number 3	 
.......................................................99

A Real Program	 
....................................................................100
At Last, The End	 
..................................................................108
Really The End	 
.....................................................................108

Exploring Business Basic - Part X  111
On With It	 
.............................................................................111
Basic with "hot SOS"	 
...........................................................111
Some further CONSOLEation	 
..............................................112
Still Curious?	 
........................................................................115
Getting Control	 
....................................................................118
Homework!	 
..........................................................................124
Exploring Business Basic, Part XI	 
........................................129
Digging Out	 
..........................................................................129



Digging Out	 
..........................................................................129
Something Useful from All This	 
...........................................134
One last challenge	 
...............................................................142

Exploring Business Basic, Part XII  143
BARGAIN BASEMENT LOGIC	 
.............................................145
ROLL UP YOUR SLEEVES	 
..................................................146
FUNNY CHARACTERS	 
........................................................148
WHEW!	 
.................................................................................149
TRY THIS ONE	 
.....................................................................149
FINAL LAST CHALLENGE (MAYBE)	 
....................................150
Exploring Business Basic - Part XIII	 
....................................151

Exploring Business Basic, Part XIV  157
Sorting it all out	 
....................................................................157
I'm forever showing bubbles	 
...............................................157
Getting the point	 
..................................................................159
A Mild Speed Lift	 
.................................................................161
Sort of a new way to sort	 
.....................................................162

Exploring Business Basic, Part XV  169
Sifting through the Sorts	 
......................................................169
The Big Shuffle	 
....................................................................169
Living in a Tree	 
.....................................................................173
Graduation from B-tree University	 
.......................................176
To "B-tree" or not to "B-tree"	 
..............................................179

Exploring Business Basic, Part XVI  181
Catching our Breath	 
.............................................................181
Remembrance of things past	 
..............................................181
Bird's eye view of our Tree	 
...................................................182
Greener Pastures	 
.................................................................195



Exploring Business Basic, Part XVII  197
An Immediate Apology	 
........................................................197
An Immediate Digression	 
.....................................................197
And Now, On With the Show	 
...............................................198
General Operation	 
...............................................................198
Getting a Bit Under Control	 
.................................................198
A Routine a Day	 
...................................................................199
Getting Loaded in Hi-res	 
.....................................................200
See it all	 
...............................................................................201
Putting the Bits and Bytes to Bed	 
.......................................201
Other Interesting Stuff	 
..........................................................202
Which brings us to Edit, Clear and Invert.	 
...........................202
At Long Last, the program!	 
..................................................203

Exploring Business Basic, Part XVIII  215
Looking Through a Glass Backward	 
....................................215
Doing the Sideways Scroll	 
...................................................215
"Oh Scroll a Mio"	 
.................................................................217
Can't Tell One Bug from Another Without a Program	 
..........218
Business BASIC Gets a Little Gamey	 
..................................220
Getting Underway in Bugland	 
..............................................224
A Game a Day keeps Pac-man Away	 
..................................226

Exploring Business Basic, Part XIX  229
But First, A Word from our Sponsors	 
...................................229
Back to Work	 
.......................................................................230
Some Relevance Rears its Ugly Head	 
.................................232
That's All Fine, but was it Good for You?	 
............................235
It Ain't the Mode, it's the Motion	 
.........................................236
At Long Last, Bug	 
................................................................239
RAMbling Onward	 
................................................................239



Getting Your (Color) Priorities Straight	 
.................................240

Exploring Business Basic, Part XX  247
A Last Issue from Last Time	 
................................................247
Can't Tell One Pixel from Another Without a Bit Map	 
..........252
Setting your Priorities	 
..........................................................252
Becoming a Fan of Hi-res Graphics	 
....................................253
The Bugs are Back	 
..............................................................256
Onward, Ever Diagonally	 
.....................................................258
Wrapping It All Up and Bouncing It Off a Wall	 
.....................261
A Cheerful Farewell	 
..............................................................264

Exploring Business Basic - Part XXI  265
And Now, Back to our Regularly Scheduled Program	 
.........265
Farewell, Faithful BGRAF.INV	 
...............................................265
Beauty in "Proportion" to its Cost	 
.......................................266
Beauty on a Budget	 
.............................................................267
Back Home from the Subroutines	 
.......................................271
Now for Something Completely Useful	 
...............................274
Farewell to the Fun Stuff	 
......................................................278
Whats's Next	 
.......................................................................279

Exploring Business Basic, Part XXII  281
Getting Some Utility from Basic	 
..........................................281
Shift to the Left, Shift to the Right...	 
....................................281
Getting There is Half the Fun	 
...............................................282
Two for "T"	 
...........................................................................285
The Program	 
........................................................................286
Into the Home Stretch	 
.........................................................290

Exploring Business Basic - Part XXIII  293
Quick as a Wink	 
...................................................................293



Programming Inverse	 
...........................................................294
Dividing up the Work	 
............................................................294
Descending Ever Upward	 
....................................................297
Spreading the Word	 
.............................................................298
Exiting Data Entry	 
................................................................302

Appendix -- Additional Information 303



Exploring Business BASIC, Part I 
Welcome to a series of articles on Apple III Business BASIC, the powerful new 
cousin to Applesoft, the extended BASIC that many of you know and love on the 
Apple II.


My goal in this series is to make Business BASIC a useful, familiar tool for you.  
To do this, I'll pass along ideas that will help make the task of creating 
applications programs simpler and more efficient.  Because Business BASIC 
and the Apple III itself are new to many of you, a lot of time will be spent 
throughout the series relating programming hints and techniques for Business 
BASIC to the more familiar environment of Applesoft.  In fact, the ground rules of 
this series will be that you should be fairly familiar with the BASIC language 
commands and keywords, and be able to create simple programs already. 
Without those skills as a starting point, this series would quickly grow to be an 
eighty part serialization of "War and Peace".


If you are not that familiar with BASIC, your best bet is to start with the 
Applesoft Tutorial Manual.  If you have an Apple III, simply boot the Emulation 
mode disk, select the Applesoft option and then insert the DOS 3.3 Master 
Diskette.  Presto, you are now in Applesoft and can follow the Tutorial's 
instructions to get up to speed in BASIC.  Once you are familiar with BASIC and 
its syntax (a word you are guaranteed to encounter in learning the language) 
you'll be ready to rip through the rest of these articles.


If you are already familiar with Applesoft or another BASIC, you should be ready 
to dig right in to Business BASIC.  The series will assume that you have an 
Apple III in front of you in order to try out all the things that will be discussed.  
For those of you in that fortunate position, the fun is just starting.


Many of you have an Apple II and are wondering if you need an Apple III for that 
big new application or as an office complement to your Apple II at home. For 
you, this series should reveal the power of the Apple III, and its relationship to 
the Apple II.  Hopefully that will help you make your decision.  Others of you will 
just be wondering what all the fuss is about, and for you we wish happy reading.  
However, no matter what your situation, you should be able to gain an 
understanding of the power and features of Business BASIC,  and maybe pick 
up some hints you can use in programming.


In any case, I welcome your comments, suggestions, gripes, or whatever 
concerning this column and Business BASIC in general.  If you've written 
interesting routines you'd like to share, or converted programs from another 
variety of BASIC, or simply would like to do a core dump about your favorite 
subject, write to me in care of Softalk.  Items of general interest will find their 
way into these pages, insuring immortality for both of us.


1



One last comment should be made, especially to those who are not business 
programmers.  Why is Business BASIC named Business BASIC?  As any 
product manager will tell you, dreaming up a product name ranks with dodging 
trolley cars and escaping from Alcatraz on the all-time "must do" list.  Thus it 
was with Business BASIC.  Certainly it's true that scientists, engineers, 
educators, hobbyists and lots more of you who are writing "non-business" 
applications will find just what you need in Business BASIC.  As you stick with 
us in this and coming articles, however, you will see that many of Business 
BASIC's most powerful features were specifically designed to meet the needs of 
business applications, and permit the easy conversion of programs written in 
other business oriented BASIC dialects.


One of the other things we'll do along our way is to show how syntax in some of 
these other BASICs can be translated to Business BASIC.  This will help you use 
the many reference and tutorial manuals that are on the market which use 
examples from other versions of BASIC.  These conversion tips will also include 
BASIC dialects found on minicomputers and mainframes.


Well, so much for preparation.  Now let's get a look at this dragon we are about 
to slay...


Setting the Stage 
Like any other sophisticated computer system, the Apple III takes a layered 
approach to the operating system, languages and utilities which "animate" its 
hardware.  By layered we mean that there are a number of levels of software 
which insulate the user and his application from needing to know exact details 
of the hardware on which his program is running.


Apple III's operating system is known as SOS (pronounced "sauce"), which 
stands for "Sophisticated Operating System".  I know that sounds like we're 
bragging, but the origin of the name is interesting.  Several years ago when the 
Apple III was under development, it was given the code name of "Sara", named 
after the daughter of one of its inventors.  Thus SOS originally stood for "Sara 
Operating System".  When the time came to make it an official product, the 
name SOS had stuck, so Marketing had to come up with another word starting 
with "S" that made sense.  That's how Apple III's operating system became 
"Sophisticated".  As we explore more of SOS's capabilities, you'll see that it 
really deserves the name.


SOS's layered approach to system control makes it more than just a disk 
manager (like DOS) or an I/O convention (as are IN# and PR#).  SOS truly 
manages all of the Apple III system resources to simplify a programmer's life.


In Apple III's SOS, the lowest level of software is the hardware driver.  The term 
"driver" may seem strange, but it's very logical.  Just like the driver of a car (or a 
bunch of cattle) has to know the details of the operation of what's being driven, 

2



so the Apple III drivers need specific information about how the device is 
connected, what its features are, how it is controlled, and what information must 
pass back and forth between the device and the next highest level in the 
system.  The beauty of this scheme is that the driver can be known by some 
generic name (like ".PRINTER" or ".TCLOCK") so that the operating system and 
Business BASIC can use the device without being concerned about all the 
specific information that the driver must know.  For example, you don't need to 
know anything about transmissions and turn signals to take a cab across 
Manhattan (a paid up insurance policy will suffice!).  To extend the metaphor 
even further, you don't even have to know what taxi company to use, they all 
work pretty much the same.


In the same way, SOS can reference a ".PRINTER" for you which may be a 
Centronics, a Silentype, an Epson, a Qume or any number of printers, 
connected via parallel, joystick or serial ports.  The higher you get in the 
operating system layers, the less specific you must be about the resources you 
use since SOS knows about all the devices which you have configured on your 
system. Facilities are also provided to allow managing devices on a demand 
basis (that is, when they signal that they want to do something, called an 
"interrupt"). This feature makes it possible to request that more than one device 
be active at a time.  To do that on the Apple II takes some pretty sophisticated 
programming.


Because of the structured, layered nature of SOS, doing things like reading from 
a remote computer while writing a message to disk and printing out a report on 
a printer become almost trivial programming tasks.


We'll look at more about that later.  It is sufficient to say for now that your 
program runs in BASIC which runs on SOS which controls the hardware drivers 
which accomplish the input/output to receive and deliver data for the system's 
devices (including a device called ".CONSOLE" which is the keyboard and 
screen). The structure looks something like this: 

3



                                YOUR PRORGAM 
                                      | 
                               BUSINESS BASIC 
                                      | 
                              SOS CALL MANAGER 
                                      | 
 ======================================================================= 
         /           /                /         \             \       
        /           /                /           \             \      
INTERRUPT       DEVICE          FILE            MEMORY          UTILITY 
 MANAGER        MANAGER         MANAGER         MANAGER         MANAGER 
       \           \              \                /            / 
        \           \              \              /            / 
 ======================================================================= 
                                       | 
                              DEVICE DRIVERS 
                                       | 
                              Apple III HARDWARE 

As you can see, each layer depends on the one below for services.  Since the 
way the layers communicate is standardized on the Apple III, it is possible to 
make substantial changes to the hardware and even to some parts of the 
operating system without changing the way Business BASIC operates.  This 
insures that your programs will continue to work, even if we make changes later.  
Designing operating systems this way takes longer, and makes them larger, but 
in the long run the benefits are enormous.  


Getting Started 
Since booting a disk is worth a thousand "you're gonna love it"s, let's get 
started by trying some things out.  Just put the Business BASIC disk in the built-
in drive and press Reset while holding down the CONTROL key (called 
"CONTROL-RESET" from here on out). The first thing you may see is a slight 
flicker as the onboard diagnostics check out the Apple III circuitry.  Next is the 
SOS display screen, which indicates that the operating system has been loaded 
into memory.  SOS's next task is to load in the language from the boot disk.  
Since this is the Business BASIC disk, that language is loaded and the "Hello" 
program is automatically run (just like DOS on the Apple II).


You'll note that the final thing to appear is the right parenthesis ")".  This is the 
BASIC prompt,  meaning that Business BASIC is ready for a command.


At this point, enjoy yourself for a minute by typing:

 )PRINT FRE 

4



You 128K Apple III owners will notice that you've got over 70K bytes of user 
space for programs and data.  We'll find some fun things to do with all that room 
later!  The line above also illustrates another convention we'll be using 
throughout these articles.  What you type will always be underlined to 
distinguish it from what the computer outputs to you.


There are several things of interest in the display of the catalog.  First, in the 
upper left hand corner of the printout is the name BASIC.  This can vary from 
disk to disk and is called the "Volume Name".  SOS identifies the diskette you 
are referencing by a scheme called the "Pathname".  The highest level of the 
Pathname is the Volume name, with any Subdirectories mentioned next and the 
actual filename last (lowest) in the hierarchy.  More on this subject can be found 
in the Apple III Owner's Guide and the Business BASIC manual under 
"Pathnames".


The next thing to notice is the column on file type.  The type "SYSTEM" is 
obvious, that's SOS and BASIC, the system software. Notice that BASIC is 
named "SOS.INTERP", because on this diskette it is the interpreter (control 
program) currently configured to run on SOS.  Notice also that the "BLKS" 
column shows the space occupied on the disk in Blocks.  Blocks are 512 bytes 
each.  The next columns, alas, alack, are only relevant to those of you who have 
working clock chips.  The files on the Business Basic disk will have a date and 
time on them, but without a system clock, the files you create will not.  The final 
column "EOF" lists the exact number of bytes occupied by the file before its 
"End of File" mark.


Now back to the "TYPE" column for a minute.  It's easy to figure out that filetype 
"BASIC" stands for a basic program (like TIMESET).  What does PASCOD stand 
for?  Right, it's a Pascal code file, in this particular case created by the Pascal 
system's Assembler.  As you might have guessed (if you've been reading your 
BASIC Manual), the ".INV" suffix on those files is a way of indicating that these 
files are set up as BASIC "Invokable Modules".  We'll explore these in more 
detail later, but for now just remember that BASIC uses assembly language 
routines through a mechanism called Invoke and Perform. There are some 
definite rules to follow in setting up these modules which I won't go into now.  
However, there's no reason why we can't start using these capabilities right 
away!  Hang on for a short exercise in using the SOS file system, and we'll give 
READCRT.INV a workout.


To get a glimpse of how Business BASIC works with SOS to manage system 
resources through files, let's take a simple example which doesn't require the 
disk or a printer.  BASIC tells SOS that it wants to use a file by means of the 
"OPEN" command, and assigns a number for later reference to the file.  On the 
Apple III of course, everything is treated as a file, even the keyboard and display.  
As we said earlier, the keyboard/display device is referred to as ".CONSOLE".  
Note that the names for all Character Devices (devices that transmit one 

5



character at a time) start with a period.  Type in the following so we can 
experiment (as Dr. Frankenstein said to Igor):

)10 OPEN#1,".console"        (this sets up a file number for 
                              BASIC to use in communicating 
                              to the console) 

Note that you are already communicating to and from the console.  That's 
because the console is the "default" I/O device.  Statement 10 establishes a 
second path by which to communicate to the same device.

)20 INPUT a$                 (this is the good old ordinary  
                              input to the default input device, 
                              the keyboard) 

)30 PRINT a$                 (again, default output device, 
                              the screen) 

)40 PRINT#1;a$               (now we print to the screen again, 
                              this time through the console file 
                              previously opened) 

)50 INPUT#1;a$               (this time we input from the 
                              keyboard, using the console file) 

)60 PRINT a$                 (print to default screen) 

)70 PRINT#1;a$               (print the same quantity to the 
                              console file) 

)80 END 

Now if you LIST and RUN the result, it should look something like this:

)LIST 
10 Open #1, ".Console" 
20 Input a$ 
30 Print a$ 
40 Print #1;a$ 
50 Input #1;a$ 
60 Print a$ 
70 Print #1;a$ 
80 End 

)RUN 
?hello default console 

6



hello default console 
hello default console 
hello console as a filehello console as a file 
hello console as a file 

A couple of interesting things are apparent here.  First, although the first three 
lines work exactly as you would expect, the next three lines of output are a little 
different.  The default console prints the question mark, as it should, but on line 
four of the output there is no question mark or prompt for input at all.  This is 
because SOS is treating the console as a general input file and therefore can't 
know that it can accept characters printed to it.  It just does a read to the device 
and waits for a end of record character (in this case a carriage return).  The 
second unusual thing is also on line four, and that's that the PRINT command in 
statement 60 printed right at the end of the input string (unlike line two).  The 
same reason applies since the carriage return you typed and the subsequent 
line feed the system generates for the default console are suppressed for an 
input file device.  However, line five is printed separately, since the PRINT 
command in statement 60 outputs a carriage return and line feed.


In this same way, every device connected to the Apple III is available as a file.  
The ability to address the console devices separately will come in really handy in 
some future articles.


Having experimented a little with files, let's use one of those Invokable Modules 
we mentioned earlier and the OPEN statement to do something useful. This is a 
handy little utility that I use all the time to make a printout of the screen when 
something strange or wonderful happens.


In this example, I'm assuming that you have a Silentype as your printer. Since 
SOS doesn't care what device it writes to, you may substitute any output 
filename in line 100, even a disk text file.  Try that on your Apple II!

)new 
)100 OPEN#1,".silentype" 
)110 INVOKE "readcrt.inv" 
)120 FOR vertical = 1 to 23 
)130 VPOS=vertical 
)140 FOR horizontal = 1 to 80 
)150 HPOS = horizontal 
)160 PERFORM readc(@value%) 
)170 PRINT#1;CHR$(value%); 
)180 NEXT horizontal 
)190 PRINT#1 
)200 NEXT vertical 
)1000 VPOS = 23 : HPOS = 1 
)1010 CLOSE 
)1020 END 

7



Listing this program should show the following:


100   OPEN#1,".silentype" 
110   INVOKE "readcrt.inv" 
120   FOR vertical = 1 to 23 
130    VPOS=vertical 
140    FOR horizontal = 1 to 80 
150     HPOS = horizontal 
160     PERFORM readc(@value%) 
170     PRINT#1;CHR$(value%); 
180     NEXT horizontal 
190    PRINT#1 
200    NEXT vertical 
1000  VPOS = 23 : HPOS = 1 
1010  CLOSE 
1020  END 

Notice that this reveals another nice feature of Business BASIC.  Yes, it 
automatically indents FOR-NEXT loops for clarity!  Ever been jealous of those 
pretty Pascal listings?  Business BASIC to the rescue!


On a more serious note, let's look at what this program does.  After OPENing 
the appropriate file in line 100, BASIC is told to INVOKE the file "readcrt.inv".


"Readcrt.inv" is an assembly language routine which looks at the current 
position of the cursor. The cursor position is defined by the current values of the 
BASIC reserved variables HPOS and VPOS.  "Readcrt.inv" then modifies the 
value of the variable "value%" to contain the decimal value of the ASCII 
character at that location.  The INVOKE command tells Business BASIC to find a 
place for "readcrt.inv" in memory and to set up a table of all its PERFORMable 
routines.  You can INVOKE any number of modules and BASIC will always insure 
that they are located in non-interfering areas of memory.


Line 120 sets up a loop which will scan the vertical lines of the screen. Line 140 
sets up the inner loop which will look at every horizontal character position on 
that line.  The routine in "readcrt.inv" is then called using the PERFORM 
command. Isn't this easier that a bunch of pokes and a call?  Line 170 prints the 
character equivalent to file 1, our output file, and then takes a look at the next 
position.  Line 190 makes sure we print a carriage return at the end of each 
output line (since that character isn't physically on the screen).  After that, line 

8



200 starts scanning the next line. Line 1000 through 1020 set the cursor to the 
bottom of the screen, close the output file and end.


Now for the fun.  Run this program and you will get an exact copy of the first 23 
lines of the screen on your output file.  By putting in an INPUT statement to ask 
for the filename and then OPENing the resultant string variable as the filename in 
line 100, you can decide at the time you run where you want the copy to go.  
Use this program to document all the strange and wonderful things you find in 
Business BASIC as you begin to really explore the language.  But first, be sure 
to SAVE the program to an initialized diskette


Well, that's it for now.  Until next time, happy coding with the most powerful 
BASIC around!


9



10



Exploring Business BASIC, Part II 
When last we left the Lone Ranger, huge boulders crashed down the slope 
toward his tiny campfire...  No, I'm sorry to say that the September column 
wasn't quite that breath-taking or cliff-hanging.  However, taking the Apple III out 
for a spin does excite a lot of people, and I hope that includes you. If you 
haven't read last month's column, I recommend you get a copy.  This series is 
progressive in that each article builds on the previous one.  I'm going to assume 
that you have been following the series, so that each month we can cover a new 
topic in the least possible amount of my purple prose.


Another note before we start:  as I mentioned last time, I welcome questions and 
comments on this series of articles or BASIC in general.  Due to deadlines 
(Margo's Bane, we call them), I am writing this article before the previous 
month's is in print.  Thus my reaction to your timely comment will be somewhat 
delayed.  Let those cards and letters roll in and the responses will show up just 
as soon as inhumanly possible.


The SOS File System Revisited 
After a brief discussion of the Apple III SOS file system last time, I concluded 
with somewhat of a challenge for you.  We were working with a program to 
dump the contents of the screen to the Silentype printer, and I mentioned that 
the program could be generalized for any file, including disk text files.  The point 
was that SOS took care of all the details about how each device worked, so that 
the user could change things at will.  For reference, here's the program with 
which we were working:

50 OPEN#1,".silentype" 
90 INVOKE "readcrt.inv" 
150 FOR vertical = 1 to 23 
155 VPOS=vertical 
160 FOR horizontal = 1 to 80 
165 HPOS = horizontal 
170 PERFORM readc(@value%) 
180 PRINT#1;CHR$(value%); 
190 NEXT horizontal 
200 PRINT#1 
210 NEXT vertical 
900 VPOS = 23 : HPOS = 1 
1000 END 

11



Before we modify this program to generalize it, did you try to simplify the 
program by directly using VPOS and HPOS in lines 150 and 160?  By that I 
mean:

       150  FOR VPOS=1 TO 23 
       160  FOR HPOS=1 TO 80 

If you do, BASIC responds with the classically familiar "SYNTAX ERROR", since 
VPOS and HPOS are "Reserved Words" and cannot be used as index variables.


To continue, the challenge was to generalize the screen dumping program so 
that the output could go to any file.  Here's one solution to that problem:

50  VPOS=23:HPOS=1 
60  INPUT"Name of file to dump screen to: ";filename$ 
100 Open#1,filename$ 
110 Invoke "readcrt.inv" 
120 For vertical =1 to 23 
130 VPOS=vertical 
140 For horizontal = 1 to 80 
150 HPOS=horizontal 
160 PERFORM readc(@value%) 
170 PRINT#1;CHR$(value%); 
180 NEXT horizontal 
190 PRINT#1 
200 NEXT vertical 
210 CLOSE 
300 VPOS=23:HPOS=1 
310 END 

Several differences are worthy of note.  First, the cursor has been repositioned in 
line 50 to the bottom of the screen to avoid overwriting any existing data.  The 
user is then prompted in line 60 to input the name of the output file.  Note that 
this can be any legal filename on the Apple III which accepts output (printers, 
the communications port, a disk text file, even .CONSOLE itself)


Note also the addition of the CLOSE statement at line 210.  This insures that all 
files are properly written to and dispensed with at the conclusion of the program.  
Failure to properly close files can leave some data still in memory (since files 
aren't automatically closed at the end of the program). This can have some 
interesting consequences if the file in question is a disk file and you switch to 
another diskette which does not have that file created on it.  Now is the time to 
form the habit of closing all files at the end of a program.


Running this program can be instructive.  Obviously, if you reply ".SILENTYPE" 
to the prompt, it will work like the first example.  Now try replying ".CONSOLE".  
After the usual initial whirring of the disk to load the Invokable Module, the 
program appears to go to sleep for 40 seconds or so.  What's happening is that 

12



the program is reading a character and then copying it back on top of itself!  The 
Apple III is working its little heart out and the result is as exciting as watching 
bread mold. Now try replying with a disk file name (you can just make up a 
name, as long as it follows the filename rules).  The disk will whir as before.  This 
time it has two jobs to do.  First, it must OPEN the disk file using the name you 
gave it (let's assume you typed MYFILE.SCREEN).  This means creating an entry 
in the directory of the current disk volume, finding initial space for the file, and 
setting up a "buffer" area in memory for communication of data to and from the 
file.  Since Apple III divides the disk up into "Blocks" of 512 characters, this 
internal buffer is 512 bytes.  This buffer size if fixed no matter what record size 
you specify.  Later on in this article we'll look at techniques which use that piece 
of information to insure maximum efficiency and performance in disk-based 
application programs.


Once the file is opened, BASIC then INVOKES the READCRT module, and 
execution begins.  Notice that although the printer in our previous example 
started almost immediately, there is a noticeable pause before the disk spins 
into action, and it appears to spin only four times before the program stops.


What's happening is this: line 170 prints one character at a time into the buffer.  
After 80 characters, line 190 prints a carriage return into the buffer and then 
starts the next line.  After a little over 6 lines of the screen (480 bytes plus 6 
RETURNs plus 26 bytes of line 7 to be exact) the 512 byte buffer is full and must 
be written to disk.  That's the first spin of the disk which writes block 1 of the 
file.  Next, the block number is incremented, and more writing starts from line 7 
of the screen.  512 bytes later the same process is repeated until all the screen 
is read by the program and written into the last buffer.  Some arithmetic would 
convince you that BASIC is in the middle of its fourth buffer when the program 
finishes reading line 23 of the screen.  Thats when the previous comment about 
being sure to close files comes in handy.  The CLOSE command in line 210 
forces the current buffer to be written to disk, even if its not full, and the 
directory entry is updated to reflect the new file information.


After running the program, the CATALOG listing of the file should look something 
like this:

TEXT   00005 MYFILE.SCREEN    00/00/00 00:00 00/00/00 00:00  1863 

Notice that BASIC identified the file as a TEXT file automatically, because the 
PRINT# command was used to write to it.  Notice also that the Blocks Used 
column shows four.  That disagrees with what we had predicted, since the 
screen data should have been able to fit into 4 blocks (2048 bytes).  The reason 
for the extra block is that SOS allocates an extra block as an "index" block, to 
store information about where the rest of the blocks in the file are physically 
located.  This insures that a large file can be created, even if the disk is 
fragmented into small areas of unused space.  If you look closely at the 
directories of various files, you will note that all of them have one more block 

13



than the EOF column would indicate, except for the one block files, which have 
no need of an index block.  In this case, the EOF (End Of File) is after 1863 
bytes.  That works out to 23 lines of 80 characters (1840 bytes) plus 23 carriage 
returns for a total of 1863 bytes. "Close enough for folk music", as they used to 
say at my high school!


One last subject before we move on to further explore files.  The Silentype gave 
us a permanent record of what was on the screen, but since this time we wrote 
the results to a disk file, we need a way to dump the contents of 
MYFILE.SCREEN to the printer.  The following program easily accomplishes the 
task and serves as a general file to file transfer program:

5  INPUT "Name of file to dump: ";inputfile$ 
10 OPEN #1,Inputfile$ 
15 console=0 
20 INPUT "FIle to dump to: ";outputfile$ 
25 OPEN #2, outputfile$ 
30 check$=MID$(outputfile$,1,3) 
35 IF check$=".co" OR check$=".CO" OR check$=".Co" THEN console=1 
40 IF console then HOME 
45 ON EOF#1 GOTO 65 
50 INPUT#1, a$ 
55 PRINT#2, a$ 
60 GOTO 50 
65 IF console THEN HPOS=1:VPOS=23 
70 CLOSE 
75 END 

There.  As long as you don't try to read from the printer and print to the 
keyboard, it should work fine!


Note also that we have checked in line 35 to see if the device being written to 
is .CONSOLE.  If so, line 40 clears the screen to reproduce exactly what was 
there when the original program was run.  Line 65 repositions the cursor to the 
bottom of the screen so that the prompt will not cause the top line to scroll out 
of view.


More on Files 
The subtle and nefarious purpose of this lesson, if you haven't realized by now, 
is to provide more insight into Business BASIC disk files.  Unlike tutorials, which 
by now would have gotten to the mysteries of FOR-NEXT loops, I have remained 
true to the promise of the first article and assumed that you have some skill in 
BASIC.  Bear with me as things get more interesting...


So far we have considered only the type of disk files which are referred to as 
"Text" files.  These are files which contain ASCII characters which are 

14



representative of what would be printed out if we wrote data to the screen 
instead of disk.  For now we'll stick with this file type and later touch on "Data" 
files, a quasi-unique file type on the Apple III.


We have already discussed the fact that the disk is organized into 512 byte 
blocks.  In fact, BASIC text file records can be of any reasonable size. Instead of 
using the OPEN statement which assigns a default of 512 bytes, we could have 
used the CREATE statement which allows up to 32767 byte records to be used.  
Of course, the record size of a particular file is of no consequence if we are 
merely going to read each string in order (as we did with the contents of the 
screen).  The real power of creating files of various record sizes is to be able to 
randomly read data on a particular item in the file without having to deal with the 
other data in the file.  For example, if we had wanted to print the twenty first line 
of the screen in the previous example,  it would be necessary to input the first 
twenty lines, discarding the data, and then finally read and print the line we 
wanted.  A much more efficient way would be to create the file as a random 
access file with record size 81 bytes.  Since each record will correspond with 
one line of the screen, we have an easy way to address the data in question.  
Compare the examples below with the previous sequential access examples:

50  VPOS=23:HPOS=1 
60  INPUT"Name of file to dump screen to: ";filename$ 
70  CREATE filename$,TEXT,81 
100 OPEN#1,filename$ 
110 INVOKE"readcrt.inv" 
115 cum$="" 
120 FOR vertical=1 to 23 
130   VPOS=vertical 
140    FOR horizontal = 1 to 80 
150    HPOS=Horizontal 
160    PERFORM readc(@value%) 
170    cum$=cum$+CHR$(value%) 
180    NEXT horizontal 
190   PRINT#1,vertical;cum$ 
195   cum$="" 
200   NEXT vertical 
210   CLOSE 
300   VPOS=23:HPOS=1 
310   END 

Note that we have added line 70 to create the filename with the proper record 
size.  The notation of "TEXT" is extra baggage, since the PRINT statements in 
the program will automatically define it as a text file, but it is good practice to be 
specific.  I have also added a new wrinkle in lines 115, 170, 190 and 195.  
Instead of printing each character as it is read, the variable "cum$" is used to 
accumulate characters as they are read from the screen. Line 190 prints the 

15



entire line of the screen using the vertical position as the record number.  The 
result when running this program seems the same as when running the 
sequential version, except for one thing.  If you CATALOG the resulting filename, 
it should look something like this (assuming a name of SCR.DUMP.RND)

TEXT   00005 SCR.DUMP.RND   00/00/00 00:00 00/00/00 00:00  1944 

Everything is the same except the length!  It turns out that when a file is created 
that the first record is record 0, not record 1.  This is consistant with the first 
element of an array being element 0.  Therefore BASIC has reserved 24 (not 23) 
records of 81 bytes each for a total of 1944 bytes.


Now that we have associated a record number with every line on the original 
screen, we can locate a given line by just giving its number, instead of having to 
read through all the other lines to find it.  Witness the modified read program 
below:

5  INPUT "Name of file to dump: ";inputfile$ 
10 OPEN #1,Inputfile$ 
15 console=0 
20 INPUT "FIle to dump to: ";outputfile$ 
25 OPEN #2, outputfile$ 
30 check$=MID$(outputfile$,1,3) 
35 IF check$=".co" OR check$=".CO" OR check$=".Co" THEN console=1 
40 IF console then HOME 
45 ON EOF#1 GOTO 65 
47 INPUT"record number to dump: ";rec 
48 IF rec=0 THEN 65 
50 INPUT#1,rec;a$ 
55 PRINT#2,rec;a$ 
60 GOTO 47 
65 IF console THEN HPOS=1:VPOS=23 
70 CLOSE 
75 END 

This program is very similar to the previous dump program except that line 47 
asks for the specific record to dump, line 48 gives us a way out by checking for 
0 and line 50 has been modified to read directly to the record number which was 
previously entered.


Some experimentation with this program will produce interesting results.  Try 
reading record 1, 6, 12 and 18.  In each case you will cause a disk access (the 
whirring sound is a clue) to read the particular record.  Now try reading record 
6,7,8,9 and 10 in any order you choose.  The first record you read will probably 
cause a disk access, but the others should occur virtually instantaneously 
without causing disk activity.  This is because SOS is still buffering files in 512 
byte blocks, and all those records fall within one block.  There was no need to 
re-read the disk since the data was already in memory.  Careful planning of your 

16



record sizes and reading sequences can have the effect of substantially 
increasing the performance of your program if as many reads as possible occur 
within the current buffer.


One interesting postscript before we proceed:  If you ask for record 6 you will 
typically trigger a disk read as we have said.  If you immediately request record 
5, another disk read will be performed.  This is what you might expect, but more 
is going on here than meets the eye.  Simple calculation will prove that record 6 
actually occupies space in both block 1 and block 2 of the file.  The first six 
records, 0 through 5 occupy 6*81 or 486 bytes of the first block, leaving only 26 
bytes left in that first block for record number 6.  The remaining 55 bytes are in 
block 2.  Thus a read to record 6 actually triggers two disk reads, one for the 
complete block 1 and one for block 2.  A little more arithmetic will show which 
other records are in this same situation.  The moral is simple: if possible, make 
your record sizes such that they evenly divide into 512 or are a multiple of 512.  
That may waste a little space, but may be more than made up for in the ability to 
predict when disk access will take place.


A Final Challenge 
I just reviewed the last five or six paragraphs and discovered that my usual 
humorous style has been replaced by long detailed discourses of unrelieved 
tedium.  There is, unfortunately, no let up in sight.


To this point we have been using "record number" files (called "random access" 
by most people) with record numbers which span a rather narrow range. SOS 
permits random files to have record numbers in the range of 0 to 32767. 
However, SOS does not demand that a file actually have all the records present 
on disk.  Records are allocated as written, with only a little space taken up to 
keep track of where everything is.  To illustrate the power this gives, consider the 
following problem:


A distribution company wants to keep track of their part numbers and 
descriptions.  The part numbers are four digit numbers.  Listed below is a simple 
program to create the part number file.  Between now and next time, you could 
try writing a program to retrieve part number information randomly, and make 
changes as required.  Without further ado...

5    HOME 
10   PRINT"Parts file Create and Add program" 
20   PRINT 
30   PRINT"Type 1 to Create a parts file":PRINT 
40   PRINT"Type 2 to add to an existing parts file." 
50   PRINT:INPUT"Your selection: ";a$ 
60   IF a$="" THEN 1000 
70   a=VAL(a$) 

17



80   ON a GOTO 100,400 
90   GOTO 5 
100  PRINT:INPUT"name of new parts file: ";a$ 
110  IF a$="" THEN 5 
120  CREATE a$,TEXT,64 
130  PRINT"Parts file ";a$;"created." 
140  GOTO 5 
400  PRINT:INPUT"Name of existing parts file: ";a$ 
410  IF a$="" THEN 5 
420  OPEN #1,a$ 
430  HOME 
500  PRINT:INPUT"Part number to add: ";a$ 
510  IF a$="" THEN 5 
520  a=VAL(a$) 
530  IF a<1 OR a>32767 OR INT9a)<>a THEN 500 
535  rec=a 
540  rec$=a$+"\" 
545  PRINT:INPUT"Description: ";a$ 
550  IF LEN(a$)>30 THEN a$=MID$(a$1,30) 
560  rec$=rec$+a$+"\" 
570  PRINT:INPUT"Location: ";a$ 
580  IN LEN(a$)>10 THEN a$=MID$(a$,1,10) 
590  rec$=rec$+a$+"\" 
600  PRINT: INPUT"Quantity on hand ";a$ 
610  a=0:a=VAL(a$):IF INT(a)<>a THEN 600 
620  rec$=rec$+a$+"\" 
630  PRINT:PRINT"Record is: ";rec$;" OK?" 
640  INPUT"";a$ 
650  a$=MID$(a$,1,1):IF a$<>"y" and a$<>"Y" THEN 430 
660  PRINT#1,rec;rec$ 
670  PRINT:PRINT"Record added." 
680  GOTO 430 
1000 PRINT:PRINT"End of parts file program." 
1010 CLOSE 
1020 END 

This does not presume to be a model program in terms of its error checking, 
efficiency or even logic design (note all the GOTO's, patently offensive to the 
initiated).  I tried to keep the program simple and straight-forward, allowing 
plenty of room for improvements.  One or two things are worth pointing out to 
help you with your inquiry program.  Since each field could be of variable length 
within certain maximums, I used the backslash character to delimit each item.  
You'll want to strip these out when you retrieve the record.  Look up the function 
INSTR, it'll make it easy.


18



Once you've typed this program in, trying it out can be interesting.  Try several 
values for part number, including some larger ones (greater than a thousand at 
least).  Unless you add records which are sequential, each one will probably 
trigger a disk access as the appropriate block is written to disk.  After adding 
several, get out of the program by typing RETURN to the part number and 
selection prompts and check out the catalog entry on the file.  Assuming you 
used the name MY.PARTS as a file name when you used the create option, the 
entry will look something like this:

TEXT   00007 MY.PARTS    00/00/00 00:00 00/00/00 00:00  85735 

Look at that EOF value!  It seems that you have a huge file until you notice that 
the Blocks Used column is still pretty small.  What SOS has done is report the 
EOF at the end of the highest record number you used, while allocating only 
those blocks which it actually needed.  Some micros (and some mainframes for 
that matter) would require that all the blocks be all allocated before any could be 
written.


Well, have fun until next time.  Then I'll try to lighten it up a little as we talk about 
the mysterious DATA file type and start using the massive amount of memory in 
the Apple III for some really fast indexing schemes. Before this is over you 
should be able to write some pretty hot database programs.  'Till then ponder 
the following: Is it true that disk-based programs are written by BLOCKheads?


19



20



Exploring Business BASIC, Part III 
Lots has happened to the Apple III since my last article, and I appreciate all your 
comments about the articles in this series.  We'll have a chance to pick up on 
some of your suggestions next month, along with more news about the Apple III.  
For now we'll continue our exploration of the Business Basic file system as 
promised last time.  After reading this article and working with the examples, 
you should have a good knowledge of the differences between the TEXT and 
DATA file types as well as more information about string handling functions and 
techniques.  We are going to stick with relatively simple indexing techniques for 
now, but next month we'll also cover some advanced indexing and file access 
methods to give you an idea of some of the ways that the popular "Data Base" 
programs retrieve data so rapidly.


Looking Back 
The last article concluded with an example program that showed how the SOS 
file system could be used to store and rapidly find records in a file.  We did that 
by using the random file access method that SOS and Business Basic have built 
in.  That technique allows file records to be numbered from 0 to 32767 and read 
directly without having to read all records from the beginning of the file.  The 
example I gave at the end of last month's article also demonstrated that SOS 
uses a special storage and indexing method which wastes very little space in 
storing records on the disk, even if they have widely different record numbers.


To go into further depth on this subject, and to compare the TEXT file type we 
were working with last time to the more mysterious DATA file type, it's going to 
be necessary to create a more general version of last month's program. Last 
month's example program allowed us to create a file which contained four 
pieces of information about a hypothetical parts distribution company.  This 
information was the part number, a description of the part, the location where 
the part was stored, and the quantity on hand.  Unfortunately, the program was 
just designed to make some clever points about files, not to really be useful to 
parts companies.  For example, we could only perform two functions, creating 
files and adding records.  Most parts companies would want to look up parts, 
delete parts, get lists of parts, etc.  This month's version gets closer to that 
ideal, without denying you some of the fun of making your own changes.   In 
addition, I have generalized some of the functions that the program performs 
into subroutines, so that we can make changes later without wholesale rewriting.


21



The new Parts Program 
Well, now that you're breathless with excitement, here's the new version of the 
program:

 5   HOME 
 7   PRINT 
 10   PRINT"Parts File Create and Modify Program" 
 20   PRINT:PRINT"Type:" 
 30   PRINT"     1 to Create a parts file":PRINT 
 40   PRINT"     2 to Use an existing parts file":PRINT 
 49   PRINT"     9 to Quit":PRINT 
 50   PRINT:INPUT"Your selection: ";a$ 
 60   IF a$="" THEN 1000 
 70   a=ABS(VAL(a$)) 
 80   ON a GOSUB 100,400 
 90   IF a=9 THEN 1000:ELSE 5 
 100   PRINT:INPUT"Name of new parts file: ";a$ 
 110   IF a$="" THEN RETURN 
 120   CREATE a$, TEXT,64 
 130   PRINT"Parts file ";a$;" created." 
 140   RETURN 
 400   HOME 
 405   PRINT:INPUT"Name of existing parts file: ";a$ 
 410   IF a$="" THEN RETURN 
 420   OPEN#1,a$ 
 425   file$=a$ 
 430   HOME 
 435   PRINT:PRINT"Modify Parts File ";CHR$(34);file$;CHR$(34):PRINT 
 437   PRINT"Type:" 
 440   PRINT"     1 to add to your parts file":PRINT 
 445   PRINT"     2 to delete a part from your parts file":PRINT 
 450   PRINT"     3 to find a part in your parts file":PRINT 
 460   PRINT"     9 to quit the modify mode":PRINT 
 465   PRINT:INPUT"Your selection: ";a$ 
 467   a=ABS(VAL(a$)) 
 470   IF a=9 OR a$="" THEN RETURN 
 475   ON a GOSUB 500,700,800 
 480   GOTO 430 
 500   HOME 
 505   PRINT:INPUT"Part number to add: ";a$ 
 510   IF a$="" THEN RETURN 
 520   a=VAL(a$) 
 530   IF a<1 OR a>32767 OR INT(a)<>a THEN 500 

22



 535   rec=a 
 540   partnum$=a$ 
 545   PRINT:INPUT"Description: ";a$ 
 550   IF LEN(a$)>35 THEN a$=MID$(a$,1,35) 
 560   desc$=a$ 
 570   PRINT:INPUT"Location: ";a$ 
 580   IF LEN(a$)>15 THEN a$=MID$(a$,1,15) 
 590   location$=a$ 
 600   PRINT:INPUT"Quantity on hand: ";a$ 
 610   a=0:a=VAL(a$):IF INT(a)<>a OR a>99999 THEN 600 
 620   quantity$=a$ 
 630   PRINT:PRINT"Record is: 
";partnum$;"/";desc$;"/";location$;"/";quantity$; 
 640   INPUT"  Ok? ";a$ 
 650   a$=MID$(a$,1,1):IF a$<>"y" AND a$<>"Y" THEN 505 
 660   GOSUB 2000 
 665   IF errorcode=0 THEN PRINT:PRINT"Record added.":GOSUB 995:GOTO 500 
 670   PRINT:INVERSE:PRINT"Record not added, ERROR= ";:NORMAL:PRINT 
errorcode:G 
       OSUB 995:GOTO 505 
 700   HOME 
 705   PRINT:INPUT"Part number to Delete: ";a$ 
 710   IF a$="" THEN RETURN 
 715   a=VAL(a$) 
 720   IF a<1 OR a>32767 THEN 700 
 725   rec=a 
 730   GOSUB 1800 
 735   IF errorcode=1 THEN PRINT:PRINT CHR$(7);"No such part 
number":GOSUB 
995:GOTO 700 
 740   PRINT"Delete ";partnum$;"/";desc$;"/";location$;"/";quantity$;"? 
"; 
 745   INPUT"";a$:a$=MID$(a$,1,1) 
 750   IF a$<>"y" AND a$<>"Y" THEN PRINT"Not deleted":GOSUB 995:GOTO 700 
 755   GOSUB 1900 
 760   PRINT:PRINT CHR$(7);CHR$(7);"Record deleted":GOSUB 995:GOTO 700 
 800   HOME:PRINT 
 805   INPUT"Part number to find: ";a$ 
 810   IF a$="" THEN RETURN 
 815   a=VAL(a$) 
 820   IF a<1 OR a>32767 OR INT(a)<>a THEN 800 
 825   rec=a 
 830   GOSUB 1800 
 840   IF errorcode=1 THEN PRINT:PRINT"No such part number":GOSUB 
995:GOTO 800 

23



 850   PRINT:PRINT"Part number:      ";partnum$ 
 855   PRINT:PRINT"Description:      ";desc$ 
 860   PRINT:PRINT"Location:         ";location$ 
 865   PRINT:PRINT"Quantity on hand: ";quantity$ 
 870   PRINT 
 890   PRINT:INPUT"Press RETURN to continue: ";a$:GOTO 800 
 899   REM 
 900   REM delay subroutine 
 901   REM 
 995   FOR i=1 TO 1000:NEXT i:RETURN 
 996   REM 
 1000   PRINT:PRINT"End of parts file program." 
 1010   CLOSE 
 1020   END 
 1799   REM 
 1800   REM retrieve a record with record number = "rec" 
 1801   REM 
 1805   errorcode=1 
 1810   ON EOF#1 RETURN 
 1820   DEF FN scan(start)=INSTR(rec$,"/",start)-start 
 1830   INPUT#1,rec;rec$ 
 1835   IF rec$="" THEN RETURN 
 1840   pointer=1:length= FN scan(pointer) 
 1850   partnum$=MID$(rec$,pointer,length) 
 1855   pointer=pointer+length+1:length= FN scan(pointer) 
 1857   Desc$=MID$(rec$,pointer,length) 
 1860   pointer=pointer+length+1:length= FN scan(pointer) 
 1870   Location$=MID$(rec$,pointer,length) 
 1875   pointer=pointer+length+1:length= FN scan(pointer) 
 1885   Quantity$=MID$(rec$,pointer,length) 
 1890   errorcode=0:RETURN 
 1899   REM 
 1900   REM delete a record with record number = "rec" 
 1901   REM 
 1905   PRINT#1,rec;"" 
 1910   RETURN 
 1999   REM 
 2000   REM add a record with record number = "rec" 
 2001   REM 
 2005   errorcode=0 
 2010   rec$=partnum$+"/"+desc$+"/"+location$+"/"+quantity$+"/" 
 2015   ON ERR GOTO 2040 
 2020   PRINT#1,rec;rec$ 
 2030   OFF ERR:RETURN 

24



 2040   errorcode= ERR:OFF ERR:RETURN 

Well, nobody said that this series wouldn't get more interesting as we went 
along!  Let's take a quick look at the changes in this version of the program, as 
well as its major features.  


First, as to structure, the program looks something like this:

5-90       Initialization and first menu 
100-140    Create a new parts file 
400-480    Open an existing file and set up second menu 
500-670    Add a record 
700-760    Delete a record 
800-890    Find and display a record 
900-995    Subroutine to create a delay 
1000-1020  Terminate the program and close files 
1800-1890  Subroutine to find a record and load data values 
1900-1910  Subroutine to physically delete a record 
2000-2040  Subroutine to add a record with given data values 

Note that for simplicity we have assumed a fixed file record structure.  That is, 
we have "hard coded" into the program the fact that the data items in each 
record are Part number, Description, Location, and Quantity on hand.  We have 
also coded into the program some restrictions as to the length of each item 
(lines 550,560 and 610).  A real "data base" program would have all this 
information stored in tables for more flexibility.  For example, there is no 
practical way, short of rewriting parts of the program, to add an extra data item 
to the records, or to change the meaning of the existing items. Obviously, the 
more such generalizations we put in the program, the larger and more complex it 
will be.  Our purpose is to learn something about files first, and then to write the 
world's greatest database program.


To help understand the program and to also check out a few new features that 
make Business Basic really handy, let's look at the subroutines in the program.


First, examine the record retrieval routine at line 1800, which is used by the 
"Find" section and the "Delete" section.   We will communicate any problems 
encountered in a subroutine by using the "errorcode" variable, with 0 indicating 
no error found.  The ON EOF statement in line 1810 will return with "errorcode" 
set to 1 in the event that the INPUT statement in line 1830 reads past the current 
end of file.  Line 1820 sets up a function definition that comes in pretty handy.  
The function "scan" uses the Basic INSTR function to determine how many 
characters there are to the next occurrence of the "/" character.   Remember 
that we used the "/" character to delimit the fields within the string record we 
stored in the file.  The INSTR function returns the character position of the string 
being searched for,  starting with the position given by "start".  Subtracting the 

25



starting value from the position gives the  total length of the field.  More about 
INSTR can be found in the Business Basic manual.  Give that section a look, 
because INSTR is one of the most useful functions you'll find.  Some other 
Basics may use a different name for this function (POS is one example I know 
of).


Line 1830 inputs the record according to the record number "rec".  After 
checking for a "null" string (line 1835), lines 1840 through 1885 are responsible 
for breaking up the record into its separate fields.  This is done by setting the 
variable "pointer" to the beginning of the field and then setting length to the 
number of characters in the field using the "scan" function defined previously.  
The MID$ function then is used to make the assignment to the appropriate 
variable.  Study this section carefully to be sure you see how this works.  My 
technique to understand routines like this is to make a diagram of the data and 
work through the statements while "playing computer".


Now that the individual fields are assigned to the proper variable, they can be 
used in the calling routines (at lines 730 and 830) to display the values as 
desired.   Later on we are going to change the structure of this file considerably, 
and it will be handy to be able to handle that by changing the routine at 1800 
rather than making changes throughout the program.


The delete routine at line 1900 is really simple, just consisting of printing a "null" 
record over a previously existing record.  As we change the file structure, this 
may well become much more interesting.


The add routine is also simple, consisting (at line 2010) of packing the various 
field values together using the String Concatenation Operator (the world's 
longest way to refer to "+").  There is one thing of interest, however.  Note that 
the ON ERR statement is used to trap any errors which may occur in writing to 
the file.  We again use "errorcode" to communicate that an error has occurred, 
and are careful to turn error trapping off before returning to the main routine.  It 
would have been possible and even desirable to use the ON ERR statement to 
check for all errors in the program, but the routine required to make the program 
that "bulletproof" would have made this program unnecessarily long.  That's 
probably a good subject for a future article.


Well, now that we've been through the major features of the program, I suggest 
that you enter the program and start fooling around.  As I mentioned last time, 
this program was never meant to be the ultimate in user friendliness or elegance 
of coding style.  As you add records, then find and delete them, try to imagine 
ways you could improve the way the program works, or how it asks for 
information.


26



Business Basic "DATA" files 
While it is certainly true that most files contain data, Business Basic uses the 
term "DATA files" in a special way.  You may remember that a TEXT file consists 
of strings of characters with the "carriage return" character as the terminator 
between strings.  If you print a numeric variable into a text file, it will 
automatically be converted to a string value, just as is done when printing 
numbers to the screen.  This sounds pretty nice, but it can cause some 
inconvenience and some real problems.  For example, you know that an integer 
variable (which ends with the "%" character) occupies two bytes of storage in 
memory.  However, representing the value in string format can take up to six 
bytes (-32000 for example).  Add a RETURN character to delimit it and you have 
up to seven bytes to store an integer in a file.  Furthermore, it is not possible to 
tell beforehand just how much space a given set of numeric variables will take, 
without checking each one beforehand.  This can cause some design problems 
for programmers.  As you can imagine, these problems are even more acute for 
the "long integer" data type, which can be up to nineteen digits long, but only 
requires 8 bytes of internal storage.


There's another problem with using text files which only shows up when using 
"real" numbers.  Reals are represented in Business Basic as 32 bit floating point 
quantities requiring four bytes of internal storage.  Normally they are displayed 
with six digits of precision, and the format itself may vary greatly, especially if 
the magnitude of the number is very large or very small.  In those circumstances, 
Basic will display the number in "scientific notation".  This means that the output 
format of a "real" can vary from something simple like  "3.45" to something like 
"-1.36723E-06". Interestingly enough, it is not so much the space that this 
notation takes up that causes the trouble, but the fact that the printed 
representation of a "real" may not correspond exactly to the value stored in 
memory.  If the representation of a number is not exact or requires more decimal 
places than can be displayed, then the number is rounded before printing.  By 
contrast, this does not occur with integers.  Since rounding occurs during 
printing, and text files are storage of the printed format, values of real numbers 
may be different in the text file than they were in memory.  A short example will 
illustrate:

 10   OPEN#1,"numberfile" 
 20   INPUT"type two numbers: ";x,y 
 30   z=x*y 
 40   PRINT#1,1;z 
 50   INPUT#1,1;z1 
 60   IF z=z1 THEN PRINT"they compare":GOTO 20 
 70   PRINT"they don't compare: ";z,z1 
 80   GOTO 20 

27



Note that by printing the value to the file with the random access method in line 
40, we are able to read it back directly in line 50.  This lets us check to see if any 
value change has occurred as a result of the file operation. Try this with values 
like 500 and 4.25.  Everything should go normally.  Now try a value like 3.033 
and .031.  Still ok.  Now try 3.031 and .031.  The result should print out 
appearing exactly the same, yet the comparison in line 60 fails.  If you wish you 
can insert a statement at line 75 to print out the difference.  It will be small, but 
obviously significant.  For the real reason why the product of this pair of 
numbers fails to work, I commend you to your local math professor or textbook 
on numerical analysis.  Suffice it to say that certain real numbers cannot be 
stored exactly as binary numbers nor can certain binary numbers be displayed 
exactly in a finite number of digits.  As soon as these situations occur, the 
quantities stored in the text file will not exactly match what was calculated in 
memory.  Play around with this program further.  There are nearly infinite  
numbers of combinations which will also fail the test, but appear to be equal.


You've just seen two reasons why there is a need from time to time to store 
numbers in a file in the exact form which they have in memory.  Can you think of 
a circumstance where you might want to do that with a string?  Right! Among 
others, if you have a string which contains (or could contain) a RETURN 
character,  the text file input statement will terminate wherever the RETURN 
occurs, thereby losing the rest of the characters in the string.


The key is that with DATA file format, you can store any numeric or string 
quantity without worrying about what might happen to the information.  In 
addition, Business Basic adds an identifier to the front of each item of data you 
store in a DATA file, to indicate what kind of data it is.  This is called the data 
Type, and allows you to intermix integers, reals and strings in any order and still 
read them back correctly.  The information about the type of a particular data 
item is retrieved, astoundingly enough, by the TYPe function. This allows a 
simple program to read the contents of any DATA file, without having any 
information about it beforehand.  Much more information about DATA files can 
be found in your manual, and I suggest you spend some time reviewing it.  In the 
meantime, lets look at a what using DATA files will do to the parts program I 
listed at the beginning of the article.


First, we'll need to change the file type specification on the CREATE statement 
at line 120.  The new line will look like this:

       120  CREATE a$, DATA,64 

Since the program was fairly modular, with the file access done in subroutines, 
the other changes are minimal as well.  The idea is to store each item we used 
before (part number, description, etc.) as a separate data item in the file.  Since 
the part number is always a 4 digit number, we can use an integer to store that 

28



data.  Description and location are string quantities, and quantity on hand will fit 
nicely into a "real" value, since it is a maximum of 5 digits (line 610 checks for 
that).


The first subroutine to change is the one at line 2000 which writes a record. The 
new statements look like this:

    2010 partnum%= VAL(partnum$):quantity= VAL(quantity$) 
    2020 WRITE#1,rec;partnum%,desc$,location$,quantity 

There, that was easy.  Note that WRITE was substituted for PRINT since this is a 
DATA file, and instead of packing all the strings together as we did in the old line 
2010, we simply converted the string values to the appropriate numeric ones.  If 
we had designed the program to use data files from the beginning, we would 
probably have handled that in the data entry section of the program.


Next comes the changes to the subroutine which reads a record back.  Now 
things are really very simple.  We can replace all the lines between 1820 and 
1885 with these:

       1815 read#1,rec:IF TYP(1) = 5 THEN RETURN 
       1820 READ#1,rec;partnum%,desc$,location$,quantity 
       1825 IF partnum%<0 THEN RETURN 
       1830 partnum$=num$(partnum%) 
       1840 quantity$=num$(quantity) 

That's it!  Since all the items are stored separately, there is no need to go 
through the process of splitting them out of the string record.  I must confess, 
however, that I really wanted to discuss the INSTR function, and that previous 
technique seemed the most logical way to show its features.  Oh, well, its 
always more fun to find an easier way!  Two more things are of interest here.  
Note that we have checked in line 1815 for TYPe 5 which indicates end of file.  
This takes care of checking for empty records.  In line 1825 we introduce a new 
concept.  Previously, when we wanted to delete a record we simply printed a 
null string over the existing information.  There are times when it is useful to only 
"flag" that a record is deleted, not actually wipe the information out.  This allows 
deleted information be retrieved in the event of mistakes.  Periodically another 
routine can be used which goes through the file and physically deletes the 
"flagged" records. Here, and below in the actual delete routine, we use making 
the part number negative to indicate that it is no longer an active record.  The 
"delete" routine now will look like this:

       1905 partnum%=-partnum% 
       1907 WRITE#1,rec;partnum%,desc$,location$,quantity 

That will write the record out with a negative part number, which will flag it as 
"logically" deleted.


29



Well, that should just about do it.  In addition to giving you several things to try 
out before next time, the above changes illustrate an important programming 
"fact of life" (you've been waiting for this article to get juicy, right?).  This fact of 
life is that the more modular your program design, the more painless is the 
making of inevitable changes.  I know that isn't your favorite fact of life, but there 
is nothing worse than to stare at several thousand lines of BASIC knowing that it 
has to be completely rewritten.


Next time we'll cover some new but related topics which will require completely 
rewriting this month's program (just a JOKE!).  We will actually talk about 
different kinds of ways to store and retrieve records on disk which give more 
flexibility than the simple record number scheme that has been used so far.  
That should complete the effort to make you a "file expert".  In addition, 
Business Basic has an incredible output formatting capability, and now that you 
have learned the techniques for storing data,  it should be fun to go through 
some tips on how to make your printouts look like professional reports.


Until then, have fun practicing the "facts of life" (programming facts, of course). 

30



Exploring Business Basic - Part IV 
Those of you who have Apple III's have probably received some very good news 
in the last few weeks.  Yes, Virginia, there is a new version of Business Basic 
with some fantastic new features!  But first, a word from our sponsor... Seriously,  
I would like to conclude presenting the information I promised last time before 
getting into the new goodies.


As you may remember (and are otherwise encouraged to discover), I concluded 
the last article by making some points about the use of Data files in Business 
Basic and modified our simple database program to use the data file format. For 
at least one more time, I'll list the program as it currently stands and then plunge 
into this month's enhancements, which cover the breathlessly exciting topics of 
list management, indexing and sorting.  That will about finish us in the data 
management area, leaving future issues to explore formatting, business 
arithmetic and matrix arithmetic.


Once more, dear friends, into the breach...


The Program as it Currently Stands 
Remember that this program was designed to allow the entry and retrieval of 
information about parts, such as might be maintained by a distributor or retail 
store.  So far the program allows creation of parts files, and adding, deleting and 
finding records of specific parts by part number.  The program: 

 5   HOME 
 7   PRINT 
 10   PRINT"Parts File Create and Modify Program" 
 20   PRINT:PRINT"Type:" 
 30   PRINT"     1 to Create a parts file":PRINT 
 40   PRINT"     2 to Use an existing parts file":PRINT 
 49   PRINT"     9 to Quit":PRINT 
 50   PRINT:INPUT"Your selection: ";a$ 
 60   IF a$="" THEN 1000 
 70   a=ABS(VAL(a$)) 
 80   ON a GOSUB 100,400 
 90   IF a=9 THEN 1000:ELSE 5 
 100   PRINT:INPUT"Name of new parts file: ";a$ 
 110   IF a$="" THEN RETURN 
 120   CREATE a$, DATA,64    
 130   PRINT"Parts file ";a$;" created." 
 140   RETURN 
 400   HOME 

31



 405   PRINT:INPUT"Name of existing parts file: ";a$ 
 410   IF a$="" THEN RETURN 
 420   OPEN#1,a$ 
 425   file$=a$ 
 430   HOME 
 435   PRINT:PRINT"Modify Parts File ";CHR$(34);file$;CHR$(34):PRINT 
 437   PRINT"Type:" 
 440   PRINT"     1 to add to your parts file":PRINT 
 445   PRINT"     2 to delete a part from your parts file":PRINT 
 450   PRINT"     3 to find a part in your parts file":PRINT 
 460   PRINT"     9 to quit the modify mode":PRINT 
 465   PRINT:INPUT"Your selection: ";a$ 
 467   a=ABS(VAL(a$)) 
 470   IF a=9 OR a$="" THEN RETURN 
 475   ON a GOSUB 500,700,800 
 480   GOTO 430 
 500   HOME 
 505   PRINT:INPUT"Part number to add: ";a$ 
 510   IF a$="" THEN RETURN 
 520   a=VAL(a$) 
 530   IF a<1 OR a>32767 OR INT(a)<>a THEN 500 
 535   rec=a 
 540   partnum$=a$ 
 545   PRINT:INPUT"Description: ";a$ 
 550   IF LEN(a$)>35 THEN a$=MID$(a$,1,35) 
 560   desc$=a$ 
 570   PRINT:INPUT"Location: ";a$ 
 580   IF LEN(a$)>15 THEN a$=MID$(a$,1,15) 
 590   location$=a$ 
 600   PRINT:INPUT"Quantity on hand: ";a$ 
 610   a=0:a=VAL(a$):IF INT(a)<>a OR a>99999 THEN 600 
 620   quantity$=a$ 
 630   PRINT:PRINT"Record is: 
";partnum$;"/";desc$;"/";location$;"/";quantity$; 
 640   INPUT"  Ok? ";a$ 
 650   a$=MID$(a$,1,1):IF a$<>"y" AND a$<>"Y" THEN 505 
 660   GOSUB 2000 
 665   IF errorcode=0 THEN PRINT:PRINT"Record added.":GOSUB 995:GOTO 500 
 670   PRINT:INVERSE:PRINT"Record not added, ERROR= ";:NORMAL:PRINT 
errorcode: 
       GOSUB 995:GOTO 505 
 700   HOME 
 705   PRINT:INPUT"Part number to Delete: ";a$ 
 710   IF a$="" THEN RETURN 

32



 715   a=VAL(a$) 
 720   IF a<1 OR a>32767 THEN 700 
 725   rec=a 
 730   GOSUB 1800 
 735   IF errorcode=1 THEN PRINT:PRINT CHR$(7);"No such part 
number":GOSUB 
995:GOTO 700 
 740   PRINT"Delete ";partnum$;"/";desc$;"/";location$;"/";quantity$;"? 
"; 
 745   INPUT"";a$:a$=MID$(a$,1,1) 
 750   IF a$<>"y" AND a$<>"Y" THEN PRINT"Not deleted":GOSUB 995:GOTO 700 
 755   GOSUB 1900 
 760   PRINT:PRINT CHR$(7);CHR$(7);"Record deleted":GOSUB 995:GOTO 700 
 800   HOME:PRINT 
 805   INPUT"Part number to find: ";a$ 
 810   IF a$="" THEN RETURN 
 815   a=VAL(a$) 
 820   IF a<1 OR a>32767 OR INT(a)<>a THEN 800 
 825   rec=a 
 830   GOSUB 1800 
 840   IF errorcode=1 THEN PRINT:PRINT"No such part number":GOSUB 
995:GOTO 800 
 850   PRINT:PRINT"Part number:      ";partnum$ 
 855   PRINT:PRINT"Description:      ";desc$ 
 860   PRINT:PRINT"Location:         ";location$ 
 865   PRINT:PRINT"Quantity on hand: ";quantity$ 
 870   PRINT 
 890   PRINT:INPUT"Press RETURN to continue: ";a$:GOTO 800 
 899   REM 
 900   REM delay subroutine 
 901   REM 
 995   FOR i=1 TO 1000:NEXT i:RETURN 
 996   REM 
 1000   PRINT:PRINT"End of parts file program." 
 1010   CLOSE 
 1020   END 
 1799   REM 
 1800   REM retrieve a record with record number = "rec" 
 1801   REM 
 1805   errorcode=1 
 1810   ON EOF#1 RETURN 
 1815   READ#1,rec:IF TYP(1)=5 THEN RETURN 
 1820   READ#1,rec;partnum%,desc$,location$,quantity 
 1825   IF partnum%<0 THEN RETURN 
 1830   partnum$=STR$(partnum%):quantity$=STR$(quantity) 

33



 1890   errorcode=0:RETURN 
 1899   REM 
 1900   REM delete a record with record number = "rec" 
 1901   REM 
 1905   partnum%=-partnum% 
 1907   WRITE#1,rec;partnum%,desc$,location$,quantity 
 1910   RETURN 
 1999   REM 
 2000   REM add a record with record number = "rec" 
 2001   REM 
 2005   errorcode=0 
 2010   partnum%=VAL(partnum$):quantity=VAL(quantity$) 
 2015   ON ERR GOTO 2040 
 2020   WRITE#1,rec;partnum%,desc$,location$,quantity 
 2030   OFF ERR:RETURN 
 2040   errorcode= ERR:OFF ERR:RETURN 

Impressive, right?  In playing around with this program, you may have 
discovered something very interesting.  Retrieving individual records on parts is 
simple and quick, as long as you remember the part number you want.  Try 
coming back to the program after a few days or weeks (as I have) and attempt 
to remember the part numbers that were previously entered.  The immediate 
response is that a list of all the active (not deleted) part numbers is needed.  The 
program below will accomplish this task. 

 10   PRINT"Name of Parts file: "; 
 20   INPUT a$ 
 30   OPEN#1,a$ 
 40   PRINT"Name of list file: "; 
 50   INPUT a$ 
 60   OPEN#2,a$ 
 70   ON EOF#1 GOTO 1000 
 75   PRINT"Part number","Description","Location","Quantity":PRINT 
 80   FOR rec=1 TO 9999 
 90     READ#1,rec:IF TYP(1)=5 THEN 200 
 100     READ#1;partnum%,desc$,location$,quantity 
 110     IF partnum%<0 THEN 200 
 120     PRINT#2;partnum%,desc$,location$,quantity 
 200     NEXT rec 
 1000   PRINT#2:PRINT#2"End of file" 
 1010   CLOSE 
 1020   END 

Notice that this program has been set up to read from any parts file and to 
output to any file as well.  This is similar to some programs from previous 
articles, and allows to output to go to the screen (by replying ".console") or to a 

34



printer, etc.   Additionally, since we have no idea which part number records are 
actually in the file, a FOR NEXT loop is used to scan all the valid record 
numbers.  Line 90 reads the particular record into memory and checks to see if 
it contains valid data.  Recall that TYP(1)=5 means that there is no data in the 
record.  If data is present, it is read into the variables and the part number is 
checked.  A negative value means that the part number has been deleted.  If the 
data passes all tests, it is printed out.


Running the program reveals several interesting things.  Notice the sample 
printout below:

Part number     Description     Location        Quantity 

35              shovel          bin 3           2 
200             hammer          bin 1           10 
300             wrench          bin 5           6 
2000            anvil           top shelf       1 

End of file  

Try entering these part numbers yourself and run the sample program.  You will 
notice that the first records print out fairly quickly, but the last one appears only 
after much whirring of the poor, overworked disk.  This is easy to understand, 
since 1700 records must be searched before the final one is found.  Just 
imagine that I had used 9000 as the last record instead!  Clearly there must be a 
better way to find out what is in the file than searching every record.  However, 
we still want the fast lookup of an individual record which the random record 
access technique provides.


Here's where all those comments I made earlier in the series about how neat it is 
to have lots of user memory in Business Basic become important.  With the 
extra memory, we can keep extra data structures around to simplify the task of 
finding out what data is on the disk and where it is.  The term "data structure"  is 
a much revered one in computer science circles, and simply refers to organized 
ways to maintain data and the information about the data. In this case, we need 
a structure called a "List".  Sounds obvious, right? Lots of things in computer 
science are needlessly obfuscated (lots of things in English can be too!)


In this case, the list will consist of the part numbers stored in the file. Since the 
part number is also the record number, our task of retrieving the part number 
information is simply one of looking up all the record numbers in the list.  One 
other note.  The file can contain up to 9999 parts, so it will be convenient to 
keep track of how many records there are in our list.  To do that, the following 
kind of list will be used:

element 1: number of items in the list 
element 2: first item record number 

35



element 3: second item record number 
element (number of items + 1):last item record number 

Since all the record numbers are less than 10000, we can easily use an Integer 
array to store them and the count.  Also convenient is the fact that all arrays in 
Business Basic begin with element 0, a handy place to store the number of 
items.  The next thing required is a place to store the information permanently so 
that it can be used by the main program and others (such as the little list 
program above).  This could be done with a separate file on the disk, but it is 
much safer and more convenient to store the information in the main data file 
itself.  Among other things, it is much easier to keep track of where the 
information is if it is all physically together.  With that in mind, I'll pick record 
20000 to park the list.  This is clearly out of the way of our regular data, and, 
because very little extra space is taken up, it doesn't hurt anything.


So much for the philosophy.  The following additional program lines will 
accomplish the task:


First, set up the array for the list:

 4   DIM flist%(1000):maxrecord%=1000 

The variable "maxrecord%" will serve as a check not to exceed 1000 part 
numbers.  Since Business Basic permits very large arrays, this could just as 
easily been 9999 as long as the DIM statement and the maxrecord% variable 
agree.


Next, we need to retrieve the list when the file is initially referenced by the 
program.  To allow us to change this easily, a subroutine will be used:

 427   GOSUB 2500 
 2500   ON EOF#1 GOTO 2570 
 2505   READ#1,20000 
 2510   IF TYP(1)<>2 THEN flist%(0)=0:WRITE#1;flist%(0):RETURN 
 2515   READ#1;flist%(0) 
 2520   IF flist%(0)=0 THEN RETURN 
 2530   FOR i=1 TO flist%(0) 
 2540     READ#1;flist%(i) 
 2550     NEXT i 
 2560   RETURN 
 2570   flist%(0)=0:WRITE#1,20000;flist%(0):RETURN 

First an ON EOF statement is used in connection with the READ statement in 
line 2505 to take care of the case where the file is newly created.  In that 
circumstance record 20000 will be past the end of file and statement 2570 will 
set up the list count in flist%(0) and write that into the file.  If record 20000 
exists, a check is made to be sure the data is of the correct type (and initialized 
if not).  If everything is ok, the list count is read in and then a FOR NEXT loop 

36



loads the remaining data.  Note that this is much more efficient than reading or 
writing all 1000 values each time.


Next we need to add the "List" option to our menu of things we can do with 
existing files.  Fortunately, the way the program is set up makes that simple to 
accomplish.  The following changes add the new option:

 452   PRINT"     4 to list the parts in your parts file":PRINT 
 475   ON a GOSUB 500,700,800,1100 

The List option requires a new subroutine to read the list array and print the list 
to the screen:

 1100   HOME 
 1110   PRINT:PRINT"List of current parts for parts file: ";file$ 
 1120   PRINT 
 1130   IF flist%(0)=0 THEN PRINT"No parts on file":GOSUB 995:RETURN 
 1135   PRINT"Part number","Description","Location","Quantity":PRINT 
 1140   FOR i=1 TO flist%(0) 
 1150     rec=flist%(i) 
 1160     GOSUB 1800 
 1170     IF errorcode=0 THEN PRINT partnum$,desc$,location$,quantity$ 
 1180     NEXT i 
 1190   PRINT:INPUT"End of list, press RETURN to continue: ";a$ 
 1200   RETURN 

After first checking to see if the list was empty, the heading is printed and the list 
array is scanned.  We can use the subroutine at 1800 to retrieve the record and 
set up the variables.  That subroutine also checks for deleted records and line 
1170 uses the errorcode variable to check for that.  Note that we could have 
opened a secondary file here to redirect the list to another device if desired.


The next changes just clean up some sloppy programming from before.  See 
there?  There is no such thing as a perfect program (or a perfect programmer). 
These changes just recognize the fact that our part numbers were supposed to 
be four digit numbers, yet we allowed any part number up to 32767.  That was 
fine before we decided to put the part number list at record 20000.  The 
changes are as follows:

 530   IF a<1 OR a>9999 OR INT(a)<>a THEN 500 
 720   IF a<1 OR a>9999 THEN 700 
 820   IF a<1 OR a>9999 OR INT(a)<>a THEN 800 

The next change is to add to the list each time a record is added to the file.


This involves updating the list count and storing the new part number in the next 
available list position.  Since adds are done in the subroutine at line 2000, the 
changes are simple:

 2006   IF flist%(0)=maxrecord% THEN errorcode=-1:PRINT"Parts file 

37



full":RETURN 
 2025   flist%(0)=flist%(0)+1:flist%(flist%(0))=rec 

First, line 2006 checks to be sure that the list count will not be exceeded by 
adding this record.  If everything is ok, line 2025 updates the list count and uses 
it as the index to store the new part number (record number). 


The last task is to write out the updated list as a part of ending the program.  
This must also be done when switching to a new file.  The changes are as 
follows:

 470   IF a=9 or a$="" THEN GOSUB 2600:RETURN 
 1005   GOSUB 2600 

The subroutine at 2600 does just the reverse of the one at 2500, that is, writes 
the list back into the file starting at record 20000:

 2600   IF file$="" THEN RETURN:ELSE:WRITE#1,20000;flist%(0) 
 2610   IF flist%(0)=0 THEN RETURN 
 2615   FOR i=1 TO flist%(0) 
 2620     WRITE#1;flist%(i) 
 2625     NEXT i 
 2630   RETURN 

Notice that we use the fact that file$ is assigned the name of the file after 
opening to determine if the modify section of the program was used.  If the 
string is empty ("null") then there is no open file to which to write.


All that above seems like a tremendous number of program changes, I know, but 
the results are well worth it.  You can now find out what's in the file at any time, 
and the listing speed is essentially independent of the way the data is arranged 
in the file.  Furthermore, this permits us to do some really interesting things later.


The type of data structure used here is commonly referred to as a "variable 
length list".  Here "variable" is used in the sense of "changeable".  This is an 
extremely useful and widely used structure.  One example in front of you at the 
moment is the Business Basic string variable.  See your Basic manual for details 
of how the length of a string is stored.


INDEXING AND SORTING 
Now that we've made all these fun changes, try running the program on a new 
file.  Try adding the following part numbers in this order: 5,35,200,100,50. Now 
when you use the list option, you will notice that the part numbers appear in the 
order in which they were entered.  The previous example of a separate list 
program always listed the parts in part number order, since it scanned the file 
sequentially from the beginning.  Ordering of lists according to the sequence in 
which they were entered into the file is called "chronological" order.  Ordering 
the list in any other way is generally referred to as a "sorted" order.


38



Clearly, if the array "flist%" was arranged in numeric order, we could use the 
subroutine at 1100 to list the contents of the file out in that order.  That's 
because the values in flist% are used as "indexes" into the larger file itself.  It is 
the value assigned to the variable "rec" in line 1150 that determines which 
record is read and listed.  Unfortunately, sorting the information in flist% would 
destroy the chronological order, and that might be a useful way to list the data 
as well.  This implies that we should create some additional arrays to hold 
sorted versions of the flist% array.  These arrays are sometimes called "sorted 
indexes".  In fact, it may occur to you that several of these sorted indexes could 
be stored simultaneously in the file.  Similar kinds of "multi-key indexing" are 
used in sophisticated database management systems.


Wow! That's a lot of definitions of esoteric computer topics.  In fact, there is 
enough implied in the paragraph above to be the meat for several articles. We'll 
look at a simple example and then I suggest you slide over to your local library 
for a book on database techniques for the real details.


First, let's change the list routine to provide some sort options:

 1102   PRINT"Type:" 
 1103   PRINT"     1 for chronological order" 
 1104   PRINT"     2 for part number order":PRINT 
 1105   INPUT"Your selection: ";a$ 
 1106   sortorder=VAL(a$):IF sortorder<>1 AND sortorder<>2 THEN GOTO 
1100 
 1107   GOSUB 1300 
 1140   FOR i=1 TO slist%(0) 
 1150     rec=slist%(i) 

The changes from 1102 to 1107 set up the choice and GOSUB to 1300 to 
perform the actual sort.  Lines 1140 and 1150 change the list index to a new 
array "slist%" which has the same structure as flist%.  This allows changing the 
order without changing the actual contents of flist%.  This also means a change 
to line 4:

 4   DIM flist%(1000),slist%(1000):maxrecord%=1000 

Isn't having all that memory nice?


Next, lets cook up a subroutine which will sort the flist% array and create a 
slist% array with the contents in ascending order:

 1300   IF flist%(0)=0 THEN RETURN 
 1305   slist%(0)=flist%(0) 
 1310   FOR i=1 TO flist%(0) 
 1315     slist%(i)=flist%(i) 
 1320     NEXT i 
 1325   IF sortorder=1 THEN RETURN 
 1330   length%=slist%(0) 

39



 1332   IF length%=1 THEN RETURN 
 1335   FOR pass=1 TO length%:madeaswap%=0 
 1340     FOR position=1 TO length%-pass 
 1345       IF slist%(position)>slist%(position+1) THEN SWAP slist%
(position),slist%(position+1):madeaswap%=1 
 1350       NEXT position 
 1355     IF madeaswap%=0 THEN RETURN 
 1360     NEXT pass 
 1365   RETURN 

Several things are of note here.  First, if there is anything in the flist% array, it is 
copied to slist%.  If chronological order is desired, we're finished.  If not, the 
contents of slist%, but not the list count, slist%(0), must be sorted in order.  For 
simplicity, we use a version of the classic "bubble" sort, with a new wrinkle.  
Business Basic has a new statement named SWAP which comes in very handy 
in sorting situations, among others.  It will exchange the values of any two 
variables of the same type.  This includes, as this example points out, elements 
of arrays.  Normally this exchange is handled by assigning one variable to a 
temporary variable, as in the following example:

1345   IF slist%(position)>slist%(position+1) THEN temp%=slist%
(position):slist%(position)=slist%(position+1):slist%(position+1)=temp%: 
madeaswap%=1 

In addition to being ugly, this version performs significantly slower than the 
version using SWAP, since SWAP is done internally by Basic in assembly 
language.


Try putting this routine into your program.  For small lists it will perform very well.  
For larger lists, there are far better sort techniques.  Later in this series I will try 
to do an article on different sort techniques.  Most microcomputer references on 
sorting tend to try to minimize memory utilization, which usually hurts 
performance.  Since you lucky Apple III owners have fewer problems in that 
area, the classic techniques have to be looked at differently.


It might also occur to you that it is possible to sort on items other than the part 
number.  A good experiment for you might be to change the sort subroutine so 
that the slist% array was used to read in records to build a string array from the 
values of "description$".  When you sort the string array, you could swap the 
slist% elements in correspondence to the way you swap the string array 
elements.  Then  listing from slist% would produce a list in description order.  
This is referred to as a "pointer" sort.


Another interesting change would be to use record 0 of the data file as a place 
to store the record number where flist% begins.  Right now that is "hard coded" 
at record 20000, but for a lot of reasons, it might need to be changed later.  
Writing it into the file and reading it back at open time would make the program 
much more flexible.  Also, if you decided later to keep multiple indexes for 

40



different elements, you could store all their "addresses" there (or maybe just the 
address to the addresses!).  Another thing hardcoded into this program is the 
record format, including not only the number of elements, but their names, type 
and range of values allowed.  Real database programs maintain this information 
in the file as well, permitting the user to define many different databases with the 
same program.  You might think about how our program would be modified to 
do that as well.


The paragraph above contains enough challenges to last you as long as you 
want.  Just remember that Business Basic has enough power and capability to 
allow you to be as sophisticated as you wish in managing file data.  Good luck!


THE NEW GOODIES 
Version 1.1 of Business Basic is now released and it is neat!  Obviously, it clears 
up some nasty little problems from the first version, and the manual is now a 
completely revised (and two volume) reference guide that you will really enjoy.  
But that's only the beginning.  Several new capabilities have been added in 
response to user requests and some pretty good thinking on the part of the 
Apple engineering staff.  They are summarized below, but I suggest that you 
slide over to your local dealer to get the real scoop.  The P.S. is pretty good too.  
Its free to all current purchasers of Basic, no matter how long ago you bought 
your old version!


New language additions 
There are two new reserved words, INDENT and OUTREC.  INDENT sets the 
level of indentation for the FOR NEXT loops (default is 3) and OUTREC sets the 
record length Basic uses to format listings.  Ever have a long line in a Basic 
program which got overprinted on your 80 column printer?  OUTREC is initially 
set to 80, but can have any value to 255.  Zero causes listings to work as in the 
old version.  The neat feature is that when the printed output reaches the 
OUTREC value, Basic automatically inserts a carriage return and spaces over to 
line the next part up with the indentation level of the previous line.  No more 
screwing up those pretty indented listings with long lines!  This works with any 
output file you specify.


An enhancement has been made to the GET statement as well.  You are now 
allowed to use GET# to get a single character from any file.  This includes disk 
Data files, Text files, and character devices.  I can't begin to tell you all the 
possibilities this presents, but it should keep you busy for a while.


41



NEW INVOKABLE MODULES 
As we've discussed before, the design of the Basic Invoke mechanism allows 
the language to be extended almost infinitely.  Since the Invokable routines are 
accessed by name, and available from Immediate as well as Deferred execution 
modes, its really like adding commands to the language.  With all the memory 
available in the Apple III, you can keep lots of these routines around, or if you 
need the space for data, you can invoke just the ones you need at a particular 
time.  The new release of Business Basic contains some really powerful 
Invokables.  Hang on to .console, here they come!


For the development programmer, the most significant module is probably 
RENUMBER/MERGE.  There's too much available in this one to go into detail 
but for those of you who have been frustrated by wanting to add that "one extra 
line" into a program and having no place to put it, take heart.  RENUMBER will 
renumber your program in memory and save it on disk automatically, or 
renumber a program stored on the disk and place it in memory for you.  In 
addition, it supports merging of programs on disk with programs in memory.  
This means you can save important subroutines and have them automatically 
added to the program you are currently working on.  Because it is an Invokable 
module, it won't take up any memory unless you want it (obviously there is little 
need, and less desire, to renumber a program while it is running).


The next biggie is the REQUEST module.  Remember all those wonderful things 
I keep saying about SOS?  REQUEST allows a Basic program to make calls to 
the Operating System directly.  You can read or write up to 64K bytes in one 
statement to any file on the system (including text and data files, .console, etc.).  
Numeric arrays can be stored about 20 times faster than with regular FOR NEXT 
loops!  In addition, REQUEST allows the Basic programmer to directly get 
device status, and use the SOS SETCONTROL mechanism.  More details on this 
super-powerful module are in the documentation.


The last goodie is an invokable which allows you to DOWNLOAD character sets 
directly to the RAM-based character generator.  After setting up the character 
definition in an array, one Perform statement passes it to the Operating System 
as the new character set.  The Business Basic disk contains several sample 
character sets, and you can have fun inventing your own.  This also allows you 
to create animation, by properly defining special characters, ala the DOS Toolkit 
ANIMATRIX program.  I'm sure some clever programmers will design a really 
nice program to use this invokable for character set design.


Closing thoughts 
Whew!  Glancing up at the prompt line of my Applewriter III display, I see that 
I'm up to 26590 characters in this article!  Your tired eyes and my tired fingers 

42



both need a rest.  Next time we'll have a mixed bag of things to enjoy, including 
some comments on the powerful formatting capabilities of Business Basic, and 
I'll reveal a secret that I hope you all get in on.  That secret is the answer to the 
question "how many bytes of memory are available for programs in a 256K 
Apple III?".  Until then, have a happy holiday season!


P.S.  As you probably noticed in the paragraph above, there's more than Basic 
that's changed about the new Apple III!                                     


43



44



Exploring Business Basic - Part V 
Last time I dropped several broad hints about new software and hardware 
happenings on the Apple III.  Hopefully by now you have had a chance to go 
down to your dealer and check some of these things out.  As you might have 
guessed, I've been doing these articles on Applewriter III, which I really enjoy.  I 
could go on describing the new software for the rest of this column, but since 
this is supposed to be about Basic, I'll temporarily restrain my enthusiasm.  One 
thing before we start, though.  Last time I promised the answer to "How many 
bytes of memory are available in a 256K Apple III?"  Well, as you know, the 256K 
Apple III has been announced and is beginning to be available.  The answer can 
now be revealed: 191,484  bytes! That's over three times the workspace 
available in any other personal computer Basic.  (Aren't you glad you've got an 
Apple III?  Don't you wish everybody did?)  We were discussing some sorting 
techniques for our database last time which can make good use of that space.  
This time we'll explore a mixed bag of items, and defer our discussion of the 
Print Using capabilities of Business Basic until next time.


Our Mixed Bag 
The first bagged item for this month is the mailbag.  Several questions have 
come my way since this series started in September, but the most interesting 
ones concern programming style and philosophy.  The most intriguing 
concerned why I always use lower case variable names in my programs, 
especially since the Basic keywords (PRINT, etc.) all seem to be in caps.  
Actually, it would be easy to say that I lack the strength or will to operate the 
alpha lock key, but the real reason has to do with the way Basic itself works.  
You are probably aware that Business Basic defers its "syntax 
checking" (looking for errors) until you actually run the program.  Basic does 
perform some tasks as each statement is entered, however, a process generally 
referred to as "tokenizing".  Simply, this means that Basic scans each statement 
and converts each Keyword, sometimes called Reserved Words, into a special 
internal one byte code called a Token.  English majors will appreciate the 
appropriateness of that term.  Not only does this code save space, but it 
simplifies error checking and execution of the program.  Almost all Basic 
interpreters use this technique.  One of the consequences of this method is that 
the program statements cannot be listed out without the Basic LIST command 
converting these "tokens" back to their English equivalents.  In converting the 
tokens, Basic always prints out the Upper case version of the keywords.  I type 
in all Basic statements in lower case, both variables and keywords, so that when 
I list out the program, I can see what Basic interpreted as keywords.  If I misspell 
PRINT, Basic will not recognize it as a keyword, and the fact that it remains 
lower case makes such errors easy to spot in a listing.  In addition, Business 

45



Basic requires spaces between keywords and variable names, to allow variables 
to contain keywords themselves.  Ever try to use a variable like ORANGE in 
Applesoft, only to discover that OR is a reserved word and therefore your 
variable must be renamed to something like RNGE?  Typing in lower case will 
allow you to spot those times that you forgot to space and ended up with "fori=1 
TO 10" instead of "FOR i=1 TO 10".  The first case will produce an error, since 
Basic will assume you are trying to assign the value of 1 to the variable "fori" 
and for some reason put the phrase "TO 10" onto the end of the statement.  
Some examples will clarify:

  Typing:  10 prunt x*53     will result in:  10 pruntx*53 

 whereas:  10 print x*53     will result in:  10 PRINT x*53 

  Typing:  10 on xgoto 20,40,50   will result in:  10 ON xgoto20,40,50 

 whereas:  10 on x goto 20,40,50  will result in:  10 ON x GOTO 20,40,50 

See how much easier it is to catch the error visually?  Like every rule, there are 
exceptions.  Any variable which starts with the letters "FN" will be assumed to 
be a function name.  Again, typing all lower case will help spot the problem:

Typing:  10 xval=aval*fnumber    will result in: 10 xval=aval* FNumber 

and you will immediately know that something is wrong (assuming that you 
really wanted to use "fnumber" as a variable name).


There is another little quirk in Basic that this technique helped me spot.  As you 
may know, we have used the ON EOF# statement quite a bit to take action if a 
program tries to read past the end of file.  According to the manual, the part 
following EOF#n can be any executable statement.  So far we have generally 
used GOTO or GOSUB statements to take action.  Consider the following:

 Typing:   10 on eof#1 goto 20   will result in:   10 ON EOF#1 GOTO 20 

as you would expect.  But:

    Typing:   10 on eof#1 xval=20   will result in:   10 ON EOF#1xval=20  

For some reason Basic treats the whole thing as one variable.  The solution 
involves dredging up a bit of Basic folklore.  Remember in your first class in 
Basic when they told you that all assignment statements started with the 
keyword LET?  Most Basic dialects have long since allow the LET keyword to be 
optional, and most people have quit using it altogether.  An example of the use 
of LET is:

  10 LET x=45    which is usually written simply:   10 x=45   

If there is any ambiguity in the way a statement can be interpreted, LET can be 
used to clear it up.  Our new version of the EOF statement:


46



typing:   10 on eof#1 let xval=20  will result in:  10 ON EOF#1 LET 
xval=20 

and everything will work fine.  Note that the fact that Basic failed to upshift the 
reserved word EOF in the example above was a major clue toward 
understanding the problem.  The technique of entering everything in lower case 
has saved me countless hours of debugging my errors.  I recommend it strongly 
to you.


Bag Item Number Two 
In my list last month of new goodies in Business Basic 1.1, I completely 
overlooked one which seems minor but has important consequences.  The 
change is an extension to the standard GET statement.  Normally, as in 
Applesoft and some other Basics, GET allows reading the keyboard one 
character at a time, including all special control characters and delimiters.  This 
means you can bypass Control-C and Carriage Return, read commas, etc.  
Business Basic 1.1 extends GET to allow GET#n.  This means that you can read 
any SOS file one character at a time, without respect to what kind of file it is.  
This can be very handy to read all characters from the communications port (via 
the .RS232 driver) or read other character streams from special devices.  One of 
its most interesting uses, however, is the fact that it can be used on disk files as 
well.  Remember that one file is just like another in the SOS environment, so if 
we open a text file on disk, GET# will allow us to read one character at a time 
from it.  This means that there is now an easy way  to read text files which 
contain more than 255 characters without a RETURN character.  Normally this 
would cause a string overflow error if attempted with the Basic INPUT 
statement.  Even more interesting is the fact that we can also open and read 
from the Basic Data file!  Remember that I described the Data file as having 
special "tags", called "Type bytes", to allow Basic to determine what data type 
was stored next in the file.  Remember also that numeric data is stored in a Data 
file in its binary form.  GET# allows reading this binary information, one byte at a 
time.  One example is worth a thousand explanations:

 5   INPUT"File to dump: ";a$ 
 10   IF a$="" THEN 100 
 15   OPEN#1,a$ 
 20   ON EOF#1 GOTO 100 
 25   cr$=CHR$(13) 
 30   GET#1;a$ 
 40   IF a$=cr$ THEN PRINT 
 50   PRINT a$; 
 70   GOTO 30 
 100   CLOSE 
 110   END 

47



This simple example will dump any text file to the screen, no matter how long 
the intervals between carriage returns.  A good example of a text file with 
arbitrarily long strings is the file I'm creating now, using Applewriter III. RETURN 
characters are inserted only at the end of paragraphs which, if you notice my 
style, tend to run on indefinitely.


Note that in this program I look for RETURN characters by loading the variable 
"cr$" with a RETURN (decimal 13) and then testing for it before printing.  If you 
want to reconstruct strings from the file, you could use a string variable to 
accumulate characters, stopping when a RETURN is encountered.  A test would 
need to be made to avoid overflowing the 255 character limit.


This program has one serious deficiency, however.  Printing arbitrary characters 
from a file (especially a Data file) can have weird consequences when the output 
device is the console, as it is in the example program.  The console uses lots of 
different control sequences to perform functions, including setting windows and 
changing from black and white to color text modes.  Also, a byte can contain 
256 different characters, and the ASCII character set only defines 128.  Clearly 
we need a safe and consistent way to display any byte readable from a file.  So, 
like most small, simple programs, this last one is about to get complex:

 5   INPUT"File to dump: ";a$ 
 10   IF a$="" THEN 95 
 15   OPEN#1,a$ 
 20   INPUT"File for output: ";a$ 
 25   OPEN#2,a$ 
 30   ON EOF#1 LET eof.occurred=1:GOTO 80 
 35   bytes=0:eof.occurred=0 
 40   line$="" 
 45   PRINT#2;HEX$(bytes);"-";HEX$(bytes+31);" "; 
 50   FOR i=1 TO 32 
 55     GET#1;a$ 
 57     val=ASC(a$):IF val>127 THEN val=val-128 
 60     IF val<32 THEN line$=line$+" .":ELSE:line$=line$+" "+CHR$(val) 
 65     outhex$=HEX$(ASC(a$)) 
 70     PRINT#2;MID$(outhex$,3,2); 
 75     NEXT i 
 80   PRINT#2:PRINT#2;"          ";line$ 
 85   bytes=bytes+32 
 90   IF eof.occurred=0 THEN 40 
 95   CLOSE 
 120   END 

Scanning down the program, note that in addition to opening the file to be 
dumped, we now open a second file to which the output is written.  This gives 
more flexibility, and still allows using ".console" to see the output on the screen.  
Line 30 sets up our end-of-file condition, using the LET statement to get around 

48



the problem we described earlier, and shows one other handy thing of note.  
Notice that we can imbed periods in variable names to improve readability.  It's 
easy to see that "eof.occurred" is easier to interpret than "eofoccurred", and this 
is especially true for more complex variable names (remember that Business 
Basic permits 64 character names!).


Lines 35 and 40 initialize variables.  We will be using the "line$" string to 
accumulate the characters read from the file for later printing.  After each line of 
print we will re-initialize the string. Since we will be printing 32 characters at a 
time from the file, line 45 uses the HEX$ function to set up the labels for each 
line.  A note about "HEX" is appropriate here.  HEX stands for hexadecimal, or 
base 16 arithmetic.  It is used extensively in computers for its convenience, 
since any hex digit can be represented by 4 binary bits, and a byte can be 
exactly represented by 2 hex digits.  This convenience makes it preferred over 
decimal and octal notation, and of course it is much more compact than binary.  
What usually throws people is that to properly represent with a single digit all 
values between 0 and 15, hex uses the digits 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F 
respectively.  "F" thus is equivalent to 15, and "1F" is 31 (the 1 is in the 
"sixteens" place).  There will be no attempt to explain hex further.  If you are not 
familiar with the notation, any beginning text on computers usually covers the 
subject thoroughly, and readers of Rodger Wagner's column in this journal have 
been inundated with help on "hex".  Suffice it to say that the HEX$ function will 
convert any reasonable numeric quantity into a four byte string of hex digits.


Getting back to our program, the loop from line 50 to line 75 is the main one 
where we dump  32 bytes at a time in hex format, while providing character 
representations for those within the displayable range (hex 20 to 7F, decimal 32 
to 127).  The back of your Basic manual contains an ASCII code chart, which will 
be helpful in following along with the decoding.  Line 57 in the program sets the 
variable "val" to the ASCII value of the byte just read, and then an IF statement 
checks to see if it is in the 128 to 255 range.  If so, 128 is subtracted to bring the 
value within the normal ASCII range.  Line 60 checks to see if the resulting 
character is a "control" character, and if so, it is represented as a period in 
"line$", signifying that it is unprintable. Otherwise, the character representation 
is stored.  Note that the characters are right justified in each two byte cell, 
because they will be printed below the hex values.  Next, the hex value of the 
original character is assigned to "outhex$" in line 65, and printed to the output 
file in line 70.  Note that we want only the rightmost two hex digits, so the MID$ 
function is used.  After the loop prints out the 32 values, lines 80-90 print the 
ASCII equivalents stored in "line$", bump the byte count, check for EOF 
condition, and repeat the sequence.


The easiest way to check this little jewel is to run it against the file for this article.  
If we did that, the output would look something like this:


49



0000-001F 
2E636A0D5420482045202054204820492052204420204220412053204920430D 
           . c j . T   H   E     T   H   I   R   D     B   A   S   I   C 
. 
0020-003F 
0D6279205461796C6F7220506F686C6D616E0D0D0D2E6C6A0D4578706C6F7269 
           . b y   T a y l o r   P o h l m a n . . . . l j . E x p l o r 
i 
0040-005F 
6E6720427573696E657373204261736963202D205061727420666976650D0D4C 
           n g   B u s i n e s s   B a s i c   -   P a r t   f i v e . . 
L 
0060-007F 
6173742074696D6520492064726F70706564207365766572616C2062726F6164 
           a s t   t i m e   I   d r o p p e d   s e v e r a l   b r o a 
d 
0080-009F 
2068696E74732061626F7574206E657720736F66747761726520616E64206861 
             h i n t s   a b o u t   n e w   s o f t w a r e   a n d   h 
a 
00A0-00BF 
7264776172652068617070656E696E6773206F6E20746865204170706C65202F 
           r d w a r e   h a p p e n i n g s   o n   t h e   A p p l e   
/ 
00C0-00DF 
2F2F2E2020486F706566756C6C79206279206E6F7720796F7520686176652068 
           / / .     H o p e f u l l y   b y   n o w   y o u   h a v e   
h 
00E0-00FF 
61642061206368616E636520746F20676F20646F776E20746F20796F75722064 
           a d   a   c h a n c e   t o   g o   d o w n   t o   y o u r   
d 

Messy, huh!  Let's look at this more closely and see if it makes sense. First, the 
first line tells us that we are looking at bytes 00 through 1F (0 to 31 decimal), and 
the top line is the hex representation of the characters, two digits per character.  
The first character in the file is "2E" hex, which happens to be a period.  Notice 
that that is the character printed below on the next line.  The next two 
characters in the file are "63" and "6A" which correspond to the ASCII 
characters "c" and "j".  This is understandable, since Applewriter III uses the 
print format command ".cj" for center-justify, which is what I wanted done with 
the title.  The next character is "0D" which translates to decimal 13, or a 
RETURN character.  Note that a period is substituted for this character on the 
print line, since RETURN is in the "control" character range.  And so on, and so 
on.  Practice on a few text files of your own and get a feel for reading the 
notation.


50



Where this really gets interesting is in reading files whose exact format is 
normally pretty obscure.  Data files are an excellent example, since, although the 
READ# statement can get data out, things like the "type" bytes, and string 
length bytes are normally inaccessible.  To see how our dump program would 
work on a Data file, we need a way to generate an interesting file at which to 
look.  The following program is simple, and will do the trick.  Later on in a future 
article when we get serious about sorting techniques, we'll need such a 
program, so I'll introduce it now:

 5   OPEN#1,"junkfile",30 
 6   INPUT"Number of records to create: ";n 
 10   FOR i=1 TO n 
 12     i%=RND(1)*10000 
 13     WRITE#1,i;i%:PRINT i%, 
 15     a$="" 
 20     FOR j=1 TO 5 
 30       a$=a$+CHR$(65+INT(6*RND(1))) 
 35       NEXT j 
 41     FOR k=1 TO 4 
 42       a$=a$+CHR$(48+INT(10*RND(1))) 
 43       NEXT k 
 45     WRITE#1;a$:PRINT a$, 
 48     val=RND(1)*1E10:WRITE#1;val:PRINT val, 
 49     i&=CONV&(RND(1)*1E15) 
 50     WRITE#1;i&:PRINT i& 
 55     NEXT i 
 60   CLOSE 
 70   END 

This program will create a random access data file of arbitrary length containing 
an integer, a string, a real and a long integer in each record. The interesting 
things of note are the two small loops which build the string value.  They are set 
up in such a way to insure that the first five characters are upper case alpha, 
and the next four are decimal digits.  As I said, this routine will come in handy 
later in sorting exercises.  For now, type this in and run it to create a small file, 
say 5 records.  Although each run will differ, the output should look something 
like this:

2092            CEEBE4542       7.72055E+09     930904428626944 
7107            CDCAD1031       6.87212E+09     971614244086784 
9206            DDADE8239       6.94853E+08     839965717072896 
3038            ADBAC4450       6.09472E+09     397952126404096 
3814            AABED9057       2.27867E+09     768212125296640 

Now for the fun.  When you run your dump program against the file that this 
program creates, the output should look something like this:


51



0000-001F 
0000000000000000000000000000000000000000000000000000000000001208 
           . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. 
0020-003F 
2C210943454542453435343214A16617221800034EA713C9C4000000121BC321 
           , ! . C E E B E 4 5 4 2 . ! f . " . . . N ' . I D . . . . . C 
! 
0040-005F 
0943444341443130333114A14CCE1D18000373AD91E0A40000001223F6210944 
           . C D C A D 1 0 3 1 . ! L N . . . . s - . ` $ . . . . # v ! . 
D 
0060-007F 
4441444538323339149E25AA7B180002FBF1C2308C000000120BDE2109414442 
           D A D E 8 2 3 9 . . % * { . . . { q B 0 . . . . . . ^ ! . A D 
B 
0080-009F 
41433434353014A135A30818000169EF7321C6000000120EE621094141424544 
           A C 4 4 5 0 . ! 5 # . . . . i o s ! F . . . . . f ! . A A B E 
D 
00A0-00BF 3930353714A007D1D0180002BAAF52D728000000 
           9 0 5 7 .   . Q P . . . : / R W ( . . . 

Well, nobody said computer science was for the faint of heart!  By the way, the 
term generally used for this type of listing of file contents is "formatted dump".  
"Formatted" because we have organized the information in the printout, and 
"dump" because it is a non-selective output of the exact contents of the file.


Now the fun begins.  The first thing to notice is that almost the entire first line is 
composed of zeros.  Remember that our dump program starts at the beginning 
of the file, but the program we used to create this file began at record number 
one.  Therefore, since the record size was 30 bytes, we would expect to find an 
empty record of 30 bytes at the beginning.  That is exactly what the dump 
shows.  This means that the hex "12" in byte 31 of the file must be at the 
beginning of record one.  Now something that was mentioned earlier about 
"type" bytes in Data files becomes important.  Remember that the general 
format of a Data file is the following:

       !==============!=========================! 
       ! Type byte    !  Data bytes (2,4 or 8)  ! 
       !==============!=========================! 

52



for numeric values (integer, real and long integer), and the following:

       !==============!===============!=========================! 
       ! Type byte    ! Length byte   !  Data bytes (0 to 255)  ! 
       !==============!===============!=========================! 

for strings.  With this information, we should be able to decode the information 
in this dump.


Since the first value in the record was an integer, the hex code "12" must be the 
"type byte" for integer data.  Following our format, that means the next 2 bytes 
(hex codes "08" and "2C") must be the binary integer value.  Evaluating the hex 
value "082C" yields decimal value 2092, which is exactly what our printout led 
us to expect.


The next value in the file was a string, which contained "CEEBE4542". Referring 
again to our format for strings in Data files, we would expect the next file byte to 
be the "type" byte.  That's the hex code "21".  Next is the length byte, which, 
since the string is 9 characters long, should be equal to 9.  That's hex code 
"09", one of those lucky hex numbers which is the same as its decimal 
equivalent.  After that our format line shows that indeed, the string value is 
"CEEBE4542".


The next value in the record was a "real".  Since the next byte after the string 
should be the "type" byte for reals, we can conclude that the hex "14" found in 
position "2C" (44 decimal) is the floating point "type" byte. Floating point 
numbers are stored in a 32 bit internal format in Business Basic, so we would 
expect that the next four bytes would contain the binary value.  Proving that this 
value (hex "A1661722") is equal to 7.72055E+09 is considerably more complex, 
and will be left to the numerically inclined reader.  That phrase "left to the 
numerically inclined reader" is this author's equivalent to the famous line found 
in all math texts "it can easily be shown that..." and is just as big a cop-out.


The last value in the record is a long integer, and the "type" byte in position 
"31" (decimal 49) has the value of hex "18".  Long integers are stored as eight 
byte quantities, therefore the next 16 hex digits should represent the number.  
Since that hex value is "00034EA713C9C400", it follows that coverting this value 
should yield the decimal value originally printed out: 930904428626944.


As a little added bonus in this article, let me offer a program which will 
demonstrate the truth in the statement above.  This program will convert any 
reasonable hex value into decimal and print it out rather quickly, using the long 
integer data type and Business Basic's conversion functions.  Forthwith, it is:

 5   sixteen&=16 
 10   INPUT"hex value: ";a$ 
 15   IF a$="" THEN 100 
 20   cum&=0 

53



 25   mult&=1 
 30   FOR i=LEN(a$) TO 1 STEP-1 
 35     val&=CONV&(TEN(MID$(a$,i,1))) 
 40     digit&=mult&*val& 
 45     cum&=cum&+digit& 
 50     mult&=mult&*sixteen& 
 55     NEXT i 
 60   PRINT cum& 
 65   GOTO 10 
 100   END 

The program simply "brute force"s the problem, one digit at a time, but since the 
long integer arithmetic is very fast, performance of the program is quite 
reasonable.  One note, this program knows nothing about sign bits, so it will fail 
in converting negative integers expressed as hex constants.  A fix for this would 
be to optionally check for the high-order bit and negate the final result, but the 
program then loses its general nature.  Anyway, it's free.


Well, that got us completely off track.  Going back for a second to the formatted 
dump, we are now at position "3A" hex (58 decimal), which is really position 28 
decimal in this record.  The remaining two bytes of the record (remember that 
we declared the record to be 30 bytes long) should be empty, and sure enough, 
show up here as zeros.  This gets us to position "3C", the beginning of the next 
record, and there is the integer "type" byte "12" signaling that we can start the 
whole process again.  I leave that to you if you want to try your hand at 
decoding.  I can summarize some of what we have learned in the following 
table:

    Data type name    TYP() function value       Internal file code 

                                                   hex    decimal 

      Integer                  2                    12      18 
  
      Real                     1                    14      20 

  
  
      Long Integer             3                    18      24 

      String                   4                    21      33  

Don't forget that the GET# statement can be used in lots of other interesting 
ways and that its primary function is to effectively process console input without 
those characters being first processed by Basic.  I just thought the examples 
above would give us a chance to explore several interesting topics at once.


54



Final Thoughts (Bottom of the Bag) 
I had fully intended to explore one more topic which had previously generated 
questions, but this tome is now growing overlong.  The topic I had in mind was 
the use of the REQUEST invokable module.  Those of you who are writing 
programs which do lots of reading and writing of numeric arrays to disk should 
tune in next time when we show how to get at least twenty times the 
performance improvement over using FOR NEXT loops to accomplish the same 
task. That, combined with the huge memory space available for arrays, provides 
some significant capability to the person interested in data analysis and 
sophisticated file indexing.  I also promise to get to my thesis on PRINT USING, 
especially since Business Basic allows some tricks not available in most other 
Basics.  One of these days we'll get to graphics as well, and discuss how to use 
BGRAF and DOWNLOAD to create some really interesting stuff.


Until then, just one last note.  I looked back over this article and decided that the 
word "hex" was mentioned so many times that we have left the era of "Voodoo 
Economics" (an unpopular phrase in Washington these days) and entered a new 
era of "Voodoo Basic".  Oh well, maybe if I wore garlic while typing... 
files, .console, etc.).  Numeric arrays can be stored about 20 times faster than 
with regular FOR NEXT loops!  In addition, REQUEST allows the Basic 
programmer to directly get device status, and use the SOS SETCONTROL 
mechanism.  More details on this super-powerful module are in the 
documentation. 

55



56



Exploring Business Basic, Part VI 
Last episode I covered a mixed bag of topics, and ended with a promise to 
cover some parts of the new REQUEST invokable module and techniques on 
using PRINT USING.  Fear not, all that and more is covered below, including 
some tips on Long Integer "decimal" arithmetic.  But first, a few digressions 
based on comments some of you made on previous articles.


Digression Number One 
I made the comment in one of the first articles that random record files were 
limited to 32,767 records, the maximum positive integer value.  In fact, there is 
no particular limit in SOS on which this Basic limit is based.  Basic even allows a 
real number to be used as a record number, but because Basic uses an integer 
type internally to keep track of the record number, the value still cannot exceed 
32,767.  The actual position in the file is determined by multiplying this record 
number by the record size assigned when the file was originally created (default 
is 512 bytes).  My understanding is that this 32,767 limit on record numbers is 
not the case in Pascal.  Now that the Profile hard disk is available, some thought 
is being given to removing this restriction.  Let me know if it's been a problem 
for you.


Digression Number Two 
As I demonstrated last time, the GET# statement in Basic can be used to read 
the exact contents of most files on the Apple III, one byte at a time.  We even 
created a special "formatted dump" program to investigate the contents of 
Basic Data files.  Some types of disk files cannot be opened by Basic, however.  
Most notably, these include Pascal Code and Data files.  If you have a need to 
examine the contents of those files from Basic, they can be accessed by using 
the Pascal Filer to change the file type to "Ascii", which Basic knows as the 
"Text" file.  You Pascal programmers will enjoy Basic, once you try it!


There is another file type which is very interesting to examine, and Basic will 
allow you to open it directly.  Those are the "Catalog" or "Subdirectory" files 
which you create from Basic or the Utilities program.  The subdirectory 
capability of SOS is one of its most powerful features.  If you aren't using 
subdirectories to group your files and programs logically, I suggest you read the 
relevant sections of the Basic manual and the Apple III Owners Guide.  One 
problem with files in Basic, however, is that it is difficult to discover from a 
running program whether or not a given file or program already exists. There are 
some ways using ON ERR to work up a solution to this problem, but nothing 
very tidy.  However, being able to open and read a directory or subdirectory 

57



allows us to check on everything before OPENing a file or CHAINing to another 
program.


Those of you who read last month's article know about our handy-dandy file 
dump program using GET#.  Let's pick a typical subdirectory named "MYSUB" 
containing the files "MYPROGRAM" and "DIRECTORYDUMP".  Using the 
formatted dump program from last time, the file contents look something like 
this:

0000-001F 
00000000E54D595355420000000000000000000076000000000000009DA3060F 
           . . . . e M Y S U B . . . . . . . . . . v . . . . . . . . # . 
. 
0020-003F 
000000270D020009000227194D5950524F4752414D0000000000000982000100 
           . . . ' . . . . . . ' . M Y P R O G R A M . . . . . . . . . . 
. 
0040-005F 
A301009DA3070F0000E300029DA3070F81002D4449524543544F525944554D50 
           # . . . # . . . . c . . . # . . . . - D I R E C T O R Y D U M 
P 
0060-007F 
000004840006007609009DA3090F0000E300029DA3090F810000000000000000 
           . . . . . . . v . . . # . . . . c . . . # . . . . . . . . . . 
.   

For those of you who did not read last month's column, this may look bizzare, 
but it's really easy.  Remember that this is a byte-by-byte image of the file. The 
numbers to the left (like 0000-001F) are the byte numbers in hexadecimal of that 
particular row.  Each row contains 32 bytes.  The top row in each pair is the 
actual hex contents of the file, and the next row is the ascii equivalent 
characters.  If the byte is a non-printing character, it is represented by a ".".  This 
is all fine, but you will immediately protest that other than being able to spot the 
subdirectory name and the file names, the printout is a big mystery.  Business 
Basic to the rescue!  It turns out that Basic is knowledgeable of the contents of 
directory files, so that when you open a directory or subdirectory file, Basic will 
automatically format the contents for you, just as it does in the CATalog 
command.  The following simple program will illustrate, on the same 
subdirectory we just looked at:

 1   INPUT"Directory to dump: ";a$ 
 10   OPEN#1,a$ 
 15   ON EOF#1 GOTO 60 
 20   INPUT#1;a$ 
 30   PRINT LEN(a$)":"a$ 
 50   GOTO 20 
 60   CLOSE 

58



 70   END 

The only thing unusual here is that we arranged to print the length of each string 
that is read, to check for any special formatting.  The output looks like this:

68: MYSUB           (12/29/81) V0                                       
68:                                                                     
68:  TYPE   BLKS  NAME            MODIFIED TIME  CREATED  TIME   EOF    
65:  BASIC  00001 MYPROGRAM       12/29/81 15:07 12/29/81 15:07  419 
66:  TEXT   00006 DIRECTORYDUMP   12/29/81 15:11 12/29/81 15:09  2422 
68:                                                                     

Since all the columns are in very predictable places, it is possible to easily 
extract the information desired by judicious use of the MID$ function.  Also, 
since this is a subdirectory, there is no line showing blocks free and blocks in 
use.  Try using this program on a volume directory.  The last string read from the 
file will contain this information, very useful if you want to check for imminent 
"Disk Full" errors.  Also, since the volume directory lists all the subdirectories 
(labeled "CAT" in the file type column), it is possible to get a full list of all the files 
on a volume by successively reading the individual subdirectory files.  Another 
treat for the esoteric members of the audience is to compare the information in 
the hex dump with the formatted output to discover where and how SOS hides 
all the information about files.


New Stuff 
As I promised last time, I want to go briefly into one of the most powerful new 
capabilities of Business Basic, the REQUEST invokable module.  Normally, all 
access to SOS files is done through the INPUT, PRINT, READ, WRITE and GET 
statements of Basic.  Basic interprets your desires and performs operations 
called "SOS calls" to do the actual work of reading and writing to physical 
devices.  There are times, however, when the programmer needs direct access 
to the information which SOS has about files, and other times when certain 
status and control information needs to be interrogated or set.  More information 
about what this information consists of for a particular driver can be found in the 
appropriate reference manual for that driver.


Of greatest interest to us now, however, is the ability to use SOS to directly read 
and write data to files.  A single SOS FWRITE command can transfer up to 64K 
bytes of data to a file.  Normally Basic allows writing only one variable at a time, 
and although it is possible to put more than one value in a single print or input 
statement, there are real limits on the amount of data which can be transferred 
at one time.  This generally means that arrays of data get written using FOR-
NEXT loops, adequate, but hardly a speed-burner.


59



To help solve this problem in situations where performance is at a premium, the 
REQUEST module contains two proceedures: FILREAD and FILWRITE.  They are 
documented in the REQUEST.DOC file on the Basic disk, but for reference, here 
are the formats:

PERFORM FILREAD(%filnum,@array$,%numbytes,@count) 
PERFORM FILWRITE(%filnum,@array$,%numbytes) 

"filnum" refers to the file number you used in the OPEN statement for the file to 
be read or written.  It can be any file which Basic is allowed to open. This 
includes device files like ".console" as well as disk-based text and data files.  
The "%" symbol in front of the "filnum" indicates that you should either use an 
integer variable, or put the % in front of any constant you use, to insure that an 
integer value is passed to the procedure.  "Array$" refers to a string variable 
which contains the name of the array which your wish to read or write.  The "@" 
character on the front of the string variable name instructs Basic to pass the 
memory address of the string, not the actual contents of the string itself.  The 
invokable module is responsible for finding out what array name is in the string, 
and then locating the array in memory.  The "numbytes" parameter tells the 
procedure how many bytes are to be read or written from the array.  In the 
FILREAD procedure, the extra parameter "count" allows the procedure to pass 
back information about how many bytes were actually read, in case an EOF or 
other event prevented the reading of the full amount of data specified.  It must 
be an integer variable.


One note is important here.  These procedures read and write the exact 
contents of arrays.  In the case of disk files, there is no way to read this data 
back once it is written, except by using the FILREAD procedure.  That is, if you 
write an integer array to a DATA file, no type bytes are placed in the file, just the 
binary integer values, one after the other.  The same is true for text files.  Normal 
writes to text files convert the binary internal format to ASCII character format.  
If you write to a text file using FILWRITE, the exact binary data is written.  You 
can position the file pointer using random access statements, but once a 
FILWRITE starts, it does not respect record boundaries.  Great care must be 
taken if you have any ideas about mixing this kind of data with the normal 
contents of text and data files.   I often use record 0 of the file to document the 
use of FILREAD and FILWRITE within an ordinary file by putting information 
there about the types of arrays, their location within the file, their length, etc.


Now that we've documented how it works, let's look at an example which will 
demonstrate how it can improve the performance of your programs.


The program below represents a "benchmark" of the time it takes to write a real 
and an integer array to a data file:

 10   DIM realarray(10,100),intarray%(10,100) 
 20   OPEN#1,"test.request" 

60



 30   REM fill arrays with random data 
 40   FOR i=1 TO 10 
 50     FOR j=1 TO 100 
 60       val=RND(1)*30000:valint%=INT(val) 
 70       realarray(i,j)=val:intarray%(i,j)=valint% 
 80       NEXT j,i 
 90   PRINT"Arrays filled." 
 100   PRINT"Writing real array with FOR-NEXT." 
 110   PRINT"Start time: "; TIME$; 
 120   FOR i=1 TO 10:FOR j=1 TO 100 
 130       WRITE#1;realarray(i,j) 
 140       NEXT j,i 
 150   PRINT"   Stop time: "; TIME$ 
 160   PRINT"Writing integer array with FOR-NEXT." 
 170   PRINT"Start time: "; TIME$; 
 180   FOR i=1 TO 10:FOR j=1 TO 100 
 190       WRITE#1;intarray%(i,j) 
 200       NEXT j,i 
 210   PRINT"   Stop time: "; TIME$ 
 220   CLOSE 
 230   END 

As you can see, this is a relatively straightforward program which writes a 1000 
element real array and a 1000 element integer array to disk.  My apologies to 
those of you without clock chips.  One of the only rewards for getting Apple III 
serial number 337 was that I still have a semi-functional clock.  If you run this 
program, the timings should look something like this:

)RUN 

Arrays filled. 
Writing real array with FOR-NEXT. 
Start time: 13:37:42   Stop time: 13:38:17 
Writing integer array with FOR-NEXT. 
Start time: 13:38:17   Stop time: 13:38:38 

All this adds up to about 35 seconds to write the real array, and 21 seconds to 
write the integer array.  A great deal of this time is spent in the FOR-NEXT loop, 
and in writing each element separately.  Now let's look at the same program 
using FILWRITE:

 10   DIM realarray(10,100),intarray%(10,100) 
 20   OPEN#1,"test.request" 
 25   INVOKE".d1/request.inv" 
 30   REM fill arrays with random data 
 40   FOR i=1 TO 10 
 50     FOR j=1 TO 100 

61



 60       val=RND(1)*30000:valint%=INT(val) 
 70       realarray(i,j)=val:intarray%(i,j)=valint% 
 80       NEXT j,i 
 90   PRINT"Arrays filled." 
 95   array$="realarray" 
 100   PRINT"Writing real array with FILWRITE" 
 110   PRINT"Start time: "; TIME$; 
 120   PERFORM filwrite(%1,@array$,%4000) 
 150   PRINT"   Stop time: "; TIME$ 
 160   PRINT"Writing integer array with FILWRITE" 
 165   array$="intarray%" 
 170   PRINT"Start time: "; TIME$; 
 180   PERFORM filwrite(%1,@array$,%2000) 
 210   PRINT"   Stop time: "; TIME$ 
 220   CLOSE 
 230   END 

Notice that in the "filwrite" PERFORM statements, that %1 was used to denote 
the fact that we wanted to write to file number 1, and the string "array$" 
contained first contained the arrayname "realarray" and then "intarray%". 


Also, a length of 4000 was used in the case of the real array (1000 elements at 4 
bytes each) and 2000 in the case of the integer array (1000 elements at 2 bytes 
each).  The result when this version is run is quite dramatic:

)RUN 

Arrays filled. 
Writing real array with FILWRITE 
Start time: 13:54:45   Stop time: 13:54:48 
Writing integer array with FILWRITE 
Start time: 13:54:48   Stop time: 13:54:49 

That's right! Approximately three seconds was required for the real array, and 
only one second for the integer array, between ten and twenty times faster than 
the previous example.  Remember, though, that data written with this technique 
is readable only with a similar FILREAD statement, and if you ever lose track of 
the way in which it was written, it's tough toenails.  Even with those minor 
difficulties, I'm sure that you'll find lots of good uses for this new invokable 
module.


New Stuff - Part Two 
I have been promising for several months now to pass along some information 
about the PRINT USING capabilities of Business Basic.  Rather than go into 
detail about every little feature, I decided to give a quick overview of the main 
features, and then give an example which shows off some of the power of 

62



PRINT USING, as well as answering some questions about how to use the Long 
Integer data type for financial accounting applications.  That's a lot to stuff into 
one section, but here goes:


Like most PRINT USING implementations in various dialects of Basic, Business 
Basic permits the printing of a list of variables according to a format described 
in an IMAGE statement.  In fact, if you have programs in Microsoft Basic, 
CBASIC or most others with simple IMAGE statements, they should convert 
readily.  It is in the extensions to these simple capabilities where Business Basic 
really starts to shine.  The standard format is, as was said, like the following:

      10   PRINT USING 20; first$,firstnum,secondnum% 
      20   IMAGE AAAAAAAAAAAAAAA,XXX,#####.##,XXX,##### 

In the Image statement, "A" reserves a space for one alphabetic character, "X" 
inserts a blank space, "#" reserves a space for one numeric digit, and "." tells 
Basic where to align and print the decimal point in a numeric field. Therefore, the 
example above in line 20 is interpreted as follows:


"Print the string variable "first$" in the first 15 positions of the output record, 
skip 3 spaces, then print the real variable "firstnum" with 5 digits to the left of 
the decimal point, and 2 decimal places to the right.  Then skip another 3 
spaces, and print the integer variable "secondnum%" right justified in a 5 digit 
field."


Assuming the values "My test string" for first$, 123.443 for firstnum, and -2345 
for secondnum%, the output would look like this:

My test string      123.44   -2345 

Other questions, like what happens when the number or string is too big to fit, 
are best left to a careful reading of the Basic reference manual.  Now the fun 
begins.  Business Basic allows considerable flexibility in the way the simple 
example above can be expressed.  For one thing, it can be simplified by placing 
repeat factors on the specification characters, like this:

20   IMAGE 15A,3X,5#.2#,3X,5# 

Another feature is that the "image" string can be a string value replacing the line 
number reference in the PRINT USING statement.  The following are equivalent:

10   PRINT USING "15A,3X,5#.2#,3X,5#";first$,firstnum,secondnum% 

or 

10   format$="15A,3X,5#.2#,3X,5#" 
20   PRINT USING format$;first$,firstnum,secondnum% 

It is this last variation, and the power it gives us to change the format under 
program control, that we will explore in depth a little later.


63



So far we have covered the "X" specification, called a "literal" spec, the "A" 
spec, called a "string" spec, and the "#" spec, called a "digit" spec.  Others 
available include:


Literal Spec

X            prints a space


/            prints a carriage return "any text"   inserts literal strings in the output


Digit Spec

#   Reserves one digit, leading zeros are suppressed


&   Reserves one digit or comma.  Commas are inserted every 3 digits


Z   Reserves one digit, leading zeros are printed


Special Numeric Specs

+   Reserves position for a sign


-   Prints sign only if negative (default)


++  Prints "floating sign" in rightmost unused position


--  Prints "floating sign" only if negative


$   Reserves position for dollar sign ("$")


$$  Prints "floating dollar sign" **  Fills leading spaces with asterisks


E   Prints the number in scientific or engineering notation


String Specs

A   Prints string left-justified in the field


C   Prints the string centered in the field


R   Prints the string right-justified in the field 


As you can see, these options give the programmer quite a bit of flexibility in 
outputing information, especially in business and scientific applications. What 
gives even greater flexibility is the fact that PRINT USING works with files, by 

64



using the PRINT USING#n form of the statement, and even works with random 
access text files by substituting PRINT USING#n,rec.


One other feature of PRINT USING is important to mention.  Many Business 
programmers, especially in accounting applications, must use integer arithmetic 
to insure "penny accuracy". i.e. no round-off errors from floating point 
calculations.  Ordinary Basics hamper this effort, however, because PRINT 
USING cannot insert decimal points in integer values.  Business Basic has a 
special function, used only in PRINT USING output lists, to solve this problem.  
The function is called SCALE, and can be used with any numeric value to apply 
a relative power of ten (decimal point shift) to the number being printed.  The 
format looks like this:

       SCALE(scalefactor,numericvariable) 

For example, the following:

   10  longnum&=12345678 
   20  PRINT USING "7#.2#"; SCALE(-2,longnum&) 

would result in the output:

       123456.78 

To illustrate the use of these features in business applications, the following 
program will be used.  We'll set it up to accept numbers with decimal points in 
them, convert them to long integers with a scale factor based on the number of 
places to the right of the decimal point, and then create a subroutine which can 
add any two scaled integers together without loss of precision.  Finally, we'll set 
up a routine which uses SCALE and a PRINT USING spec in a string variable to 
print out the result with the correct number of decimal places.


First, the routine to input two numbers and do the conversion and scaling:

 10   PRINT:INPUT"First number: ";a$ 
 12   IF a$="" THEN END 
 15   GOSUB 905 
 17   IF errorcode THEN PRINT"Range exceeded, try again.":GOTO 10 
 20   scale.first%=scale%:first&=a& 
 25   INPUT"Second number: ";a$ 
 30   GOSUB 905 
 32   IF errorcode THEN PRINT"Range exceeded, try again.":GOTO 25 
 35   scale.second%=scale%:second&=a& 
 40   PRINT USING 45;first&,scale.first% 
 45   IMAGE " first value= ",20#,"  scale factor= ",3# 
 50   PRINT USING 55;second&,scale.second% 
 55   IMAGE "second value= ",20#,"  scale factor= ",3#  
 60   END 
 899   REM 

65



 900   REM subroutine to convert input to long integer plus scale 
 905   errorcode=0:ON ERR errorcode= ERR:OFF ERR:RETURN 
 915   x=INSTR(a$,".") 
 920   IF x=0 THEN a&=CONV&(a$):scale%=0:OFF ERR:RETURN 
 925   scale%=-(LEN(a$)-x) 
 930   a$=MID$(a$,1,x-1)+MID$(a$,x+1) 
 935   a&=CONV&(a$):OFF ERR:RETURN 

The subroutine is really pretty simple.  It uses the trusty INSTR function in line 
915 to look for a decimal point in the input string.  If none is found (i.e. number is 
an integer), then the string is converted to a long integer, the scale factor is set 
to zero, and a return is taken.  Note that conversion errors (overflow, etc.) are 
handled by the ON ERR statement, which passes back the errorcode to the 
calling program.  If a decimal point is found, the scale factor is set to the number 
of digit positions from the point to the end of the string (line 925) and line 930 
and 935 scrunch out the decimal point and convert the resulting integer to a 
long integer value.  Once back in the input routine, the errorcode flag is 
checked, and if everything is ok, some simple PRINT USING statements print 
out the result for comparison.  It should be noted that these routines are not 
bulletproof, but were deliberately kept simple to illustrate the major points 
involved.


Now that we have long integer representations of these decimal numbers, with 
appropriate scale factors, it is possible to create a routine which will perform 
arithmetic on them, even though they may have different scale factors. The 
following routine will illustrate addition:

 1000   REM add a& and b& and return result in sum& 
 1001   REM use scalea% and scaleb% to return scalesum% 
 1005   errorcode=0:ON ERR errorcode= ERR:OFF ERR:RETURN 
 1010   IF scalea%=scaleb% THEN sum&=a&+b&:scalesum%=scalea%:OFF 
ERR:RETURN 
 1020   IF scalea%>scaleb% THEN 1070 
 1030   factor%=scaleb%-scalea% 
 1040   b&=b&*CONV&(10^factor%) 
 1050   sum&=a&+b&:scalesum%=scalea%:OFF ERR:RETURN 
 1070   factor%=scalea%-scaleb% 
 1080   a&=a&*CONV&(10^factor%) 
 1090   sum&=a&+b&:scalesum%=scaleb%:OFF ERR:RETURN 

The first thing checked for is if the two numbers have the same scale factor. If 
so, then simple addition is all that is required, and scalesum% (the resulting 
scale factor from the operation) is set to the common scale.  If the scale factors 
are unequal, then the two scale factors must be adjusted to be the same by 
multiplying the one with the larger scale by the power of ten required to make 
them equal in scale.  An example would help clarify:


66



   Initial number         Integer value      Scale factor 

    12345.6789              123456789            -4 
      98765.43                9876543            -2 

Obviously, just adding the two integers will produce meaningless results.  But 
multiplying the second number by 100 and adjusting the scale factor 
correspondingly to -4 will make it possible to directly add them.  The situation 
now looks like this:

    New format            Integer value      Scale factor 

    12345.6789              123456789            -4 
    98765.4300              987654300            -4 

The sum of the integer values is 1111111089 and, after applying the scale factor 
of -4, the result is 111111.1089.  You should realize that most floating point 
Basics, no matter how many digits they allow in "Double Precision" mode, have 
extreme difficulty with these types of problems.  The reasons are complex, but 
they have to do with the fact that there are some decimal fractions which cannot 
be represented exactly with a binary floating point ("real") number.  This leads to 
potential loss of precision in the last decimal place, rendering the answer 
inaccurate.  While one place out of ten or fifteen might not be critical in an 
empirical scientific calculation, accountants are fussy about all the pennies (or in 
the example above, tenths of mils) adding up exactly.  NOte also that scale 
factors can just as easily be positive.  That is, 567890000 could be represented 
as 56789 with a scale factor of 4.  The principles of addition would work exactly 
the same as in the example with decimal fractions.


With the techniques described above, I think you can now figure out the way the 
subroutine works.  One final note, though.  In line 1040 and 1080 we use an 
expression "10^factor%" to represent the power of ten to be multiplied by the 
long integer value.  Mixed mode expressions are not allowed between long 
integers and other data types, so the CONV& function was used first to convert 
the power of ten expression to a long integer.


Now that we have a subroutine which will correctly add two scaled numbers, we 
can put it into our previous input program.  The combination looks like this:

 5   PRINT"Test of extended precision add routines":PRINT 
 10   PRINT:INPUT"First number: ";a$ 
 12   IF a$="" THEN END 
 15   GOSUB 905 
 17   IF errorcode THEN PRINT"Range exceeded, try again.":GOTO 10 
 20   scale.first%=scale%:first&=a& 
 25   INPUT"Second number: ";a$ 
 30   GOSUB 905 
 32   IF errorcode THEN PRINT"Range exceeded, try again.":GOTO 25 

67



 35   scale.second%=scale%:second&=a& 
 40   PRINT USING 45;first&,scale.first% 
 45   IMAGE " first value= ",20#,"  scale factor= ",3# 
 50   PRINT USING 55;second&,scale.second% 
 55   IMAGE "second value= ",20#,"  scale factor= ",3#  
 60   scalea%=scale.first%:scaleb%=scale.second% 
 65   a&=first&:b&=second& 
 70   GOSUB 1010 
 72   IF errorcode THEN PRINT"Range of precision exceeded, try 
again.":GOTO 10 
 75   PRINT"sum= ";sum&;"   scale factor= ";scalesum% 
 105   GOTO 10 
 899   REM 
 900   REM subroutine to convert input to long integer plus scale 
 905   errorcode=0:ON ERR errorcode= ERR:OFF ERR:RETURN 
 915   x=INSTR(a$,".") 
 920   IF x=0 THEN a&=CONV&(a$):scale%=0:OFF ERR:RETURN 
 925   scale%=-(LEN(a$)-x) 
 930   a$=MID$(a$,1,x-1)+MID$(a$,x+1) 
 935   a&=CONV&(a$):OFF ERR:RETURN 
 999   REM 
 1000   REM add a& and b& and return result in sum& 
 1001   REM use scalea% and scaleb% to return scalesum% 
 1005   errorcode=0:ON ERR errorcode= ERR:OFF ERR:RETURN 
 1010   IF scalea%=scaleb% THEN sum&=a&+b&:scalesum%=scalea%:OFF 
ERR:RETURN 
 1020   IF scalea%>scaleb% THEN 1070 
 1030   factor%=scaleb%-scalea% 
 1040   b&=b&*CONV&(10^factor%) 
 1050   sum&=a&+b&:scalesum%=scalea%:OFF ERR:RETURN 
 1070   factor%=scalea%-scaleb% 
 1080   a&=a&*CONV&(10^factor%) 
 1090   sum&=a&+b&:scalesum%=scaleb%:OFF ERR:RETURN 

Notice that in addition to adding the subroutine at line 1000, I have added some 
code at 60 through 105 to set up the call to the subroutine and then print out the 
results.  This is all fine, but this was supposed to be an exercise in advanced 
uses of the PRINT USING statement.  An ideal use of Print Using here would be 
to print out the results of the addition, with the decimal point in the proper place.  
But, since our answers can range from 19 digits to the left of the decimal place 
to 19 digits to the right, and only a total of 32 positions are allowed in a single 
numeric IMAGE field, it is not possible to create a single format which will 
handle all possible variations.  Here's where Business Basic's ability to have 
variable format definitions really comes in handy.  The following routine can be 

68



added to the program above to print the result correctly, no matter what the 
scale factor:

80   x%=LEN(CONV$(sum&)):neg%=CONV%(sum&<0) 
85   IF x%+scalesum%-neg%<=0 THEN 
form$="2#":ELSE:form$=CONV$(x%+scalesum%)+"#" 
90   IF scalesum%>=0 THEN 97 
95   form$=form$+"."+CONV$(ABS(scalesum%))+"#" 
97   PRINT"scaled result of sum: "; 
100   PRINT USING form$; SCALE(scalesum%,sum&) 

Line 80 gets the length of the number to be printed in x% and neg% is a flag to 
tell if the number is negative (the minus sign will require an extra position in the 
output).  Line 85 uses this information, including the value of scalesum%, to 
figure out how many positions are needed to the left of the decimal point.  Line 
85 then creates form$, the output format specification, to match.  Line 90 
checks to see if scalesum% is positive (i.e. value is a true integer).  If so, its 
finished.  Otherwise, line 95 creates the rest of the format spec by including the 
proper number of positions to the right of the decimal point.  Line 97 and 100 
then print out the long integer using the SCALE function to properly place the 
decimal point.


Voila!  This routine should give exactly correct answers over its range of values.  
One thing you might want to add to help in tracing what the program is doing is 
to print out the value of form$ along with the result in line 100. Also, I leave for 
your personal entertainment the creation of subroutines for subtraction and 
multiplication.  Division can be done using a combination of the DIV and MOD 
operators, but you will become embroiled in what to do about rounding off the 
results of certain divisions.  Multiplication has the virtue of being exactly correct 
within the possible range of values.


Well, what an exercise!  When I made up the list of topics last time, I had no idea 
it would produce such a wordy article.  It is with only a little regret, therefore, 
that I announce that I am not going to announce the topic of next month's 
article.  It should be a goodie, however, because there is a lot left to explore in 
our favorite Basic.  Another thought comes to mind, too.  If you've got a favorite 
subject you'd like to see examined, why not write in and suggest it.  I'd like to 
make this column as useful as possible to those of you working with the 
language and creating applications.  Until March, then... 

69



70



Exploring Business Basic, Part VII 
Last month we explored some of the Business Basic's unique formatted output 
and arithmetic capabilities.  There is a good more to say on those topics, but 
such exposition will be left to some future month.  This month we will undertake 
a journey through some of the thickest jungles found in the Apple III, the 
Infamous .GRAFIX driver and its faithful Indian companion, BGRAF.INV (The 
preceding collection of mixed metaphors was just a sample of what some 
enterprising explorers have encountered on their own trips).


The new Business Basic manual (which everyone who purchased Basic should 
have received by now), contains a sixty page section in Volume Two which 
describes the programming possible with the BGRAF.INV invokable module.  In 
addition, the Standard Device Drivers Manual contains a section on .GRAFIX.  
Rather than repeat all of that material, this column will briefly describe the 
functions of BGRAF.INV and then take up a subject which is not mentioned at 
all, HOW TO DRAW A CIRCLE.  Drawing a circle may sound easy, but given the 
fact that BGRAF only allows dots and lines, and given that none of the graphics 
modes have equal horizontal and vertical resolution, and given that monitors 
distort images because of "aspect ratio" differences, we will see that drawing a 
circle of arbitrary radius with an arbitrary center that actually looks like a circle 
and doesn't take forever to finish is non-trivial.  Non-trivial is a favorite word of 
mathematicians and engineers, principally because it allows them to assert that 
a task is difficult, but doesn't require that they figure out how difficult.


Well, enough cheap shots at mathematicians.  We will discover later that some 
handy mathematical principles will serve us well in our quest for the perfect 
circle.


The BGRAF Invokable Module 
As has been discussed before, Business Basic is almost infinitely extensible by 
the use of Invokable assembly language routines.  These routines can be loaded 
into memory only when needed, and have the effect of adding extra commands 
to the language.  Furthermore, as many "Invokables" as will fit into memory can 
be used at once, with Apple III's SOS operating system responsible for making 
sure that there are no conflicts.  BGRAF.INV is one of the most useful of the 
invokable modules.  It is supplied on the Business Basic program disk, and is 
loaded into memory with the command:

INVOKE "bgraf.inv" 

71



Those of you who have Apple ]['s, or who have used Applesoft in emulation 
mode, know that there are several commands in that language to manipulate 
color graphics.  Among these are GR and HGR, COLOR and HCOLOR, PLOT 
and HPLOT which permit initializing graphics modes, changing colors, and 
plotting points and lines.  In addition, Applesoft has special commands which 
permit the manipulation of "shapes" based on special tables which describe the 
bit pattern of the image.


The BGRAF invokable has commands for all these capabilities, and a great deal 
more.  Unlike Applesoft, which has a fixed high-resolution page for drawing, the 
Apple III graphics modes permit plotting points within a range of -32768 to 
32767.  The concept of a Viewport (like the Window in text mode) is what 
defines which dots actually get plotted on the screen.  Only the dots within the 
current viewport are actually plotted, and the Viewport is limited to the maximum 
resolution of whatever graphics mode is selected.  We'll see in a minute how 
handy this is, because it permits plotting generally without regard to whether the 
physical screen limits are exceeded.  Exceeding the valid range in an Applesoft 
program causes an error.  In addition, setting the viewport to an area smaller 
than the physical screen permits us to draw without worrying about overwriting 
other areas outside the viewport.  To keep track of where the plotting operations 
are to take place, an "invisible" cursor is maintained, to which all draw and print 
operations relate.


There are two capabilities of the Apple III graphics driver which are not well 
understood but can be extremely powerful.  These are the infamous Color Table 
and Transfer option.  Used properly, they can save an incredible amount of 
programmer effort.  The color table allows you to set the priority of a given color.  
That is, imagine that your want to draw some blue lines on a screen which 
contains some yellow squares.  Furthermore, you do not want to cross the 
yellow squares (in effect, you want to draw the line "behind" the squares). By 
setting up the color table properly, the graphics driver will automatically change 
any blue dots you plot to yellow if you try to plot them over a yellow dot.  In any 
other system, your program would have to check the color of each dot before 
plotting, thus grinding everything to a virtual halt.  Imagine what this capability 
might mean with shapes of various colors which you might want to animate over 
a background!


One additional capability in Apple III graphics is really convenient.  At any time 
you can print text directly to the GRAFIX driver and it will be written at the 
current dot position.  Since you can also change the definition of the character 
set with the NEWFONT procedure, hi-res animation tricks such as are found in 
the Apple ][ "DOS Toolkit" package are essentially built-in!


To give you an idea of the functions of the BGRAF module, the table below lists 
the commands available, along with a brief description.  Remember that to use 

72



these in Basic, the module must first be INVOKEd, and the word PERFORM is 
prefixed to each command.


   INITGRAFIX  - Initializes the viewport, cursor position, color table and 


                 transfer options


   GRAFIXMODE  - Sets the current graphics mode.  The four modes are:


                 0 - 280 x 192 Black and White


                 1 - 280 x 192 Color (16 colors with limitations)


                 2 - 560 x 192 Black and White


                 3 - 140 x 192 Color (16 colors with no limitations)


GRAFIXON    - Displays the current graphics screen


VIEWPORT    - Sets the boundaries for graphics operations


PENCOLOR    - Sets the color of the "pen" for draws, plots or characters


FILLCOLOR   - Sets the background color for filling and erasing


FILLPORT    - Fills the current viewport with the fill color


MOVETO      - Moves the cursor to a specified point


MOVEREL     - Moves the cursor relative to the current point


DOTAT       - Plots a point at a specified point


DOTREL      - Plots a poiint relative to the current point


LINETO      - Draws a line from the current point to a specified point


LINEREL     - Draws a line to a point relative to the current point


XYCOLOR     - Function that returns the color of a specified point


XLOC,YLOC   - Functions that return the current position of the cursor


NEWFONT     - Defines a new character font for printing text on the screen


SYSFONT     - Restores the default system font


GSAVE       - Saves a graphics screen to disk as a PIC file


GLOAD       - Loads a PIC file from disk to the current graphics screen


RELEASE     - Gives graphics memory back to Basic


Quite a collection of goodies, right?


73



As was said earlier, there is really too much here for one article.  Indeed, a whole 
book could be written about the Apple III graphics.  Rather than tackle that task, 
let's start with something seemingly simple.  As you noted from reading the list 
of functions above, the major missing component is anything to do with curves.  
Rather than throwing you a curve (groan!), we'll try drawing some.


Getting Around in Business Basic 
To start, some quick math is required.  You can think of the Apple III screen as a 
coordinate system, with X and Y locations depending on the mode.  In all cases, 
Y (vertical) values are displayable between 0 (bottom) and 191 (top). X 
(horizontal) values range between 0 and 139 (lowest resolution) up to 0 to 559 
(highest).  Circles are nothing more than a set of points with a common attribute, 
namely they are of equal distance from a single point, called (surprisingly 
enough) the center.  There are formulas for determining the points which lie on a 
circle, generally derived from the formula below:

            2     2    2 
            X  +  Y  = R 

This formula works for circles starting at a center of 0,0, but since we want to 
draw circles anywhere, and since the general form of the circle equation is more 
difficult to solve, we will rely on another fact about circles, namely that the 
trigonometric functions SINe and COSine define X and Y values for the Unit 
circle, and it is possible to obtain values for any circle by multiplying these 
values by the radius and adding the center coordinates.  That is, to find a point 
on a circle of radius 30 at an angle of 30 degrees from horizontal, when the 
center is at X=70 and Y=96 these formula can be used:

      X = COS(30 degrees)*30+70 
      Y = SIN(30 degrees)*30+96  

This simple formula suggests that we might be ready to write a program:

 10   OPEN#1,".grafix"                  Open the graphics driver 
 20   INVOKE"bgraf.inv"                 Load BGRAF into memory 
 30   PERFORM initgrafix                Initialize the graphics screen 
 40   PERFORM grafixmode(%3,%1)         Set mode 3 (16 color) 
 45   INPUT"step value: ";stepval       Ask for an increment for 
plotting 
 50   PERFORM grafixon                  Turn on the graphics display 
 60   PERFORM pencolor(%13)             Set the color for drawing 
(Yellow) 
 70   PERFORM fillcolor(%3)             Set the background color 
(Purple) 
 80   PERFORM fillport                  Fill the viewport with Purple 
 100   FOR i=0 TO 6.28 STEP stepval     Step around the circle 
(2pi=6.28) 

74



 110     x=COS(i)*30*(140/192)+70       Calculate x  (center=70, 
radius=30) 
 120     y=SIN(i)*30+96                 Calculate y  (center at y=96) 
 130     PERFORM dotat(%x,%y)           Plot the resulting dot location 
 140     NEXT i 
 150   INPUT a$                         Pause when finished 
 160   TEXT                             Switch to Text mode 
 170   PERFORM release:PERFORM release  Clean up the graphics memory 
 180   PERFORM release:INVOKE:CLOSE 
 190   END 

This is a relatively straightforward program, except to note that the trig functions 
(SIN, COS) work in radians, of which there are 2 x pi in a full circle.  That value is 
approximately 6.2832, which is further approximated in line 100.  One other 
thing of note:  Since this graphics mode is not "square", some adjustment must 
be made for the fact that there are more points proportionately in one axis that 
another.  For simplicity, we have scaled the X-axis value (since that is the only 
one that varies in the different modes) by multiplying by the constant 140/192, 
the ratio of horizontal to vertical dots.  This is done in line 110.  The other factor 
in line 110 and 120 is the constant 30, which represents the radius.  Note also 
that line 170 cleans up the graphics memory and closes the driver.  This is VERY 
important.  If you don't release the memory, it will stay around, unusable by 
BASIC.  Also, doing the INVOKE in line 180 removes the BGRAF module from 
memory.  If you have other invokables normally resident, you should delete this 
statement.


Run this program several times, with different values for the step.  In addition to 
being pretty slow, you will notice that it takes a step size of about .1 to draw a 
good circle.  You probably also noticed that this program can't draw a "good" 
circle.  Depending on the "aspect ratio" of your monitor, the circle will probably 
look like a flattened circle, that is, an ellipse. This is the result of the fact that all 
monitors differ in the relationship between horizontal and vertical resolution and 
size.  We will see a little later that this is an easy problem to correct.


As was just mentioned, this routines suffers from being very slow.  The main 
problem stems from the fact that it takes a large number of dots to create a 
circle, and that number of dots translates into a large number of steps to draw a 
circle.  In the example above, it took approximately 64 dots to draw a filled in 
circle of radius 30 units.  Had we tried to draw a larger circle, or had we used a 
higher resolution mode, the problem would have been worse.  The solution to 
this problem lies in understanding the real nature of the task at hand.


Mathematics and Mathematical Physics is sometimes called the realm of the 
"perfect".  Energy is truly exactly related to mass times the speed of light 
squared (Einstein's famous formula).  However, in the world of measured events, 
nothing is ever exact and perfect.  The same is true of circles. Geometry allows 

75



us to dream of perfect circles, but the realities of trying to draw one (especially 
freehand!) are such that we are willing to settle for reasonably good 
representations as long as they are not too lumpy.  In fact, the resolution of any 
graphics screen, no matter how good, is a far cry from the perfection of a "real" 
circle.  Therefore, when we set out to draw a circle on the screen, we should first 
ask "how good a circle do you want?"


A quick lesson from geometry will help with the answer.  As you may know, a 
circle can be approximated as a polygon (a figure with many sides).  The more 
sides the polygon has, the more it looks like a circle.  Since the resolution of the 
graphics screen is limited, at some reasonable point a polygon will be 
indistinguishable from a circle.  The advantage of this approach is that the Apple 
III has graphics commands available to draw lines.  Since a polygon has sides 
which are all straight lines, we can use the line drawing commands to represent 
a circle, finding the number of sides in each resolution which make reasonable 
looking circles.  The number of sides necessary to make "good" circles will also 
vary according to the radius of the circle, since large circles will be more likely to 
show the lines as straight segments.  The following example will let you play 
with the number of sides necessary to make good circles, and also, to 
experiment with the aspect ratio which is correct for your monitor.  You should 
modify this program to try other graphics modes, and see how the different 
resolutions affect the results.

 10   OPEN#1,".grafix" 
 20   INVOKE".d1/bgraf.inv" 
 30   PERFORM initgrafix 
 40   PERFORM grafixmode(%3,%1) 
 45   INPUT"step value: ";stepval 
 46   IF stepval<=0 THEN 170 
 48   INPUT"aspect ratio: ";aspect 
 49   aspect=1/aspect 
 50   PERFORM grafixon 
 60   PERFORM pencolor(%13) 
 70   PERFORM fillcolor(%3) 
 80   PERFORM fillport 
 85   scale=140/192 
 90   PERFORM moveto(%30*scale*aspect+70,%96) 
 100   FOR i=stepval TO 6.28 STEP stepval 
 110     x=COS(i)*30*scale*aspect+70 
 120     y=SIN(i)*30+96 
 130     PERFORM lineto(%x,%y) 
 140     NEXT i 
 150   INPUT a$ 
 160   TEXT 
 165   GOTO 45 

76



 170   PERFORM release:PERFORM release:PERFORM release 
 180   INVOKE:CLOSE 
 190   END 

Several new things are done in this example.  First, notice that we invert the 
aspect ratio because we are adjusting the x-axis only.  Further, we have named 
the ratio between the x and y resolution "scale" for use in the repetitive 
calculations.  Next, because we are drawing lines this time, the program uses 
the "moveto" proceedure to move the graphics cursor to the initial point on the 
circle (in this case, the horizontal point to the right of the center (origin) of the 
circle).  Once a starting point is established, subsequent "lineto" commands will 
draw the circle as a series of line segments.  Try experimenting with widely 
varying numbers of steps, from 1 to .02 as an example.  You will find that at 
some point the circle looks the same, no matter how many line segments make 
it up.  By choosing the least number of steps which still produce a decent circle, 
you can speed up the drawing considerably.  Don't forget to experiment with 
values for aspect ratio as well.  For the Monitor III, a value of 1.3 usually works 
pretty well.  Try several until you are happy with the results.


The next technique for speeding up this routine is even more interesting. Notice 
that we keep calculating the SINE and COSINE of each angle, no matter how 
many times we run the program.  Furthermore, it should be noticeable that it is 
possible to draw a circle of any reasonable radius by just varying the 
multiplication factor.  Further, it is obvious that steps of less than .05 for any 
reasonable radius do not produce "better" circles.  All that suggests the 
following "enhanced" version of the program:

 10   OPEN#1,".grafix" 
 20   INVOKE".d1/bgraf.inv" 
 25   DIM xcos(63),ysin(63) 
 26   FOR i=0 TO 63:xcos(i)=COS(i/10):ysin(i)=SIN(i/10):NEXT i 
 30   PERFORM initgrafix 
 40   PERFORM grafixmode(%3,%1) 
 46   INPUT"aspect ratio: ";aspect 
 47   aspect=1/aspect 
 48   INPUT"radius: ";r 
 49   IF r<=0 THEN 170 
 50   PERFORM grafixon 
 60   PERFORM pencolor(%13) 
 70   PERFORM fillcolor(%3) 
 80   PERFORM fillport 
 85   scale=140/192 
 90   PERFORM moveto(%r*scale*aspect+70,%96) 
 100   FOR i=1 TO 63 
 110     x=xcos(i)*r*scale*aspect+70 
 120     y=ysin(i)*r+96 

77



 130     PERFORM lineto(%x,%y) 
 140     NEXT i 
 150   INPUT a$ 
 160   TEXT 
 165   GOTO 48 
 170   PERFORM release:PERFORM release:PERFORM release 
 180   INVOKE:CLOSE 
 190   END 

Notice this time that two arrays have been set up, both with 64 values each. 
Rather than recalculate the SIN and COS function, they are done once at the 
begining and stored for later use in line 110 and 120.  If you intend to do a great 
deal of this kind of work, or if you want to expand the number of steps 
significantly, you may want to create another program which calculates the 
values and writes them to a Data file.  Then your circle program could simply 
read the values in at the beginning.


Notice too that these routines are essentially identical to the previous ones, 
except that this time you may experiment with circles of different radius. After 
experimenting with this routine, you should see that a general purpose routine 
can be written which will satisfy all circumstances.  For most practicality, this 
can be expressed as a subroutine, with the variables being the circle diameter, 
the mode, the scale factor and the center coordinates. The result could look like 
this:

 10   OPEN#1,".grafix" 
 20   INVOKE".d1/bgraf.inv" 
 25   DIM xcos(126),ysin(126),xdot(3) 
 26   FOR i=0 TO 126:xcos(i)=COS(i/20):ysin(i)=SIN(i/20):NEXT i 
 27   xdot(0)=280:xdot(1)=280:xdot(2)=560:xdot(3)=140 
 30   PERFORM initgrafix 
 35   INPUT"Mode: ";mode 
 37   IF mode<=0 THEN 180 
 40   PERFORM grafixmode(%mode,%1) 
 50   INPUT"pencolor,fillcolor: ";pen,fill 
 60   PERFORM pencolor(%pen) 
 70   PERFORM fillcolor(%fill) 
 75   INPUT"clear screen? ";a$ 
 80   a$=MID$(a$,1,1):IF a$="y" OR a$="Y" THEN PERFORM fillport 
 81   INPUT"radius: ";r 
 82   aratio=1.3 
 83   xcen=xdot(mode)/2:ycen=96 
 85   PERFORM grafixon 
 87   scalefac=(1/aratio)*(xdot(mode)/192) 
 90   GOSUB 900 
 150   PERFORM moveto(%0,%8) 

78



 160   PRINT#1;"Press RETURN:"; 
 165   INPUT"";a$ 
 170   TEXT 
 175   GOTO 75 
 180   PERFORM release:PERFORM release:PERFORM release 
 190   INVOKE:CLOSE 
 200   END 
 900   xscale=r*scalefac 
 905   xcen=xcen+.5:ycen=ycen+.5 
 907   density=(mode=2)+2*(mode<2)+3*(mode=3) 
 910   firstx=xcos(0)*xscale+xcen 
 915   PERFORM moveto(%firstx,%ycen) 
 920   stepamt=INT(20*(5-density)/r)+density 
 930   IF stepamt>6 THEN stepamt=6 
 940   FOR i=1 TO 126 STEP stepamt 
 950     PERFORM lineto(%(xcos(i)*xscale+xcen),%(ysin(i)*r+ycen)) 
 960     NEXT i 
 970   PERFORM lineto(%firstx,%ycen) 
 980   RETURN 

This version is considerably enhanced.  Notice that we have doubled the 
number of points which can be used, as well as introducing the ability to change 
modes and colors.  Since we now have different possibilities for the mode, we 
introduce the "xdot" array, which contains the horizontal dot density required to 
figure the center and the scale factor.  The actual drawing routine is now is a 
subroutine at line 900, in such a form that you could incorporate it into other 
programs.


To speed up the subroutine for the various graphics modes, the new concept of 
"density" is introduced.  This is a factor which varies between one and three 
depending on whether the horizontal resolution is 140, 280 or 560 (modes 3, 0 
and 1, and 2 respectively).  Note the use of the logical statements in line 907 to 
replace a lot of IF and assignment statements.  Be sure you work through that 
statement in your mind to assure yourself that the assignments work as 
intended.


The other thing of note is that the density factor is used in line 920 to calculate a 
reasonable step value for drawing the circle.  You might want to substitute a few 
values to see just how this works.  Line 930 makes sure that a reasonable 
number of steps are used, even if the circle is extremely small. Notice also that 
in line 905 the value .5 is added to the center coordinates. This has the effect of 
rounding the values when they are passed to the "lineto" proceedure in line 950, 
insuring more accurate plotting.  Another new feature is that in line 970 an 
additional "lineto" is added to draw a line back to the original point.  This insures 
that if the step value is such that the circle is not fully completed, then the last 
point drawn will be connected to the beginning point.


79



Line 160 introduces another new  concept.  By simply printing to the .GRAFIX 
driver file, you may write text on any graphics screen.  Furthermore, the text can 
begin on any dot boundary anywhere on the screen.  That requires some pretty 
tricky software on the Apple ][, but is a built-in feature of the Apple III graphics 
modes!


Many more enhancements could be added to this program, but instead of going 
on and on, here's an example of how the program and routines could be 
modified to draw circle segments (arcs) and "pie slices", using essentially the 
same techniques.  The new program looks like this:

 3   REM arc draw subroutine  
 10   GOSUB 1000:REM initialize 
 20   PRINT"Arc drawer program" 
 35   INPUT"Graphics mode: ";mode$ 
 36   IF mode$="" THEN 180 
 37   mode=CONV(mode$) 
 40   PERFORM grafixmode(%mode,%1) 
 50   INPUT"pencolor,fillcolor: ";pen,fill 
 52   draw.radius=0 
 55   INPUT"draw the radii? ";a$ 
 56   a$=MID$(a$,1,1):IF a$="y" OR a$="Y" THEN draw.radius=1 
 60   PERFORM pencolor(%pen) 
 70   PERFORM fillcolor(%fill) 
 75   INPUT"clear screen? ";a$ 
 80   a$=MID$(a$,1,1):IF a$="y" OR a$="Y" THEN PERFORM fillport 
 82   horiz=xdot(mode)/192 
 85   scalefac=(1/aratio)*horiz 
 87   PERFORM grafixon 
 88   FOR loop=1 TO 25 
 90     r=INT(50*RND(1)+30) 
 91     xcen=INT(192*horiz*RND(1)) 
 92     ycen=INT(192*RND(1)) 
 93     start.rad=3.14*RND(1):end.rad=start.rad+3*RND(1) 
 95     GOSUB 1100 
 100     NEXT loop 
 150   PERFORM moveto(%0,%8) 
 160   PRINT#1;"Press RETURN:"; 
 165   INPUT"";a$ 
 170   TEXT:GOTO 35 
 180   PERFORM release:PERFORM release:PERFORM release 
 190   CLOSE:INVOKE 
 200   END 
 1000   OPEN#1,".grafix" 
 1010   INVOKE".d1/bgraf.inv" 

80



 1020   DIM xcos(126),ysin(126),xdot(3) 
 1030   FOR i=0 TO 126:xcos(i)=COS(i/20):ysin(i)=SIN(i/20):NEXT i 
 1040   xdot(0)=280:xdot(1)=280:xdot(2)=560:xdot(3)=140 
 1050   aratio=1.3 
 1060   PERFORM initgrafix 
 1070   RETURN 
 1094   REM       r=radius, scalefac=aspect ratio * relative density  
 1095   REM       xcen= x coordinate of center  
 1096   REM       ycen= y coordinate of center   
 1097   REM       start.rad= starting point of arc in radians  
 1098   REM       end.rad= ending point of arc in radians 
 1099   REM       draw.radius=1 means draw the radius lines to the 
endpoints 
 1100   xscale=r*scalefac 
 1105   xcen=xcen+.5:ycen=ycen+.5 
 1110   density=(mode=2)+2*(mode<2)+3*(mode=3) 
 1115   IF draw.radius THEN PERFORM moveto(%xcen,%ycen):PERFORM 
lineto(%(COS(st 
        art.rad)*xscale+xcen),%(SIN(start.rad)*r+ycen)):ELSE:PERFORM 
moveto(%(C 
        OS(start.rad)*xscale+xcen),%(SIN(start.rad)*r+ycen)) 
 1120   stepamt=INT(20*(5-density)/r)+density 
 1130   IF stepamt>6 THEN stepamt=6 
 1140   FOR i=INT(start.rad*20+.5) TO end.rad*20 STEP stepamt 
 1150     PERFORM lineto(%(xcos(i)*xscale+xcen),%(ysin(i)*r+ycen)) 
 1160     NEXT i 
 1170   PERFORM lineto(%(COS(end.rad)*xscale+xcen),%
(SIN(end.rad)*r+ycen)) 
 1175   IF draw.radius THEN PERFORM lineto(%xcen,%ycen) 
 1180   RETURN 

This program is set up to use lines 88 through 100 to create random centers, 
radii and arc lengths (in radians) and to use the subroutine at line 1100 to draw 
the resulting arcs.  Between this routine and the one above to draw circles, you 
should be able to do most of the interesting tasks in graphics. Hopefully, these 
routines will also give you ideas on solving whatever other specific projects you 
might want to tackle.


Normally, when you run the "arc" program above, you will get some arcs which 
are partially off the screen.  Notice that the .GRAFIX driver handles this perfectly, 
because it treats its graphics area as a space of points from -32768 to 32767, 
with the screen as a window into the total space.  This saves immeasurable 
amounts of bounds checking within programs, which usually ends up slowing 
down the drawing.  Additionally, as was mentioned at the top, the graphics 

81



window can be set to anywhere on the screen, with any values outside the 
window automatically clipped.


There are a thousand more topics to be covered in exploring the graphics 
capabilities of the Apple III.  Next month we will tackle a few biggies, "area 
fill" (especially for the circles and arcs we have been drawing), and the whole 
area of user-definable character sets.  With luck, we'll get to some animation 
examples.   Until then, dig into your device driver manual documentation 
on .GRAFIX and the writeup on BGRAF.INV in the Business Basic Manual.  
There's a whole world inside this system!


82



Exploring Business Basic, Part VII 
Greetings, Basic fans.  This month's column will be long on content and 
somewhat short on the usual herbage and explanations.  This is due for the 
most part to the somewhat detailed interest that last month's column stirred up.  
As the faithful among you will recall, we began a fairly simple discourse on the 
graphics capability of the Apple III and the specific workings of the .GRAFIX 
driver and the BGRAF invokable module.  If you haven't read that missive, I 
really suggest you get a copy before tackling the treatise below. If that's not 
possible, then getting a firm grip on your Basic and Standard Device Drivers 
manual will probably do the trick.


Last month's article had as its main feature a program to efficiently draw circles 
and arcs using the line-drawing capability of BGRAF.  After some examination, 
(and some comments!) that routine could use some tweaking.  To demonstrate 
what can be done, and to bring you somewhat in sync with last month, here are 
the initialization and circle draw subroutines:

 894   REM circle draw subroutine 
 895   REM       r=radius, scalefac=aspect ratio * relative density 
 896   REM       xcen= x coordinate of center   
 897   REM       ycen= y coordinate of center 
 900   xscale=r*scalefac 
 905   xval=xcen+.5:yval=ycen+.5 
 907   density=(mode=2)+2*(mode<2)+3*(mode=3) 
 910   firstx=xcos(0)*xscale+xval 
 915   PERFORM moveto(%firstx,%yval) 
 920   stepamt=INT(20*(5-density)/r)+density 
 930   IF stepamt>6 THEN stepamt=6 
 940   FOR i=stepamt TO 119 STEP stepamt 
 950     PERFORM lineto(%(xcos(i)*xscale+xval),%(ysin(i)*r+yval)) 
 960     NEXT i 
 970   PERFORM lineto(%firstx,%yval) 
 980   RETURN 
 995   REM Initialize graphics and tables 
 996   REM   
 1000   OPEN#1,".grafix" 
 1010   INVOKE".d1/bgraf.inv" 
 1020   DIM xcos(119),ysin(119),xdot(3),srch%(20,3) 
 1025   val=6.2832/120 
 1030   FOR i=0 TO 119:xcos(i)=COS(val*i):ysin(i)=SIN(val*i):NEXT i 
 1040   xdot(0)=280:xdot(1)=280:xdot(2)=560:xdot(3)=140 
 1050   aratio=1.3 
 1055   zip%=1 

83



 1060   PERFORM initgrafix 
 1070   RETURN 

Those readers from last time will notice that to improve the symmetry of the 
circles, the cosine and sine tables (line 1030) have been adjusted to 120 points, 
which happens to divide each quadrant of the circle up into equal parts (given a 
maximum stepsize of 6, as used in line 930).


Rather than go into any further detail about these routines, we'll plunge into the 
material, which will make good use of this stuff later.


The major input from last time was to take the skeleton program and make it 
into something useful which would show off more of the graphics capabilities of 
the Apple III.  One of the most reasonable approaches would be to expand the 
set of functions in the program, and build a beginning graphics editor, which you 
could then expand to your heart's content.  The actual functions of such a 
program are reasonably easy to define.  We have already implemented circles, 
and to that we can add lines, points, rectangles, text, the ability to fill in areas 
easily, the ability to erase objects and points, and finally, the ability to store 
images on disk for later recall.  To this list you can add lots of other features of 
your own design, within the framework that will be described.  The key to all this 
is the power of the BGRAF module.  The benefits (an important word in 
marketing parlance) range from drawing up organization charts to creating 
interesting cartoons.  So lets get to it!


The first thing needed for a screen editor is some way to locate the cursor. Since 
it will be difficult to distinguish the cursor from any arbitrary dot on the screen, it 
will be convenient for it to blink.  To do that, we need a way to alternate the 
colors of the dot which will be our cursor, while waiting for input from the user.  
The interrupt capabilities to the Apple III really come in handy here, because 
Basic implements the "any keypress" Event within SOS. This causes an interupt 
to occur in Basic which your program can react to. The following short program 
will illustrate:

 1   ON KBD GOTO 10 
 5   PRINT"."; 
 6   GOTO 5 
 10   OFF KBD 
 30   IF KBD=13 THEN STOP 
 40   PRINT KBD 
 45   ON KBD GOTO 10 
 50   RETURN 

This program will print lots of dots, stopping only to print out the ASCII value of 
the key you press on the keyboard.  If you are not familiar with how this works, 
check the section in the manual that describes the ON KBD statement.  This one 
statement is going to make our graphics editor really easy to implement.


84



As was said, the idea for a blinking cursor would be to alternate colors and print 
a succession of these alternating dots to the screen at the cursor location.  
There are lots of possiblities on what color is at a given screen location, and we 
want to move the cursor freely without worrying about destroying the image.  To 
do this efficiently, we'll use a feature in the .GRAFIX driver called the "transfer 
option".  This option is really eight options in one, but we'll use Inverse Replace, 
which will alternate colors each time a  dot is plotted.  Combining that with the 
ON KBD statement and adding the initialization section looks something like 
this:

 10   GOSUB 1000:REM initialize 
 20   HOME:PRINT"Design program" 
 35   INPUT"Graphics mode: ";mode$ 
 36   IF mode$="" THEN 180 
 37   mode=CONV(mode$) 
 40   PERFORM grafixmode(%mode,%1) 
 50   INPUT"pencolor,fillcolor: ";pen,fill 
 60   PERFORM pencolor(%pen) 
 70   PERFORM fillcolor(%fill) 
 75   INPUT"clear screen? ";a$ 
 80   a$=MID$(a$,1,1):IF a$="y" OR a$="Y" THEN PERFORM fillport 
 82   horiz=xdot(mode)/192 
 85   scalefac=(1/aratio)*horiz 
 87   PERFORM grafixon 
 89   ON KBD GOTO 300 
 90   PERFORM xfroption(%4) 
 91   savecolor%= EXFN%.xycolor 
 92   color%= EXFN%.xycolor:PERFORM pencolor(%color%):PERFORM 
dotrel(%0,%0):GOTO 92 

Lines 10 through 87 call the initialization subroutine, prompt for some key 
values, and then turn on the graphics screen.  The really interesting stuff starts 
at line 89 where the ON KBD is set up to go to line 300 on any keypress.  Line 
90 sets up the transfer option (see your manual for more details on what this 
does), and line 91 saves the current color for restoring later.  Line 92 is a loop 
which can only be interrupted by a keypress.  It picks up the current color, sets 
the pen to that color, and then plots the dot.  Because of the transfer option, the 
actual color plotted will be a logical alternate color to the original one.  Plotting 
the alternate color through the same option restores the original color, and thus 
the blinking effect.  Now for the fun.  We would obviously like to do more that 
stare at a blinking cursor.  At the least we should be able to move it around.  
That can be handled by a routine at line 300:


85



 300   OFF KBD:PERFORM xfroption(%0) 
 305   PERFORM pencolor(%savecolor%):PERFORM dotrel(%0,%0) 
 310   IF KBD>31 THEN GOSUB 360:GOTO 340 
 320   IF KBD=27 THEN POP:GOTO 170 
 325   xinc%=zip%*(( KBD=21)-( KBD=8)):yinc%=zip%*(( KBD=11)-( KBD=10)) 
 330   PERFORM moverel(%xinc%,%yinc%) 
 340   savecolor%= EXFN%.xycolor:PERFORM xfroption(%4) 
 345   ON KBD GOTO 300 
 350   RETURN 
 360   REM  commands go here 

This one little routine does quite a bit.  Line 300 and 305 just restore the state of 
the screen and turn off the keyboard interrupt to insure that the next statements 
are properly executed.  Line 310 checks to see if the key pressed was a 
printable character; if so, line 360 starts a series of routines to process the 
command that the letter represents.  If the character is a control character, it is 
checked for "Escape".  Escape is used to signal quiting the screen and going 
back to main level options.  Thus the POP statement is used to jump out without 
leaving our GOSUB hanging.  If the character is not an escape, line 325 does 
some clever processing: through the use of logical statements, the character is 
checked for one of the arrow keys and the appropriate X or Y coordinate is 
incremented.  Note that the variable "zip%" is used to multiply the effect of the 
increment, to enable large cursor moves.  This is initialized in the subroutine at 
line 1000.  If line 325 is confusing to you, take a moment to study its effect.  Try 
out various values of KBD to see how it works.  These logical statements (not 
available in many Basics) can replace a lot of clumsy and lengthy IF statements.  
Line 330 moves the cursor as appropriate, and the rest of the routine cleans up 
and returns to line 92.  To wrap this routine up, and the one above it, we need to 
add a couple of lines:

 170   TEXT:GOTO 35 
 180   PERFORM release:PERFORM release 
 185   CLOSE:INVOKE 
 190   END 

Just a few more statements and we'll have a fully functional program!  As was 
mentioned earlier, line 360 begins a subroutine that handles commands.  We 
already have a way to move the cursor around on the screen, and the following 
lines implement the simple functions of "draw a dot", "erase a dot", speed up 
the cursor, and return the cursor movement to normal.  We'll use the letters "D", 
"E", "Z" (for zip!) and "N" to describe those functions.  The statements look like 
this:

 360   IF KBD>95 THEN key$=CHR$(KBD-32):ELSE key$=CHR$(KBD) 
 366   IF key$="D" THEN PERFORM pencolor(%pen):PERFORM 
dotrel(%0,%0):RETURN 

86



 367   IF key$="E" THEN PERFORM pencolor(%fill):PERFORM 
dotrel(%0,%0):RETURN 
 368   IF key$="Z" THEN zip%=zip%*2:RETURN 
 370   IF key$="N" THEN zip%=1:RETURN 
 399   RETURN 

The first line (360) just makes sure that lower case letters are upshifted, and 
then, for ease of reading mostly, the value is converted to an ASCII character.  
From there on, IF statements test the value and perform the functions.  Notice 
that drawing and erasing is as simple as changing the pencolor and drawing a 
dot (relative plotting is used to save the trouble of getting the coordinates).  The 
"Z" command just doubles the movement of the cursor each time it is pressed.  
This comes in handy, especially on the 560X192 screen.  The RETURN on line 
399 just traps any invalid commands which might be typed and returns with no 
effect.  With this in mind, it is easy to add features:

 372   IF key$="H" THEN PERFORM moveto(%0,%0):RETURN 

This just "homes" the cursor, in case you get it lost off the screen.  Yes, thats 
right, you can move the cursor anywhere in that -32768 to 32767 space!


Now, since we already have a circle draw routine, we can add that very simply:

 374   IF key$="C" THEN INPUT r:GOSUB 450:GOSUB 900:GOSUB 460:RETURN 

Notice we have added references to two new GOSUBs; 450 and 460.  These are 
used to save and restore the state of the cursor, since the circle draw routine 
always leaves the cursor on the circle.  They are simple, and look like this:

 450   xcen= EXFN%.xloc:ycen= EXFN%.yloc 
 455   cres= EXFN%.xycolor:PERFORM pencolor(%pen):RETURN 
 460   PERFORM moveto(%xcen,%ycen):PERFORM pencolor(%cres):RETURN 

The other thing new about the routine at line 374 is that it asks for input. 


The prompt will be displayed on the text screen, so you won't see it unless you 
chose to add a TEXT command to switch back before the INPUT.  You would 
then need to PERFORM grafixon to get the screen back.  Personally, I prefer it 
as shown.


Ok, this should be enough to make for an interesting display.  Now would be a 
good time to type this program in and debug it (it is possible to make typing 
mistakes!).


Ok, now that you're back for more, try adding the following:

 376   IF key$="B" THEN INPUT w,h:GOSUB 450:GOSUB 500:GOSUB 460:RETURN 

That's right, "B" stands for "Box" and uses a small subroutine at 500:

500   w=w*scalefac 

87



510   PERFORM linerel(%w,%0):PERFORM linerel(%0,%h):PERFORM linerel(%(-
w),%0): PERFORM linerel(%0,%(-h)) 

Are you beginning to get the idea of how easy it is to add features to this 
package? You probably are starting to get some neat ideas of your own, but 
here are a few simple ones while you are thinking:

 380   IF key$="T" THEN SWAP pen,fill:PERFORM fillcolor(%fill):PERFORM 
pencolor (%pen):RETURN 
 382   IF key$="R" THEN xrem= EXFN%.xloc:yrem= EXFN%.yloc:RETURN 
 384   IF key$="L" THEN GOSUB 450:PERFORM lineto(%xrem,%yrem):GOSUB 
460:RETURN 
 386   IF key$="X" THEN PERFORM fillcolor(%fill):PERFORM fillport:RETURN 

Line 380 lets you "Toggle" beween fillcolor and pencolor.  This is handy to erase 
something you just drew (like a circle or a box), by toggling the pencolor.  Then 
you can repeat the previous command and it will magically disappear!  Line 382 
simply "remembers" a point.  It is used in conjuction with line 384, which draws 
a line from that point to wherever the cursor is located.  Line 384 creates the "X" 
command to completely erase the viewport. That's a good idea for a command 
you can add, to reset the current graphics viewport.


A couple more small ones and then we will get to the last two biggies.  Here are 
two which permit you to save and load the graphics screen to disk.  This is not 
only useful for making a permanent copy, but can be used before any big 
sequence of commands.  In case you don't like the results, simple reload the old 
contents, and the screen is magically restored.

 388   IF key$="S" THEN PERFORM gsave."picture":RETURN 
 390   IF key$="P" THEN PERFORM gload."picture":RETURN 

If you are like me now, you've got so many commands in the program that you 
have to write them down.  That's great.  All huge programs were tiny subroutines 
once upon a time.


This next routine deserves some study.  One of the things that would be nice, 
especially for charts and graphs, would be to put text on the graphics screen. 
Fortunately, The .GRAFIX permits that to be done easily.  However, we can make 
this much more sophisticated with just a little programming effort, to wit:

392   IF key$="W" THEN GOSUB 450:GOSUB 600:GOSUB 460:RETURN 

Subroutine 600 is used to "Write" on the screen.  See how all these command 
letters make sense? - after a while  the toughest part of the program is making 
up new commands which don't use any of the already taken letters! Anyway, 
here's the screen writing subroutine:

 600   charcnt=0:line$="" 
 605   GET a$ 
 610   IF ASC(a$)<32 THEN 640 

88



 615   line$=line$+a$ 
 620   PRINT#1;a$; 
 625   charcnt=charcnt+1 
 630   GOTO 605 
 640   chr=ASC(a$) 
 645   IF chr=13 THEN RETURN 
 650   IF chr<>8 OR (chr=8 AND charcnt=0) THEN 605 
 655   SWAP pen,fill 
 660   PERFORM pencolor(%pen) 
 665   PERFORM moverel(%-7,%0) 
 670   PRINT#1;RIGHT$(line$,1); 
 673   PERFORM moverel(%-7,%0) 
 675   charcnt=charcnt-1 
 678   line$=LEFT$(line$,charcnt) 
 680   SWAP pen,fill:PERFORM pencolor(%pen) 
 685   GOTO 605 

The nice thing about this routine is that it not only writes on the screen as you 
type, but allows you to use the "back-arrow" to erase mistakes.  To permit this, 
the variable "line$" keeps track of what you have typed, and if a back-arrow is 
encountered, the routine picks off the last character in the string, puts the pen in 
fill mode, and reprints the character on top of the original character, erasing it.  
Note that this backing up is done with the PERFORM moverel command, and -7 
is used because that is a standard character space.  Note also that you have to 
back up after erasing too, since the graphics routines still think you were writing 
an ordinary character.


A carriage return terminates the write mode, and a check in line 650 ensures 
that you are not allowed to back up past the beginning point.


The last routine is the most complex, and the one in the worst shape.  By that is 
meant that it works fairly reasonably, but could stand enormous improvement.  It 
was meant as a beginning, and any help, suggestions, modifications, etc. would 
be appreciated.  The routine is the promised-from-last-time "area fill" 
subroutine.  It is integrated into the package as follows:

 394   IF key$="F" THEN GOSUB 450:GOSUB 1300:GOSUB 460:RETURN  

The subroutine at line 1300 does the work, and looks like this:

 1300   target=pen:startx%= EXFN%.xloc:starty%= EXFN%.yloc 
 1302   filled=0:inc=0:flag=0 
 1305   GOSUB 1400 
 1307   IF filled=1 THEN 1350 
 1310   PERFORM moveto(%startx%,%starty%) 
 1315   GOSUB 1430 
 1330   PERFORM linerel(%-(rxprev%-lxprev%),%0) 

89



 1335   startx%=(rxprev%-lxprev%)/2+lxprev%+.5:starty%=starty%-1 
 1340   PERFORM moveto(%startx%,%starty%) 
 1345   GOTO 1305 
 1350   IF inc=0 OR flag=1 THEN RETURN 
 1351   flag=1 
 1352   incval=inc 
 1355   FOR ival=1 TO incval 
 1360     startx%=(srch%(ival,2)-srch%(ival,1))/2+srch%(ival,1)+.5 
 1365     starty%=srch%(ival,3):lxprev%=srch%(ival,1) 
 1370     filled=0:PERFORM moveto(%startx%,%starty%):GOSUB 1305 
 1375     NEXT ival 
 1380   RETURN 
 1400   IF EXFN%.xycolor<>target THEN 1410 
 1401   IF flag=0 THEN 
inc=inc+1:srch%(inc,1)=startx%:srch%(inc,2)=rxprev%:srch %
(inc,3)=starty% 
 1402   IF startx%-lxprev%<=2 THEN filled=1:RETURN 
 1404   startx%=(startx%-lxprev%)/2+lxprev%:PERFORM 
moverel(%-(startx%-lxprev%),%0) 
 1406   IF EXFN%.xycolor=target THEN 1402 
 1410   FOR i=1 TO startx% 
 1415     PERFORM moverel(%-1,%0):IF EXFN%.xycolor=target THEN lxprev%= 
EXFN%.xloc:RETURN 
 1417     NEXT i 
 1420   lxprev%=0:RETURN 
 1430   FOR i=startx% TO xdot(mode) 
 1435     PERFORM moverel(%1,%0):IF EXFN%.xycolor=target THEN 
rxprev%=i:RETURN 
 1438     NEXT i 
 1440   rxprev%=xdot(mode):RETURN 

Messy, right?  RIGHT!  Unfortunately, there is no easy way to do general area fill.  
The principle is that you must first locate the cursor in the uppermost part of the 
figure to be filled.  The routine then searches down and across for a match for its 
current pencolor.  When found, the cursor returns to the starting point and 
searches right until a match is found.  A line is then drawn from the right-hand 
point to the left.  Subroutines at 1400 and 1430 do the left and right scanning.


Of course, if this was all it did, the routine would be a great deal simpler. The 
additional sophistication lies in an algorithm designed to enable the filling of 
complex shapes which contain other shapes.  The most trival example is that of 
a circle within a circle.  If you want to create something that looks like a donut, 
you could draw one circle inside the other, and fill the space between the two 
circles.  This routine will handle most of those cases, along with circles inside 
boxes, etc.  This is done by always favoring the right hand side of figures, and 

90



putting information in the srch% array when the routine suspects that it may 
have missed something.  In addition, the routine trys to begin searches from 
what it suspects is the center of the open area.  The problems come when the 
figure inside a figure is sharply off to the right-hand side of the larger object.  
The routine will usually miss a part of the filling, because of an inadequate scan.  
Maybe by next time there will be a hotter version, but in the meantime, its easy 
to just move the cursor over and reissue the fill command to get what was 
missed.


After all that appology, it should be pointed out that any simple figure, expecially 
a convex one, will be filled reasonably well, as long as you start at the top.  In 
fact, you might want to tweak this routine for simple figures by jettisoning the 
srch% array, and changing the search to look up as well as down.  Note also 
that no real optimization was done.  Using the usual tricks about multiple 
statements on a line, replacing constants, plus tighter coding would probably 
speed this routine up considerably.  Oh well, another project for you in your 
spare time.


One last parting shot.  Lots of times features are put in Basics which do not 
seem to be particularly useful.  However, every command has some real 
purposes, and finding them can save lots of programming, and usually make 
your applications more efficient.  In looking over the program above, there is a 
crying need for INSTR and ON GOSUB.  Notice:


All of the "IF key$=" statements could be replaced with the following:

1057   command$="DEZNHCBTRLXSPWF" 

362    cmd=INSTR(command$,key$) 
364    ON cmd GOSUB 
366,367,368,370,372,374,376,380,382,384,386,388,390,392,394 
365    RETURN 

Then each subroutine line could look like this example:

394   GOSUB 450:GOSUB 1300:GOSUB 460:RETURN 

This is not only neater, but much more efficient, since it is not necessary to go 
through fifteen IF statements just to find the one that's wanted.  It also permits 
multiple line subroutines, which the other structure does not. Adapting the other 
structure to multiple line routines would cause the IF statements to have to be 
linked with GOTO, a situation to be avoided.


Well, so much for philosophy.  This has been a meaty article, hopefully. There are 
many features which need to be added to this month's package to make it truly 
useful, but by now surely you've dropped this magazine and are bent 
industriously over the keyboard.  Time to tiptoe quietly away . . .  Genius at 
Work! 

91



92



Exploring Business Basic - Part IX 

Department of Good Ideas 
This section is called "Department of Good Ideas" to serve as a reminder that all 
the planning in the world about what Business Basic topics need to be covered 
can be undone by a simple question by a Basic user.  This month's column is 
devoted to just such a simple question, asked by a programmer with a database 
application to implement: "How can I use random access files to look up 
records when the record numbers I want to use are non-numeric or exceed the 
32767 record limit?"


We will return to graphics next month to explore character sets and animation, 
but for now, this question is fundamental to the requirements of lots of 
applications.  In addition, this topic covers some interesting ground in computer 
science that everybody who writes interesting programs could benefit from.


Slinging the Hash 
The technique that our intrepid questioner needs to know about is something 
called "hashing".  In general, this refers to using some mathematical operation 
on a value (string or numeric) to obtain a new value that is within the range of 
desired values.  A typical example is the following: in a file which will maintain 
records on only 1000 employees, use their social security number (nine digits - 
1,000,000,000 possible values) as a reference number for direct lookup of 
information.  In this particular situation, a formula is required which will convert 
the nine digit number into a three digit number. The resulting three digit number 
then can be used to look up the employee record, assuming that the formula 
resolves each of the social security numbers into a unique three digit number.


It is in this area of resolving unique record numbers from more complex "key 
values" where hashing techniques get interesting.  In our example, it is easy to 
imagine simply dropping the first six digits of the number to obtain a three digit 
result.  In that case, "229-49-7128" becomes simply 128.  In this way, 
"305-47-6024" would refer to 24, and "906-28-2935" would become record 935.  
Actually, in the case of Social security numbers, this technique is not all that 
bad.  It is easy to see that there are many (a million to be exact) different social 
security numbers which end in a given three digits, but in a random selection of 
employees, the odds of many with the same last three digits are fairly small.


In a few minutes we'll see that the phrase "fairly small" will induce a significant 
amount of programming effort to deal with duplicates, but for now, consider that 
other "key" values (that is, values which are used as "keys" in looking up 
records) present even more interesting problems.  Dealing with a key value like 

93



"305-47-6024" may seem like a straightforward problem, but consider what 
"290-AR37BH" would do to our simple scheme of using the last three digits.  In 
fact, there is no telling what the structure of many key values might be.  
Suppose that we used part numbers which all varied in the first three digits 
instead of the last!  Each of our three digit "hashed" keys would be identical, 
thus rendering the whole scheme useless.  A more ideal technique would be to 
perform operations on the entire key value which would generate a reasonably 
"random" value within the range of record numbers which our file could contain.  
If this generated value results in a "random" value, we can assume that the 
distribution of values in the "data space" (the set of all possible "hashed" record 
numbers) is reasonably uniform, with minimum conflicts.  The diagram below 
represents the desired result:

                              (key space) 

     (key value1)     (key value2)     (key value3)     (key value4) 
         *                 *                *               * 
          *                 *               *              * 
           *                *               *            * 
            *                *              *          * 
             *               *              *        * 
              *               *             *      * 
              ======================================= 
              =       Hash Technique for keys       = 
              =                                     = 
              ======================================= 
                  *             *        *  *  
                   *            *      *    * 
                    *            *   *      * 
              ======================================= 
                    ^            ^   ^      ^ 
                value1       value2 value4  value3 
   
               Physical record numbers  (data space) 

There are many techniques for generating such hashed values from 
alphanumeric keys.  The example program below will let you experiment with 
one such method:

 10   PRINT"Hash key create program" 
 20   INPUT"Maximum record number: ";r$ 
 22   IF r$="" THEN GOTO 50:ELSE:recordmax&=CONV&(r$) 
 25   INPUT"Your key value: ";a$ 
 27   IF a$="" THEN 20 
 28   PRINT"Key length = ";LEN(a$) 
 30   GOSUB 1500 

94



 35   PRINT"Derived value is: "a&"  hash is: ";key& 
 40   GOTO 25 
 50   END 
 1500   a&=1:lstring=LEN(a$) 
 1502   FOR i=1 TO lstring 
 1505     ascval=ASC(MID$(a$,i,1)) 
 1510     a&=a&+CONV&(ascval*2^i+ascval*3^(lstring-i+1)) 
 1520     NEXT i 
 1525   key&=a& MOD recordmax& 
 1530   RETURN 

This sample program first asks for your maximum record number.  This creates a 
value, "recordmax&" which is used as the upper limit on hash key generation. 
The subroutine at line 1500 actually generates the hash value from the 
alphanumeric input in line 25.  It works by going through each character position 
in the key and converting it to its ASCII equivalent (line 1505). Then a number is 
generated in line 1510 (ascval*2^i+ascval*3^(lstring-i+1)) by multiplying the value 
by a power of two dependent on the character position in the string, and adding 
the product of the value times a power of three equivalent to its position relative 
to the end of the string.  This effectively generates considerably different 
numbers, even if the original value differed only by one in the last position.  It 
also mimimizes duplicates resulting in reversing the order of the characters, 
which a simple sum would not.  Once this calculated value is produced, it is 
reduced to the range of the "data space" by the modulus function MOD in line 
1525.  Remember that MOD gives the remainder of dividing by the 
"recordmax&" value, and thus guarantees a value between 0 and recordmax&-1.  
Line 35 prints the result of this calculation, so you can get a feeling for how 
different hash values are for some very similar key values.  Type this program in 
and try it for various key values to be sure you understand what's going on.


Once you have tried this program with various key values, try rerunning it with a 
very small data space.  In other words, use something like 11 or 7 for the 
maximum record number.  You will quickly discover that lots of very different key 
values will produce the same hash value.  This is the fundamental problem with 
hashing techniques, since each duplicate hash value represents a potential 
conflict in the file.  Ah well, nothing good comes easy!


One way to test the ideal data space sizes against various numbers of records 
to hash is to use a file of random key values.  The following program will create a 
"junkfile" filled with nine character key values for test purposes:

 10   PRINT"Random key generation program" 
 15   OPEN#1,"junkfile" 
 25   INPUT"Number of records to generate: ";n 
 30   FOR ival=1 TO n 
 35     a$="         " 

95



 40     FOR j=1 TO 5:SUB$(a$,j,1)=CHR$(65+INT(26*RND(1))):NEXT j 
 45     FOR k=6 TO 9:SUB$(a$,k,1)=CHR$(48+INT(10*RND(1))):NEXT k 
 47     PRINT a$ 
 60     NEXT ival 
 80   CLOSE 
 90   END 

The only thing of real note in this program is the use of the SUB$ function to 
speed up the string generation, compared to the use of the "+" (concatenation) 
operator.  In any case, this program will generate a file of random keys, with the 
first five positions alphabetic, and the last four numeric.


The program below will read this file and allow you to experiment with the size of 
the data space compared with the number of records to be loaded, and print out 
a simple picture of the number of conflicts.

 10   PRINT"Hash key evaluation program" 
 12   PRINT:INPUT"Number of records in trial data space: ";rec 
 15   recordmax&=CONV&(rec) 
 20   DIM fill%(1000) 
 22   OPEN#1,"junkfile" 
 25   INPUT"number of records to read: ";n 
 30   FOR ival=1 TO n 
 35     INPUT#1;a$ 
 50     GOSUB 1500 
 52     key=CONV(key&) 
 55     fill%(key)=fill%(key)+1 
 60     NEXT ival 
 65   FOR i=0 TO CONV(recordmax&-1) 
 70     PRINT fill%(i); 
 75     NEXT i 
 85   END 
 1500   a&=1:lstring=LEN(a$) 
 1502   FOR i=1 TO lstring 
 1505     ascval=ASC(MID$(a$,i,1)) 
 1510     a&=a&+CONV&(ascval*2^i+ascval*3^(lstring-i+1)) 
 1520     NEXT i 
 1525   key&=a& MOD recordmax& 
 1530   RETURN 

96



A typical run of the program will produce output similar to the following:

   Hash key evaluation program 

   Number of records in trial data space: 100 
   number of records to read: 50 

   
020000600000000010000300001000040000300002000010000400002000020000200003
000020004000030000100004000 

As can be seen from the program, each digit position of the printout represents 
a different key value, and the number in the position represents the number of 
key values which "hashed" to that location.  Based on the output above, the 
hashing appears far from random.  The conflicts bunch up at intervals of 
approximately five, with lots of empty space in between.  You should get similar 
results, even with a different "junkfile".  Now try the program again, with a slight 
change:

Hash key evaluation program 

Number of records in trial data space: 97 
number of records to read: 50 
 
110220000000001011001000000000101001101010001020000000010001110000210121
1001100001010123002202102 

Notice that this time the entries are not nearly so regular.  There are still conflicts 
(indicated by the "2"s and "3"s in the list), but they are scattered about without a 
definite pattern.  You might argue that this distribution is not random, since there 
is still bunching up of values.  Examine the following program, which does 
produce a reasonably random distribution, and see what happens:

 10   PRINT"Random distribution program" 
 12   PRINT:INPUT"Number of records in data space: ";recordmax 
 20   DIM fill%(1000) 
 25   INPUT"Number of random numbers to generate: ";n 
 30   FOR ival=1 TO n 
 50     key=INT(recordmax*RND(1)) 
 55     fill%(key)=fill%(key)+1 
 60     NEXT ival 
 65   FOR i=0 TO recordmax-1 
 70     PRINT fill%(i); 
 75     NEXT i 
 85   END 

97



The result from your runs should look something like this:

Random distribution program 

Number of records in data space: 97 
Number of random numbers to generate: 50 
 
001002000101111001001000000100011101110012101011000130020100000100000030
0010110001010210212100001 

Each time you run this program, the results will be different, but similar. True 
random distributions tend to be bunchy, and definitely non-uniform in the sense 
that there will typically be conflicts, unless the data space is very large in 
comparison to the number of entries.


Now comes the real question.  If you were following along, you may have tried 
the last program with the first set of numbers (data space=100, entries=50). 
Notice that the same regular bunching occurs as occurred in the sample run 
with "junkfile".  This suggests (although the actual proof is something we won't 
cover here) that more regular distributions can be obtained by using numbers 
like 97 instead of 100.  Yes, there's only a difference of 3 between them, but in 
fact there is a much more important difference: 97 is a prime number, while 100 
is obviously not.  Using non-prime numbers as data space values is almost 
certain to create non-random bunching of record numbers, and thus lots of 
conflicts.  The following simple program will rapidly allow you to pick prime 
numbers as candidates for data space values in your programs:

 5   INPUT"Range of prime number search: ";y,z 
 10   IF z=0 THEN 80 
 15   FOR j=y TO z 
 20     IF j/2=INT(j/2) THEN 65 
 30     FOR i=3 TO SQR(j) STEP 2 
 40       IF j/i=INT(j/i) THEN 65 
 50       NEXT i 
 60     PRINT"The number "j" is prime" 
 65     NEXT j 
 70   GOTO 5 
 80   END 

If necessary, this program can easily be converted into a subroutine for use in 
larger programs which need to set data space sizes based on estimates on the 
total number of expected records in the file. 


98



Summing up 
The enormous volume of expository material above was designed to show ways 
to produce a random record number from an arbitrary collection of characters 
called a "key value".  In the process we discussed the potential problem of 
conflicts, where two (or more) different key values would "hash" to the same 
record number.  Dealing with these conflicts is the most challenging part of 
programming file access methods using hashing.  Before we get into an actual 
database program which uses these techniques, it would be worthwhile to think 
about ways to reduce conflicts and improve performance.


Hash rule number 1

use a "hash" method which obtains as random as possible a distribution of 
physical record numbers. Remember that we used prime numbers as divisors in 
the examples above, in addition to doing a substantial amount of arithmetic on 
the key values themselves.  There are other methods (any good reference will 
talk about "radix transforms", etc.) but the prime divisor method is a good all 
around choice.


Hash rule number 2

use as large a data space as possible, compared with the total number of 
expected records, so that the "hashed" records are spread out with minimum 
conflict.


On the Apple III we are fortunate to have a file system which allocates disk 
blocks only when they are used.  This suggests that the actual "cost" of using 
large data spaces is not very significant. It is easy to imagine using a data space 
of approximately 5000 records to contain a probable maximum of 1000 physical 
records, since the actual overhead of such a scheme may only be a few extra 
index blocks. This kind of five to one ratio of data space to physical records will 
cut conflicts to the point where they do not impact performance. Compare this 
to randomizing 1000 records into a 1200 record space, where nearly every 
hashed record will conflict with another, and the probabilities are that some may 
have as many as four or five conflicts.


Hash rule number 3

For maximum performance, use the extra memory of the Apple III to maintain all 
conflict tables, and minimize the amount of shuffling of disk records required to 
resolve conflicts.


99



This rule seems like common sense, but remember that most hash techniques 
were developed in the mainframe computer days, when disks were fast and 
memory was expensive.  Today's personal computer world is exactly the 
opposite, and requires a restructuring of the approach to "hashed" file access.


A Real Program 
So far every thing which has been discussed has been theoretical.  Hopefully 
you have done the exercises so that the following rather complex program can 
be absorbed in bite-sized chunks.  For the application itself, "return with us now 
to those thrilling days of yesteryear", that is, the October and November 
columns, where we discussed a simple parts file application program which 
used four values: part number, description, location and quantity. Observe the 
following:

 5   DIM primary%(200,1),secondary%(300,1),trial%(100),chron%(1000) 
 10   GOSUB 1980 
 15   PRINT"Database program using HASH" 
 20   PRINT:INPUT"File name: ";file$ 
 22   IF file$="" THEN 200 
 25   OPEN#1,file$,45 
 30   GOSUB 2100 

In line 5 several arrays are set up to deal with pointer mechanisms which will be 
used later.  "Primary%" contains the list of all records which are in conflict with 
other records previously entered.  "Secondary%" contains the physical record 
numbers where these conflicting records are stored, along with a link to any 
other conflicting records which hash to the same value.  "Trial%" is used later to 
maintain conflict lists for search purposes, and "chron%" contains a 
chronological list of all physical record numbers which have been used.  The 
structure of "primary%" and "secondary%" are as follows:

            PRIMARY%                             SECONDARY% 

           0              1                      0              1 
     -----------------------------        ------------------------------ 
   0 | entry count | max entrys  |      0 | entry count  | max entrys  | 
     |-------------|-------------|        |--------------|-------------| 
   1 | hash value  | link to     |      1 | actual record| link to next| 
     | of conflict | secondary   |        | number for   | conflicting | 
     |_____________|_____________|        | conflicting  | entry for   | 
     |             |             |        | hash value   | hash value  | 
                                          |______________|_____________|       
|              |             | 

100



The subroutine at line 1980 sets up these initial values and establishes a 
function (nospace) which checks to see if there is room left in the conflict lists 
for entrys:

 1980   modify=0:recordmax&=4951:maxprimary%=200:maxsecondary%=300 
 1982   DEF FN 
nospace(x)=(primary%(0,0)=primary%(0,1))+(secondary%(0,0)=second 
        ary%(0,1)) 
 1990   RETURN 

After requesting the database file name, the subroutine at line 2100 checks to 
see if the database file is already initialized, and if so, reads the contents of the 
conflict and chronological arrays into memory: 

 2100   ON ERR GOTO 2150 
 2105   datatype=TYP(1):IF datatype<>2 THEN 2150 
 2110   READ#1,0;totprimary%:IF TYP(1)<>2 THEN 2150 
 2112   READ#1;totsecondary% 
 2113   ON ERR errorcode=2:GOTO 2140 
 2115   FOR i=0 TO totprimary% 
 2120     READ#1;primary%(i,0),primary%(i,1) 
 2122     NEXT i 
 2123   ON ERR errorcode=3:GOTO 2140 
 2125   FOR i=0 TO totsecondary% 
 2130     READ#1;secondary%(i,0),secondary%(i,1) 
 2132     NEXT i 
 2133   READ#1;chron%(0) 
 2134   IF chron%(0)=0 THEN 2140 
 2135   FOR i=1 TO chron%(0) 
 2136     READ#1;chron%(i) 
 2137     NEXT i 
 2138   errorcode=0 
 2140   OFF ERR:RETURN 
 2150   errorcode=1:OFF ERR:RETURN 

The variable "errorcode" is used extensively in this program to pass problem 
information back to the calling part of the main program.  In this case, errors are 
flagged if the beginning of the file does not contain the proper data.  Lines 35 
through 60 determine if the database is initialized, and if not, take the proper 
course of action. 


 35   IF errorcode=0 THEN 100 
 40   IF errorcode<>1 THEN PRINT"The database is damaged. 
Errorcode=";errorcode:STOP 
 45   PRINT"The file ";file$;" is not a database file." 
 47   IF datatype<>0 THEN 20 

101



 50   INPUT"Would you like to make it a database file? ";reply$ 
 55   IF reply$<>"Y" AND reply$<>"y" THEN CLOSE:DELETE file$:GOTO 20 
 60   GOSUB 2000 

If the database is to be created from scratch, the subroutine at line 2000 takes 
care of the initialization of all arrays and values, and then physically writes them 
to the newly created file.

 2000   primary%(0,0)=0:primary%(0,1)=maxprimary% 
 2010   secondary%(0,0)=0:secondary%(0,1)=maxsecondary% 
 2015   chron%(0)=0 
 2017   WRITE#1,CONV(recordmax&)+120;0 
 2020   WRITE#1,0;primary%(0,1),secondary%(0,1) 
 2025   FOR i=0 TO primary%(0,1) 
 2030     WRITE#1;primary%(i,0),primary%(i,1) 
 2035     NEXT i 
 2040   FOR i=0 TO secondary%(0,1) 
 2042     WRITE#1;secondary%(i,0),secondary%(i,1) 
 2045     NEXT i 
 2050   FOR i=0 TO chron%(0) 
 2055     WRITE#1;chron%(i) 
 2060     NEXT i 
 2075   RETURN 

Note: those of you who followed the article on "REQUEST.INV" a few months 
ago know of a faster way of doing file reads and writes.  In larger 
implementations of this technique, these high performance options really come 
in handy.


After initialization of the internal variables, an option list is presented, and each 
of the options (add, delete, find and list) uses its own subroutine for the 
particular task:

 100   PRINT"Type:" 
 105   PRINT"     1 to add a record" 
 110   PRINT"     2 to delete a record" 
 115   PRINT"     3 to find a record" 
 120   PRINT"     4 to list all records" 
 155   PRINT:INPUT"Your selection: ";a$ 
 160   IF a$="" THEN 200:ELSE:a=CONV(a$) 
 162   IF a<1 OR a>4 THEN 170 
 165   ON a GOSUB 500,600,700,900 
 170   PRINT:GOTO 100 

Let's look at first things first, examining the "add" routine in the subroutine at 
line 500:

 500   PRINT:INPUT"Part number: ";part$ 
 505   IF part$="" THEN RETURN 

102



 510   IF LEN(part$)>10 THEN PRINT"Part number too long, reenter":GOTO 
500 
 520   PRINT:INPUT"Description: ";desc$ 
 530   IF LEN(desc$)>15 THEN PRINT"Description too long, reenter":GOTO 
520 
 535   PRINT:INPUT"Location: ";loc$ 
 540   IF LEN(loc$)>10 THEN PRINT"Location too long, reenter":GOTO 535 
 545   PRINT:INPUT"Quantity: ";quan$ 
 550   q=CONV(quan$):IF q>9999 THEN PRINT"quantity too large, 
reenter":GOTO 
545 
 555   quantity%=q 
 560   PRINT:PRINT"Record is: "part$"|"desc$"|"loc$"|"quantity%"|, ok? 
"; 
 565   INPUT"";a$ 
 570   IF a$<>"Y" AND a$<>"y" THEN PRINT:GOTO 500 

This part is pretty straightforward.  It simply accepts the values, does minimal 
editing for length and value, and then reprints the record in line 560 to allow the 
user to verify that everything was correctly entered.


Next, things get a bit sticky.  

 575   a$=part$ 
 580   GOSUB 1500 

Line 1500 contains our old familiar routine, hashing a record number from the 
"part number" value:

 1500   a&=1:lstring=LEN(a$) 
 1502   FOR i=1 TO lstring 
 1505     ascval=ASC(MID$(a$,i,1)) 
 1510     a&=a&+CONV&(ascval*2^i+ascval*3^(lstring-i+1)) 
 1520     NEXT i 
 1525   key&=a& MOD recordmax& 
 1530   RETURN 

The next sequence of events adds 100 to the resulting record number, to clear 
all the data we might want to write to the beginning of the file, and then calls the 
routine at line 1800 to actually determine and deal with the writing of the record, 
and the conflicts, if any occur:

 585   recordnum%=CONV%(key&)+100 
 590   GOSUB 1800 
 595   IF errorcode=1 THEN PRINT"Tables full, cannot add a conflicting 
record." 
       :RETURN 
 597   PRINT:PRINT"record added.":RETURN 

103



The "add" routine at 1800 is non-trivial.  It first determines (in line 1800 to line 
1810) if a conflicting record already exists in the "primary%" conflict list.  Line 
1807 is particularly interesting in that, as we shall see later in the "delete" 
routine, flagging a conflict with a negative sign means that the conflicting record 
has been deleted and can be reused.


Note that after scanning the table, line 1815 and 1820 check to see if the 
physical record contains a string value as its first variable.  If not, the record is 
considered available.  If not, the record is considered occupied, with the initial 
string variable equal to the "part number", which is actually the element we use 
as the hash key.

 1800   FOR i=1 TO primary%(0,0) 
 1805     IF primary%(i,0)=recordnum% THEN 1830 
 1807     IF ABS(primary%(i,0))=recordnum% THEN primary%
(i,0)=recordnum%:GOTO 1815 
 1810     NEXT i 
 1815   READ#1,recordnum% 
 1820   IF TYP(1)<>4 THEN 1900 
 1821   trialrec%=recordnum%+1:lookup%=0 
 1822   IF FN nospace(x) THEN errorcode=1:RETURN 
 1823   primary%(0,0)=primary%(0,0)+1:currentp%=primary%(0,0) 
 1824   primary%(currentp%,0)=recordnum% 
 1825   secondary%(0,0)=secondary%(0,0)+1:currents%=secondary%(0,0) 
 1826   primary%(currentp%,1)=currents% 
 1829   GOTO 1855 

Lines 1821 though 1929 deal with first-time conflicts, and create a new primary 
record along with locating a place to enter the physical secondary record 
number.  This record number is obtained by the routine starting at line 1855.  
The routine at 1855 is also used in the event that the normal scan of primary 
conflict records (line 1805 above) discovers a duplicate entry.  The routine at line 
1830 searches the list of primary and secondary records until the end of the 
conflict list is found.  At that point "trialrec%" is set to the next suspected 
available record, and execution goes to 1855 to find a physical record into which 
to put our entry.  Note that line 1837 ensures that deleted entrys in the conflict 
list are automatically reused.

 1830   IF FN nospace(x) THEN errorcode=1:RETURN 
 1835   lookup%=primary%(i,1) 
 1837   IF secondary%(lookup%,0)<0 THEN 
recordnum%=ABS(secondary%(lookup%,0)):s 
        econdary%(lookup%,0)=recordnum%:GOTO 1900 
 1840   link%=secondary%(lookup%,1) 
 1845   IF link%<>0 THEN lookup%=link%:GOTO 1837 
 1847   secondary%(0,0)=secondary%(0,0)+1:currents%=secondary%(0,0) 

104



 1850   trialrec%=secondary%(lookup%,0)+1 
 1855   READ#1,trialrec% 
 1860   IF TYP(1)<>5 AND TYP(1)<>1 THEN trialrec%=trialrec%+1:GOTO 1855 
 1865   IF lookup%=0 THEN 1880 
 1870   secondary%(lookup%,1)=currents% 
 1880   secondary%(currents%,0)=trialrec% 
 1885   secondary%(currents%,1)=0 
 1890   recordnum%=trialrec% 

Note that lines 1865 through 1890 add the new conflict list entry to the list in 
"secondary%" and set the physical record number "recordnum%" to the final 
trial record value.

 1900   WRITE#1,recordnum%;part$,desc$,loc$,quantity% 
 1902   chron%(0)=chron%(0)+1:chron%(chron%(0))=recordnum% 
 1905   errorcode=0:modify=1:RETURN 

Line 1900 through 1905 then actually write the record values to the file, add the 
record number to the chronological list, and set the "modify" flag to let the 
program know that a change has been made to the file and the arrays.


Notice also that the path through all this code is extremely trivial if there is no 
conflict in the use of record numbers.  In that case, execution sails through the 
loop in lines 1800-1810, checks the record for previous contents in lines 1815 
and 1820, and finding none, jumps to line 1900 to write the record and update 
the list.  As long as there are no conflicts, this technique is very fast, and even 
with conflicts, there is a minimum of searching for a free record as long as the 
data space is significantly larger than the total number of records.


Having covered using hashing to add records, finding records becomes 
somewhat the reverse process of going back through the lists:

 700   PRINT:INPUT"Part number: ";part$ 
 705   IF part$="" THEN RETURN 
 710   IF LEN(part$)>10 THEN PRINT"Part number too long, reenter":GOTO 
700 
 712   a$=part$ 
 715   GOSUB 1500 
 720   recordnum%=CONV%(key&)+100 
 725   GOSUB 1600 
 730   IF errorcode=1 THEN PRINT"Part number not found.":GOTO 700 
 735   PRINT:PRINT"Part number: ";part$ 
 740   PRINT"Description: ";desc$ 
 745   PRINT"Location:    ";loc$ 
 750   PRINT"Quantity:    ";quantity% 
 755   PRINT:INPUT"Press return to continue: ";a$ 
 760   RETURN 

105



After collecting the part number and generating the hase value using the 
subroutine at 1500, line 725 goes to a subroutine which looks up records in the 
database.  The tricky part about this is that there may be multiple records which 
have the save hash key (that is, are in conflict), so that is is necessary to 
assemble a list of all values from the primary and secondary conflict arrays, and 
then lines 1671-1692 read each record to determine which one is the actual one 
being sought.  Note also that there is code in lines 1607 and 1662 to deal with 
the deleted entrys in the conflict lists.

 1600   FOR i=1 TO primary%(0,0) 
 1605     IF primary%(i,0)=recordnum% THEN 1640 
 1607     IF primary%(i,0)<>ABS(recordnum%) THEN 1610 
 1608     listnum%=0:trial%(0)=0:lookup%=primary%(i,1):GOTO 1670 
 1610     NEXT i 
 1615   READ#1,recordnum% 
 1620   IF TYP(1)=4 THEN GOSUB 1690:ELSE errorcode=1:RETURN 
 1622   conflict=0 
 1625   IF part$=part1$ THEN errorcode=0:RETURN:ELSE errorcode=1:RETURN 
 1640   listnum%=0:trial%(0)=0 
 1642   trialrec%=recordnum% 
 1645   lookup%=primary%(i,1) 
 1650   listnum%=listnum%+1 
 1655   trial%(listnum%)=trialrec% 
 1657   trial%(0)=trial%(0)+1 
 1660   IF lookup%=0 THEN 1670 
 1662   IF secondary%(lookup%,0)>0 THEN trialrec%=secondary%
(lookup%,0):skip=0: ELSE:skip=1 
 1665   lookup%=secondary%(lookup%,1) 
 1667   IF skip THEN 1660 ELSE 1650 
 1670   conflict=1 
 1671   FOR i=1 TO trial%(0) 
 1672     record%=trial%(i) 
 1673     READ#1,record% 
 1675     IF TYP(1)<>4 THEN 1680 
 1676     GOSUB 1690 
 1677     IF part1$=part$ THEN errorcode=0:RETURN 
 1680     NEXT i 
 1682   errorcode=1:RETURN 
 1690   READ#1;part1$,desc$,loc$,quantity% 
 1692   RETURN 

The last big section of the program deals with deleting records, and while it has 
been alluded to above, it is being mentioned third in the sequence of functions 
simply because it uses the "find" routines to locate the record to be deleted.  

 600   PRINT:INPUT"Part number: ";part$ 

106



 605   IF part$="" THEN RETURN 
 610   IF LEN(part$)>10 THEN PRINT"Part number too long, reenter":GOTO 
700 
 612   a$=part$ 
 615   GOSUB 1500 
 620   recordnum%=CONV%(key&)+100 
 625   GOSUB 1600 
 630   IF errorcode=1 THEN PRINT"Part number not found.":GOTO 600 
 635   PRINT:PRINT"Delete: "part1$"|"desc$"|"loc$"|"quantity%"| ? "; 
 637   INPUT"";a$ 
 640   IF a$<>"Y" AND a$<>"y" THEN PRINT"Not deleted":RETURN 

The first part of "delete" simply takes the part number information, hashes the 
key and then in line 625, gosubs to the "find" routine to locate the particular part 
number record.  If the record is found, the user is asked to confirm that it is the 
proper record to delete, and then the fun begins:

 645   IF conflict=1 THEN 660 
 650   record%=recordnum% 
 655   GOTO 690 

"Conflict" is a flag set in the find routine which tells "delete" whether or not there 
is cleanup work to be done in the conflict lists.  If not, the record number is 
passed to 690 for physical deletion.  If there is a conflict, then 660-670 find the 
primary entry, check if that is the physical record number to be deleted.  If so, 
line 675 negates the entry.  If not, the secondary list is searched in line 680-688 
until the proper entry is found and flagged.  Then 690-695 physically deletes the 
record and finds the entry in the chronological list, negating that as well. 
Because entrys are being changed, the modify flag is set in 695.

 660   FOR i=1 TO primary%(0,0) 
 665     IF primary%(i,0)=recordnum% THEN 675 
 670     NEXT i 
 672   PRINT"Error in delete. Record not found":RETURN 
 675   IF primary%(i,0)=record% THEN primary%(i,0)=-record%:GOTO 690 
 680   lookup%=primary%(i,1) 
 682   IF secondary%(lookup%,0)=record% THEN secondary%(lookup%,0)=-
record%:GOTO 690 
 685   IF secondary%(lookup%,1)=0 THEN 672 
 687   lookup%=secondary%(lookup%,1) 
 688   GOTO 682 
 690   WRITE#1,record%;0 
 692   FOR i=1 TO chron%(0) 
 693     IF chron%(i)=record% THEN chron%(i)=-record%:GOTO 695 
 694     NEXT i 
 695   PRINT:PRINT"Record deleted":modify=1:RETURN 

107



At Last, The End 
The final routine is this program is the "list", which is the simplest of all:

 900   IF chron%(0)=0 THEN PRINT"No records to list":GOTO 930 
 905   FOR i=1 TO chron%(0) 
 906     IF chron%(i)<0 THEN 920 
 907     READ#1,chron%(i) 
 908     IF TYP(1)<>4 THEN 920 
 910     READ#1;part$,desc$,loc$,quantity% 
 915     PRINT USING"10a,2x,15a,2x,10a,x,4#";part$,desc$,loc$,quantity% 
 920     NEXT i 
 930   PRINT:INPUT"Press RETURN to continue: ";a$ 
 935   RETURN 

"List" simply goes through the chronological array, reads the physical record 
numbers (skipping deleted entrys in line 906) and formats the information into a 
list.  What a treat to see a simple, straightforward routine for once!


Final wrapup is all that is left:

 200   PRINT:PRINT"end of program" 
 210   IF NOT modify THEN 220 
 211   count=0 
 212   FOR i=1 TO chron%(0) 
 214     IF chron%(i)>0 THEN count=count+1:chron%(count)=chron%(i) 
 216     NEXT i 
 218   chron%(0)=count 
 219   GOSUB 2020 
 220   CLOSE:INVOKE 
 230   END 

These lines handle "quitting", checking the "modify" flag and writing out the 
data if necessary.  Note that before writing out the data, a cleanup is done on 
the "chron%" list to remove deleted entrys.


Really The End 
This has been a long and tough exercise, and you deserve a break.  Go off to 
the refrigerator, get a cool beverage of your favorite persuasion, and consider 
the fact that the program above can be easily modified to maintain almost any 
kind of data records, and the list routine can be used in conjunction with sorts 
and calculations to format almost any kind of report. The fact that this kind of 
capability can be developed in Basic is a tribute to the power of the Apple III, 
Business Basic and SOS, and not a bad testimony on your investment.  Just 
one word of caution is in order.  For simplicity, many of the errorchecking 

108



routines which would be needed to turn this into a real application have been left 
out.  If you get serious about using these kind of techniques, take the time to 
anticipate all the things that could go wrong and put in tests for them.  Also, to 
learn more about the techniques alluded to in this article, which fit the general 
category of "Access Methods", check your library for books on data structures, 
database theory and indexed access methods.  And then have another cool 
one....


109



110



Exploring Business Basic - Part X 
First things first.  I must offer an apology for being absent from these pages last 
month.  Sometimes the press of earthbound duties prevents the treading of 
etherial pathways.  Ah, well, here's hoping that this issue will keep you busy 
enough to make up for the gap in our cycle of exploration.


On the subject of exploration, congratulations are due to John Jeppson for the 
excellent couple of articles on Basic and the Apple III.  The April issue which 
covered a character set editor was a fine one.  If you haven't seen it, check for a 
back issue copy, it was really that excellent.


On With It 
This month's article could really be entitled "Down and Dirty in the SOS mines" 
or perhaps more accurately "The .CONSOLE driver is your friend".  Last article, 
you will perhaps recall, we looked at techniques which substituted a little 
thinking about how to access records by key values for the brute force of having 
the computer scan hundreds of records looking for the one we wanted. The 
result was a method which was both fast and flexible.  In general, there is no 
substitute for taking a little time to think about the best way to implement a 
program, before beginning to write it.


Along with choosing the best method to implement a particular task, a good 
programmer always looks at the tools at hand.  Since every computer and every 
implementation of Basic is different, it pays to check out the computer on which 
the program will be running, and see what features and capablities it can lend to 
the task.  Sure, some will insist that it is most important to write programs which 
can run on as many computers as possible, but the truth is that some 
modification is always required, so why not make the best of the environment 
you have (especially if that environment can save you some work).


Basic with "hot SOS" 
The inspiration for this month's article came from a friend who was complaining 
that it was hard to write in assembly language on the Apple III and use that code 
in a Basic program.  After letting him know about the technical note on writing 
Invokable modules, the question of what he wanted to do happened to come 
up.  As expected, he wanted to do special handling of input for some menu 
screens and most interestingly, he also wanted to handle the listing of records 
longer than 80 columns to the screen, and was perplexed as to how to do it 
without having to rewrite the screen each time.  After seeing how well Visicalc 
did its vertical and horizontal scrolling, he was even more convinced that 
assembly language was the only way to go.


111



Before this article is concluded, we'll see how to do these things and more using 
Basic and the power of SOS!  We have previously done some work with the 
Basic invokable module called "request.inv", found on the Business Basic 
product disk.  That article covered the two functions "filread" and "filwrite" 
which correspond to the SOS F_READ and F_WRITE calls.  This month we will 
concentrate on "control" and "status" functions of the "request.inv" module, 
which correspond to the SOS D_CONTROL and D_STATUS calls.  Remember 
that SOS views files as one of two fundamental types, "character" and "block".  
The control and status functions we will use this time are generally applicable to 
character files, and are documented in the respective manuals for the devices.


Since its already been announced that this issue will deal with the .CONSOLE 
driver (that wonderful driver that you communicate with via keyboard and 
screen), your next logical step is to get out your "Standard Device Drivers" 
manual, and prepare to follow along with the fascinating discussions to follow.  
The discussion of the .CONSOLE driver starts on page 27 of the manual, and 
our first task is to get familiar with the capabilities it provides.


Some further CONSOLEation 
The console on the Apple III really consists of two devices, the keyboard 
(normally a read-only device) and the screen (normally a write-only device). To 
communicate with these devices, especially to change their operating 
characteristics, SOS allows you to give and receive information from the 
"driver", a software routine which is responsible for managing the physical 
screen and keyboard hardware.  Information about the driver is obtained by 
using the "status" commands, and changes are made through the "control" 
commands.  Let's start with "status".


The following program uses the "request.inv" invokable module to allow calls to 
determine the status of the console:

 10   DIM statuslen(18) 
 15   DATA 8,41,2,1,1,1,6,-1,5,-1,1,1,1,1,1,1,2,1,-1 
 20   INVOKE"/basic/request.inv" 
 25   FOR i=0 TO 18:READ statuslen(i):NEXT 
 30   device$=".console" 

These first lines do some initialization.  Since the status call will always return 
the buffer string fully padded to 255 characters in lenght, the "statuslen" array is 
set to the number of valid bytes returned by each different call.  Note that some 
calls are reserved, and therefore invalid, and are indicated by a -1 in the data list.  
Those of you who are comparing the data statement with the descriptions of the 
status calls in the Device Drivers manual will notice some anomilies in the list, 
but have faith, it will all be explained later.  Note also that the INVOKE statement 

112



needs to be changed to refer to the proper pathname for "request.inv" on your 
system.  Meanwhile, on with the code:

 35   INPUT"Status code: ";stat$ 
 36   IF stat$="" THEN 100 
 37   stat=CONV(stat$) 
 38   IF stat<0 OR stat>18 THEN PRINT"Status code out of range, try 
again":GOTO 35 
 39   IF statuslen(stat)<0 THEN PRINT"Invalid status code, try 
again":GOTO 35 
 40   buffer$="" 
 42   PERFORM status(%stat,@buffer$)device$ 

Lines 35 through 42 check the status request for validity, and then use the 
PERFORM statement to make the SOS call.  Remember that "status" returns its 
result in the string variable "buffer$" and the "@" symbol instructs Basic to pass 
the address (location) of the buffer$ variable, so that "status" can return the 
requested information in the string.  Now that buffer$ contains the mystery 
information, we can print it out in meaningful form with the following:

 45   endlist=statuslen(stat) 
 47   line$="" 
 50   FOR i=1 TO endlist 
 55     hexvalue$=HEX$(ASC(MID$(buffer$,i,1))) 
 57     char=TEN(hexvalue$):IF char<32 THEN char=char+128 
 58     char$=CHR$(char) 
 59     line$=char$+"  " 
 60     PRINT USING"2a,x";MID$(hexvalue$,3,2); 
 65     IF i/26=INT(i/26) THEN PRINT:PRINT line$:line$="" 
 70     NEXT i 
 72   PRINT:PRINT line$:PRINT 

Note that "endlist" is the number of valid bytes of status information, so the 
routine from line 50 to 70 scans "buffer$" and prints out the HEX value of each 
character.  The "line$" string accumulates the ASCII character values (after 
changing "real" control characters to printable control characters in line 57) so 
they can be printed out below the HEX values.  Line 65 handles the case where 
more characters need to be printed than can fit on a single line and line 72 
cleans up after the last line of HEX values is printed.


All that remains is to return to request the next status code, and to provide a 
place to go to terminate the program.

 80   GOTO 35 
 100   INVOKE 
 110   END 

Lets look at some sample output for a few typical "status" calls:


113



First, something simple.  According to the manual, status 0 should do nothing.


The request module does a little better than that, returning the name of the 
device being accessed, to wit:

2E 63 6F 6E 73 6F 6C 65  

More interesting, and twice as mysterious is status 1, which returns the total 
state of the console driver.  For reasons of compatibility with printers, only the 
printable ASCII characters are listed below.  All others can be deduced by their 
HEX equivalents above.  As you fool around with other status calls, the order in 
which these status indications fall will become apparent.  In the meantime, 
here's everything you wanted to know about the console, and then some!

28 00 01 0B 67 F3 01 01 0E 67 F3 03 00 80 0D 00 80 80 80 80 80 82 0D 00 
17 00  
(           g  s           g  s              

4F 00 17 0F 00 82 0D 00 17 00 4F 00 17 0F 00  
O                             O        

Note that on your screen, the special character symbols will actually print out.


Now for something simpler, and more useful.  Status code 2 is advertised as 
indicating the status of the "line termination character."  Of course, you know the 
line termination character as the RETURN key or perhaps you have noticed that 
RETURN and CTRL-M are the same character.  Notice the two bytes returned 
from a status 2 call:

80 0D 

The first byte indicates (as described in the Device Drivers manual) that a 
specific line termination character is enabled.  The second byte ("0D") is hex 
notation for decimal 13, or the CTRL-M (RETURN) character.  Later on we'll see 
that this can be changed to any other character, for fun and profit.


Now come two calls which are interesting, but fraught with danger if you fool 
with them.  Specifically they are status 6 and 8, the "attention" and "any key" 
events.  Events can be set in SOS to trigger interrupts to interpreters (like Basic) 
to inform the interpreter that some specific action is required or requested.  
Again, as described in the Drivers manual, status 6 gives the priority and event 
ID of the attention event, along with the address of the event handler which 
services the event, and the character code which triggers the event.  The return 
from status 6 should look something like this:

01 01 0E 67 F3 03  
         g  s    

Again, only the printable ASCII characters are listed.  The rest will show up on 
your screen when you run the program.  Note that the first two bytes are the 

114



priority and the event ID, and the next three bytes compose the address of the 
event handler for this event.  For those of you who wondered how Apple III 
addresses all that memory, part of the answer is here.  Three byte addresses are 
used throughout most of the system code to allow addressing up to a 
theoretical limit of 512K bytes.  The important thing to remember is that you 
should not change the event handler addresses, since that is an easy way to 
cause the system to leap off into space, never to return.  The real key value in 
this call is the last byte, the attention character itself.  As you can see, it is HEX 
03, which is also ASCII character 3, usually known as CTRL-C. Yes, all those 
times you pressed CTRL-C to stop a program or break a listing, you were setting 
an "event" within the console driver, which flagged SOS to call Basic's event 
handler to shut down the current activity.  Later on we will discuss how to 
change the attention character to something besides CTRL-C, which is 
guaranteed to baffle your friends.  For now, consider the "Any key" event, 
number 8 on your hit parade:

00 01 0B 67 F3  
         g  s   

Same format, except with a different priority and different event handler address.  
In addition, there is no event character, since this event is set by the pressing of 
"any key".  As you might expect, this is the mechanism which Basic uses to 
implement the ON KBD statement.


Other status calls of interest include the one for "cancel status" (yes Virginia, you 
can avoid CTRL-X printing the backslash character and skipping to the next line) 
and "backspace status" which determines if the backarrow is destructive 
(erases the character backed over) or non-destructive (so you can use the 
forward arrow copy feature).  All this and more is yours to investigate with the 
status call.


Still Curious? 
You now have a program which will do all the status calls listed in the Standard 
Device Drivers manual.  Ah, yes, you say: "What about status call 18, 
PRESERVE VIEWPORT?"  The truth is, there is a little problem with the way that 
this invokable is written.  Status call 18 (for those who are not following along in 
the manual) saves the entire contents of the viewport into the buffer.  
Unfortunately, individual Basic strings are limited to 255 characters, and any 
attempt to use a string array in this invokable will illicit a polite error message.  
Worse yet, an attempt to save a viewport of more than 255 characters using the 
status call will lock up Basic as the invokable module happily writes data into 
the middle of Basic itself.  For that reason, the "statuslen" array doesn't allow 
the use of that call.  For those of you who are more adventurous, or who use 
viewports of less that 256 characters, consider the following:


115



 41   IF stat=18 THEN GOSUB 125 
 43   IF stat=18 THEN GOSUB 140 

 125   vtemp= VPOS:htemp= HPOS 
 130   PRINT 
CHR$(26);CHR$(0);CHR$(0);CHR$(2);CHR$(26);CHR$(9);CHR$(24);CHR$(3) 
       ;CHR$(12); 
 135   RETURN 
 140   TEXT:VPOS=vtemp:HPOS=htemp 
 145   RETURN 
 200   DATA 8,41,2,1,1,1,6,-1,5,-1,1,1,1,1,1,1,2,1,243 

These changes to the program will make a special case of the "save viewport" 
call.  Basically it works like this:  line 125 saves the current cursor position, and 
line 130 sets up a window consisting of the first three lines of the screen.  
Similar action could be taken using the Basic WINDOW command, but it doesn't 
hurt to see how console commands are use to accomplish the same purpose.  
In any case, setting up the window (which contains 240 characters) gives the 
status function something to read within the 255 character limit of the buffer$ 
variable.  Line 140 restores the cursor to its original position, and since we 
changed line 200 to indicate 243 characters expected (240 + 3 bytes of coded 
information) the program will list out the screen data as it does the other types of 
status information.


To give you an idea of how this works, imagine that the following three lines are 
at the top of the display when you run the program above with status function 
18:

 TYPE   BLKS  NAME            MODIFIED TIME  CREATED  TIME   EOF 
 TEXT   00003 STATUS.LIST     05/23/82 19:31 05/23/82 19:31  933 
 TEXT   00004 TRY.LIST        05/23/82 20:16 05/23/82 20:16  1189  

The resultant listing of the buffer (made by lines 50 through 72) will look 
something like this:

82 4F 02 A0 D4 D0 A0 A0 CC D3 A0 C1 C5 A0 A0 A0 A0 A0 A0 CF C9 C9 C4 D4 
CD A0  
   O        T  P        L  S     A  E                    O  I  I  D  T  
M      

C3 C5 D4 C4 A0 C9 C5 A0 C5 C6 A0 A0 A0 A0 A0 A0 A0 A0 D9 C5 A0 C2 CB A0 
CE CD  
C  E  T  D     I  E     E  F                          Y  E     B  K     
N  M   

A0 A0 A0 A0 A0 A0 CD C4 C6 C5 A0 C9 C5 A0 D2 C1 C5 A0 D4 CD A0 A0 CF A0 
A0 A0  
                  M  D  F  E     I  E     R  A  E     T  M        O            

116



A0 A0 A0 A0 A0 A0 D4 D8 A0 A0 B0 B0 A0 D4 D4 D3 CC D3 A0 A0 A0 B5 B2 AF 
B2 B1  
                  T  X        0  0     T  T  S  L  S           5  2  /  
2  1   

BA B1 B0 AF B3 B8 A0 B9 B3 A0 B9 B3 A0 A0 A0 A0 A0 A0 A0 A0 C5 D4 A0 B0 
B0 B3  
:  1  0  /  3  8     9  3     9  3                          E  T     0  
0  3   

D3 C1 D5 AE C9 D4 A0 A0 B0 AF B3 B8 A0 B9 B3 A0 B5 B2 AF B2 B1 BA B1 A0 
B3 A0  
S  A  U  .  I  T        0  /  3  8     9  3     5  2  /  2  1  :  1     
3      

A0 A0 A0 A0 A0 A0 A0 A0 D4 D8 A0 A0 B0 B0 A0 D2 AE C9 D4 A0 A0 A0 A0 B5 
B2 AF  
                        T  X        0  0     R  .  I  T              5  
2  /   

B2 B2 BA B6 B0 AF B3 B8 A0 B0 B1 A0 B1 B8 A0 A0 A0 A0 A0 A0 A0 A0 C5 D4 
A0 B0  
2  2  :  6  0  /  3  8     0  1     1  8                          E  T     
0   

B0 B4 D4 D9 CC D3 A0 A0 A0 A0 B0 AF B3 B8 A0 B0 B1 A0 B5 B2 AF B2 B2 BA 
B6 A0  
0  4  T  Y  L  S              0  /  3  8     0  1     5  2  /  2  2  :  
6      

B1 B9 A0 A0 A0 A0 A0 A0 A0  
1  9  

Just a bunch of gibberish, right?  Unfortunately, computers are eminently logical, 
and our favorite, the Apple III, is no exception.  Because of the way the video is 
organized for accesses over its internal 16 bit bus (which also provides 
transparent access to extended address bytes), the characters are mapped in 
an alternating pattern, with visually ajacent bytes split by a distance of half the 
viewport window.  All that leads to the following adjustment of our program, to 
reconstruct the image from the scramble in the buffer:

 75   IF stat=18 THEN GOSUB 160:GOSUB 140 

 160   INPUT"Press RETURN to reconstruct the captured display: ";a$ 
 165   buf1$=MID$(buffer$,4,240) 

117



 170   HOME:PRINT CHR$(21);"5"; 
 172   FOR j=1 TO 3:VPOS=j:HPOS=1:FOR i=1 TO 40:PRINT 
MID$(buf1$,80*(j-1)+i,1); 
       MID$(buf1$,80*(j-1)+i+40,1);:NEXT i:NEXT j 
 175   TEXT:RETURN 

You can adjust the constants in line 72 to accomodate other viewport sizes. 
Note also that in line 170 the statement  PRINT CHR$(21);"5";  is used to turn off 
several console options (like scrolling and new line) to insure the data is written 
back correctly.  The TEXT statement in 175 sets everything back to normal. 


Getting Control  
Now that you have all this information, the immediate reaction is "how do I 
change things?"  The following is a sample program which allow the use of the 
"control" call to modify the state of the console driver to your wishes. 
Remember, modifying certain things (like event handler addresses) can cause 
the system to crash, so try to keep it simple.  With that warning, here's the 
magic incantation:

 10   DIM controllen(18) 
 15   DATA -1,40,2,1,1,0,6,-1,5,-1,1,1,1,1,1,1,-1,73,-1 
 20   INVOKE"/basic/request.inv" 
 25   FOR i=0 TO 18:READ controllen(i):NEXT 
 30   device$=".console" 
 35   INPUT"Control code: ";ctrl$ 
 55   errorcode=0 
 60   IF ctrl$="" THEN 145 
 65   ctrl=CONV(ctrl$) 
 70   IF ctrl<0 OR ctrl>18 THEN PRINT"Control code out of range, try 
again":GOTO 35 
 75   IF controllen(ctrl)<0 THEN PRINT"Invalid control code, try 
again":GOTO 
35 
 80   ON ctrl+1 GOSUB 
1000,1100,1200,1300,1400,1500,1600,1700,1800,1900,2000,2100,2200,2300,24
00,2500,2600,2700,2800 
 85   IF errorcode THEN PRINT"Control function not performed.":GOTO 35 
 90   PERFORM control(%ctrl,@buffer$)device$ 
 95   endlist=controllen(ctrl) 
 97   line$="" 
 100   FOR i=1 TO endlist 
 105     hexvalue$=HEX$(ASC(MID$(buffer$,i,1))) 
 110     char=TEN(hexvalue$):IF char<32 THEN char=char+128 
 115     char$=CHR$(char) 
 117     line$=char$+"  " 

118



 120     PRINT USING"2a,x";MID$(hexvalue$,3,2); 
 125     IF i/26=INT(i/26) THEN PRINT:PRINT line$:line$="" 
 130     NEXT i 
 135   PRINT:PRINT line$:PRINT 
 140   GOTO 35 
 145   INVOKE 
 150   END 

As you can see, the main part of the program is somewhat similar to our 
"status" example above.  The big exception is the ON GOSUB statement in line 
80 which allows for each control request to be handled separately.  Here are the 
routines and commentary:

 1000   buffer$=CHR$(0) 
 1010   RETURN 

This is just the "reset console" function which has no formal parameters.

 1100   REM set sub$(buffer$,1,1) equal to $28 and set the rest of 
 1110   REM the buffer to status table values 
 1120   PRINT:PRINT"Not implemented" 
 1125   errorcode=1 
 1130   RETURN 

This would normally be the "restore console status" function.  Because it is both 
dangerous and undocumented, it is "left to the reader as an exercise." In general 
you should only restore with a buffer loaded during a previous "preserve console 
status" call (Status Code 1, above).

 1200   PRINT:INPUT"Do you want to terminate input with a specific 
character?";a$ 
 1210   GOSUB 5000 
 1215   IF NOT yes THEN 1250 
 1220   INPUT"ASCII value of termination character: ";a$ 
 1225   char=0:char=CONV(a$) 
 1230   IF char<1 OR char>255 THEN 1200 
 1235   buffer$=CHR$(128)+CHR$(char) 
 1240   RETURN 
 1250   buffer$=CHR$(0)+CHR$(0) 
 1255   RETURN 

By contrast, control 2 above is nice and safe, and also serves to introduce the 
input test routine at line 5000, as follows:

 5000   yes=1 
 5010   ans$=MID$(a$,1,1):IF ans$<>"Y" AND ans$<>"y" THEN yes=0 
 5020   RETURN 

One of the things you might enjoy with the termination character routine is to 
remember that the "Open Apple" key adds 128 to the value of a given key value. 

119



Therefore, to change the function of the RETURN key to require "Open-Apple 
RETURN" is simply a matter of setting the termination character to ASCII 141 
(128+13).  Amaze your friends!  Note also that Basic does not reset these values 
until you reboot, so if you set the value to something you can't type (or happen 
to forget), you're out of luck!

 1300   INPUT"Do you want to do two byte reads from the keyboard? ";a$ 
 1305   GOSUB 5000 
 1310   IF yes THEN buffer$=CHR$(128):RETURN 
 1320   buffer$=CHR$(0):RETURN 

Two byte reads are a whole world by themselves.  This is the way to set up your 
application to use the numeric keypad for special functions, to read the state of 
the "Apple" keys, etc., etc., etc.  More information is in the Device Drivers 
manual.  If interest is high enough in these techniques, maybe it would make the 
subject of a future column.

 1400   INPUT"Size of the type-ahead buffer: ";a$ 
 1405   IF a$="" THEN errorcode=1:RETURN 
 1410   size=CONV(a$) 
 1415   IF size<0 OR size>128 THEN PRINT"Invalid input, try again":GOTO 
1400 
 1420   buffer$=CHR$(size) 
 1425   RETURN 

Type-ahead buffer size is interesting only in the ability to set it to zero (no type-
ahead).

 1500   buffer$=CHR$(0) 
 1510   RETURN 

This just flushes the type-ahead buffer (like CTRL-6) which is handy if you want 
to guarantee a certain input state or timing.

 1600   PRINT"Warning, Don't make a mistake!" 
 1605   INPUT"Attention event priority: ";a$ 
 1610   IF a$="" THEN errorcode=1:RETURN 
 1615   pri=CONV(a$):IF pri<0 OR pri>255 THEN 1605 
 1620   buffer$=CHR$(pri) 
 1625   INPUT"Attention Event ID: ";a$ 
 1630   IF a$="" THEN 1605 
 1635   event=CONV(a$):IF event<0 OR event>255 THEN 1625 
 1640   buffer$=buffer$+CHR$(event) 
 1645   INPUT"Attention event handler address (three bytes): ";a$ 
 1650   IF LEN(a$)<>3 THEN 1645 
 1655   buffer$=buffer$+a$ 
 1660   INPUT"ASCII code of Attention character: ";a$ 
 1665   code=CONV(a$):IF code<1 OR code>255 THEN 1660 

120



 1670   buffer$=buffer$+CHR$(a$) 
 1675   PRINT"Buffer is: "; 
 1680   FOR i=1 TO 6:PRINTUSING"2a,x";MID$(HEX$(ASC(MID$
(buffer$,i,1))),3,2);:NEXT 
 1685   INPUT"  Ok? ";a$:GOSUB 5000 
 1690   IF yes THEN RETURN:ELSE:GOTO 1605 

Here's where life gets dangerous.  If you use this routine, you must first call 
attention status to get the priority, event id and address, and re-enter that 
information exactly.  Only then can you feel free to change the attention 
character.

 1700   errorcode=1:RETURN 

Control call number 7 is reserved.

 1800   PRINT"Warning, Don't make a mistake!" 
 1805   INPUT"Any-key event priority: ";a$ 
 1810   IF a$="" THEN errorcode=1:RETURN 
 1815   pri=CONV(a$):IF pri<0 OR pri>255 THEN 1805 
 1820   buffer$=CHR$(pri) 
 1825   INPUT"Any-key Event ID: ";a$ 
 1830   IF a$="" THEN 1805 
 1835   event=CONV(a$):IF event<0 OR event>255 THEN 1825 
 1840   buffer$=buffer$+CHR$(event) 
 1845   INPUT"Any-key event handler address (three bytes): ";a$ 
 1850   IF LEN(a$)<>3 THEN 1845 
 1855   buffer$=buffer$+a$ 
 1860   PRINT"Buffer is: "; 
 1865   FOR i=1 TO 5:PRINTUSING"2a,x";MID$(HEX$(ASC(MID$
(buffer$,i,1))),3,2);:NEXT 
 1870   INPUT"  Ok? ";a$:GOSUB 5000 
 1875   IF yes THEN RETURN:ELSE:GOTO 1805 

What was said for the attention event above goes double for the routine above.

 1900   errorcode=1:RETURN 

Control call number 9 is reserved.

 2000   INPUT"Do you want No-Wait input? ";a$ 
 2005   IF a$="" THEN errorcode=1:RETURN 
 2010   GOSUB 5000 
 2015   IF yes THEN buffer$=CHR$(128):RETURN 
 2020   buffer$=CHR$(0):RETURN 

No wait input is fun to play with because it bypasses buffering and waiting for 
RETURN and gives the inputting program whatever has accumulated since the 
last input request.  The program is responsible for making sense of the entered 

121



characters.  This might come in handy in conjunction with the console 
synchronizing function (chr$(22)) to wait a certain time and see what had been 
typed in that time period.

 2100   INPUT"Do you want any echoing of characters to the screen? ";a$ 
 2105   IF a$="" THEN errorcode=1:RETURN 
 2110   GOSUB 5000 
 2115   IF yes THEN 2130 
 2120   buffer$=CHR$(0) 
 2125   RETURN 
 2130   INPUT"Do you also want control characters to be echoed? ";a$ 
 2135   IF a$="" THEN 2100 
 2140   GOSUB 5000 
 2145   IF yes THEN buffer$=CHR$(192):RETURN 
 2150   buffer$=CHR$(128) 
 2155   RETURN 

This is a handy function for typing in passwords and other characters where 
selective display is desired.  In addition, it allows programatic setting of the 
CONTROL-8 (display control characters) keyboard function.

 2200   INPUT"Do you want the Retype function enabled? ";a$ 
 2205   IF a$="" THEN errorcode=1:RETURN 
 2210   GOSUB 5000 
 2215   IF yes THEN buffer$=CHR$(128):RETURN 
 2220   buffer$=CHR$(0) 
 2225   RETURN 

Retype allows the forward arrow key to copy characters into the buffer.  This is 
the normal mode for Basic, but can be disallowed to provide pure cursor 
movement.

 2300   INPUT"Do you want the Backspace function to be enabled? ";a$ 
 2305   IF a$="" THEN errorcode=1:RETURN 
 2310   GOSUB 5000 
 2315   IF yes THEN 2330 
 2320   buffer$=CHR$(0) 
 2325   RETURN 
 2330   INPUT"Do you also want backspace to be destructive? ";a$ 
 2335   IF a$="" THEN 2300 
 2340   GOSUB 5000 
 2345   IF yes THEN buffer$=CHR$(192):RETURN 
 2350   buffer$=CHR$(128) 
 2355   RETURN 

This is really handy for applications programs taking input from the keyboard 
using standard input statements.  It, in connection with disabling the retype 

122



function, allows the naive user to be sure that what shows up on the screen is 
what is actually going to be input when he presses RETURN.  

 2400   INPUT"Do you want the Cancel function to be enabled? ";a$ 
 2405   IF a$="" THEN errorcode=1:RETURN 
 2410   GOSUB 5000 
 2415   IF yes THEN 2430 
 2420   buffer$=CHR$(0) 
 2425   RETURN 
 2430   INPUT"Do you also want Cancel to be destructive? ";a$ 
 2435   IF a$="" THEN 2400 
 2440   GOSUB 5000 
 2445   IF yes THEN buffer$=CHR$(192):RETURN 
 2450   buffer$=CHR$(128) 
 2455   RETURN 

Turning on "destructive cancel" is the most powerful feature of this routine. By 
now you have probably gotten accustomed to getting a backslash and then a 
carriage return and line feed when you press CTRL-X.  When destructive cancel 
is turned on, the console driver instead issues a destructive (erasing) backspace 
for every character in the input buffer.  The net effect of this is that the cursor 
snaps back to the exact place it was when you began to type that line, erasing 
everything as it goes.  This is not particularly handy if you are writing programs 
and want to cancel a line but then use the forward arrow to correct the mistake.  
However, it makes lots of sense in an application where the user might be 
confused by the backshash and the cursor sitting on the line below, expectantly 
waiting for who knows what.

 2500   INPUT"Do you want Escape Mode enabled? ";a$ 
 2505   IF a$="" THEN errorcode=1:RETURN 
 2510   GOSUB 5000 
 2515   IF yes THEN buffer$=CHR$(128):RETURN 
 2520   buffer$=CHR$(0):RETURN 

Escape mode is another handy thing while you are developing programs which 
you might want to turn off during an application program, especially if you want 
to restrict the input to just the prompted locations.  If you use destructive 
backspace and destructive cancel, it makes sense to disable escape mode also.

 2600   errorcode=1:RETURN 

Down-loading an entire character set is not implementable with this invokable 
because of the 255 character limit on the buffer.  However, don't despair, since 
there is the great "download.inv" to take care of the problem.  See your friendly 
"download.doc" file on the Basic product disk for more details.

 2700   PRINT"Not currently implemented" 
 2705   REM sub$(buffer$,1,1) contains the character count 

123



 2710   REM the rest is individual character definitions (max 8) 
 2715   errorcode=1:RETURN 

Even though it is not possible to download an entire character set using this 
invokable, control request 17 above does provide a mechanism for downloading 
eight characters at a time.  Although the process for developing the character 
definitions is beyond the scope of this article, there is enough information in the 
Device Drivers manual to get you started. 

 2800   errorcode=1:RETURN 

The process of restoring a viewport is also left to the reader.  Because of the 255 
character buffer limit discussed earlier, it is not possible to restore a whole 
viewport.  Further, the initial three byte code at the front of the buffer is 
undocumented, which makes it a little tough to create your own viewport 
definitions.  Don't be discouraged, however.  There's lots to do above which can 
make your application development smoother and more friendly (and lots of 
time required to test everything out!)


Homework! 
This has been quite an treatise on the use of the Apple III console.  There are 
lots of other useful options in the console driver that will be covered next time, 
but in the meanwhile, here is a present/homework assignment which should give 
you some chuckles while proving that there is very little you can't do with SOS 
and Basic.  Without further ado, try out the following:

 5   INPUT"File to fill with assorted trash: ";file$ 
 10   IF file$="" THEN 230 
 15   OPEN#1,file$ 
 20   INPUT"How many lines of this trash do you want to create: ";line$ 
 25   line=0:line=CONV(line$) 
 30   IF line<1 THEN GOTO 5 
 45   DATA "duke","prince","frog","sanitation engineer","dowager 
duchess" 
 50   DATA "captivated","impressed","repulsed","bored","completely 
overwhelmed" 
 55   DATA "handsome","pathetic","eager","reluctant","willing"  
 60   DATA "wholesome","reserved","wild","enthusiastic","shy"  
 65   DATA "king","queen","tadpole","flagpole climber","lady marine"    
 70   DATA "mother","father","grand-parents","analyst","best friends" 
 80   FOR i=1 TO 5:READ a$(i):NEXT 
 90   FOR i=1 TO 5:READ b$(i):NEXT 
 100   FOR i=1 TO 5:READ c$(i):NEXT 
 110   FOR i=1 TO 5:READ d$(i):NEXT 
 120   FOR i=1 TO 5:READ e$(i):NEXT 
 130   FOR i=1 TO 5:READ f$(i):NEXT 

124



 140   FOR i=1 TO line 
 145     PRINT#1; USING"3#,x";i; 
 150     PRINT#1;"Once a ";a$(INT(RND(1)*5+1)); 
 160     PRINT#1;" was ";b$(INT(RND(1)*5+1)); 
 170     PRINT#1;" by a ";c$(INT(RND(1)*5+1)); 
 180     PRINT#1;" but ";d$(INT(RND(1)*5+1)); 
 190     PRINT#1;" young ";e$(INT(RND(1)*5+1)); 
 200     PRINT#1;" which neither of them talked to their 
";f$(INT(RND(1)*5+1));" about." 
 210     NEXT i 
 220   CLOSE 
 230   END 

Running the little jewel above should create the following kind of file (be sure to 
run at least 50 lines):


1 Once a dowager duchess was impressed by a reluctant but enthusiastic 
young flagpole climber which neither of them talked to their mother about. 


2 Once a duke was completely overwhelmed by a pathetic but wholesome 
young tadpole which neither of them talked to their analyst about. 


3 Once a duke was bored by a willing but wild young queen which neither of 
them talked to their grand-parents about. 


4 Once a prince was repulsed by a pathetic but shy young tadpole which neither 
of them talked to their analyst about.


Unfortunately if you print this file out on the screen (by replying .console to the 
filename prompt, for example) you get the sentences wrapped around because 
the lines are more than 80 characters long.  How nice it would be if you could 
see them printed out and scroll horizontally to read them, just as the console 
already scrolls down to allow more information to be printed. Next month we'll 
explore the following program in detail, and other programming tricks with the 
console, but for now, type and enjoy:

 1   DIM a$(500) 
 5   INPUT"File name to scroll through: ";a$ 
 10   IF a$="" THEN 200 
 15   OPEN#1,a$ 
 20   maxlenght=0 
 25   ON EOF#1 GOTO 35 
 30   FOR i=0 TO 500:INPUT#1;a$(i):IF LEN(a$(i))>maxlenght THEN 
maxlenght=LEN(a 
      $(i)):NEXT:ELSE:NEXT 
 35   lastrecord=i 

125



 40  leftscroll$=CHR$(23)+CHR$(255) +CHR$(26)+CHR$(79)+ 
CHR$(0)+CHR$(2)+CHR$(26)+CHR$(0)+CHR$(24)+CHR$(3)+CHR$(21)+"5"+ 
CHR$(12)+CHR$(22) 
 45 rightscroll$=CHR$(23)+CHR$(1)+ CHR$(26)+CHR$(0)+CHR$(0)+ 
CHR$(2)+CHR$(26)+CHR$(0)+CHR$(24)+CHR$(3)+CHR$(21)+"5"+ 
CHR$(12)+CHR$(22) 
 50  scrollup$=CHR$(16)+CHR$(3)+CHR$(26)+CHR$(0)+CHR$(23)+CHR$(10)+ 
CHR$(21)+"5"+CHR$(22) 
 55   scrolldown$=CHR$(16)+CHR$(3)+CHR$(12)+CHR$(11)+CHR$(22) 
 60   HOME:PRINT CHR$(21);"5"; 
 65   FOR i=0 TO 23:IF LEN(a$(i))>80 THEN PRINT MID$(a$
(i),1,80);:NEXT:ELSE PRINT a$(i):NEXT 
 70   hi=1:vi=24:TEXT 
 75   bnk$="                        ":b$=bnk$:c$=bnk$ 
 80   GET a$:cursor=ASC(a$) 
 85   move=(cursor=8)+2*(cursor=21)+3*(cursor=10)+4*(cursor=11) 
 90   ON move+1 GOSUB 130,100,105,110,120 
 95   GOTO 80 
 100   IF hi>1 THEN index=vi-25:hiindex=hi-1:FOR j=1 TO 
24:SUB$(c$,j,1)=MID$(a$(index+j),hiindex,1):NEXT:PRINT 
rightscroll$;c$;:hi=hi-1:c$=bnk$:TEXT 
 102   RETURN 
 105   IF hi+80<=maxlenght THEN index=vi-25:hiindex=80+hi:FOR j=1 TO 
24:SUB$(b$,j,1)=MID$(a$(index+j),hiindex,1):NEXT:PRINT leftscroll$;b$;: 
hi=hi+1:b$=bnk$:TEXT 
 107   RETURN 
 110   IF vi<lastrecord THEN PRINT scrollup$;MID$(a(vi),hi,80);: 
vi=vi+1:TEXT 
 115   RETURN 
 120   IF vi>24 THEN PRINT scrolldown$;MID$(a$(vi-25),hi,80);: 
vi=vi-1:TEXT 
 125   RETURN 
 130   IF cursor=27 THEN POP:GOTO 200:ELSE:RETURN 
 200   TEXT:PRINT CHR$(26);CHR$(0);CHR$(23); 
 210   CLOSE 
 220   END 

Be sure you type it in exactly as written, and be sure that "bnk$" in line 75 
contains exactly 24 spaces between the quote marks.  Then use the first 
program to create a file of junky messages.  If you want, you can change the 
data statements to make up your own messages.  Then use that same file name 
for the second program and use the arrow keys to scroll up, down, left and right 
through the file.  If you have trouble, just wait until next month when we clear 
some of the murky water.


126



Until then, there doesn't seem to be anything else that can console you, so have 
fun with your Apple III!


127



128



Exploring Business Basic, Part XI 
Last article we dug down deep in the "SOS mines" to find a number of useful 
things in the .CONSOLE driver that can make developing interesting 
applications a lot easier and more efficient.  At the end of that article, which you 
should really read before this one if possible, a parting challenge was given in 
the form of a program listing without documentation or explanation.  This time 
we will explore that program, and go even further into uses of the console 
features in constructing business oriented applications programs.


Digging Out 
The mysterious program at the end of last month's article was designed to allow 
you to do four-way scrolling through text files by using a number of console 
features, especially windowing and horizontal scrolling.  Rather than describe 
that previous program, however, here's a new version with even better features 
(and some simplification).   

 1   DIM a$(500),rightscroll$(1),leftscroll$(1) 
 5   INPUT"File name to scroll through: ";a$ 
 10   IF a$="" THEN 200 
 15   OPEN#1,a$ 
 20   maxlenght=0 
 22   INPUT"How many units to fast scroll by? ";zip 

Last article we dug down deep in the "SOS mines" to find a number of useful 
things in the .CONSOLE driver that can make developing interesting 
applications a lot easier and more efficient.  At the end of that article, which you 
should really read before this one if possible, a parting challenge was given in 
the form of a program listing without documentation or explanation.  This time 
we will explore that program, and go even further into uses of the console 
features in constructing business oriented applications programs.


Digging Out 
The mysterious program at the end of last month's article was designed to allow 
you to do four-way scrolling through text files by using a number of console 
features, especially windowing and horizontal scrolling.  Rather than describe 
that previous program, however, here's a new version with even better features 
(and some simplification). The program starts with some initialization lines.  The 
string array "a$" is used to hold the contents of the text file.  Using the disk 
directly is possible, but presents some difficulties which would obscure the real 
intent of the program.  "Rightscroll$" and "leftscroll$" are string arrays which 
contain two versions of the scrolling commands for horizontal scrolling.  One 

129



version will do a column at a time, and the other multiple columns, determined 
by the variable "zip".

 25   ON EOF#1 GOTO 35 
 30   FOR i=0 TO 500:INPUT#1;a$(i):IF LEN(a$(i))>maxlenght THEN 
maxlenght=LEN(a$(i)):NEXT:ELSE:NEXT 
 35   lastrecord=i 

The lines above read in the contents of the file into "a$" and set the values of 
"maxlenght" (used to set the rightmost limit) and "lastrecord" (used to set the 
bottom limit).

 37   sync$=CHR$(22) 
 40 leftscroll$(0)=SYNC$+CHR$(23)+CHR$(256-zip)+ CHR$(26)+CHR$(80-zip)
+CHR$(0)+CHR$(2)+CHR$(26)+CHR$
(zip-1)+CHR$(24)+CHR$(3)+CHR$(21)+"5"+CHR$(12) 
 41 leftscroll$(1)=SYNC +CHR$(23)+CHR$(255)+CHR$(26)+CHR$(79)+ 
CHR$(0)+CHR$(2)+CHR$(26)+CHR$(0)+CHR$(24)+CHR$(3)+CHR$(21)+"5"+CHR$(12) 
 45  rightscroll$(0)=SYNC$+CHR$(23)+CHR$(zip+CHR$(26)+CHR$(0)+ 
CHR$(0)+CHR$(2)+CHR$(26)+CHR(zip-1)+CHR$(24)+CHR$(3)+CHR$(21)+ 
"5"+CHR$(12) 
 46 rightscroll$(1)=SYNC+CHR$(23)+CHR$(1)+CHR$(26)+CHR$(0)+CHR$(0)+ 
CHR$(2)+CHR$(26)+CHR$(0)+CHR$(24)+CHR$(3)+CHR$(21)+"5"+CHR$(12) 
 50 scrollup$=CHR$(16)+CHR$(3)+CHR$(26)+CHR$(0)+CHR$(23)+CHR$(10)+ 
CHR$(21)+"5"+SYNC$ 
 55   scrolldown$=CHR$(16)+CHR$(3)+CHR$(12)+CHR$(11)+SYNC$ 

The lines above set up the scrolling commands to be issued to the console 
driver.  It would be useful to follow along in your Standard Device Drivers manual 
in the section on the .CONSOLE driver, but here goes one example to help you 
through it:


Line 41 defines the character codes necessary to set up scrolling horizontally to 
the left, one character position at a time.  Here's how the character sequence 
works.  First comes the sync character (decimal 22) which is used to start the 
action in step with the screen refresh.  This helps to eliminate flicker.  Next, 
character 23 is the command to horizontally shift the screen. The following 
character (255) determines that the shift is one character position to the left.  
This action leaves the rightmost column on the screen blank, which will later get 
filled with information previously off the screen. To create a place to put this 
data, the next two sets of commands create a window one column wide and 24 
lines high in which to do the writing. Character sequence 26,79,0 addresses the 
cursor to column 79, line 0, and character 2 establishes this position as the 
upper right corner of a "window". Since cursor addressing is done relative to the 
window, the next command sequence (characters 26,0,23) puts the cursor at the 
bottom of this one-column window.  There, printing a character 3 establishes the 
position as the lower right corner of the window.  From now on, this will be the 
only console area which can be written to.  The next two characters (decimal 21 

130



and the literal "5") set up cursor movement options which will allow us to write 
data into this window very rapidly, since the "5" option has the effect of turning 
off scrolling and new-line, while leaving "wrap" and cursor advance intact.  This 
means that if a single string is written into this window, the characters will spill 
down the screen, one per line.  One 24-character string could fill the entire 
window, written with one print statement.  This is much, much faster than 
individually positioning the cursor and then printing the characters one at a time.  
The last character in the string in line 41 (the form-feed character, decimal 12) 
serves to home the cursor to the top left of the window (in this case, column 79, 
line 0) preparing us to print the missing string which will fill the blank space 
created by the horizontal shift.  Notice also that line 40 is nearly identical, except 
that the position of the top left and bottom right of the window are determined 
by the value of "zip".


Scrolling to the right is handled in the same way, by setting up characters in 
"rightscroll".  Check through those characters to make sure you understand 
what is happening.

 60   HOME:PRINT CHR$(21);"5"; 
 65   FOR i=0 TO 23:IF LEN(a$(i))>80 THEN PRINT MID$(a$
(i),1,80);:NEXT:ELSE PRINT a$(i):NEXT 

The two lines above disable vertical scrolling and put the first 24 lines of the text 
file on the screen.  Note that care is taken to put only the first 80 characters of 
each line on the screen, and that by disabling scroll, it is possible to write the 
screen completely full.

 70   hi=1:vi=24:TEXT 
 72   blank24$="                        " 
 73   bnk$="" 
 75   FOR i=1 TO zip:bnk$=bnk$+blank24$:NEXT 

These lines do further initialization.  The variables "hi" and "vi" stand for 
horizontal and vertical indexes, which tell the program where in the text file is the 
lower lefthand corner of the screen.  "Blank24$" and "bnk$" are areas to store 
data to be written rapidly to the screen, for single column scroll and multiple 
column scroll respectively.  


 80   GET a$:cursor=ASC(a$)


 85  move=(cursor=8)+2*(cursor=21)+3*(cursor=10)+4*(cursor=11)+5* 
(cursor=136)+6*(cursor=149)

 88   b$=blank24$:t=1 
 90   ON move+1 GOSUB 130,100,105,110,120,135,140 
 95   TEXT:GOTO 80 

The section above represents the major loop of the program.  Here the cursor 
commands are accepted in line 80, and decoded into a command number in line 
85.  Be sure you understand how line 85 creates values using the logical 

131



expressions.  This is really handy (Pascal users have something similar in the 
CASE statement).  Once the "move" variable is calculated, then an ON ... 
GOSUB statement is used to go to the appropriate subroutine.  Note that values 
1,2,3,4 of "move" correspond with left, right, down and up on the cursor keys. 
Values 5 and 6 represent the left and right arrow keys with the "open-Apple" key 
pressed.  Remember that "open-Apple" adds 128 to the ASCII value of the key.  
This trick is going to be used to implement the "zip" mode we defined above, 
just watch!

 100   IF hi>t THEN index=vi-25:hiindex=hi-t:FOR j=1 TO 
24:SUB$(b$,t*j-t+1,t)=MID$(a$(index+j),hiindex,t):NEXT:hi=hi-t:PRINT 
rightscroll$((t=1));b$; 
 102   RETURN 
 105   IF hi+80<=maxlenght THEN index=vi-25:hiindex=80+hi:FOR j=1 TO 
24:SUB$(b$,t*j-t+1,t)=MID$(a$(index+j),hiindex,t):NEXT:hi=hi+t:PRINT 
leftscroll$((t=1));b$; 
 107   RETURN 

Here's where things get a bit sticky.  Remember we said that the technique for 
scrolling was to use the console horizontal shift and then fill in the empty space 
with the appropriate characters from the file.  Here then are the routines which 
do the horizontal.  Line 100 implements the left-arrow function by first checking 
to see if the horizontal index ("hi") is greater than the left shift ("t") required.  If 
everything is ok, then "index" is set to the top of the 24 lines of text to be 
scrolled, and the new left edge is calculated and assigned to "hiindex".  Then a 
loop in this same line fills "b$" with the appropriate contents of "a$", the array 
containing the file contents.  The SUB$ function is used to increase the 
performance of this loop, by directly substituting characters in an existing string.  
With this complete, the horizontal index is adjusted by the width of the scroll, 
and then a print statement directs the special characters required to do the 
horizontal shift.  Note that another logical expression (t=1) is used to pick the 
appropriate string from the two defined above.  Immediately after the scrollstring 
is printed, the "b$" string is printed, which spills down the vertical window the 
characters previously extracted from the text array.  By using this technique, it is 
possible to scroll so fast as to not appear to actually be writing characters on 
the screen.  The only slow part of this routine, in fact, is in the loop which 
creates the string "b$" to be written.


The scroll routine in line 105 is similar, except for the fact that it must first check 
to be sure that scrolling doesn't occur past the end of the longest line 
(previously calculated as "maxlenght").


The routines above may not become clear with out pencil and paper and some 
diagrams, and appologies are offered for the obscure way that all the statements 
are crammed onto one line.  However, the consequence of breaking everything 
out neatly was considerably worse performance, and besides, after all these 
articles, you can probably make sense out of anything.


132



 110   IF vi<lastrecord THEN PRINT scrollup$;MID$(a$(vi),hi,80);:vi=vi+1 
 115   RETURN 
 120   IF vi>24 THEN PRINT scrolldown$;MID$(a$(vi-25),hi,80);:vi=vi-1 
 125   RETURN 

Lines 110 and 120 are vertical scrolling, and therefore considerably easier. 


After checking to be sure that scrolling is allowed, the scroll characters are 
printed and the appropriate substring is printed to the screen.  Note that the 
MID$ function makes selecting 80 characters from the string very easy.

 130   IF cursor=27 THEN POP:GOTO 200 
 132   RETURN 

Line 130 handles the case of stray characters, and uses the "Escape" key (ASCII 
27) as the way out of the routine.

 135   IF hi>zip THEN t=zip:b$=bnk$ 
 137   GOSUB 100:RETURN 
 140   IF hi+79+zip<=maxlenght THEN t=zip:b$=bnk$ 
 142   GOSUB 105:RETURN 

Line 135 and 140 handle the case of the "Open-Apple" cursor keys.  Note that if 
the full "zip" increment on cursor movement is not possible, the routine reverts 
to the initial conditions, a horizontal shift of one, set in line 88.


After setting the appropriate value, a gosub is executed to the main scroll 
subroutine.

 200   TEXT:PRINT CHR$(26);CHR$(0);CHR$(23); 
 210   CLOSE 
 220   END 

Last but not least, wrapup and conclusion, positioning the cursor to the bottom 
of the screen and terminating the program.


Well, here's hoping that you have lots of fun playing with this program and the 
various text files you have laying around.  One note of caution, however. This 
program because of the Basic limit of 255 characters maximum in a string, will 
not work with all text files.  Among the examples are many Applewriter III files, 
since it is easy to create enormous amounts of text without benefit of 
intervening carriage return characters.  If you want to test the program with 
Applewriter or similar text files, you'll want to first print them out to disk (instead 
of simply saving them) and then load them into the scroll program.  This works 
equally well with Visicalc print files, as long as the width is not over 255 
characters.


In addition, it you really want a text file to fool with, check back to last month's 
article, where a gibberish-generating program was described which is 
guaranteed to produce interesting things to scroll through.  Some people have 
claimed that it can be used to create this column as well, but lining up that 

133



infinite number of monkeys at an infinite number of Apple IIIs has some details 
still to be worked out.  Oh, well...


Something Useful from All This 
Although scrolling on the screen is useful, and even fun, there are other, far more 
typical uses of the console features that most applications could use. One of the 
most common of these is the use of data entry screens.  Everybody who has 
programmed has wished for easy ways to generate the data entry screens which 
are an inevitable part of any business application.  Most programmers sooner or 
later create or buy some software to make that task easier.  Not to be outdone, 
your fearless Basic columnist offers the following tender morsel:


Nope, not so fast.  First the sales pitch...  The program below is generally 
organized along the following lines: first, a skeleton program which performs a 
general data entry loop of presenting a screen with fields to be filled in and 
second, a series of support subroutines which you could use to initialize a 
screen definition, present the screen, capture the data, and store it in a 
transaction file.  In addition to these functions, the routines are designed in such 
a way as to allow quite a bit of flexibility in adding features of you own design, 
especially edit routines on the data.


Ok, now that the orientation is over, here's the program skeleton:

 1   REM Screen data capture program 
 5   DIM name$(50,1),info%(50,2),input.req%(50) 
 20   GOSUB 1000 
 25   HOME 
 30   PRINT:PRINT"Data Entry for Screen: ";screen$ 
 35   IF writefile THEN PRINT:PRINT"with output stored in the file 
";outfile$ 
 40   VPOS=23:HPOS=1:PRINT"Press any key to begin:"; 
 45   GET a$ 
 100   FOR recordnum=1 TO 32767 
 105     GOSUB 1500:REM display the data entry screen with defaults 
 107     escapecode=0:out.rec$="" 
 110     FOR fieldnum=1 TO items 
 115       GOSUB 2000:REM process input for field=fieldnum   
 120       IF escapecode THEN IF fieldnum=first.input THEN TEXT:GOTO 
600:ELSE:GOTO 105 
 125       REM extra processing for this field goes here 
 200       GOSUB 3000:REM add to output record string 
 205       NEXT fieldnum 
 210     REM code to process the finished record in outrec$ goes here   
 215     TEXT:HOME:PRINT"Record is: ";out.rec$ 
 220     PRINT"Press any key to continue: ";:GET a$ 

134



 500     IF writefile THEN GOSUB 4000 
 505     NEXT recordnum 
 600   TEXT:HOME 
 605   PRINT:PRINT"End of Data Entry for Screen: ";screen$ 
 610   IF writefile THEN PRINT:PRINT"Output is stored in the file 
";outfile$ 
 615   VPOS=23:HPOS=1:PRINT"Press any key to quit:"; 
 620   GET a$ 
 630   CLOSE 
 635   END 

That's a fairly meaty skeleton, but relatively straightforward.  First should come a 
word about the three arrays dimensioned in line 5.  Since this is a general 
purpose data entry routine, all the information about the data to be captured is 
contained in arrays in memory.


"Name$" holds the name of each field to be displayed, along with any default 
values, in the following format:

                0                     1 
       __________________________________________ 
       |                    |                   | 
  0    | Title of the       | Name of the       | 
       | input screen       | output file (if   | 
       |                    | any)              | 
       |____________________|___________________| 
       |                    |                   | 
  1    | Field #1 name      | Field one default | 
       |                    | value (if any)    | 
       | first char = :     |                   | 
       |  means input is    |                   | 
       |  expected          |                   | 
       | first char = (     |                   | 
       |  means take the    |                   | 
       |  default (no disp) |                   | 
       | otherwise, display |                   | 
       |  as is             |                   | 
       |____________________|___________________| 
       |                    |                   | 
  2    | Same as above      |                   | 
       |                    |                   | 

  etc.


"Info%" is an array which contains information about how the field names and


values are to be displayed, to wit:

135



            0                   1                  2 
       _______________________________________________________ 
      |                |                  |                  | 
  0   | lenght of      |  not used        |  not used        | 
      | output record  |                  |                  | 
      |________________|__________________|__________________| 
      |                |                  |                  | 
  1   | Starting row   |  starting column |  lenght flag     | 
      | for field #1   |  for field #1    |  for field #1    | 
      |                |                  |                  | 
      |                |                  |  if + then value | 
      |                |                  |   is the maximum | 
      |                |                  |   permitted      | 
      |                |                  |                  | 
      |                |                  |  if 0 then the   | 
      |                |                  |   field has no   | 
      |                |                  |   maximum value  | 
      |                |                  |                  | 
      |                |                  |  if - then value | 
      |                |                  |   is required    | 
      |                |                  |   field lenght   | 
      |________________|__________________|__________________| 
      |                |                  |                  | 
  2   | more of the    |  likewise        | onward, ever     | 
      | same for field |                  | upward           | 
      | number 2       |                  |                  | 
      |                |                  |                  | 

etc.


The last array, "input.req%", is considerably simpler.  It is built during 
initalization, and contains 1 if the field requires input, 0 if no input (titles, etc.) 
and a -1 if the field consists of a default value only.


Next the program performs a GOSUB to an initialization routine at line 1000. 
This routine, in addition to filling the three arrays mentioned above, also sets a 
number of constants and opens the data logging file, if indicated.  The routine 
below uses initialization from DATA statements, but, as indicated, a "real" 
program would use files to contain the screen definitions.

 1000   REM initialize tables (could be done from a file) 
 1005   first.input=0 
 1007   READ items 
 1010   FOR i=0 TO items 
 1015     READ name$(i,0),name$(i,1) 

136



 1017     IF MID$(name$(i,0),1,1)=":" THEN 
input.req%(i)=1:first.input=i*(first.input=0)+first.input 
 1018     IF MID$(name$(i,0),1,1)="(" THEN input.req%(i)=-1 
 1020     FOR j=0 TO 2:READ info%(i,j):NEXT j 
 1025     NEXT i 
 1030   screen$=name$(0,0):outfile$=name$(0,1) 
 1035   outlen=info%(0,0) 
 1040   IF outfile$="" THEN writefile=0:GOTO 1055:ELSE:writefile=1 
 1045   OPEN#2,outfile$,outlen 
 1055   set.edit$=CHR$(21)+"0" 
 1060   set.normal$=CHR$(21)+"1" 
 1062   REM blank$ below contains 80 space characters 
 1065   blank$="                                                  " 
 1095   RETURN 

Of passing interest in the routine above is the use in line 1017 of a logical 
expression to put the index of the first field requiring input in the variable 
"first.input".  This could have been done nearly as easily with an IF statement, 
but there's a special on logic this week that seemed too good to pass up.  
"First.input" itself is used to determine when pressing "escape" should mean 
stop inputting, as opposed to just starting the current screen over.


Of more than passing interest is looking as a sample set of screen definitions 
which this program might process.  Consider the following DATA statements as 
an example:

 1700   DATA 7 
 1705   DATA "My First Screen",""   
 1707   DATA 117,0,0 
 1710   DATA "Name and Address Entry","" 
 1715   DATA 1,30,0 
 1720   DATA ":First Name: ","" 
 1730   DATA 3,1,15 
 1735   DATA ":Last Name: ","" 
 1740   DATA 3,40,20 
 1745   DATA "Address (free form)","" 
 1750   DATA 5,1,0 
 1755   DATA ":","" 
 1760   DATA 6,1,0 
 1765   DATA ":State: ","CA" 
 1770   DATA 8,1,-2 
 1775   DATA "(","FY1982" 
 1780   DATA 0,0,0 

The definition starts with the number of screen items (both displayable and not) 
and the next two lines are the general screen definition.  Next comes a sample 

137



screen comment ("Name and Address Entry") which line 1715 tells us will be 
positioned on row 1, beginning at column 30.  The next field requires input (the 
leading ":" indicates that) and has no default value, and lives on row 3 column 1.  
Furthermore, it has a maximum allowed lenght of 15 characters. Line 1745 is 
another comment, this one refering to the field directly under it and defined on 
lines 1755 and 1760.  Since this is a free-form field, with no title (the ":" is its 
only definition) it will extend the entire lenght of the line, a full 80 characters of 
input space.  Line 1765 is an example of a field with a default value, and also 
one (as indicated in line 1770) which has a required lenght of two characters.  
The last example, on line 1775, is a default field which will appear in all output 
records.  This is a useful option for including fields like dates, header data, etc. 
which the user should not be required to type each time, but which may need to 
appear in the output for reference or to meet another program's requirements.


That about wraps up the initalization, leaving us with a set of screen and input 
definitions for a simple data entry screen.  Now let's go back and look at the rest 
of the program main loop, starting with line 25.  Here and through line 45 we 
create a starter screen, which certainly could be more elaborate if wished.  One 
thing that comes to mind is to prompt here for the name of the screen definition 
file instead of hard-coding it as was done in this example.


In any case, line 100 begins the program's main loop for data entry.  The first 
routine called is the subroutine at line 1500 which displays the screen according 
to the definitions.  It looks like this:

 1500   TEXT:HOME 
 1505   FOR field=1 TO items 
 1510     field$=name$(field,0) 
 1515     IF MID$(field$,1,1)=":" THEN 1550 
 1520     IF MID$(field$,1,1)="(" THEN 1600 
 1525     VPOS=info%(field,0):HPOS=info%(field,1) 
 1530     PRINT name$(field,0); 
 1535     GOTO 1600 
 1550     VPOS=info%(field,0):HPOS=info%(field,1) 
 1555     PRINT MID$(field$,2,LEN(field$)-1); 
 1560     IF name$(field,1)="" THEN 1600 
 1565     PRINT name$(field,1); 
 1600     NEXT field 
 1605   RETURN 

If you have followed along in the discussion about field definition, the routine 
above should prove very straight-forward.


The next major task of our main program loop occurs at line 110, where an inner 
loop starts which process input from each field on the screen, one field at a 
time.  This is accomplished in the subroutine at line 2000, and here's where 
things get a trifle tricky:


138



 2000   field=fieldnum 
 2002   value$="" 
 2005   IF input.req%(field)=0 THEN RETURN 
 2006   IF input.req%(field)<0 THEN value$=name$(field,1):RETURN 

These first few lines are fairly obvious.  Using the "input.req%" array, we can 
quickly determine if the field is one requiring no or only default processing.  Note 
that the string "value$" will be used to convey the result of this field's data entry 
process.  Once we determine that actual input must take place, then the real 
work begins, as shown below:

 2008   row=info%(field,0) 
 2010   start.window=info%(field,1)+LEN(name$(field,0))-1 
 2015   field.len=ABS(info%(field,2)) 
 2020   IF field.len<>0 THEN end.window=start.window+field.len-1:GOTO 
2060 
 2025   test=field+1 
 2030   IF test>items OR info%(test,0)>row THEN 
end.window=79:field.len=80-start.window:GOTO 2060 
 2035   IF info%(test,0)=row THEN 
end.window=info%(test,1)-1:field.len=end.window-start.window+1:GOTO 2060 
 2040   test=test+1 
 2045   GOTO 2030 
 2060   WINDOW start.window,row TO end.window,row 

This routine sets up a field for data entry.  Because of the console driver's 
powerful windowing capability, it is possible, once the size of the field is 
determined, to construct a cell on the screen for each data item which must be 
input.  As you can see, this window definition is relatively easy if the field lenght 
is known up front.  Lines 2025 through 2045 are designed to determine the 
actual field length available to a variable length item, by looking ahead at what's 
next on the screen and adjusting accordingly.  Once that is determined, line 
2060 establishes the window in which data entry will take place for that item.  
Next is the printing of any default values, and the display (in inverse) of the field 
available for entry:

 2065   line$=MID$(blank$,1,field.len) 
 2070   default$=name$(field,1):IF default$<>"" THEN 
SUB$(line$,1,LEN(default$))=default$ 
 2075   INVERSE:HOME 
 2080   PRINT line$; 
 2082   PRINT set.edit$; 
 2085   HPOS=1:point=1 

Of note here is the variable "set.edit", which is used to turn off all console 
options, leaving the program totally in control of cursor movement, wrap, scroll, 
etc.  Line 2085 then positions the cursor to the beginning of the field (remember 

139



that this is a window now) and sets up a pointer "point" to the first character of 
the field value ("line$").  Now the fun really begins:

 2100   ON KBD GOTO 2200 
 2105   NORMAL:PRINT MID$(line$,point,1);:INVERSE:FOR j=1 TO 
150:NEXT:PRINTMID$(line$,point,1);:FOR j=1 TO 150:NEXT:GOTO 2105 

This is our old friend the ON KBD loop.  In this case we are using the NORMAL 
and INVERSE options, and the fact that we just turned the console "advance 
after printing" function off, to blink whatever character in "line" string we are 
currently pointing at.  For the purposes of this routine, you can equate "line$" 
and what's seen in the window exactly.  Of course, you hum around in the little 
loop in line 2105 until a key is pressed.  That sends the program off to line 2200:

 2200   OFF KBD 
 2205   IF KBD<32 OR KBD>127 THEN 2270 
 2210   SUB$(line$,point,1)=CHR$(KBD) 
 2215   INVERSE:PRINT MID$(line$,point,1); 
 2220   IF point<field.len THEN point=point+1 
 2250   HPOS=point 
 2255   ON KBD GOTO 2200 
 2260   RETURN 

After checking for control or special function characters in line 2205, the typed 
character is inserted into the "line$" string at the current cursor position, and the 
character is reprinted in inverse to be sure that the ON KBD routine wasn't 
exited in the wrong state.  Assuming there is room in the window, lines 2220 and 
2250 update the pointer and advance the cursor to the new position.  Then lines 
2255 and 2260 clean up and return to the "blink" routine, awaiting another 
keystroke.  But what about those special characters? Wait no longer:

 2270   IF KBD=27 THEN escapecode=1:POP:RETURN 
 2275   IF KBD=8 AND point>1 THEN INVERSE:PRINT 
MID$(line$,point,1);:point=point-1:GOTO 2330 
 2280   IF KBD=21 AND point<field.len THEN INVERSE:PRINT 
MID$(line$,point,1);:point=point+1:GOTO 2330 

These lines check for "escape" and exit back to the calling level (the POP gets 
us out of the ON KBD routine and back to reality).  In addition, lines 2275 and 
2280 process the cursor keys for left and right arrow, first reprinting the current 
character and then resetting the pointer.  

 2300   IF KBD=13 THEN 
value$=MID$(line$,1,point-1):line$=MID$(value$,1,field.len):GOTO 2320 
 2305   IF KBD<>141 AND KBD<>9 THEN 2350 
 2310   value$=line$ 
 2320   NORMAL:HOME:PRINT set.normal$;line$; 
 2325   POP:RETURN 

140



 2330   HPOS=point 
 2350   ON KBD GOTO 2200 
 2355   RETURN 

These lines wrap up the routine once the user is satisfied that the field is 
complete.  There are several options to signal completion.  First, line 2300 
processes the "Return" key, discarding anything to the right of where the return 
key was pressed.  "Value$" is set to what's left, and "line$" is re-defined so that 
the actual data can be displayed in line 2320.  Line 2305 processes the other 
option, full entry of whatever is in the window, no matter where the cursor is.  As 
you can see, this occurs when either "Open-Apple Return" or "Tab" is pressed.  
"Set.normal$" turns advance back on, so that the value can be printed back into 
the window, this time with inverse off, to indicate that data entry is finished in 
that field.


All of that excitement leads us back to the main loop, now at line 120, where the 
result of the field call is analysed.  If "escape" was pressed, a further check is 
made to see if it was pressed during the first input field of the form.  If so, that is 
the indication to terminate input of forms, and the program jumps out of the 
loop.  If "escape" is pressed in any other field, processing starts over at line 105 
with a clean slate.  Assuming the return was normal, with data for the field in 
"value$" then there is an opportunity to do any additional processing required 
and then add "value$" to the accumulating "out.rec$" in the routine at line 3000.  
After all the fields are processed, lines 215 and 220 display it and if the file 
logging option was set originally, the subroutine at line 4000 writes the result in a 
file.  Here are simple examples of what these routines could look like:

 3000   IF LEN(value$) THEN out.rec$=out.rec$+value$ 
 3005   RETURN 

 4000   PRINT#2,recordnum;out.rec$ 
 4010   RETURN 

Obviously, "real" data entry programs will have much more elaborate processing 
and editing functions built in.  This example was only a guide to how you might 
incorporate these techniques into your own programs.


Some things you might want to try in order to improve the program could 
include expanding the "info%" array to contain more information about editing 
(like: is the data alphabetic or numeric? Does it have a fixed decimal place? Can 
it have a null value, or must some non-blank or non-zero value be used?) For 
fixed record layout output (like simulating records on a keypunch machine, 
yuck!) you might want to add fields to define where in the output record the 
value is to be placed (starting byte and lenght, for example).  If you are really 
clever, you can modify the routine to accept multi-line fields.  All these and more 
ideas will probably occur to you as you work with the routine. Remember also, 
there is nothing sacred about any of the beginning of the program either.  The 

141



subroutines could just as easily be used within a completely different 
environment to support a program's screen-handling needs.


One last challenge 
Last article we covered a lot of esoteric goodies in the console driver.  One of 
the least understood, but most powerful capabilities is the "two byte read", 
where you can programmatically get a second byte which among other things 
can indicate whether or not "Enter" or "Return" has been pressed. Normally 
these two different keys both return the same ASCII code, but the data entry 
routines above cry out for that distinction, which we provided in this article by 
using "Tab" and "Open-apple Return".  It's not easy to figure this one out, and 
some substantial re-writing of the field routines may be required, but I'll offer a 
copy of Quickfile III to the earliest postmarked solution.  Send a listing to Softalk 
marked "The Third Basic Solution", and the winning routine will be published as 
soon as possible in these pages.


Keep koding with the kool konsole... 


142



 Exploring Business Basic, Part XII 
In recent months, we've been digging up uses for the various features of the 
console driver.  While last month's four-way scrolling program was valuable,  
and even fun, there are other, far more typical ways that most applications  can 
use the console features One of the most common of these is the use of data 
entry screens. Anyone who has programmed has wished for easy ways to 
generate the data entry screens that are an inevitable part of any busines 
application. Most programmers sooner or later create or buy software to make 
that task easier. Not to be outdone, your fearless Basic columnist offers the 
following tender morsel. 


(Nope, not so fast; first the sales pitch. The program below is generally 
organized along the following lines: first, a skeleton program that performs a 
general data entry loop, presenting a screen with fields to be filled in; and 
second, a series of support subroutines that you can use to initialize a screen 
definition, present the screen, capture the data and store it in a transaction file.  
In addition to these functions, the routines are designed to allow quite a bit of 
flexibility in adding features of your own design, especially edit routines on the 
data.) Okay, now that the orientation is over, here's the program skeleton:

 1   REM Screen Data Capture Program 
 5   DIM name$(50,1),info%(50,2),input.req%(50) 
 20   GOSUB 1000 
 25   HOME 
 30   PRINT:PRINT"Data Entry for Screen: ";screen$ 
 35   IF writefile THEN PRINT:PRINT"with output stored in the file 
";outfile$ 
 40   VPOS=23:HPOS=1:PRINT"Press any key to begin:"; 
 45   GET a$ 
 100   FOR recordnum=1 TO 32767 
 105     GOSUB 1500:REM Display the data entry screen with defaults  
 107     escapecode=0:out.rec$="" 
 110     FOR fieldnum=1 TO items 
 115       GOSUB 2000:REM process input for field=fieldnum 
 120       IF escapecode THEN IF fieldnum=first.input THEN TEXT:GOTO 
           600:ELSE:GOTO 105 
 125       REM Extra processing for this field goes here 
 200       GOSUB 3000:REM add to output record string 
 205       NEXT fieldnum 
 210     REM code to process the finished record in outrec$ goes here 
 215     TEXT:HOME:PRINT"Record is:      ";out.rec$ 
 220     PRINT"Press any key to continue:";:GET a$ 
 500     IF writefile THEN GOSUB 4000 

143



 505     NEXT recordnum 
 600   TEXT:HOME 
 605   PRINT:PRINT"End of Data Entry for Screen: ";screen$ 
 610   IF writefile THEN PRINT:PRINT"Output is stored in the file 
";outfile$ 
 615   VPOS=23:HPOS=1:PRINT"Press any key to quit:"; 
 620   GET a$ 
 630   CLOSE 
 635   END 

That's a fairly meaty skeleton, but relatively straight forward.  First, a word about 
the three arrays dimensioned in line 5.  Since this is a general-purpose data 
entry routine, all the information is contained in arrays in memory. 


Name$ holds the name of each field to be displayed, along with any default 
values, in the format shown in figure 1. Info% is an array that contains 
information about how the field names and values are to be displayed, as shown 
in figure 2. The last array, input.req%, is considerably simpler.  It is built during 
initialization and contains 1 if the field requires input, 0 if no input (titles and so 
on), and a -1 if the field consists of a default value only. 


Next the program performs a gosub to an initialization routine at line 1000.  This 
routine, in addition to filling the three arrays just mentioned, also sets a number 
of constants and opens the data logging file, if indicated. The routine below uses 
initialization from data statements, but, as indicated, a "real" program would use 
files to contain the screen definitions.

 1000   REM initialize tables (could be done from a file) 
 1005   first.input=0 
 1007   READ items 
 1010   FOR i=1 TO items 
 1015     READ name$(i,0),name$(i,1) 
 1017     IF MID$(name$(i,0),1,1)=":" THEN input.req%(i)=i:first.input=i 
 1018     IF MID$(name$(i,0),1,1)="(" THEN input.req%(i)=-1 
 1020     FOR j=0 TO 2:READ info%(i,j):NEXT j 
 1025     NEXT i 
 1030   screen$=name$(0,0):outfile$=name$(0,1) 
 1035   outlen=info%(0,0) 
 1040   IF outfile$="" THEN writefile=0:GOTO 1055:ELSE:writefile=1 
 1045   OPEN#2,outfile$,outlen 
 1055   set.edit$=CHR$(21)+"0" 
 1060   set.normal$=CHR$(21)+"1" 
 1062   REM blank$ below contains 80 space characters 
 1065   blank$="                                                  " 
 1095   RETURN 

144



BARGAIN BASEMENT LOGIC 
Of passing interest in this routine is the use in line 1017 of a logical expression 
to put the index of the first field requiring input in the variable first.input.  This 
could have been done nearly as easily with an IF statement, but there's a special 
on logic this week that seemed too good to pass up.  First.input itself is used to 
determine whether pressing escape should mean stop inputting or just start the 
current screen over. 


Of more than passing interest is a sample set of screen definitions that this 
program might process.  Consider the following data statements as an example:

1700 DATA 7 
1705 DATA "My First Screen","" 
1707 DATA 117,0,0 
1710 DATA "Name and Address Entry","" 
1715 DATA 1,30,0 
1720 DATA ":First Name: ","" 
1730 DATA 3,1,15 
1735 DATA ":Last Name: ","" 
1740 DATA 3,40,20 
1745 DATA "Address (free form)","" 
1750 DATA 5,1,0 
1755 DATA ":","" 
1760 DATA 6,1,0 
1765 DATA ":State: ","CA" 
1770 DATA 8,1,-2 
1775 DATA "(","FY1988" 
1780 DATA 0,0,0 

The definition starts with the number of screen items (both displayable and not) 
and the next two lines are the general screen definition. Next comes a sample 
screen comment ("name and address entry") which line 1715 tells us will be 
positioned on row 1, beginning at column 30.  The next field requires input (the 
leading colon indicates that), has no default value, and lives on row 3, column 1.  
Furthermore, it has a maximum allowed length of fifteen characters.  Line 1745 
is another comment, this this one referring to the field directly under it snd 
defined on lines 1755 and 1760.  Since this is a free-form field with no title (the 
colon is its only definition), it will extend the entire length of the line, a full eighty 
characters of input space.


Line 1765 is an example of a field with a default value, and also one (as 
indicated in line 1770) that has a required lenght of two characters.  The last 
example, on line 1775, is a default field that will appear in all output records.  
This is a useful option for including fields, such as dates or heading data, that 

145



the user should not be required to type each time, but that may need to appear 
in the output for reference or for meeting another program's requirements.


That about wraps up the initialization, leaving us with a set of screen and input 
definitions for a simple data entry screen. Now lets go back and look at the rest 
of the program main loop, starting with line 25.  Here and through line 45 we 
create a starter screen, which could certainly be more elaborate if desired.  For 
instance, you could prompt here for the name of the screen definition file instead 
of hard codeing it as we did in this example. In any case, line 100 begins the 
program's main loop for data entry. The first routine called is the subroutine at 
line 1500, which displays the screen according to the definitions. it looks like 
this:

 1500   TEXT:HOME 
 1505   FOR field=1 TO items 
 1510     field$=name$(field,0) 
 1515     IF MID$(field$,1,1)=":" THEN 1550 
 1520     IF MID$(field$,1,1)="(" THEN 1600 
 1525     VPOS=info%(field,0):HPOS=info%(field,1) 
 1530     PRINT name$(field,0); 
 1535     GOTO 1600 
 1550     VPOS=info%(field,0):HPOS=info%(field,1) 
 1555     PRINT MID$(field$,2,LEN(field$)-1); 
 1560     IF name$(field,1)="" THEN 1600 
 1565     PRINT name$(field,1); 
 1600     NEXT field 
 1605   RETURN 

        If you have followed the discussion about field definition, the routine above 
should prove very straightforward.


        The next major task of our main program loop occurs at line 110, where an 
inner loop starts that processes input from each field on the screen, one  field at 
a time.  This is accomplished in the subroutine at line 2000, and here's where 
things get tricky:

 2000   field=fieldnum 
 2002   value$="" 
 2005   IF input.req%(field)=0 THEN RETURN 
 2006   IF input.req%(field)<0 THEN value$=name$(field,1):RETURN 

ROLL UP YOUR SLEEVES 
        These first few lines are fairly obvious.  Using the input.req% array,we can 
quickly determine if the field is one requiring only default processing or none at 
all.  Note that the string Value$ will be used to convey the result of this field's 

146



data entry process.  Once we determine that actual input must take place, then 
the real work begins, as shown below:

 2008   row=info%(field,0) 
 2010   start.window=info%(field,1)+LEN(name$(field,0))-1 
 2015   field.len=ABS(info%(field,2)) 
 2020   IF field.len<>0 THEN end.window=start.window+field.len-1:GOTO 
2060 
 2021   GOTO 2060 
 2035   IF info%(test,0)=row THEN end.window=info%(test,1)-1 
 2036   field.len=end.window-start.window+1:GOTO 2060 
 2040   test=field+1 
 2045   GOTO 2030 
 2060   WINDOW start.window,row TO end.window,row 

This routine sets up a field for data entry. Because of the console driver's 
powerful windowing capabilty, once the size of the field is determined it is 
possible to construct a cell on the screen for each data item that must be input.  
As you can see, this window definition is relatively easy if the field length is 
known up front.  Lines 2025 through 2045 are designed to determine the actual 
field length available to a variable-length item, by looking ahead at what's next 
on the screen and adjusting accordingly.  Once that is determined, line 2060 
establishes the window in which data entry takes place for that item.  Next is the 
printing of any default values and the display (in inverse) of the field available for 
entry:

 2065   line$=MID$(blank$,1,field.len) 
 2070   default$=name$(field,1):IF default$<>""THEN SUB$(line$,1,LEN 
(default$))=default$ 
 2075   INVERSE:HOME 
 2080   PRINT line$ 
 2082   PRINT set.edit$; 
 2085   HPOS=1:point=1 

Of note here is the variable Set.edit, which is used to turn off all console options, 
leaving the progam totally in control of cursor movement, wrap, scroll and so on.  
Line 2085 then positions the cursor to the beginning of the field (remember that 
this is a window now) and sets up a pointer "point" to the first character of the 
field value (Line$).  Now the fun really begins:

 2100   ON KBD GOTO 2200 
 2105   NORMAL:PRINT MID$(line$,point,1);:INVERSE:FOR j=1 TO 
150:NEXT:PRINT MID$(line$,point,1):FOR j=1 TO 150:NEXT:GOTO 2105 

This is our old friend the on kbd loop.  In this case, we are using the normal and 
inverse options (and the fact that we just turned the console "advance after 
printing" function off) to blink whatever character in Line string we are curently 
pointing at.  For the purposes of this routine, you can equate Line$ with what's 

147



seen in the window exactly.  Of course, you hum around in the little loop in line 
2105 until a key is pressed. That sends the program off to line 2200:

 2200   OFF KBD 
 2205   IF KBD<32 OR KBD>127 THEN 2270 
 2210   SUB$(line$,point,1)=CHR$(KBD) 
 2215   INVERSE:PRINT MID$(line$,point,1); 
 2220   IF point<field.len THEN point=point+1 
 2250   HPOS=point 
 2255   ON KBD GOTO 2200 
 2260   RETURN 

FUNNY CHARACTERS 
After checking for control or special function characters in line 2205, the typed 
character is inserted into the Line$ string at the current cursor position, and the 
character is reprinted in inverse to be sure that the on kbd routine wasn't exited 
in the wrong state.  Assuming that there is room in the the window, lines 2220 
and 2250 update the pointer and advance the cursor to the new position.  Then 
lines 2255 and 2260 clean up and return to the blink routine, awaiting another 
keystroke.  But what about those special characters?  Wait no longer:

 2270   IF KBD=27 THEN escapecode=1:POP:RETURN 
 2275   IF KBD=8 AND point>1 THEN INVERSE:PRINT MID$(line$,point,1);: 
point=point-1:GOTO 2330 
 2280   IF KBD=21 AND point<field.len THEN INVERSE:PRINT MID$
(line$,point,1);:point=point+1:GOTO 2330 

        These lines check for escape and exit back to the calling level (the pop gets 
us out of the on kbd routine and back to reality). In addition, lines 2275 and 2280 
process the cursor keys for left and right arrow, first  reprinting the current 
character and then resetting the pointer.

 2300   IF KBD=13 THEN value$=MID$(line$,1,point-1) 
:line$=MID$(value$,1,field.len):GOTO 2320 
 2305   IF KBD<>141 AND KBD<>9 THEN 2350 
 2310   value$=line$ 
 2320   NORMAL:HOME:PRINT set.normal$;line$; 
 2325   POP:RETURN 
 2330   HPOS=point 
 2350   ON KBD GOTO 2200 
 2355   RETURN 

These lines wrap up the routine once the user is satisfied that the field is 
complete.  There are several options to signal completion.  First, line 2300 
processes the return key, discarding anything to the right of where the return key 
was pressed.  Value$ is set to what's left and Line$ is redefined so that the 
actual data can be displayed in line 2320.  Line 2305 processes the other option, 

148



full entry of whatever is in the window, no matter where the cursor is.  As you 
can see, this occurs when either open-apple return or tab is pressed.  
Set.normal$ turns advance back on, so that the value can be printed back into 
the window, this time with inverse off, to indicate that data entry is finished in 
that field.


WHEW! 
All of that excitement leads us back to the main loop, now at line 120, where the 
result of the field call is analyzed.  If escape was pressed, a further check is 
made to see if it was pressed in the first input field of the form.  If so, that is the 
indication to terminate input of forms, and the program jumps out of the loop.  If 
escape is pressed in any other field, processing starts over at line 105 with a 
clean slate.  If the return was normal, with data for the field in Value$, then there 
is an opportunity to do any additional processing required and then add Value$ 
to the accumulating Out. rec$ in the routine at line 3000. After all the fields are 
processed, line 215 and 220 display it,and if the file logging option was set 
originally, the subroutine at line 4000 writes the result in a file.  Here are simple 
examples of what these routines look like:

3000 IF LEN(value$) THEN out.rec$=out.rec$+value$ 
3005 RETURN 
4000 PRINT#2,recordnum;out.rec$ 
4010 RETURN 

Obviously, "real" data entry programs will have much more elaborate processing 
and editing functions built in.  This example was only a guide to how you might 
incorporate these techniques into your own programs.


TRY THIS ONE 
Some things you might want to try in order to improve the program could 
include expanding the info% array to contain more information about editing. 
(Such as: If the data alphabetic or numeric? Does it have a fixed decimal place? 
Can it have a null value, or must some nonblank or non zero value be used?)  
For fixed record layout output (like simulating records on a keypunch machine-
yuck!) you might want to add fields to define where in the output record the 
value is to be placed (starting byte and length, for example ).  If you are really 
clever, you can modify the routine to accept multiline fields.  Remember, also, 
that there is nothing sacred about the beginning of the program, either.  The 
subroutines could just as easily be used within a completely different 
environment to support your program's screen-handling needs.


149



FINAL LAST CHALLENGE (MAYBE) 
Last month's Last Challenge wasn't.  It actually applies to this month's Third 
Basic, so look back and have fun.


150



Exploring Business Basic - Part XIII 
Last time we plunged as far as anyone seemed to dare into creating special 
screen functions.  As is the usual pace in this column, we will now move swiftly 
from the sublime to the overly intense, and in the process answer last month's 
mystery question, "How can I tell the difference between RETURN and 
ENTER?".  This question, or one at least similar to it, was asked last time when 
we delved into creating a data entry screen builder program. Rather than answer 
the question by inserting that specific capability into the previous program, the 
following is a general purpose keyboard read program which you can modify to 
any number of uses.


Before getting into the program, let's consider some possible solutions and their 
problems.  We have agreed that the only way to tell the difference is to use the 
fact that the ENTER key, along with the rest of the numeric pad and some other 
keys, is a "special" key within the SOS keyboard definition. That means that 
although a normal read to the console returns an ASCII 13 in both cases, a 
"two-byte" read will return a flag in the keyboard status byte that indicates 
whether or not a special key was pressed.  The layout of the two bytes looks like 
this (stolen from Appendix G of the Standard Device Drivers manual):

                         Byte One 

        7      6     5     4     3     2     1     0                       
    ___________________________________________________ 
    | Open  |            ASCII                        | 
    | Apple |       Character Code                    | 
    |_______|_________________________________________| 

                         Byte Two 

   7        6        5        4         3        2        1        0 
_________________________________________________________________________ 
| Special| Kybd On| Closed | Open    | Alpha  | Control| Shift  | Any   | 
|  Key   |        |  Apple |  Apple  |  Lock  |  Key   |  Key   |  Key  | 
|________|________|________|_________|________|________|________|_______| 

Note: "Keyboard On" and "Any Key" will normally be "1" for any keypress, the 
other bits will be "1" only if that particular function is active.


Well, this looks deceptively simple.  We learned in a previous episode that there 
is a control call to the .CONSOLE driver (using REQUEST.INV) which can put the 
keyboard into two byte read mode.  This is device control call number 3.  After 
calling it with a parameter of 128 (hex 80) the console will return two bytes for 
each keypress.  OK!  Now all we have to do is perform the control call and input 

151



from the console, right?  Unfortunately, ordinary reads don't work too well.  They 
keep expecting the line terminator character (normally RETURN) and when two 
bytes keep popping up, INPUT gets confused. Ok, still simple, let's do a GET, 
which doesn't require a terminator character.  Oops again.  GET expects to 
receive only one character, and in fact informs the console of this desire.  The 
console keeps getting two characters each keypress, and for reasons too 
bizarre to discuss here, returns no characters to the GET.  GET, expecting 
always to receive a character as soon as one is typed, bravely returns a null 
string to the user, no matter what was typed.  Interestingly enough, the ASC 
function interprets a null string as having an ASCII value of -1 (You may have to 
try that one to believe it).


Now that all that's clear, lets get back to the original question. How can you do 
it?  The most plausible answer lies in yet another console capability, the little 
known "no-wait read".  We want to read all the characters in the input buffer, 
anytime, without a termination character.  The console control call number 10 
with a parameter of 128 does just that.  With that, lets look at a program to 
monitor the keyboard and print out the two-byte code for whatever is typed.

 5 INVOKE"request.inv" 
 10 HOME 
 15 PRINT"Test two byte reads" 
 20 PRINT:PRINT"Input buffer contains: ":HPOS=0:VPOS= VPOS-2 
 25 OPEN#1,".console" 
 30 hex80$=CHR$(128):hex00$=CHR$(0):clearendvp$=CHR$(29) 
 35 device$=".console" 
 40 PERFORM control(%3,@hex80$)device$ 
 45 PERFORM control(%10,@hex80$)device$ 
 50 ON ERR GOTO 100 
 55 ON KBD GOTO 65 
 60 PRINT"/";:FOR j=1 TO 200:NEXT j:HPOS=HPOS-1:PRINT"\";:FOR j=1 TO 
200:NEXT j:HPOS= HPOS-1:GOTO 60 

Line 5 invokes the REQUEST.INV module, which performs SOS calls.  Then lines 
10 through 35 set up the screen and initialize variables which will be used later.  
Line 40 performs the control call which puts the console into two-byte read 
mode.  Line 45 puts the console into no-wait mode, so that read requests are 
immediately filled with whatever has been typed up to the point of the read.  
Line 50 is VERY IMPORTANT.  It sets up a jump to a "back to normal" routine.  If 
for some reason your program terminates without setting everything back, 
BASIC will be VERY confused, and you will have to reboot. This is because 
BASIC, like everybody else, uses the console driver for input, even to a 
"prompt".


Line 55 starts the interesting stuff.  We could, of course, keep reading the 
console until something showed up (sometimes called "polling" the keyboard). A 

152



better, more efficient way is to use the keyboard interrupt as a trigger to go and 
look at what was typed.  Between keypresses, line 60 keeps something 
interesting going on the screen, to let you know that it's waiting. Obviously, the 
routine at line 60 could be expanded to do useful work (more on that later!).


When a key is pressed, the ON KBD statement in 55 sends the program leaping 
to line 65.  That routine looks like this:

 65 OFF KBD 
 70 INPUT#1;char$ 
 75 PRINT:HPOS=24 
 77 FOR k=1 TO LEN(char$):PRINT" ";MID$(HEX$(ASC(MID(char$,k,1))),3,2);: 
NEXT k 
 79 PRINT clearendvp$:PRINT 
 80 IF char$=CHR$(9)+CHR$(199) THEN 100 
 85 HPOS=0:VPOS= VPOS-3 
 90 ON KBD GOTO 65 
 95 RETURN 

First, we turn off keyboard interrupts, and then perform a file INPUT statement 
to get the accumulated characters.  Using file INPUT (INPUT#) is unusual, since 
it is generally easier to use the value of KBD, the reserved value containing the 
ASCII value of the keypress that triggered ON KBD. However, if you think that a 
two-byte read confuses GET, it really blows KBD's mind.  Note that an ordinary 
INPUT statement with no-wait on only returns the first byte in the buffer (don't 
ask me why!).  Thus we use INPUT#, and since no-wait is turned on, we'll get 
any characters currently in the buffer placed in the variable "char$".


Line  77 scans through the string, and prints out the HEX codes of each 
character there.  By scanning the entire length of the string, we take care of the 
case where rapid typing managed to enter characters while the previous set of 
characters were being processed.  Don't let the somewhat complex print 
statement in line 77 throw you.  It is simply taking each character, converting it 
to its ASCII equivalent, converting that to hexadecimal notation, and then 
extracting the rightmost two Hex digits (since the value is always 255 or less - 
FF in hex).  Line 79 prints the console command to "clear to end of 
viewport" (CHR$(29)).  This insures that if the previous display contained 
multiple characters, the excess ones will be erased when the PRINT occurs.


Line 80 gives us a way out of the program, by testing for a certain two-byte 
combination.  Checking your keyboard chart should prove that the desired 
combination (read as an ASCII 9 followed by an ASCII 199) is a "control-shift 
TAB".  You can change the exit to any combination of keystrokes just by 
substituting the appropriate character codes in line 80.  If the characters don't 
match, the routine resets the display location and returns to the little time-waster 
in line 60.


153



In the event of a match (or an error), line 100 through 125 clean things up and 
terminate the program.  They look like this:

 100 REM return to reality 
 105 PERFORM control(%3,@hex00$)device$ 
 110 PERFORM control(%10,@hex00$)device$ 
 115 PRINT:PRINT 
 120 CLOSE:INVOKE 
 125 END 

Now that you've typed in this little jewel, you can try some interesting things.  So 
far I've discovered ten different variations on the letter "a", and there are bound 
to be more.  For those who think the Apple III only has two function keys, think 
again!  The combinations are practically endless.


When you are tired of trying out all the weird combinations (like Open-Apple, 
Closed-Apple, Control, Shift, Alpha Lock A), then consider the more useful ones.  
RETURN is read as "0D 41" which means carriage return with "keyboard on" 
and "any key" flags set.  ENTER, on the other hand, is read as "0D C1" which 
means carriage return with "keyboard on", "any key" and "special key" flags set.  
Similarly, a "1" on the main keyboard is read as "31 41", while "1" on the 
numeric pad is "31 C1".  That's how programs like "Word Juggler" can use the 
numeric pad as a special function key set.  Another handy example is "control-
H" is a "08 45" while the backarrow key is "08 C1".  This allows a program to 
distinguish between an ASCII backspace, and a cursor backspace. Applewriter 
III uses "control-backarrow" (a "08 C5") for deleting a character and a simple 
backarrow ("08 C1") for cursor movement.  With single byte reads, these two 
different combinations would be indistinguishable.


As usual, this column tells you more than you could possibly want to know 
about almost everything.  In the case of two-byte reads, the result of knowing all 
this stuff is the possibility of developing some really friendly applications which 
use the keypad and other keystroke combinations to really simplify things for the 
user.  An added benefit, and possibly the subject of a full article one of these 
days, it the ability to do useful work within an application while waiting for the 
user to type on the keyboard.  One piece of useful work would be to print out a 
disk file which was previously written by the application.  You could use the 
driver status calls which tell how many characters are left to be printed by a 
printer driver and occasionally print enough to keep the printer busy.  In some 
circles, this is known as "spooling" and is considered really tricky.  With SOS 
and the input routine above, it becomes relatively trivial.  Good luck, and have 
fun!


P.S.: Next month's column is a long treatise on sorting techniques in Basic, 
including some routines that can sort a thousand items in a minute or so. 
Unbelievable?   Watch this space!  Until then, a final puzzle.  What combination 

154



of keys creates the largest value for a two-byte read (considering both bytes as 
one 16 bit unsigned value)?  Answer next time!


155



156



Exploring Business Basic, Part XIV 
Welcome back to Basicland.  Before we plunge waist-deep into today's exciting 
episode, it's time to congratulate Arnold Bailey of New York State for his intrepid 
solution to our challenge on two-byte reads from the console.  For those who 
missed the last two cliff-hangers, we wrapped up the discussion of nifty 
".console" features by challenging you, the studio audience, to come up with a 
routine in Business Basic that allowed a program to tell the difference between 
the "Enter" and "Return" keys.  Last month a solution was furnished in this 
column, but because of publishing lead times, it had to be submitted before the 
challenge itself could be issued (maybe a better name for the column is 
Tommorrowland!)  The published solution relied heavily on the desire to read a 
keystroke at a time and sample each one, simulating the "GET" statement in 
BASIC.  Arnold took advantage of the fact that the console still terminates a 
read on an ASCII 13 (which Return and Enter both generate) and correctly 
identified that an INPUT# statement was required to correctly read both bytes.  
It was an excellent solution, and well documented (embarrassingly well 
documented compared to the abbreviated listings normally foisted upon you in 
this column).  For being first with a valid solution, Arnold wins a copy of 
"Quickfile III" and the thanks of a grateful nation.


Sorting it all out 
One of the key ingredients of most business and scientific programs which 
handle large amounts of data is the ability to arrange that data in an ordered 
sequence.  "Arrange data in an ordered sequence" is, of course, a windy way of 
saying "sorting".  There are as many sort techniques as there are people to think 
them up, but for the purposes of this column and its Christmas (December) 
cousin, we will stick to four or five fundamental methods. Business Basic has 
several nifty features which make sorting more efficient, and the huge memory 
space makes sorting large collections of strings or numbers practical to do in 
memory.  For that reason, "Merging", the flip side of most sort techniques, will 
only be briefly covered in the December issue. For now we'll stick to in-memory 
sorts to illustrate the techniques.


I'm forever showing bubbles 
The most common sorting technique, and the one guaranteed to show up in 
every elementary textbook, is the "bubble" sort.  So named because of the 
technique of taking a value and shuffling (bubbling) it up to its proper place in 
the list, it depends on comparing each value to the one next door, and 
exchanging them if the order is wrong.  If you compare each element with its 
neighbor enough times, eventually the list will be sorted.  For the purposes of 

157



the sample program, and all the rest of the programs in this series, we will 
assume the desire is to sort the lists in "ascending" (lowest to highest) order.  
Let's plunge into the first example to illustrate how this works:

 10   REM sort using bubble technique 
 20   REM   n is number of elements 
 30   REM   sarray is the array to be sorted 
 50   REM 
 100   DIM sarray(1000) 
 110   INPUT"Sort Routine.  Number of elements to generate: ";a$ 
 120   n=CONV(a$):IF n<2 THEN 200 
 130   FOR i=1 TO n:sarray(i)=RND(1):NEXT 
 135   PRINT"Start of Sort" 
 140   GOSUB 1000 
 150   PRINT"Sort complete. First 10 elements are:" 
 160   FOR i=0 TO 10:PRINT sarray(i);" ";:NEXT 
 170   PRINT:PRINT:GOTO 110 
 200   END 
 1000   top=n-1 
 1010   madeswap=0 
 1020   FOR i=1 TO top 
 1030     IF sarray(i)>sarray(i+1) THEN SWAP 
sarray(i),sarray(i+1):madeswap=1 
 1140     NEXT i 
 1050   IF madeswap THEN top=top-1:GOTO 1010 
 1071   RETURN 

This first program sorts a numeric array, rearranging it in memory.  For purposes 
of testing it, lines 110 through 140 ask for the number of elements to sort, load 
"sarray" with random values, and then call the subroutine at line 1000 to perform 
the actual sort.  After returning from the sort, lines 150 through 200 print out the 
first ten elements (just to demonstrate that the data is sorted) and end.  
Remember that this framework is deliberately simple, so we can concentrate on 
the sort technique itself.


Line 1000 establishes the upper limit of our check for correct order and line 
1010 establishes a variable "madeswap" which is a flag we'll use later to 
determine if more sorting needs to be done.  That leads us the the main routine 
in lines 1120 to line 1040.  Line 1030 scans each element and compares it to the 
next higher element.  If the first element is greater than the second, then the 
SWAP statement is used to exchange them, and the "madeswap" flag is set to 
show that an exchange was made.  Then the process repeats with that next 
higher element compared with its next highest companion, until the top is 
reached. Note that's why "top" is set equal to the number of elements minus 
one.  When a complete scan is made, line 1050 checks to see if any swaps were 
made in the last pass.  If there were not, then the array must be in order.  If not, 

158



the array might not be in order, and needs to be processed again until all 
possible swaps have been made.  Notice that line 1050 resets "top", the limit of 
checking, since after each pass the largest number found anywhere in the array 
will be forced to the top of the list (try it out if you don't believe it).  This is 
something that some versions of this routine miss, and it leads to a lot of 
unnecessary scanning.  Notice also that we take advantage of the SWAP 
statement.  Some Basics don't have this statement, and the result is that you 
have to assign one value to a temporary variable, do the reassignments, etc.  
This also costs a lot of time, whereas SWAP is very fast.  As long as things are 
being noted, its probably worth pointing out that this routine could be rewritten 
for descending order by rearranging the sense of the IF statement and having 
the search go from a varying "bottom" to a fixed "top" instead of the other way 
around.  One last comment.  Although this sort technique is the simplest, it is 
also the slowest, except for those situations where the list is very short or almost 
sorted already.  Simple timing tests will convince you that the routine slows 
down non-linearly as the size increases.  "Non-linearly" means it goes from 
"bad" to "awful" without passing through "worse".


Getting the point 
The routine below is another variation on the bubble theme, with one important 
exception.  Sometimes it doesn't make sense to actually rearrange the data, but 
rather only to create a list that describes what the order would be if they were 
physically sorted.  For example, consider the following list (as it might have been 
read from a file):

Record number             Item 

      1                   Henry 
      2                   Bill 
      3                   Gloria 
      4                   Alphonse 
      5                   Gaston 

One way to sort this list is to simply arrange it in the following sequence:

Alphonse, Bill, Gaston, Gloria, Henry 

That's ascending alphabetical order.  However, we could represent that same 
sequence by listing the "record numbers":

  4  2  5  3  1                    

Not only is this second representation more compact, it may actually represent 
less work to rearrange the "record numbers" than the actual data itself.  Such 
numbers are called "pointers", since the value that is listed is just a pointer to 
the actual data location, not the data itself.  If you want to construct the sorted 

159



list of names, it is easy to look them up using the record number (pointer) list.  
Some languages and systems make a great deal out of this pointer concept.  
For now, the suggestion should be to use the technique wherever it makes 
sense from a performance, storage and convenience standpoint.  The example 
below is an adaptation of the first program to incorporate this "pointer sort" 
technique:

 10   REM sort using bubble technique 
 20   REM   N is number of elements 
 30   REM   sarray is the array to be sorted 
 40   REM   parray is the pointers to the sorted array 
 50   REM 
 100   DIM sarray(1000),parray%(1000) 
 110   INPUT"Sort Routine.  Number of elements to generate: ";a$ 
 120   n=CONV(a$):IF n<2 THEN 200 
 130   FOR i=1 TO n:sarray(i)=RND(1):parray%(i)=i:NEXT 
 135   PRINT"Start of Sort" 
 140   GOSUB 1000 
 150   PRINT"Sort complete. First 10 elements are:" 
 160   FOR i=1 TO 10:PRINT sarray(parray%(i));" ";:NEXT 
 170   PRINT:PRINT:GOTO 110 
 200   END 
 1000   top=n-1 
 1010   madeswap=0 
 1020   FOR i=1 TO top 
 1030     IF sarray(parray%(i))>sarray(parray%(i+1)) THEN SWAP parray%
(i),parray%(i+1):madeswap=1 
 1040     NEXT i 
 1050   IF madeswap THEN top=top-1:GOTO 1010 
 1060   RETURN 

Notice that we have introduced a new array in the program at line 100. "Parray" 
contains the pointers to the actual locations in "sarray" which represent the 
sorted order.  Notice in line 130 that "parray" is set initially to the sequence 1, 2, 
3 ..., the same sequence as we find the data in "sarray" initially.  However, since 
the pointer array contains only references to locations in the original array, it can 
be declared an integer array (maximum value 32767) to save space.  Having set 
all the values up, the GOSUB to line 1000 sorts the data, as in the first example, 
except now in line 1030, instead of testing the actual sarray values directly, we 
use parray%(i) and parray%(i+1) as pointers to where the real data is.  Once the 
comparisons are made, the pointers (not the values themselves) are physically 
exchanged.  When the sort is finished, the routine returns to line 150 to print out 
the sorted data.  The PRINT statement in line 160 illustrates how the pointer 
array is used to look up the correct sequence of values, even though they are 
actually scattered around within "sarray".


160



One of the interesting possibilities of this technique is that it is possible to have 
more that one pointer array to a given data array.  In that way, you could have an 
"sarray" which had associated with it a "parrayup" and a "parraydown" pointer 
array, so that listings and searches could be done in either order, depending on 
the program requirements, without resorting.  These are sometimes called 
indexes, and are very useful in many applications.  More typically, pointer arrays 
are used in situations where the original array consists of string values, or fields 
within disk records.  There the economy of storage of an integer array is very 
valuable, and the pointers consist of actual disk record numbers, which are then 
easy to look up in any specified order.   Next time we will consider some sort 
techniques and pointer arrays which are particularly suited to disk lookups.  
These techniques are sometimes generalized under the heading "access 
methods".


A Mild Speed Lift 
All this is fine, but the original warning still is worth considering.  Bubble sorts 
are simple and easy to understand, but they are painfully slow on any 
reasonable amount of data.  The fundamental problem is that the algorithm 
requires lots of comparisons, and even if the comparison indicates that the data 
needs to be moved, a move of one cell at a time is all that is possible. That 
means that for a small value to get from the top to the bottom on an ascending 
sort requires lots of exchanges (one for each value in the array). One quasi-
obvious way to speed this process up is to make comparisons across larger 
distances, and thereby cut down the number of compares and exchanges 
necessary.  A sorting algorithm called the Shell-Metzner sort accomplishes this.  
Usually called the "Shell Sort" (which is appropriate considering its similarity to 
the "shell game" switching technique), it depends on long distance comparisons 
and swaps to speed up the sorting process.  For simplicity, we'll look at the 
Shell sort in standard form, without the additions for pointer sorting.  A typical 
Shell sort routine looks like this:

 10   REM sort using Shell-Metzner technique 
 20   REM   n is number of elements 
 30   REM   sarray is the array to be sorted 
 50   REM 
 100   DIM sarray(1000) 
 110   INPUT"Sort Routine.  Number of elements to generate: ";a$ 
 120   n=CONV(a$):IF n<2 THEN 200 
 130   FOR i=1 TO n:sarray(i)=RND(1):NEXT 
 135   PRINT"Start of Sort" 
 140   GOSUB 1000 
 150   PRINT"Sort complete. First 10 elements are:" 

161



 160   FOR i=1 TO 10:PRINT sarray(i);" ";:NEXT 
 170   PRINT:PRINT:GOTO 110 
 200   END 
 1000   IF n<2 THEN RETURN 
 1010   span=INT(n/2) 
 1030   newspan=n-span 
 1040   FOR i=1 TO newspan 
 1050     temp=i 
 1060     upper=temp+span 
 1070     IF sarray(temp)>sarray(upper) THEN SWAP 
sarray(temp),sarray(upper):temp=temp-span:IF temp>0 THEN 1060 
 1080     NEXT i 
 1090   span=INT(span/2) 
 1100   IF span THEN GOTO 1030:ELSE RETURN 

As you can see, the initial routine from line 10 to 200 is essentially the same as 
in the other routines.  The subroutine in line 1000 implements the Shell 
algorithm, starting with a quick check in line 1000 that there is more than one 
element to be sorted.  Once that is established, line 1010 divides the array into 
halves, and line 1030 established the center point around which swaps will be 
made.  It would be a good idea to create a small array on paper and follow 
through on exactly how this routine works for your own satisfaction.  Briefly, the 
"newspan" variable establishes a pivot point with the loop in lines 1040 through 
1080 facilitating conparisons and swaps between the upper and lower portions 
of this pivot point.  After each swap, the range of search is narrowed by 
decreasing the "temp" value in line 1070, and the process is repeated.  After 
each major pass with a span value, line 1090 cuts the span value in half and 
repeats the process, until the span is one, at which point the array is sorted.  
Line 1100 checks for that happy occurrence, and returns if it is so.


Several things are worthy of note in this routine.  First, the Shell sort will work 
faster on sorted data than unsorted data, and in nearly every unsorted case, will 
out-perform the bubble sort, dramatically so in cases above fifty to one hundred 
values.  Also, this routine can easily be adapted to a pointer sort, using the 
techniques outlined in the second example above.  String arrays can be sorted 
simply by replacing the numeric comparison in line 1070 with a string array 
compare.  The SWAP statement works equally well with string and numeric 
data.


Sort of a new way to sort 
The algorithms above are fairly standard and safe, and will reliably sort any kind 
of data.  Sometimes in application programs we are more fortunate, and can 
have special knowledge of what kind of data we are sorting.  This allows for 
special techniques which are faster than any "general purpose" routine could 

162



be.  Although the Apple III is one of the fastest personal computers around, its 
not exactly a Cray I, so lots of times it pays to be able to pull tricks like the one 
below.  Imagine a situation where there are lots of records to sort, but there are 
only a few unique values among all the records. One classic example is sorting 
address records on the basis of the value of a "State" field.  Obviously, there 
may be thousands of records to sort, but there are only 50 possible states, each 
typically represented as a two character code.  There are many other examples, 
but that is one which is easy to imagine.


The program below generates random string values, and then lets you test the 
practicality of a sort technique based on a concept called an "inverted list". 
Inverted lists are a favorite topic around "access method" and "database" 
experts, but the same principles can apply to sorts.  Basically, an inverted list is 
not an upside down version of a regular list, as you might expect from the title.  
Rather, you can think of it as a list of all the unique values in another list, with 
sublists which contain the record numbers of all the records sharing the same 
field value.  In our example above, if we had the following situation:

      Record number              State 

            1                     CA 
            2                     MD 
            3                     CA 
            4                     NY 
            5                     MO 
            6                     CA 
            7                     MD 

Then the inverted list of this data would look like this:

           Value         Locations 

            CA            1, 3, 6 
            MD            2, 7 
            MO            5 
            NY            4 

The two representations contain the same information, but in a considerably 
different form.  Note also that the inverted list is assembled in ascending 
alphabetical order.  That's not necessary to the example, but once the unique 
values are established, it is generally easy to sort them.  This is especially true if 
the number of unique values is much smaller that the total number of values.  
The program below lets you generate random string arrays, with up to a 
thousand values, and then pick a group of columns on which to sort.  Try it 
initially by sorting only on the first column.  This will guarantee that there are only 
26 unique values (since the routine generates only upper-case letters), no matter 
how many strings you generate.  First, the main routine:


163



 10   DIM  pntr%(1000),startval%(255),endval%(255),spointer%(255), 
sarray%(1000) 
 20   zero$=CHR$(0):zero%=0 
 30   DIM array$(1000),value$(128) 
 40   INPUT"Number of strings to generate: ";a 
 50   INPUT"Number of characters per string: ";b 
 60   FOR i=1 TO a 
 70     FOR j=1 TO b 
 80       array$(i)=array$(i)+CHR$(INT(RND(1)*26)+65) 
 90       NEXT j,i 
 100   FOR i=1 TO a:PRINT array$(i);" ";:NEXT i 
 130   PRINT:PRINT:INPUT"Start and end columns for sort: ";c1,c2 
 132   FOR i=1 TO a:pntr%(i)=zero%:NEXT:FOR i=1 TO 
255:startval%(i)=zero%:endval%(i)=zero%:NEXT 
 133   sortval$="" 
 140   FOR rec%=1 TO a 
 150     item$=MID$(array$(rec%),c1,c2-c1+1) 
 160     GOSUB 2000 
 170     NEXT rec% 
 190   GOSUB 3000 
 196   PRINT"Number of unique values: ";n:PRINT"Ratio of total records 
to unique values: ";a/n 
 197   INPUT"Press return for the sorted list: ";a$ 
 200   FOR i=1 TO a:PRINT array$(sarray%(i));" ";:NEXT i 
 210   PRINT:PRINT:INPUT"Sort the array again? ";a$ 
 220   a$=MID$(a$,1,1):IF a$="Y" OR a$="y" THEN 100 
 230   END 

Lines 10 and 20 set up a lot of values which will be used later, while line 30 sets 
up the main string array "array$" and the array which will contain unique values 
"value$".  After prompting for the number of strings and the size of each string, 
lines 60 through 90 build the string array by randomly creating character strings 
composed of upper-case ASCII characters.  Line 100 prints out the created 
array, and line 130 requests the columns on which to sort. Unless you create 
very few strings, it is best to sort on only one column, since the unique 
combinations possible in sets of more than one column are probably too great 
for the routine to work properly.  Note that in a controlled (non-random) set, like 
the States, this might not be a problem.  In any case, once the columns are 
chosen, line 132 and 133 initialize values and prepare for the main sort loop in 
lines 140 through 170.  Note that for each record (rec%) to be sorted, the 
variable "item$" contains the value extracted from the main record which will 
become the sort key for that record.  The routine at line 2000, which we will 
examine shortly, adds the current value to the list of unique elements if necesary, 
and inserts its record number in the general list.  The subroutine at line 3000 
then orders the unique value list, creates the sorted pointer list in "sarray%" and 

164



returns to lines 196 through 220 to print the list on demand and start the 
process over, if desired.


Lets look now at the routine that creates and adds to the inverted list:

 2000   x=INSTR(sortval$,item$) 
 2010   IF x THEN pntr%(endval%(x))=rec%:endval%(x)=rec%:RETURN 
 2020   x=LEN(sortval$)+2 
 2025   IF x+LEN(item$)>255 THEN PRINT"sortval$ overflow, sort 
aborted":STOP 
 2030   sortval$=sortval$+zero$+item$ 
 2040   startval%(x)=rec% 
 2050   endval%(x)=rec% 
 2060   RETURN 

This routine makes good use of the INSTR function, to search a string called 
"sortval$".  Sortval$ contains all the unique values, separated by the ASCII value 
0.  This means that the unique values can easily be identified, assuming that 
none of the values contain an ASCII 0 themselves.  Once INSTR either finds or 
doesn't find the "item$" value in "sortval$" the rest of the routine is set into 
motion.  In the case that "item$" already exists in "sortval$", line 2010 updates 
the "pntr%" array by putting the current record number into the space reserved 
for the last record number in the list of that unique value. That is, "endval%" is 
an array which remembers the index in "pntr%" of the last occurence of any 
particular unique value.  That means that the next occurence of that value gets 
automatically put into the location in "endval%" that matches the start location 
of the value in "sortval$".  This is another good one to try on paper until you get 
a feel for how it works.  Assuming that the value was found, the routine's work is 
finished for now, and it returns to look at the next value.


If the item was not found in "sortval$", then that means that is is a new unique 
value.  Line 2020 gets the next possible location for storing the new value, and 
line 2025 checks to see if there is room for the value.  You could probably come 
up with something more friendly than the "STOP" statement to solve the 
problem.  In any case, if there is room, line 2030 adds the value to the "sortval$" 
string, with the "zero$" spacer, and 2040 and 2050 establish start and end 
locations for this new value and then return to get the next record.


This process continues until all the records are examined and all unique values 
are added to "sortval$" and their beginning and ending pointers are established 
in the appropriate arrays.  At this point "pntr%" contains a linked list for each 
unique value of "sortval$", with the starting point of the list pointed to by the 
appropriate element of "startval%" and the end point defined by a zero in the 
location pointed to by "endval%".  Now the fun begins.  Having assembled the 
list of pointers to all values, it is necessary to sort the unique values themselves 
into the appropriate order, and then assemble the individual linked lists into a 

165



total sorted list. The routine to break out the unique values and sort them looks 
like this:

 3000   sortval$=MID$(sortval$,2) 
 3002   FOR n=1 TO 255 
 3005     x=INSTR(sortval$,zero$) 
 3010     IF x=0 THEN 3050 
 3015     value$(n)=LEFT$(sortval$,x-1) 
 3020     sortval$=MID$(sortval$,x+1) 
 3025     NEXT n 
 3050   value$(n)=sortval$ 
 3055   last=1 
 3060   FOR i=1 TO n 
 3070     FOR j=last TO 255 
 3080       IF startval%(j)<>0 THEN spointer%(i)=startval%(j):GOTO 3100 
 3090       NEXT j 
 3095     PRINT"ERROR, startval not found":STOP 
 3100     last=j+1 
 3110     NEXT i 
 3120   GOSUB 4000 

Lines 3000 through 3050 scan the "sortval$" array and break out each value into 
a separate element of "value$" for ease of lookup and sorting later.  It relies on 
"zero$" as a delimiter between values in "sortval$".  One note here may help 
understanding.  The whole reason why "sortval$" was used instead of going 
with a string array for the values was because INSTR is an infinitely (nearly) 
faster way of searching for a given string value than a FOR-NEXT loop plowing 
through "value$", and since that operation has to be done for each record, 
speeding up the search was a critical issue.  In any case, once "value$" is built, 
a corresponding list of the start values for each string is built in "spointer%" by 
lines 3055 through 3110.  This leaves us with a list of the actual values, and the 
beginning values of the linked list for each. Now all that remains is to sort the 
values themselves, and rearrange the "spointer%" list to match.  That's done in 
the subroutine at line 4000:

 4000   IF n<2 THEN RETURN 
 4010   span=INT(n/2) 
 4020   newspan=n-span 
 4031   FOR i=1 TO newspan 
 4040     temp=i 
 4050     upper=temp+span 
 4060     IF value$(temp)>value$(upper) THEN SWAP 
value$(temp),value$(upper):SWAP spointer%(temp),spointer%(upper) 
:temp=temp-span:IF temp>0 THEN 4050 
 4070     NEXT i 
 4080   span=INT(span/2) 

166



 4090   IF span THEN GOTO 4020:ELSE:RETURN 

That's right, campers, its our old friend (of a page ago) the Shell sort.  The only 
change is that we are sorting string data, and in addition to swapping the string 
values, we swap the "spointer%" values as well.  The important thing here is 
that even though we may have processed thousands of records, we only have to 
sort the unique values among them.  As long as we have lots more records than 
unique values, this routine will save significant amounts of time.  Anyway, to 
finish up, once the values are sorted, we can assemble the whole list of record 
pointers by following the start values in the "spointer%" array, and loading all 
the elements of the linked lists in the new order. That will finish the subroutine, 
and looks like this:

 3130   k=0 
 3140   FOR i=1 TO n 
 3150     index=spointer%(i) 
 3160     k=k+1:sarray%(k)=index:IF pntr%(index)<>0 THEN 
index=pntr%(index):GOTO 3160 
 3190     NEXT i 
 3200   RETURN 

Notice that each linked list starts with an index in "spointer%" and ends when 
the value in "pntr%" is zero.  By assembling the lists one by one in the sorted 
sequence determined by "spointer%" we guarantee that the whole list is in 
order.


Glancing way back up to the original main program, you can see that line 196 
through 220 can now take the "sarray%" list as a pointer list into the original 
records and print out that list in order.


It's hard to believe that the original "bubble sort" program in the beginning of 
this tome can be so short and so simple and yet take the longest to execute, 
while the last program, which seems so complicated and so long can do certain 
types of sorts at least a hundred times faster.  Many times it's not how much 
code is in the program, but how many times it must be executed which really 
makes the performance difference.  For that reason, in sorting as well as any 
other activity, it really pays to examine your loops and repetitive code, and to 
think of the best algorithms possible.  Remember too, that the last program is 
useful only if there are only a few unique values, and the safest bet in the general 
case is the Shell sort.


Next time we will take up some other interesting sort techniques, including an 
improved Shell sort called the "Quick sort" and a completely different sort called 
the "Binary tree sort".  The Binary Sort, like the inverted list sort discussed in 
this article, can also be the basis for an access method.  In fact, Apple III's 
Record Processing Services package uses a modified version of this algorithm. 

167



Hopefully, we'll get the chance to get into those techniques as well.  Until then, 
don't get "out of sorts"!


168



Exploring Business Basic, Part XV 
Lots of exciting things have happened on the Apple III frontier since last we 
talked, and if any of you haven't heard about the new products Apple 
announced at Comdex, you should really check them out at your dealer's.  One 
other product is worthy of note as well, a new piece of software from Quark 
Engineering (the Word Juggler people).  The package is called "Catalyst", a 
perfect name, since it can control the startup and execution of all your Apple III 
programs from a single command menu.  This means that you can load all your 
application programs and language interpreters onto mass storage devices (like 
Profile!) and once the Catalyst program is booted, going from Applewriter to 
Basic to Visicalc to Senior Analyst to Pascal to System Utilities is as easy as 
hitting a special keystroke and picking the application off the menu.  Yes, even 
protected programs like Visicalc are provided for!  If you haven't seen this 
program yet, zip down to your dealer for a demo or get in touch with Quark, it's 
really something.  One more note: The version of the console driver on the 
Catalyst disk implements several new events and allows the normal "read with 
wait" request to the console to be interuptable.  This means things like 
generalized device spooling and some limited task switching are now possible 
for clever programmers.  Rack up another first for Apple III and SOS!


Sifting through the Sorts 
Last month we started exploring sort techniques, covering the simple but slow 
"bubble" sort, the Shell sort, and a somewhat esoteric sort that was referred to 
as an "inverted list" sort, good for situations where there were a large number of 
items but only a few values.  Although the inverted sort is generally used for 
string data like state codes, sex codes, etc., it is also very useful on numeric 
data where the same principle (lots of items, only a few unique values) applies.  
This month we will look at a faster version of the Shell Sort, called the Quicksort, 
and a new sort technique called the "Binary Tree Sort".  Let's look quickly at the 
Quicksort (heh,heh), and then explore the Binary sort in some detail.


The Big Shuffle 
For simplicity, we'll start with the routine used last time to generate random 
numbers to sort in an array called "sarray".  The actual sort routine will be 
contained in a subroutine.  The main program looks like this: 

 100   DIM sarray(1000),stack(100) 
 110   INPUT"Sort Routine.  Number of elements to generate: ";a$ 
 120   n=CONV(a$):IF n<2 THEN 200 
 130   FOR i=1 TO n:sarray(i)=RND(1):NEXT 

169



 135   PRINT"Start of Sort" 
 140   GOSUB 1000 
 150   PRINT"Sort complete. First 10 elements are:" 
 160   FOR i=1 TO 10:PRINT sarray(i);" ";:NEXT 
 170   PRINT:PRINT:GOTO 110 
 200   END 

As you can see, line 130 generates a set of random values in "sarray" and then a 
GOSUB is performed to sort the array.  As we discussed last time, one way to 
improve the performance of "exchange" type sorts (the name which the bubble, 
shell and quick sorts share) is to make the exchanges cover as much territory as 
possible in one swap.  Quicksort algorithms go this one better by first picking a 
value which is a guess as the the midpoint of the values in the set, and then 
swapping other values based on this hypothetical middle value. Furthermore, 
the initial swaps are performed on the opposite ends of the array.  The quicksort 
gets further speed by successively partitioning the sets of values into smaller 
groups and working on each until it is small enough to be sorted by simple 
swaps.  While this makes for a much more complicated group of instructions, far 
less iterations of the code have to be performed, and thus faster performance is 
possible.  Here's the routine:  

 1000   REM Initialize begin and end points 
 1005   l=1:stack(1)=n+1:m=1 
 1010   j=stack(l):i=m-1 
 1020   IF j-m<3 THEN 1100 
 1030   mid=INT((i+j)/2) 
 1040   i=i+1:IF i=j THEN 1060:ELSE:IF sarray(i)<=sarray(mid) THEN 1040 
 1050   j=j-1:IF i<>j THEN IF sarray(j)<sarray(mid) THEN SWAP sarray(i), 
        sarray(j):GOTO 1040:ELSE:GOTO 1050 
 1060   IF i>=mid THEN i=i-1 
 1070   IF j<>mid THEN SWAP sarray(i),sarray(mid) 
 1080   l=l+1:stack(l)=i:GOTO 1010 
 1090   REM  check for cases of 1 or 2 elements 
 1100   IF j-m<2 THEN 1130 
 1110   IF sarray(m)>=sarray(m+1) THEN SWAP sarray(m),sarray(m+1) 
 1120   REM  Set begin and end points and check for completion 
 1130   m=stack(l)+1:l=l-1:IF l>0 THEN 1010 
 1140   RETURN 

Several things are worthy of note here.  First, it is necessary to use the same 
code to operate on each of the partitions of data which will be sorted. In some 
programming languages, this would be handled with a technique called 
"recursion".  Recursion simply means that a routine can call itself, without limit.  
Basic not only has limits on how many times a GOSUB can be executed without 
a RETURN, it also has the attribute that all variables are global, in other words, 
each occurance of a subroutine will use the same variables over again, 
forgetting their previous state.  For those reasons, and others, the routine above 

170



uses the "stack" array to maintain information about each partition of the array, 
and to work its way through each partitioned set until all are sorted.  Note also 
the extensive use of the SWAP command, to exchange values in the most 
efficient manner possible.


The quicksort algorithm is generally faster than the shell sort, except in those 
circumstances where the data is already sorted, or nearly so.  Shell sorts will 
work through such arrays faster than the quicksort, which takes almost as long 
to arrange sorted data as to arrange data which is in random order.


One last example of quicksort would be appropriate.  The example above used 
the direct sorting of numeric data as an example.  Quicksort can be used just as 
easily to sort string data, or simply create sorted pointers to any type of data 
array.  The example below takes string data from a file and performs a pointer 
sort.  Remember that is is generally more efficient to swap numeric pointers than 
to swap strings.  Voila:

 100   DIM sarray(1000),stack(100),sort$(1000) 
 110   INPUT"Sort Routine.  Filename to sort: ";a$ 
 120   IF a$="" THEN GOTO 200:ELSE:OPEN#1 AS INPUT,a$ 
 125   ON EOF#1 LET sarray(0)=i-1:n=sarray(0):GOTO 140 
 130   PRINT TIME$;"   Start of sort" 
 135   FOR i=1 TO 1000:sarray(i)=i:INPUT#1,i;sort$(i):NEXT 
 140   GOSUB 1000 
 145   PRINT TIME$;"   End of sort" 
 150   INPUT"Sort complete. Do you want to list the sorted records?";a$ 
 160   IF a$<>"Y" AND a$<>"y" THEN 110 
 170   FOR i=1 TO sarray(0):INPUT#1,sarray(i);a$:PRINT a$:NEXT 
 180   GOTO 110 
 200   END 

The main routine has been changed considerably.  "Sort$" has been added as a 
string array holding the values to be sorted.  The string values are to be read 
from a random access text file instead of being generated by the program. In 
addition, line 125 sets up the ON EOF statement which will detect the end of 
data, set the appropriate values, and start the sort.  Note also that the TIME$ 
function is being used.  If you don't have a clock chip, you can time this 
yourself.  One of the advantages of using a file for input is that you can make 
multiple runs under the same conditions to test the efficiency of particular 
sorting algorithms.  Line 135 uses "sarray" as a pointer array to the actual 
position of the "sort$" values.  The subroutine at line 1000 was consequently 
modified to use "sarray" as a pointer array, so that the strings would not have to 
be directly swapped:

 1000   REM Initialize begin and end points 
 1005   l=1:stack(1)=n+1:m=1 
 1010   j=stack(l):i=m-1 

171



 1020   IF j-m<3 THEN 1100 
 1030   mid=INT((i+j)/2) 
 1040   i=i+1:IF i=j THEN 1060:ELSE:IF sort$(sarray(i))<=sort$
(sarray(mid)) THEN 1040 
 1050   j=j-1:IF i<>j THEN IF sort$(sarray(j))<sort$(sarray(mid)) THEN 
SWAP sarray(i),sarray(j):GOTO 1040:ELSE:GOTO 1050 
 1060   IF i>=mid THEN i=i-1 
 1070   IF j<>mid THEN SWAP sarray(i),sarray(mid) 
 1080   l=l+1:stack(l)=i:GOTO 1010 
 1090   REM  check for cases of 1 or 2 elements 
 1100   IF j-m<2 THEN 1130 
 1110   IF sort$(sarray(m))>=sort$(sarray(m+1)) THEN SWAP 
sarray(m),sarray(m+1) 
 1120   REM  Set begin and end points and check for completion 
 1130   m=stack(l)+1:l=l-1:IF l>0 THEN 1010 
 1140   RETURN 

Note the changes is 1040, 1050 and 1110 to have the IF statements test the 
proper element of "sort$" and swap the pointers if necessary.  After the sort is 
complete, the pointer values in "sarray" are used in line 170 to look up the 
records in sorted order.


To effectively use this program as it stands, you need a program which will 
generate text files to be sorted.  The program below will create a file of random 
"junk" which is useful to test the sort routines, and will come in handy later on in 
this article.  It looks like this:

 5   OPEN#1,"JUNKFILE",12 
 6   INPUT"NUMBER OF RECORDS TO CREATE: ";N 
 10   FOR I=1 TO N 
 15     A$="" 
 20     FOR J=1 TO 5 
 30       A$=A$+CHR$(65+INT(6*RND(1))) 
 35       NEXT J 
 38     A$=A$+" " 
 41     FOR K=1 TO 4 
 42       A$=A$+CHR$(48+INT(10*RND(1))) 
 43       NEXT K 
 45     PRINT A$ 
 47     PRINT#1,I;A$ 
 50     NEXT I 
 60   CLOSE 
 70   END 

This routine is designed to create random strings with the following properties: 
10 characters long, the first five characters consisting of random occurrences of 

172



the letters "A" through "F", then a space character followed by a random four 
digit number.  Examples of the records produced look like this:

                         DEACF 2319 
                         ABDDC 4982 
                         FFBBA 1965 

A slightly fancier version would prompt for the name of the file to be created, the 
record lenght, etc., but this will serve nicely for the examples to follow.  
Generating 200 records should be sufficient for testing the sort routines.  Any 
more would take too long without proving anything, and less would make it 
difficult to measure the consequences of changes to the program. For example, 
running 200 records through the Quicksort routine above should finish in about 
40 seconds.


NOTE:  Don't forget about turning the screen off during sorting!  This can be 
done by a CTRL-5 from the keyboard, or by programatically printing an ASCII 14 
to the console.  The Apple III will still write information to the screen, but having 
it turned off speeds up operations by as much as 30 percent.  This can make 
quite a difference when sorting or calculating, especially when you usually don't 
need to see the results until the operation is complete.  This is also a favorite 
trick of people using Visicalc during "recalculates" or "loads".  The console 
driver automatically turns the screen back on when the next input request 
occurs.


Living in a Tree 
Although the Shell and Quicksort algorithms are quite efficient, they share one 
disadvantage which makes them difficult to use in some circumstances. There 
are occasions in processing data when "multi-level" sorts are desired. That is, 
somebody wants an address list arranged alphabetically by zip code. This 
means that the printout will group all people with the same zip code together, 
and list them alphabetically within each zip code group.  To accomplish this 
multi-level sort, you must first sort alphabetically, and then use that order to sort 
everybody by zip code.  This implies that each sort must perserve the physical 
order of the previous sort.  Unfortunately, the very fact which speeds up Shell 
sorts and quick sorts, the swapping of data over long distances, destroys the 
original order of the data, making multi-level sorts impossible to implement.  Our 
old friend, the bubble sort, does preserve order, but is impossibly slow.  There 
are several sort techniques which solve this problem, but the one chosen for this 
article is the "binary tree" sort.  This sort has the added virtue of very rapid 
insertion of additional records, once the existing records are sorted, making it 
also very suitable as an access method.


173



Before getting into the routine itself, an examination of the principles behind a 
binary tree data structure is a worthwhile exercise.


First, let's consider a list of names which we'd like to arrange in order:

        Jim 
        Bill 
        Nancy 
        Fred 
        Sue 
        June 
        George 
        William 
        Martha 
        Frank 

To arrange these names into a binary tree structure, we take the first name on 
the list as our starting point, or root.  For the sake of simplicity, we'll consider 
this to be an upside-down tree, with the root at the top.  To build branches off 
the tree, we take each element of the list, one at a time, and decide whether it 
should be connected on the right or left side of the root. For example:

                                Jim 
                               * 
                              * 
                            Bill 

Since the name "Bill" evaluates as "less than" the name "Jim", it is placed on a 
branch to the left.  The next name, "Nancy" goes on a right-hand branch, since 
it is greater than "Jim".  Following this logic, lets add "Fred", "Sue" and "June".  
The tree now looks like this:

                               Jim 
                              *   * 
                         *             * 
                      Bill             Nancy 
                         *              *  * 
                           *           *     * 
                          Fred       June     Sue   

Reviewing the process quickly, it went something like this: "Fred" was less than 
"Jim", but there is already an entry on the right branch, so that entry ("Bill") was 
examined.  Since "Fred" is greater than "Bill", "Fred" was attached to a right-
hand branch below "Bill".  In the same way, "Sue" is greater than "Jim", so 
"Nancy" is checked, and since "Sue" is still greater than "Nancy", "Sue" is 
placed on a right-hand branch.  "June", however, while being greater than "Jim", 
is less than "Nancy", and therefore goes to the left-hand branch.  Constructing 
the rest of the tree with "George", "William", "Martha" and "Frank" gives a final 
result like this:


174



                               Jim 
                             *     * 
                        *               * 
                    Bill                 Nancy 
                       *                  *  * 
                         *               *     * 
                       Fred            June     Sue 
                       *  *               *       * 
                     *      *               *        * 
                 Frank     George         Martha     William        

While all this seems lovely, and can certainly be accomplished with very few 
comparisons, what does it have to do with sorting?  Good question! In a sense, 
it shares something of the technique used in quicksort, since we have 
partitioned the data into very small groups which have a relationship to each 
other.  It is these interrelationships which permit building a sorted list from this 
structure very quickly.  Two things should be obvious.  No matter what value is 
used as a starting point, clearly the value on the extreme left-hand side of the 
tree is the smallest, and the value on the extreme right-hand side is the largest.  
To assemble the list in ascending order, then, you must first go to the left until 
there are no more branches leading left.  In this tree, that value is "Bill".  That 
becomes the first item in the sorted list.  Next, we go down "Bill"'s right branch, 
to its left-most value. That's "Frank", the next item in the list.  "Fred" is next, 
because it must be greater than "Frank" (since "Frank" was to the left of "Fred") 
and "George" is next, since it is the last item left on the left-hand side of the 
tree.  That takes up to the top of the tree, where "Jim" gets added to the list, 
and the right-hand side is explored for its smallest (left-most) value.  Following 
the branches, "June" is added as the next list item, and then "Martha".  Since 
that branch is exhausted, "Nancy" is next, and then exploring "Nancy"'s other 
branch finds no left hand branches to add.  That finishes the list, with the 
addition of "Sue" and "William".  All that now allows us to say that the sorted 
order is:

          Bill 
          Frank 
          Fred 
          George 
          Jim 
          June 
          Martha 
          Nancy 
          Sue 
          William  

Although this seems like an awful lot of trouble to go to in order to sort a list of 
ten names, you should notice a few things which make this technique powerful.  
First, we are ordering the data as it is initially examined, and once we find a 

175



place for an item, it is never moved again.  Further, if the tree is relatively well 
balanced (more on that later), it doesn't take many comparisons to establish a 
place for the item.  Once the "tree" is build, a sorted list can be obtained easily, 
and without re-examining the item values, since the position in the tree structure 
itself is enough to establish the order.  Furthermore, if we store pointers in the 
tree, instead of the actual items themselves, it is not necessary to move the 
items at all.  To show how this would work, consider the original list of names, 
with their associated pointers:

  1 = Jim 
  2 = Bill 
  3 = Nancy 
  4 = Fred 
  5 = Sue 
  6 = June 
  7 = George 
  8 = William 
  9 = Martha 
 10 = Frank 

We can assemble another list next to this one, which contains all the binary tree 
information, simply by indicating for each item what items are immediately 
below it in the tree.  Using zero to indicate that the particular branch is empty, 
the new list would look like this:

item number  item value   left pointer   right pointer       

    1          Jim             2               3 
    2          Bill            0               4 
    3          Nancy           6               5 
    4          Fred           10               7 
    5          Sue             0               8 
    6          June            0               9 
    7          George          0               0 
    8          William         0               0 
    9          Martha          0               0 
   10          Frank           0               0               

Graduation from B-tree University 
The long-winded explanation above was designed to make you so ready to 
examine this month's program that your fingers itched to type it in.  Wait no 
longer:

  5   REM File sort based on Binary Tree algorithm 
 10   DIM parray%(1000),sortpointl%(1000),sortpointr%(1000) 
 20   DIM slist%(1000),sort$(1000),stack%(200) 

176



 25   z=0:o1=1:o2=2 

These lines do the initialization.  Note especially the "sortpointl%" and 
"sortpointr%" arrays.  These will hold the left and right pointers described 
above.  "Parray%" will hold the sorted list of pointers, and "slist%" holds the 
initial list of pointers as read from the file.  "Sort$", as you might expect, holds 
the sort keys to be examined, and "stack%" holds temporary pointers used in 
assembling the b-tree structure into a sorted item list. Next comes the user input 
and setup section:

 30   HOME:PRINT"Prepare a sorted list" 
 40   PRINT:INPUT"Name of file to sort: ";a$ 
 45   IF a$="" THEN 400 
 50   IF LEN(a$)>11 THEN PRINT"Filenames must have a maximum of 11 
characters":GOTO 40 
 55   OPEN#1 AS INPUT,a$ 
 60   PRINT:INPUT"Choose the beginning and ending columns to sort on: 
";b,e 
 65   IF b<1 OR e<b THEN PRINT:PRINT"Invalid choice, try 
again";bell$:GOTO 60 
 70   ln=e-b+1 
 75   OPEN#2,a$+".key" 
 80   READ#2,0:IF TYP(2)<>2 THEN 90 
 85   INPUT"Do you wish to sort using the existing sorted order? ";a$ 
 90   a$=MID$(a$,1,1) 
 95   IF a$<>"y" AND a$<>"Y" THEN slist%(0)=1000:FOR i=1 TO 1000:slist%
(i)=i:NEXT:ELSE:READ#2;slist%(0):FOR i=1 TO slist%(0):READ#o2;slist%
(i):NEXT 

Notice that the section above has a couple of interesting features.  The limitation 
of 11 characters in the filename allows the creation of a "key" file which stores 
the current sorted list.  This, together with the feature which allows sorting on a 
subset of the whole record, permits multi-level sorting to be done.  Line 75 
opens this file, and line 80 checks to see if there is valid data there.  Line 95 then 
initializes the pointer array "slist%" depending on whether the sequence to be 
used is serial from the main file, or from the previously sorted list.


Next, let's look at the rest of the main routine:

 130   PRINT TIME$ 
 150   GOSUB 500:REM build the B-tree 
 270   PRINT:PRINT 
 275   PRINT TIME$ 
 300   GOSUB 800:REM create the sorted list 
 340   PRINT:PRINT"Storing sorted list" 
 350   WRITE#2,0;parray%(0) 
 360   FOR i=1 TO parray%(0):WRITE#o2;parray%(i):NEXT 
 370   PRINT"Sorted list stored." 

177



 375   INPUT"Print sorted records? ";a$:IF a$<>"y" AND a$<>"Y" THEN 40 
 380   FOR i=1 TO slist%(0):INPUT#o1,parray%(i);a$:PRINT a$:NEXT:GOTO 40 
 400   PRINT:PRINT"End of sort program." 
 410   CLOSE:END 

As you can see, the main operations of the program are handled in the 
subroutine at line 500 which reads records and constructs the binary tree 
structure, and the subroutine at line 800 which builds the sorted pointers in the 
"parray%" array by decoding the structure in the b-tree. After that, the list of 
sorted pointers is stored in the key file, and the user is optionally allowed to list 
out the records.  Note that although the user may have only chosen to sort on a 
small portion of the record, the routine at line 380 reads and prints the entire 
record.  Next, let's examine the Binary tree build routine:

 490   REM Routine to build the B-tree 
 500   ON EOF#1 LET slist%(0)=rec-1:POP:RETURN 
 510   rec=1:GOSUB 700 
 520   FOR rec=2 TO slist%(0) 
 530     GOSUB 700 
 540     IF sort$(rec)>=sort$(testrec) THEN 570 
 550     IF sortpointl%(testrec) THEN testrec=sortpointl%(testrec):GOTO 
540 
 560     sortpointl%(testrec)=rec:NEXT:RETURN 
 570   IF sortpointr%(testrec) THEN testrec=sortpointr%(testrec):GOTO 
540 
 580   sortpointr%(testrec)=rec:NEXT:RETURN 

 690   REM Read a record and initialize the search 
 700   INPUT#o1,slist%(rec);a$:sort$(rec)=MID$(a$,b,ln):PRINT"."; 
 710   sortpointl%(rec)=z:sortpointr%(rec)=z:testrec=o1 
 720   RETURN 

Notice that a subroutine at line 700 is actually used to read the data and 
construct the sort key.  This is done to simplify changing the program to fit other 
data or file structures.  Line 710 sets the current locations in the pointer arrays 
to zero and sets the initial test record to one, since testing always begins at the 
top of the tree.  Note the use of real variables "z" and "o1" here.  Not only is it 
faster to use variables than integer constants, but since Basic's expression 
evaluator works with real numbers and converts to integers only when doing the 
assignment to the integer variable, it is faster to use real number variables for 
the assignment.  Using "z%" for example, would require Basic to convert "z%" 
to a real ("Float" it) and then convert that quantity back to an integer("Fix" it) for 
assignment.  Now you know.


178



After getting the value into "sort$", lines 540 through 580 scan the binary tree 
structure for the appropriate place for the value.  Note the double use of the 
NEXT statement.  Executing either one will take the next value in the loop, and 
saves executing a GOTO.  Because it is impossible to know which next will be 
executed last, both need to be followed by RETURN statements.  It is a good 
idea to study the action of this routine with the b-tree data example given 
previously, to be sure you follow what is happening.


After the b-tree structure is built, the routine at line 800 decodes it, and builds 
the sorted pointer array "parray%".  That routine looks like this:

 800   parray%(0)=slist%(0) 
 810   recpntr=0:stackpointer=0:rec=1 
 820   IF sortpointl%(rec) THEN stackpointer=stackpointer+o1: 
       stack%(stackpointer)=rec:rec=sortpointl%(rec):GOTO 820 
 830   recpntr=recpntr+o1:parray%(recpntr)=slist%(rec) 
 840   IF sortpointr%(rec) THEN rec=sortpointr%(rec):GOTO 820 
 850   IF stackpointer THEN rec=stack%(stackpointer):stackpointer= 
       stackpointer-o1:GOTO 830 
 860   RETURN 

Notice how this routine duplicates the algorithm we studied earlier.  First, it 
works its way down the left side of the tree, saving records on the stack as it 
goes.  When the left-hand pointers finally run out, that record becomes the first 
entry in the list (line 830) and the right side of that branch is checked (line 840).  
It out of right branches also, the routine exits one level up, takes the top value 
off the stack (line 850), decrements the stackpointer and puts that record in the 
list (back at line 830).  Then the process continues until all values are exhausted 
and the return is taken at line 860.  This one is worth working through too!


To "B-tree" or not to "B-tree" 
Well, that concludes our look this time at binary sort techniques and b-trees. 
Next month we'll look at how to use this technique to create an access method 
which has several advantages over our "hash" algorithm from a previous 
episode.  Its worth noting that variations on the b-tree scheme are the basis for 
sophisticated access methods on large machines.  The Apple III Record 
Processing Services package uses a highly modified version of this technique as 
the basis for its 8-key access method.  I say "highly modified" because the 
routine above, while it is fast and efficient for most data, has a severe problem 
when confronted with data which is already sorted, or nearly sorted. This is 
because the tree works best (needs the fewest compares) when it is relatively 
"balanced", that is, the data is in random order and thus falls to the left and right 
branches relatively equally.  If the data is read in in sorted order, the result is a 
very long linked list, since each value will be greater than the one previous to it, 
and the lists will consist of all right pointers.  There are techniques for 

179



"balancing" b-trees, to solve this problem, but they were left out this time for 
simplicity.  One technique completely outside the usual approaches is to modify 
the routine in line 700 to do pseudo-random reads of the data, perhaps simply 
starting at the middle and alternating left and right until the records are all read.  
Anyway, try some things out and see what you think.  The "junkfile" program will 
allow all the practice using this routine that you can stand.


Until next month, then, tell your friends that you can't leave the house because 
you're too busy climbing trees.  That'll perplex 'em for a while!


180



Exploring Business Basic, Part XVI 

Catching our Breath  
For the last several months we have been exploring in depth the subject of data 
handling.  Topics like menu data entry, access methods, sorting and database 
programs have held sway, and have hopefully included techniques, if not whole 
routines that you can use in creating your own applications.  This is the last 
month for a while that we'll take up data handling topics, because the wonderful 
world of Apple III graphics needs lots more attention than it has been getting on 
these pages.


Since this is the last shot for awhile on data bases, and since last month's 
column promised to show how binary tree data structures could be used for an 
access method, this month's column includes the most ambitious program yet 
(at least in size).  If you have been following along, you will see several old and 
many new techniques used in this example program.  Even though it's a pretty 
long program, only the bare bones of a database program are there, giving you 
plenty of opportunities to add your own wrinkles.


Remembrance of things past 
If you haven't read last month's article, you really should get familiar with it 
before perusing this month's missive.  As a gentle reminder of last time, 
remember that a binary tree structure is organized in such a way that each value 
has associated with it a pointer to values less than the value (a "left" pointer), 
and a pointer to values greater than the value (a "right" pointer). the value.  
Because there is no way to predict the sequence in which values will be added 
to the tree, the individual branches may or may not contain both left and right 
pointers.  For example, consider arranging the following list into a binary tree 
structure:  

          1   Johnson 
          2   Baker 
          3   Phillips 
          4   Jones 
          5   Williams 
          6   Douglas 
          7   Connor 

181



The tree would look like this:

                          Johnson 
                          *     * 
                       *           * 
                   Baker          Phillips 
                      *           *      * 
                        *        *         * 
                      Douglas  Jones    Williams   
                        * 
                      * 
                   Connor 

As a table of pointers, it would look like this:

                           left pointer      right pointer 
          1  Johnson            2                 3 
          2  Baker              0                 6 
          3  Phillips           4                 5 
          4  Jones              0                 0 
          5  Williams           0                 0 
          6  Douglas            7                 0 
          7  Connor             0                 0 

There are several advantages to the Binary tree (usually called B-tree) structure.  
As you can see, it doesn't take many tests to find out where a value goes.  This 
is true even if the tree is very large, as long as it is reasonably well balanced (not 
to many very long branches).  Also, as we saw last time, it is easy to construct a 
sorted list from the B-tree structure, even without reference to the original 
values.  Another advantage is the fact that we can keep as many B-trees around 
as memory will allow.  The "Hash" method that was used some months back to 
make a database had the disadvantage that only one field could be a "key" field.  
Since we can keep multiple B-tree structures around, it is possible to have many 
different keys in the same file.  The B-tree has some problems as an access 
method, however, and we'll cover them as we get into the program.


Bird's eye view of our Tree 
The program below uses two files.  One contains the actual data records, 
implemented as a single string in a random access textfile.  The single string, 
textfile approach was chosen to keep things simple.  You could easily change it 
by modifying the file read and write routines.  Associated with the main file is a 
"key" file, with its name formed by appending ".key" to the end of the main file 
name.  Information about the structure of the database is kept in the key file, 
along with the actual key values and b-tree pointers. At program startup, if the 
file you request doesn't exist, the program will allow you to define it, including 

182



the names of the fields, which fields are to be key values, and where in the 
output record the field is to go. If the keyfile does exist, then all the required 
information is read from it, and the main file is opened for access.


One of the interesting things about the program is that it allows you to specify 
whether keys must be unique or not, and checks when you enter a key value to 
be sure.  The program requires at least one key value to be unique, and uses the 
first such value as the key for deleting records.  Examples of unique keys would 
be Social Security numbers, Employee numbers, etc.  With some programming 
effort you could change this to allow choosing the record to delete from several, 
but the technique shown is simpler and safer.  Other general capabilities 
including getting simple lists based on key or non-key values.  The program 
automatically knows when you want to search on a field which is a key, and 
uses the fast key lookup routine.  For non-key fields, the program scans the 
whole file looking for a match.


One last thing before we get started.  This program as it stands keeps all key 
information in memory.  This makes it fast, but limits the number of records that 
the program can handle.  Fortunately, the Apple III has lots of memory, but even 
the biggest Apple III can run out if you have lots of records and keys.  With a 
little effort, and a trade-off of size vs. performance, part of the key arrays can be 
kept on disk in a random access file.  You should still keep as much of the first 
part of the key arrays in memory as possible, to reduce the number of disk 
accesses.


Now for the program:

 15   DIM item$(99),ib%(99),ie%(99),ik%(99),id%(99) 
 20   DIM dup%(1000) 
 25   z=0:o1=1:o2=2:bell$=CHR$(7)+CHR$(7):b20$="                    " 
 28   blank$=b20$+b20$+b20$+b20$+b20$ 
 29   blank$=blank$+blank$+MID$(blank$,1,55) 
 30   TEXT:HOME:PRINT"Database program with BSAM" 
 40   PRINT:INPUT"Name of file to access: ";a$ 
 45   IF a$="" THEN 400 
 50   IF LEN(a$)>11 THEN PRINT"Filenames must have a maximum of 11 
characters":GOTO 40 
 60   file$=a$ 
 70   GOSUB 1000 
 80   IF errorcode=1 THEN 40 
 85   IF errorcode=2 THEN RUN 

The lines above do some initialization and request the filename for access. 


Then a GOSUB to line 1000 does the file initialization or creation as required.  
Explanations of the arrays declared in lines 15 and 20 will be handled when the 
initialization routine is covered.


183



 90   TEXT:HOME:PRINT"Data Base: ";file$ 
 95   WINDOW 1,3 TO 80,24:HOME 
 100   PRINT:PRINT"Functions:" 
 110   PRINT:PRINT"   1 - Add a Record" 
 120   PRINT"   2 - Delete a Record" 
 130   PRINT"   3 - Find a Record" 
 140   PRINT"   4 - List all Records" 
 200   PRINT:PRINT"       Your choice: "; 
 202   no.error=0 
 205   INPUT"";a$:a=CONV(a$) 
 210   ON a+1 GOSUB 400,2000,3000,5000,8000 
 212   IF no.error THEN 90 
 215   msg$="Choose a value from 1 to 4 or press RETURN to exit":GOSUB 
900:PRINT CHR$(12);:GOTO 100 
 400   TEXT:PRINT:PRINT"End of program." 
 410   GOSUB 1500 
 420   CLOSE:END 

The lines above take care of putting up the main menu, once the file is initialized.  
Note that the list of functions was kept simple.  It is easy to add additional 
routines to the menu by modifying a few lines.  Note also the WINDOW 
statement.  This method will be used extensively to keep header information on 
the screen during times when the display normally scrolls upward.  The GOSUB 
in line 410 (GOSUB 1500) references the routine which saves the changes made 
to the file during a program run.  It too will be covered in more detail later.

 500   FOR key=0 TO num.key-1 
 510     testrec=1 
 540     IF sort$(key,rec)>=sort$(key,testrec) THEN 570 
 550     IF sortpl%(key,testrec) THEN testrec=ABS(sortpl%
(key,testrec)):GOTO 540 
 560     sortpl%(key,testrec)=rec:GOTO 590 
 570     IF sortpr%(key,testrec) THEN testrec=ABS(sortpr%
(key,testrec)):GOTO 540 
 580     sortpr%(key,testrec)=rec 
 590     NEXT 
 595   RETURN 

For those of you who were tuned in last time, the routine in lines 500-595 above 
should look familiar.  Last month's version handled only one key, while this one 
uses a two-dimensional sort value array and pointer arrays to update multiple 
keys.  Another change is interesting, for you sharp-eyed routine-watchers.  Note 
that line 550 and 570 assign the Absolute Value (ABS) of the pointer array to the 
variable 'testrec'.  This precaution was taken because, as we shall see later, a 
negative pointer is used as an indication that the given value has been deleted, 
even though the value itself must remain to complete the b-tree.    


184



 600   testrec=1:dup=0:errorcode=0:del.rec=(sortpl%(key,0)<0) 
 610   IF key$>=sort$(key,testrec) THEN 630 
 615   del.rec=(sortpl%(key,testrec)<0) 
 620   IF sortpl%(key,testrec) THEN testrec=ABS(sortpl%
(key,testrec)):GOTO 610 
 625   RETURN 
 630   IF key$<>sort$(key,testrec) THEN 640 
 635   IF NOT del.rec THEN dup=dup+1:dup%(dup)=testrec 
 640   del.rec=(sortpr%(key,testrec)<0) 
 645   IF sortpr%(key,testrec) THEN testrec=ABS(sortpr%
(key,testrec)):GOTO 610 
 650   RETURN 

The routine from 600-650 is a variation on the binary tree search routine in the 
previous example, except that its sole function is to assemble a list of record 
numbers whose key values match the variable "key$".  These are stored in the 
array "dup%".  Note that the variable "del.rec" is used as a flag to ignore a 
record if its pointer is negative (deleted).  This routine is used by the "Find" 
function to scan the file for matching key values and return all records which 
apply.

 700   testrec=1:errorcode=0:del.rec=(sortpl%(key,0)<0) 
 710   IF key$>=sort$(key,testrec) THEN 730 
 715   del.rec=(sortpl%(key,testrec)<0) 
 720   IF sortpl%(key,testrec) THEN testrec=ABS(sortpl%
(key,testrec)):GOTO 710: ELSE:RETURN 
 730   IF key$=sort$(key,testrec) AND NOT del.rec THEN 
errorcode=1:RETURN 
 735   del.rec=(sortpr%(key,testrec)<0) 
 740   IF sortpr%(key,testrec) THEN testrec=ABS(sortpr%
(key,testrec)):GOTO 710: ELSE:RETURN 

The routine above (700-740) is the most specialized of all.  Its sole function in life 
is to check to see if a given key value has a duplicate value already in the file.  It 
is used to insure that the keys marked "no duplicates" are in fact, unique.

 900   VPOS=21:HPOS=1:INVERSE:PRINT msg$;CHR$(31);:IF beep THEN PRINT 
bell$; 
 905   VPOS=line:HPOS=col:NORMAL:RETURN 
 910   VPOS=21:HPOS=1:NORMAL:PRINT CHR$(31);:VPOS=line:HPOS=col:RETURN 
 930   FOR i=1 TO delay*60:PRINT CHR$(22);:NEXT:RETURN 

The routines in lines 900-930 above are utilities used throughout the program.


Line 900-905 puts a message in the message window and restores the cursor. 


Line 910 clears the message window, and 930 creates a delay of "delay" 
seconds, by printing screen sync characters (1/60 of a second each).  
Remember that delays on the Apple III should be programmed like this, rather 

185



than with FOR-NEXT loops.  Because the Apple III is interrupt driven, it is really 
impossible to tell exactly how long a given routine will take to execute.  


Now for the fun stuff:

 1000   REM initialize file 
 1005   errorcode=0 
 1010   OPEN#2,file$+".key" 
 1020   READ#2,0:IF TYP(2)<>1 THEN 1100 
 1030  READ#2;num.rec,num.key,pl.rec,pr.rec,sort.rec,num.item, 
item.rec,rec.len,tot.rec 
 1032   OPEN#1,file$,rec.len 
 1033   DIM sortpl%(num.key-1,1000),sortpr%(num.key-1,1000), sort$
(num.key-1,1000) 
 1035   IF num.rec=0 THEN 1092 
 1037   IF TYP(1)<>8 THEN PRINT"Your file has been damaged.";bell$: 
errorcode=2: IF TYP(1)=0 THEN DELETE file$:RETURN:ELSE:RETURN 
 1040   READ#2,pl.rec 
 1050   FOR i=1 TO num.rec:FOR j=0 TO num.key-1:READ#2;sortpl%
(j,i):NEXT:NEXT 
 1060   READ#2,pr.rec 
 1070   FOR i=1 TO num.rec:FOR j=0 TO num.key-1:READ#2;sortpr%
(j,i):NEXT:NEXT 
 1080   READ#2,sort.rec 
 1090   FOR i=1 TO num.rec:FOR j=0 TO num.key-1:READ#2;sort$
(j,i):NEXT:NEXT 
 1092   READ#2,item.rec 
 1095   FOR i=1 TO num.item:READ#2;item$(i),ib%(i),ie%(i),ik%(i),id%
(i):NEXT 
 1097   RETURN 

You guessed it, the initialization routine!  The first step is to open the "key" file, 
formed by adding ".key" to the file name in line 1010.  If it exists and contains 
data, then initialization proceeds.  If not (line 1020), then the program jumps to 
line 1100, where the new file is created.  Line 1030 reads a number of important 
variables from the key file.  Most of them are self explanatory.  Variables ending 
in ".rec" point to the beginning record numbers in the key file where the 
associated arrays are to be found.  Thus "pl.rec" is the record number where the 
"sortpl%" array is to be found, "item.rec" points to where the lists of data item 
definitions start.  The exception to this rule is "tot.rec" which is simply the total 
of valid (undeleted) records in the file, different from num.rec, which is the total 
number of physical records.  After reading this in, the main file is opened in 1032 
using the record length read from the key file.  Line 1033 then dimensions the 
appropriate arrays according to the number of keys defined in the key file.  Note 
that this is an extremely powerful capability, not found in many versions of 
BASIC.  The arrays have been arbitrarily defined to be 1000 records long.  If you 

186



have a 128K system and use lots of keys, you may want to reduce this total 
number.  The rest of the routine determines if it is necessary to read in the key 
data, and if so, does it in lines 1050-1095. We'll cover the meaning of the arrays 
in line 1095 below, when the creation routine is covered.

 1100   PRINT"The file ";file$;" is not a database file" 
 1110   INPUT"Do you wish to make it a database file? ";a$ 
 1120   a$=MID$(a$,1,1):IF INSTR("Yy",a$) THEN 1200 
 1140   DELETE file$+".key":errorcode=1:RETURN 

The section above sets up for creation of a new file.  Note the use of INST in line 
1120.  It substitutes for 'IF a$="Y" or a$="y" THEN 1200'.  Another way to write 
line 1120 is :  

 1120  IF INSTR("Yy",MID$(a$,1,1)) THEN 1200 

 1200   HOME:PRINT"Database setup - Record definition:" 
 1210   PRINT:WINDOW 1,3 TO 80,24:HOME 
 1230   FOR i=1 TO 99 
 1235     IF VPOS=22 THEN PRINT:VPOS=21 
 1240     PRINT USING 1245;i;:line= VPOS 
 1245     IMAGE "Item "  ,2#," - Name: " 
 1250     INPUT"";item$(i):IF item$(i)="" THEN 1370 
 1252     HPOS=17:VPOS=line:PRINT MID$(item$(i),1,16);:PRINT CHR$(31); 
 1255     IF LEN(item$(i))>16 THEN PRINT bell$;:HPOS=1:GOTO 1240 
 1260     VPOS=line:HPOS=34 
 1270     INPUT"begin: ";a$ 
 1280     ib%(i)=CONV%(a$) 
 1285     IF ib%(i)<1 THEN PRINT bell$;:GOTO 1260 
 1290     VPOS=line:HPOS=41:PRINT USING"2#";ib%(i); 
 1300     INPUT"  end: ";a$ 
 1310     ie%(i)=CONV%(a$) 
 1315     IF ie%(i)<ib%(i) THEN PRINT bell$;:GOTO 1290 
 1320     VPOS=line:HPOS=50:PRINT USING"2#";ie%(i); 
 1330     INPUT"  Key? ";a$ 
 1340     ik%(i)=(INSTR("Yy",MID$(a$,1,1))>0) 
 1350     VPOS=line:HPOS=59:PRINT MID$("NY",ik%(i)+1,1);:PRINT CHR$(31); 
 1351     IF NOT ik%(i) THEN id%(i)=1:PRINT:GOTO 1360 
 1352     INPUT"  Duplicates? ";a$ 
 1355     id%(i)=(INSTR("Yy",MID$(a$,1,1))>0) 
 1357     VPOS=line:HPOS=74:PRINT MID$("NY",id%(i)+1,1);:PRINT CHR$(31) 
 1360     NEXT i 

The routine above is a rather elaborate input routine which prompts for each 
field name and gets beginning and ending columns, whether the field is to be a 
key, and if it is a key, whether duplicate values are allowed.  Note the extensive 
use of VPOS and HPOS to facilitate editing, and the use of INSTR and MID$ in 

187



lines 1340 thorough 1357 to save time and program size.  As can be seen by 
examination, "item$" holds the individual field names, "ib%" and "ie%" hold the 
beginning and ending field positions (and thus the maximum field size), and 
"ik%" and "id%" hold the flags for key fields and duplicates allowed.  If memory 
size is a problem, these two arrays could be combined with a minimal amount of 
programming effort.

 1365   msg$="Initializing file '"+file$+"'.":GOSUB 900 
 1370   num.item=i-1:num.key=0 
 1375   FOR i=1 TO num.item:IF ie%(i)>rec.len THEN 
rec.len=ie%(i):NEXT:ELSE:NEXT 
 1380   FOR i=1 TO num.item:IF ik%(i) THEN 
num.key=num.key+1:NEXT:ELSE:NEXT 
 1385  num.rec=0:pl.rec=100:pr.rec=200:sort.rec=300:item.rec=10: 
rec.len=rec.len+1 
 1390  WRITE#2,0;num.rec,num.key,pl.rec,pr.rec,sort.rec,num.item, 
item.rec,rec.len,num.rec 
 1395   WRITE#2,300;0:REM establish end of file 
 1400   READ#2,item.rec 
 1410   FOR i=1 TO num.item:WRITE#2;item$(i),ib%(i),ie%(i),ik%(i),id%
(i):NEXT 
 1420   msg$="File '"+file$+"' is initialized":GOSUB 900:delay=2:GOSUB 
930 
 1430   OPEN#1,file$,rec.len 
 1435   DIM sortpl%(num.key-1,1000),sortpr%(num.key-1,1000),sort$
(num.key-1,1000) 
 1440   TEXT:HOME:RETURN 

The lines above take the information from the creation routine and write it to the 
key file, open the main file, and dimension the appropriate arrays for use by the 
program.

 1500   
WRITE#2,0;num.rec,num.key,pl.rec,pr.rec,sort.rec,num.item,item.rec, 
rec.len,tot.rec 
 1510   IF num.rec=0 THEN 1600 
 1520   READ#2,pl.rec 
 1530   FOR i=1 TO num.rec:FOR j=0 TO num.key-1:WRITE#2;sortpl%
(j,i):NEXT:NEXT 
 1540   READ#2,pr.rec 
 1550   FOR i=1 TO num.rec:FOR j=0 TO num.key-1:WRITE#2;sortpr%
(j,i):NEXT:NEXT 
 1560   READ#2,sort.rec 
 1570   FOR i=1 TO num.rec:FOR j=0 TO num.key-1:WRITE#2;sort$
(j,i):NEXT:NEXT 
 1600   PRINT"File '"file$"' updated.  There are ";tot.rec;" records in 
the file." 

188



 1610   RETURN 

Lines 1500 through 1610 do just the opposite, storing away all the current


data about the key file onto the appropriate records.

 2000   TEXT:HOME:PRINT"Add a Record to file '";file$"'." 
 2010   PRINT 
 2012   WINDOW 1,3 TO 80,24:HOME 
 2015   rec=num.rec+1:key=-1:line$=MID$(blank$,1,rec.len-1) 
 2020   FOR i=1 TO num.item 
 2022     beep=1:IF ik%(i) THEN key=key+1 
 2025     field.len=ie%(i)-ib%(i)+1 
 2035     IF VPOS>20 THEN PRINT:PRINT:VPOS=20 
 2040     PRINT"("i") ";item$(i)": "; 
 2045     line= VPOS:col= HPOS 
 2050     INPUT"";a$ 
 2060     IF a$="" AND i=1 THEN 2200 
 2070     IF LEN(a$)>field.len THEN msg$="Entry is too long":GOSUB 
900:GOTO 2050 
 2075     GOSUB 910 
 2080     IF NOT(ik%(i) AND NOT id%(i)) THEN 2100 
 2085     key$=a$:GOSUB 700 
 2090     IF errorcode THEN msg$="Entry must be a unique value in this 
field":GOSUB 900:GOTO 2050 
 2095     GOSUB 910 
 2100     SUB$(line$,ib%(i),field.len)=a$ 
 2110     IF ik%(i) THEN sort$(key,rec)=a$ 
 2115     PRINT 
 2120     NEXT i 
 2130   msg$="Record being added.":beep=0:GOSUB 900 
 2140   PRINT#1,rec;line$ 
 2150   IF rec>1 THEN GOSUB 500 
 2155   num.rec=rec 
 2157   tot.rec=tot.rec+1 
 2160   GOSUB 910 
 2165   PRINT:PRINT 
 2170   GOTO 2015 
 2200   IF VPOS>20 THEN PRINT:PRINT:VPOS=20 
 2202   PRINT"End of Add.  ";tot.rec" records now in file '"file$"'." 
 2205   msg$="Press return to continue: ":GOSUB 900:GET a$ 
 2210   no.error=1:TEXT:RETURN 

The Add routine above is long, but relatively straightforward.  Notice that lines 
2080-2095 check for unique values it required by using the routine at line 700.  
Notice also how the record is built up by using SUB$ to insert fields into the 

189



"line$" string.  After all fields are entered, a GOSUB to line 500 is performed to 
add all the keys to the pointer arrays.

 3000   TEXT:HOME:PRINT"Delete a Record in file '"file$"'." 
 3010   PRINT 
 3020   WINDOW 1,3 TO 80,24 
 3025   unique=0 
 3030   FOR i=1 TO num.item:IF NOT ik%(i) OR(ik%(i) AND id%(i)) THEN 
NEXT:ELSE:unique=i 
 3035   HOME 
 3040   PRINT:PRINT"Records are deleted by using the '"item$(unique)"' 
field" 
 3050   PRINT:PRINT item$(unique)": "; 
 3060   INPUT"";a$ 
 3070   field.num=unique:key=-1:FOR i=1 TO field.num:IF ik%(i) THEN 
key=key+1:NEXT:ELSE:NEXT 
 3080   IF a$="" THEN 3400 

 3090   HOME 
 3100   msg$="Searching for "+item$(field.num)+": "+a$:line= VPOS:col= 
HPOS:GOSUB 900 
 3105   key$=a$ 
 3110   GOSUB 600 
 3115   IF NOT dup THEN 3550 
 3120   rec=dup%(1) 
 3125   GOSUB 5620 
 3130   IF VPOS>17 THEN PRINT:PRINT:PRINT:PRINT:PRINT:VPOS=17 
 3135   PRINT:PRINT"The record is:" 
 3140   GOSUB 5650 
 3142   IF VPOS>19 THEN PRINT:PRINT:PRINT:VPOS=19 
 3145   PRINT:PRINT"Delete? "; 
 3150   msg$="Type 'Y' to Delete, any other key to Retain:":line= 
VPOS:col=HPOS:GOSUB 900 
 3155   INPUT"";a$ 
 3160   IF NOT INSTR("Yy",MID$(a$,1,1)) THEN 3300 
 3165   msg$="Deleting the Record":line= VPOS:col= HPOS:GOSUB 900 

 3170   IF rec=1 THEN FOR i=0 TO num.key-1:sortpl%(i,0)=-1: sortpr%
(i,0)=-1:NEXT :GOTO 3200 
 3175   FOR i=0 TO num.key-1:FOR j=1 TO num.rec 
 3180       IF sortpl%(i,j)=rec THEN sortpl%(i,j)=-rec:GOTO 3195 
 3185       IF sortpr%(i,j)=rec THEN sortpr%(i,j)=-rec:GOTO 3195 
 3190       NEXT j 
 3195     NEXT i 
 3200   GOSUB 3500 

190



 3205   msg$="Record Deleted":line= VPOS:col= HPOS:GOSUB 900 
 3210   delay=2:GOSUB 930 
 3215   tot.rec=tot.rec-1 
 3220   GOTO 3000 

 3300   msg$="Record not Deleted.":line= VPOS:col= HPOS:GOSUB 900 
 3310   delay=2:GOSUB 930 
 3320   GOTO 3000 

 3400   no.error=1:RETURN 

 3500   PRINT#1,rec;" " 
 3510   RETURN 

 3550   msg$="Record not found":line= VPOS:col= HPOS:GOSUB 900 
 3560   delay=2:GOSUB 930 
 3570   GOTO 3000 

"Delete" above, is much tougher technically.  Because the B-tree depends on an 
ordered structure of key values, its not possible to simply blank out a value in 
"sort$" and zero out the pointers in the arrays.  The full solution is more complex 
than is worth delving into here (read about "balanced b-trees" and "B-splat" 
trees in references).  To keep things simple, we just negate the pointers and go 
on.  This is done in 3170-3220.

 5000   TEXT:HOME:PRINT"Find Records in file '";file$;"'" 
 5010   PRINT 
 5020   WINDOW 1,3 TO 80,24 
 5025   unique=0 
 5030   FOR i=1 TO num.item:IF NOT ik%(i) OR(ik%(i) AND id%(i)) THEN 
NEXT:ELSE:unique=i 
 5035   HOME 
 5040   PRINT:PRINT"Functions:" 
 5050   PRINT:PRINT"   1 - Search on a single field value" 
 5070   IF unique THEN PRINT"   2 - Find a record using the '"item$
(unique)"'field" 
 5080   PRINT:PRINT"       Your Selection:"; 
 5090   INPUT"";a$ 
 5110   a=CONV(a$) 
 5120   ON a+1 GOTO 5900,5200,5500 
 5130   msg="Choose a number from 1 to 2 or press RETURN to exit":GOSUB 
900:PRINT CHR$(12);:GOTO 5040 

The lines above are the start of the rather long "Find" routine, which gives the 
option of searching on an individual field or using the first unique field, the same 
one used by delete.  This second option was put in for convenience, since the 

191



same thing can be accomplished with option 1 and a little more effort.  An 
interesting option that could be added would be to search on combinations of 
fields.

 5200   HOME 
 5205   PRINT:PRINT"Search on a single field value":PRINT 
 5210   FOR i=1 TO num.item 
 5215     IF VPOS>20 THEN PRINT:PRINT:VPOS=20 
 5220     PRINT USING 5225;i,item$(i) 
 5225     IMAGE "(",2#,")",2x,16a 
 5230     NEXT i 
 5240   PRINT:PRINT"       Your Selection: "; 
 5250   INPUT"";a$ 
 5260   a=CONV(a$) 
 5270   IF a=0 THEN HOME:GOTO 5040 
 5280   IF a<1 OR a>num.item THEN msg$="Field number invalid":GOSUB 
900:PRINT 
CHR$(12);:GOTO 5205 
 5282   select.all=0 
 5283   field.len=ie%(a)-ib%(a)+1 
 5284   field.num=a 
 5285   PRINT:PRINT"Field value: "; 
 5286   msg$="Use '=' for all, '>' for all non-blank":line= VPOS:col= 
HPOS:GOSUB 900 
 5287   INPUT"";a$ 
 5288   IF a$="" THEN PRINT CHR$(12);:GOTO 5205 
 5289   IF MID$(a$,1,1)="=" THEN select.all=1:ELSE:IF MID$(a$,1,1)=">" 
THEN select.all=2 
 5290   IF LEN(a$)<field.len THEN value$=a$+MID$(blank$,1, field.len-
LEN(a$)):ELSE:value$=MID$(a$,1,field.len) 
 5291   rvalue$=a$ 

 5292   HOME 
 5295   IF ik%(field.num) AND NOT select.all THEN 5400 
 5300   msg$="Scanning the file":line= VPOS:col= HPOS:GOSUB 900 
 5305   rec.found=0 
 5307   IF tot.rec=0 THEN 5360 
 5310   FOR rec=1 TO num.rec 
 5320     GOSUB 5600 
 5325     IF no.rec THEN 5350 
 5330     GOSUB 5475 
 5335     IF VPOS>19 THEN PRINT:PRINT:PRINT:VPOS=19 
 5340     IF select THEN GOSUB 5650 
 5350     NEXT rec 
 5355   IF rec.found THEN msg$="No more records, Press RETURN to 

192



continue:":GOSUB 900:GET a$:GOTO 5035 
 5360   msg$="No records found":GOSUB 900:delay=2:GOSUB 930:GOTO 5035 

Lines 5200-5360 handle the case of searching on a given field.  Notice that there 
are additional options of selecting all records, or all records with non-blank 
fields.  In addition, line 5295 checks to see if the field is a key field, and if so, 
jumps to the routine below which does a fast scan of the key in memory.  Notice 
also that all actual I/O is done through subroutines in lines 5600 and 5650, to 
facilitate changing file structures with a minimum of effort.

 5400   key=-1:FOR i=1 TO field.num:IF ik%(i) THEN 
key=key+1:NEXT:ELSE:NEXT 
 5405   key$=rvalue$ 
 5410   msg$="Scanning the Key file":line= VPOS:col= HPOS:GOSUB 900 
 5415   GOSUB 600 
 5417   IF NOT dup THEN 5360 
 5420   FOR i=1 TO dup 
 5425     rec=dup%(i) 
 5430     GOSUB 5620 
 5432     IF no.rec THEN 5445 
 5435     IF VPOS>19 THEN PRINT:PRINT:PRINT:VPOS=19 
 5440     GOSUB 5650 
 5445     NEXT i 
 5450   GOTO 5355 

This above is the routine used to scan the key file for a value.  Notice that it uses 
the subroutine at line 600 to pull duplicates of a given value.  Then the "dup%" 
array is used as the record list.

 5475   select=0 
 5480   IF select.all=1 THEN select=1:RETURN 
 5485   IF select.all=2 AND field$>="!" THEN select=1:RETURN 
 5490   IF field$=value$ THEN select=1:RETURN 
 5495   RETURN 

This is a routine which is used by the search routine to determine if the field 
meets the search criteria.

 5500   field.num=unique:key=-1:FOR i=1 TO field.num:IF ik%(i) THEN 
key=key+1:NEXT:ELSE:NEXT 
 5505   PRINT:PRINT"       "item$(field.num)": "; 
 5510   INPUT"";a$ 
 5515   IF a$="" THEN PRINT CHR$(12);:GOTO 5205 
 5520   HOME 
 5525   msg$="Searching for "+item$(field.num)+": "+a$:line= VPOS:col= 
HPOS:GOSUB 900 
 5530   key$=a$ 
 5535   GOTO 5415 

193



Line 5500 sets up the search for the first unique field, and then uses the regular 
keysearch routine to complete.

 5600   INPUT#1,rec;line$ 
 5601   no.rec=0 
 5602   IF LEN(line$)<rec.len-1 THEN no.rec=1:RETURN 
 5605   field$=MID$(line$,ib%(a),field.len) 
 5610   RETURN 

 5620   INPUT#1,rec;line$ 
 5622   no.rec=0 
 5625   IF LEN(line$)<rec.len-1 THEN no.rec=1:RETURN 
 5630   RETURN 

 5650   PRINT"("line$")" 
 5655   rec.found=1:RETURN 

 5900   no.error=1:RETURN 

The routines above are general purpose and used by parts of the search 
routines and others to perform actual read operations on the files.


Which brings us at long last to the last routine (at least for this article!).

 8000   TEXT:HOME:PRINT"List all records in file '";file$"'." 
 8005   WINDOW 1,3 TO 80,24:HOME 
 8007   IF tot.rec=0 THEN 8035 
 8010   FOR rec=1 TO num.rec 
 8015     GOSUB 5620 
 8017     IF no.rec THEN 8030 
 8020     IF VPOS>19 THEN PRINT:PRINT:PRINT:VPOS=19 
 8025     GOSUB 5650 
 8030     NEXT rec 
 8035   msg$=CONV$(tot.rec)+" records listed. Press RETURN to 
continue:":GOSUB 900:GET a$ 
 8040   no.error=1:RETURN 

Lines 8000-8040 provide a quick list of all records using the previously defined 
read routines.


There!  More that anyone wants to know about B-tree access methods in 
BASIC. Purists among you will note that alot has been left to the imagination.  
For example, what happens when the key array fills up with deleted records?  
How fast will this method add records when there are lots of records and lots of 
duplicates?  These are real questions, and are solveable, with effort and 
cleverness.  It was not the intention of this article to give you a working general 
purpose database program.  There are plenty of those on the market for the 
Apple III.  Rather, the program has given us a chance to explore programming 

194



techniques which may prove very useful in specific tasks, and should enrich 
your knowledge of programming in general.  It is therefore with misty eyes that 
we bid databases a fond, albeit temporary, farewell.


Greener Pastures 
Next time we will start a new series on Apple III graphics capability, beginning 
with something that most people think is too hard:  a high-speed, high-res game 
for the Apple III in BASIC!  Until then, keep pounding on your Apple III.


195



196



Exploring Business Basic, Part XVII 

An Immediate Apology 
If, like a lot of people, you've looked at the program listing in this article before 
reading the text, you're probably wondering "Where is that Hi-res game he 
promised last time? This giant mess can't be it!".  Right again, buckaroo. The 
game that was promised will be delivered, but next month.  A bigger issue, 
related to hi-res games, will be covered this month as a precursor (heh,heh) to 
that article.  To tell the truth, the original plan was to create a little Shape 
generator and editor to do the graphics animation characters.  Well, the shape 
editor grew and grew, and threatened to overwhelm the entire article. Shortly 
after threatening to do so, it did, and forthwith, this month's article presents a hi-
res character set, shape and font editor with some really nice features.  Next 
month we'll use the editor to create creatures to inhabit our game.  Also, 
because the program is so large, the usual chatty narrative will be somewhat 
terse.  And now, on with it!


An Immediate Digression 
Having made all those imposing statements above about terseness (tersity?), 
Several new products have been introduced on the Apple III which deserve 
notice.  First is a parallel printer interface from Interactive Structures. What 
distinguishes this card is the software, which is really complete.  It supports 
many different printers, including Apple's new Dot Matrix Printer, both in 
emulation mode and with SOS drivers.  The driver can print with a variety of 
options, and if your printer has a graphics print option, the driver can even use 
the current screen font for printing!  In addition, an invokable module is supplied, 
usable from Basic and Pascal, which permits graphics screen dumps with lots of 
options.  Altogether, a nice piece of work.


The next two products are floppy disk drives for the Apple III.  Yes, Virginia, there 
are high-density floppies!  Apple introduced their new UniFile and DuoFile at 
Comdex, and they should be available soon.  They feature 860K per diskette at 
a very reasonable price.  Also on the market now is the MicroSci A143, a 560K 
disk which daisy-chains along with existing Disk III's. This disk has less storage, 
but has the advantage of not requiring a slot. Since both disks come with SOS 
drivers, they are completely compatible with all your other software.  Go SOS!


197



And Now, On With the Show 
First, we'll look at the general operation of the shape editor, using line number 
ranges to describe large operations.  Then, some of the routines will be 
examined in detail to clarify points of possible confusion and to indicate which 
routines could be adapted for other purposes.


General Operation 
Apple III high-resolution shapes and characters are drawn on the screen using a 
procedure in the BGRAF invokable module called DRAWIMAGE.  This actually 
utilizes the DRAWBLOCK capability of the .GRAFIX driver.  Unfortunately, 
knowing all this, and even reading all the documentation, doesn't make it 
completely clear.  The program below should help by illustrating lots of useful 
subroutines which perform these functions.


The program operates by creating a work area on the screen that allows you to 
look at and change data blocks used by DRAWIMAGE.  These data blocks 
consist of integer arrays which DRAWBLOCK interprets as bits to be drawn on 
the screen.  From now on, the word "Bit" will mean a piece of data in an array, 
and the word "Pixel" will mean the representation of that bit as a dot on the 
screen.  Obviously, the different graphics modes have different looking pixels, 
although the bit in the array is the same.  For now, we won't worry about color, 
since that is not a function of the bit arrays, but rather the pencolor assigned at 
the time the bits are drawn.


Another important feature of the editor is that is maintains separate windows on 
the screen for each video mode.  This allows you to see the effect of the shape 
as it's being created.  Sometimes a shape that looks good in one mode looks 
terrible in another, because of the different proportions.  Enough theory, let's 
look at the code!


Getting a Bit Under Control 
After setting up arrays in lines 10-15, variable and table initialization is done in 
lines 4000-4500.  The program uses several arrays as work areas and holding 
areas for data, and others for fast lookup of information for performance.  
"Work%" is an array which holds the bit patterns currently available to be 
modified.  These can come from a character set ("char%"), a shape definition 
("shape%") or a Apple III system font ("cset%").  The most important tables 
used for lookup are "shex%", "bits%" and "flip".


"Shex%" is defined in lines 4000 through 4015 and contains the bit 
representations of all 16 HEX digits in four modes: two high, four wide; one high, 
four wide; one high, two wide and one high, one wide.  These modes 

198



correspond to character bit patterns for the Work Area, 140X192 mode, 
280X192 mode and 560X192 mode respectively.  This is necessary since we will 
be using the 560X192 screen for all editing functions, but will want to look at the 
characters and shapes as they would appear in the other modes.


"Bits%" is a table which has four entrys for each HEX digit (one for each binary 
bit) and allows quick determination if a particular bit is on or off in a given hex 
number.


"Flip" contains 256 entrys, each one corresponding to a byte with its bits 
reversed end for end.  For example, consider the number 75.  In HEX, it would 
be "4B", in binary "01001011".  If we were to flip the bits exactly, the result 
would be "11010010", HEX "D2", or decimal 210.  All this would be extremely 
unimportant if it were not for the fact that the character images used by the 
Apple III system fonts and the images used by the BGRAF invokable module are 
exactly reversed.  Therefore, to move back and forth between the two requires 
some way of reversing the sets.  Thus the table "flip".  By looking up the entry 
under 75, the program will find the value 210 and, making the substitution, will 
flip the byte.  Line 4060 builds this array from a smaller array called "lookup" 
which consists of "flipped" HEX digits.


Once initialization is done, lines 30 through 50 do some further setup, and the 
program proceeds to build the graphics screen for editing.  If you are wondering 
whether the whole program is worth entering, try typing in lines 5-200, just to 
get a look at the screen.  It'll make a lot more sense out of the discussion to 
follow.  Notice that line 100 refers the the subroutine at line 600, which creates 
the four windows referred to earlier.  This routine is also used later to clear the 
windows quickly.


Once the screen is initialized, lines 210-235 get the command and dispatch to 
the proper routine for processing.  Note that the actual input is handled in a 
subroutine at line 3000.  This routine, along with the error routine at line 3070 
and the message routine at line 3100, handle character input and output to the 
graphics screen.  Remember, the primary action is on the graphics screen so we 
want to avoid flipping back and forth between graphic and text screens.  You 
could use this routine in any program that wants to accept text input on the 
graphics screen.


A Routine a Day 
Rather than describe the various functions one at a time, it would be more 
instructive to look at some in detail and give a general overview of the rest. One 
command that shows off most of the features of the program is Load, selected 
as item 2 on the menu.  Load is handled by the routine at 1400.


199



Getting Loaded in Hi-res 
First the routine prompts for what kind of file to load.  Shape and Character set 
files are unique to this program, but the Font file must be treated specially, since 
Basic cannot directly open a System Font file.  Note the use of the INSTR 
function at line 1410 to determine the value of "choice".  There are two spaces 
in front of the "Ss" and one space between "Ss", "Cc" and "Ff". When divided 
by 3 and truncated (INT), the result is 0, 1, 2, or 3.  This is a handy technique to 
handle multiple choice options in either upper or lower case.


ON ERR is set in line 1430 to handle any errors in dealing with the files, and 
then, unless the file is a font file, it is opened in line 1435.  If the choice is a font 
file, the "Getfont" invokable proceedure is used to load it into memory, and the 
subroutine at line 3950 is called to "flip" the font to the graphics mode.  If the 
choice is a shape or character file, then information about the data is read in line 
1450 from the first record. "Filtyp" is the type code used to save the file, "ch" is 
character height, "cw" is character width, and "sl" is the valid length of the 
shape definition in words (0-7).  Not all these values will have meaning, 
depending on the value of "filtyp".  If everything is ok, then the "Filread" 
invokable proceedure is called (from the "REQUEST.INV" module) to read in the 
array from the file.  The actual size of the file as read ("ret%") is checked against 
the expected size ("size%(filtyp)") and if everything checks out, then the 
subroutine at line 3600 is called to display the results of the load.


The Subroutine at line 3600 does most of the work of displaying the bit images 
on the screen as various size pixels.  First, depending on the type of image to be 
displayed (shape, character set or font) it loads a section of the appropriate 
array into the work area using the routines at lines 3700-3940. If the choice is a 
shape, it is directly transferred to the work area, since shape definitions are 
arbitrarily defined to be a maximum of 128 bits wide by 16 bits high.  In the case 
of character set and font definitions, the routine at line 3800 prompts for a 
starting character number to display in the work area.  Normally character 
definitions are each 8 bits wide, and fonts are always 8 bits wide.  Although it is 
possible to define a larger character cell size, for the purposes of this program 
fonts will be transferred to the work area on 8 bit boundarys, and character sets 
will be transferred on even 8 bit boundarys.  This simplifies things considerably, 
since the data is stored in integer (16 bit) arrays.  Lines 3815-3830 determine the 
starting location in the "char%" array to begin the transfer, and calculate "sl", 
the "shape length" which is the number of array elements (maximum 8 elements 
or 128 bits) to display in the work area.  As you can see, the storage format of 
shapes and character set definitions is similar.  Basically, the first index of the 
array represents the bits in a given row, and the second index represents the 
row number.  Things are considerably different in the font definition, however, as 

200



shown in the routine at line 3900.  The "Getfont" proceedure reads the font 
definition in into a one-dimensional array which is decoded in lines 3915 to 
3935.  You can think of the font definition as a set of 8 bytes for each character, 
one byte for each character row, arranged one after another.  Each 8 bytes (4 
integer elements), a new character begins.  The requirements of the Drawimage 
proceedure are that each row byte be in a separate row element, and that each 
row element (an integer) contain the two row bytes of two adjacent characters.  
Whew! No wonder a lot of these programs haven't been written! Anyway, trust it, 
it works.


See it all 
After all that messing around, we now have the proper information in the 
"work%" array, and can draw the images on the screen with the routines at lines 
3605-3690.  After clearing all the windows, and setting up the variables ("rs" - 
starting row to display, "re" - ending row to display, "bw" - beginning word of 
column, "ew" - ending word of column), we are ready to draw in each window.  
Line 3610 gives the starting position of the window in "xdot" and "ydot" and 
then defines where in the "shex%" array that the drawing of the pixel definitions 
will take place.  Rows zero and one of "shex%" are pixel definitions of hex digits 
in 4 wide, 2 high format, the format for the work area display.  The subroutine at 
line 3670 then proceeds through the work% array, drawing from the definitions 
in "shex%".  Note that line 3625 performs the Drawimage proceedure directly, 
since the window at 7,117 is for 560X192 mode, which is the current screen 
mode, and can thus be drawn directly.  The drawing proceeds with list 
3630-3635, which sets up the 280X192 mode (2 wide, 1 high) and finally line 
3640-3645, the 140X192 mode (4 wide, 1 high) and the display is complete.


Although the information above is useful, it is by no means complete.  A through 
reading of Appendix I of the Basic manual on the BGRAF invokable, and reading 
of the Standard Device Drivers manual section on .GRAFIX is strongly 
recommended.


This program has also been somewhat simplified by limiting the shape and 
character size definitions in size.  In actual practice, Drawimage can be used to 
draw shapes or characters actually larger than the entire graphics screen! An 
interesting challenge for you is to modify this routine to handle larger shape and 
character definitions, treating the work area as a window, as is done to a limited 
extent with the character set and font definitions.


Putting the Bits and Bytes to Bed 
A quick look at the Save function is worthwhile, especially now that you are 
familiar with the internal format of the information.  The save routine is found at 
lines 1100-1195 and is relatively straight-forward except for lines 1170-1180.  In 

201



line 1170 a check is made for file type 3, the font file.  Font files are saved 
without accompanying information, since the format is fixed. This also allows 
you to alter the file type on disk to type "FONT" and load the font into the 
standard system character set.  The Pascal filer will allow this, and there is a 
new invokable from Foxware (reviewed next month) which makes it easy to do 
from Basic.  In addition, the "Loadfont" proceedure will allow you to use 
"Download.inv" for the same purpose.


Line 1175 then goes to a subroutine, depending on file type, which loads the 
work area back into the appropriate array for saving.  Any modifications, as we 
will see later, are made only in the work area, until saved, or another work area is 
chosen.  After transfering the work area, a check is made to see if the Save is 
being attempted in a different format than the original Load. For type 1 (shape) 
the sizes are identical to the work area, so nothing has to be done, but for 
character set to font and vice-versa, some translations must be made.  They are 
handled by the subroutines at 2000, and then the appropriate array is written to 
disk, safe at last.


Other Interesting Stuff 
Catalog, Delete and Define are relatively simple and won't be covered here. View 
uses some of the functions we have already discussed in Load and Save, and 
permits scanning around in the character set or font, beginning at different 
places.  This routine first must save the current work area back to its original 
array, and then load and display the new section, much the same as the original 
Load did.  Obviously for shapes, there is nothing to view beyond what is on the 
screen, so a redisplay is done.


Ok, its there, Now what do I do?


Which brings us to Edit, Clear and Invert. 
After displaying what you want to edit in the work area, selecting option 4 gets 
you into the routine at line 250.  An immediate GOSUB is performed to line 450 
which determines if the bit at the current grafix cursor location ("chorz","cvert") 
is on or off.  This value is stored in "cstate". On returning "Cflash" is set to the 
opposite value, and and ON KBD loop is entered to flash a pixel at that location.  
Note that the routine in line 275 makes a longer wait between flashes if cstate is 
0, allowing you to tell whether the underlying pixel is on or off.  When a key is 
pressed on the keyboard, the long routine at line 280-345 is entered to process 
the keystroke and perform the appropriate action.  The request is decoded in 
line 295 by scanning the "ctrl$" string, previously defined in line 4085.  Then line 
300 transfers control to the appropriate routine.  Lines 315-330 handle simple 
cursor movements.  Note that by holding down the open-apple key, the value of 
"skp" is set to the current character width (line 290), useful for moving from 

202



character to character rapidly.  Line 335 handles toggling a bit, and redrawing 
the associated screen pixels.  First, the current bit is determined by a GOSUB 
450.  Then the subroutine at line 470 changes the appropriate bit, and finally, the 
routine at line 400 is called to update the pixels in all the windows.  All of these 
routines will come in handy in a minute when we discuss Invert and Clear.  
Finally, the routine restores the ON KBD condition, and returns to the "flashing 
cursor" loop in line 270.


That leaves only Invert and Clear as major, undiscussed functions.  These are 
callable from Edit mode directly, or in command mode.  Let's take Invert first, 
the more complicated of the two.  Line 1500 prompts for clearing a whole row, a 
whole column, a block (defined as 8 bits wide, "ch" high), or the whole 
workspace.  Rows are handled in lines 1540-1565 by moving through the row, 
subtracting 255 from each byte and storing them back. Then lines 1560-1565 
set up and call 3610 to redraw the row.  Inverting a row is handled by our bit-
toggle routines, called repeatedly in lines 1575-1585 as if we were inverting each 
one separately with the space bar.  Inverting a block and inverting the whole 
work space are handled in 1600-1655 as special cases of the invert row 
technique discussed above.


Once you understand the Invert techniques, Clear becomes simple, since it 
mostly involves zeroing out various locations.  Note however, that in clearing a 
column in lines 1765-1775, that the bit toggle and draw (470 and 400) are only 
performed if the bit is on ("cstate" is true).  Also, when the Clear workspace 
command is executed, line 600 is called to clear the windows fast, instead of 
drawing the pixels (all zeros) in them.


At Long Last, the program! 
Well, there you have it, a monument to the Apple III graphics capability. Next 
month we will continue on with this topic, and use the editor to create shapes to 
populate our games and other graphic adventures.  Until then, happy typing!

 5   REM Shape, Character and Font Editor 
 10   DIM 
char%(127,15),shape%(7,15),name$(10),ary$(10),size%(10),bits%(15,3) 
 15   DIM 
work%(7,15),shex%(15,3),cset%(511),lookup(15),flip(255),block$(15) 
  
 20   PRINT"Initializing variables, please wait" 
 25   GOSUB 4000 
 30   INVOKE"/basic/bgraf.inv","/basic/request.inv","/basic/
download.inv" 
 35   OPEN#1,".grafix" 
 40   PERFORM initgrafix 
 45   PERFORM grafixmode(%2,%1) 

203



 50   PERFORM fillcolor(%15):PERFORM pencolor(%0) 

 55   HOME:PRINT:PRINT"Initializing the graphics screen, please wait." 
 60   PERFORM viewport(%0,%559,%0,%191):PERFORM fillport 
 65   PERFORM moveto(%0,%184) 
 70   
PRINT#1;"===============================================================
= 
      ================"; 
 75   PERFORM moveto(%0,%191) 
 80   PRINT#1 USING"79c";"DrawImage Editor" 
 85   
PRINT#1;"===============================================================
= 
      ================"; 
 90   PERFORM fillcolor(%0):PERFORM pencolor(%15) 
 95   PERFORM moveto(%261,%176):PRINT#1;" Work Area " 
 100   GOSUB 600 
 125   PERFORM viewport(%5,%556,%13,%58):PERFORM fillport 
 130   PERFORM viewport(%5,%556,%1,%10):PERFORM fillport 
 135   PERFORM viewport(%0,%559,%0,%191) 
 140   PERFORM moveto(%28,%128):PRINT#1;" 560 X 192 "; 
 145   PERFORM moveto(%253,%128):PRINT#1;" 280 X 192 "; 
 150   PERFORM moveto(%233,%98):PRINT#1;" 140 X 192 "; 
 155   PERFORM moveto(%233,%67):PRINT#1;" Command Keys " 
 165   PERFORM moveto(%7,%57):PRINT#1;"   Arrow keys move cursor   
ESCAPE 
quits 
        current mode    SPACE toggles bits"; 
 170   PERFORM moveto(%69,%45):PRINT#1;" 0 : Catalog       3 : Delete         
6 
        : Clear" 
 180   PERFORM moveto(%69,%36):PRINT#1;" 1 : Save          4 : Edit           
7 
        : Define" 
 190   PERFORM moveto(%69,%27):PRINT#1;" 2 : Load          5 : Invert         
8 
        : View" 
 200   PERFORM grafixon 

 210   prompt$="Select a Command: " 
 215   GOSUB 3000 
 220   IF fin THEN 1000 
 225   a=ASC(MID$(line$,1,1)) 
 230   IF a>47 AND a<57 THEN ON a-47 GOSUB 

204



1200,1100,1400,1300,250,1500,1700,25 
       00,1900:GOTO 210 
 235   GOSUB 3070:GOTO 210 

 250   GOSUB 450 
 255   cflash= NOT cstate 
 260   ON KBD GOTO 280 
 265   PERFORM moveto(%chorz*4+7,%cvert*2+134) 
 270   PERFORM drawimage(@shex%(0,0),%32,%24+cflash*4,%0,%4,%2) 
 275   cflash= NOT cflash:FOR z=1 TO 5+200*( NOT cstate):NEXT:GOTO 270 

 280   OFF KBD:PERFORM drawimage(@shex%(0,0),%v32%,
%24+cstate*4,%0,%4,%2) 
 285   key= KBD:IF key=27 THEN kvl=0:POP:GOTO 210 
 290   IF key>127 THEN skp=cw:key=key-128:ELSE:skp=1 
 295   kvl=INSTR(ctrl$,CHR$(key)) 
 300   IF kvl THEN ON kvl GOTO 315,320,325,330,335,1500,1700 
 305   ON KBD GOTO 280 
 310   RETURN 
 315   IF left<=chorz-skp THEN chorz=chorz-skp:GOSUB 450:GOTO 
340:ELSE:GOTO 
340 
 320   IF right>=chorz+skp THEN chorz=chorz+skp:GOSUB 450:GOTO 
340:ELSE:GOTO 
34 
       0 
 325   IF top>=cvert+skp THEN cvert=cvert+skp:GOSUB 450:GOTO 
340:ELSE:GOTO 340 
 330   IF bot<=cvert-skp THEN cvert=cvert-skp:GOSUB 450:GOTO 
340:ELSE:GOTO 340 
 335   GOSUB 450:GOSUB 470:GOSUB 400:IF ch<15-cvert THEN ch=15-cvert 
 340   PERFORM moveto(%chorz*4+7,%cvert*2+134) 
 345   ON KBD GOTO 280 
 350   RETURN 

 400   PERFORM moveto(%chorz*4+7,%cvert*2+134):PERFORM 
drawimage(@shex%(0,0),%3 
       2,%24+cstate*4,%0,%4,%2) 
 410   PERFORM moveto(%chorz+7,%cvert+102):PERFORM 
drawimage(@shex%(0,0),%32,%6 
       +cstate,%3,%1,%1) 
 415   PERFORM moveto(%chorz*2+157,%cvert+102):PERFORM 
drawimage(@shex%(0,0),%3 
       2,%12+cstate*2,%2,%2,%1) 
 420   PERFORM moveto(%chorz*4+7,%cvert+72):PERFORM 

205



drawimage(@shex%(0,0),%32,% 
       24+cstate*4,%0,%4,%1) 
 425   RETURN 

 450   col=INT(chorz/16):bitnum=chorz-col*16 
 455   
cval$=HEX$(work%(col,15-cvert)):nibpos=INT(bitnum/4):nib$=MID$(cval$,nib 
       pos+1,1) 
 460   bit=bitnum-nibpos*4:cstate=bits%(TEN(nib$),bit) 
 465   RETURN 

 470   cnval=2^(3-bit):IF cstate THEN cnval=-cnval 
 475   SUB$(cval$,nibpos+1,1)=MID$(HEX$(TEN(nib$)+cnval),4,1) 
 480   work%(col,15-cvert)=TEN(cval$) 
 485   cstate= NOT cstate 
 490   RETURN 

 600   PERFORM viewport(%5,%556,%131,%166):PERFORM fillport 
 605   PERFORM viewport(%5,%135,%101,%118):PERFORM fillport 
 610   PERFORM viewport(%155,%420,%101,%118):PERFORM fillport 
 615   PERFORM viewport(%5,%540,%71,%88):PERFORM fillport 
 620   PERFORM viewport(%0,%559,%0,%191) 
 625   RETURN 

 1000   REM clean up and go home 
 1005   HOME:TEXT 
 1010   PERFORM release:PERFORM release:PERFORM release 
 1015   INVOKE 
 1020   CLOSE 
 1030   END 

 1100   IF choice=1 THEN filtyp=1:GOTO 1125 
 1105   prompt$="Save as a "+name$(1)+", "+name$(2)+" or "+name$(3)+"? " 
 1110   GOSUB 3000:IF fin THEN RETURN 
 1115   a$=MID$(line$,1,1):filtyp=INT(INSTR("  Ss Cc Ff",a$)/3) 
 1120   IF filtyp=0 THEN 1105 
 1125   prompt$="Pathname of Save file: ":GOSUB 3000 
 1130   IF fin AND choice=1 THEN RETURN:ELSE:IF fin THEN 1105 
 1135   ON ERR GOTO 1190 
 1140   OPEN#3,line$ 
 1145   IF TYP(3)=8 THEN message$="INVALID, "+line$+" is a TEXT 
file.":GOSUB 
31 
        00:GOTO 1125 

206



 1150   IF TYP(3)=0 THEN 1170 
 1155   prompt$="Ok to destroy old data in file "+line$+"? ":GOSUB 3000 
 1160   IF fin THEN 1125 
 1165   IF NOT INSTR("Yy",MID$(line$,1,1)) THEN 1125 
 1170   IF filtyp<>3 THEN WRITE#3,0;filtyp,ch,cw,sl:WRITE#3,1;0:READ#3,1 
 1175   ON choice GOSUB 3750,3850,3860 
 1178   IF choice>1 AND choice<>filtyp THEN GOSUB 2000 
 1180   array$=ary$(filtyp):PERFORM filwrite(%3,@array$,%size%(filtyp)) 
 1185   message$=name$(filtyp)+" saved.":GOSUB 3100:CLOSE#3:OFF 
ERR:RETURN 
 1190   message$="Error in opening or writing to file. ":GOSUB 3100 
 1195   OFF ERR:GOTO 1125 

 1200   prompt$="Pathname to Catalog: " 
 1205   GOSUB 3000 
 1210   IF fin THEN delay=1:RETURN 
 1215   oldpre$= PREFIX$ 
 1220   ON ERR GOTO 1270 
 1225   PREFIX$=line$ 
 1230   OPEN#8 AS INPUT, PREFIX$ 
 1235   OFF ERR 
 1240   ON EOF#8 GOTO 1285 
 1245   delay=0 
 1250   INPUT#8;message$ 
 1255   IF MID$(message$,1,10)="          " THEN 1250 
 1260   GOSUB 3100 
 1265   GET a$:IF ASC(a$)=27 THEN 1285:ELSE GOTO 1250 
 1270   message$=line$+" is not a valid Prefix" 
 1275   delay=1:GOSUB 3100 
 1280   OFF ERR 
 1285   PREFIX$=oldpre$ 
 1290   GOTO 1200 

 1300   prompt$="Pathname of file to Delete: " 
 1305   GOSUB 3000 
 1310   IF fin THEN RETURN 
 1315   ON ERR GOTO 1360 
 1320   OPEN#8 AS INPUT,line$ 
 1325   IF TYP(8)<>1 THEN message$=line$+" is not a Save file":GOSUB 
3100:CLOSE 
        #8:GOTO 1300 
 1330   ON ERR GOTO 1380 
 1335   CLOSE#8:DELETE line$ 
 1340   OFF ERR 

207



 1345   message$=line$+" deleted." 
 1350   GOSUB 3100:GOTO 1300 
 1360   OFF ERR 
 1365   message$="Cannot delete "+line$+". (doesn't exist or can't be 
opened)" 
 1370   GOSUB 3100:GOTO 1300 
 1380   OFF ERR 
 1385   message$="Cannot delete "+line$+". (write-protected or locked)" 
 1390   GOSUB 3100:GOTO 1300 

 1400   prompt$="Load a "+name$(1)+", a "+name$(2)+" or a "+name$(3)+"? 
" 
 1405   GOSUB 3000:IF fin THEN RETURN 
 1410   a$=MID$(line$,1,1):choice=INT(INSTR("  Ss Cc Ff",a$)/3) 
 1415   IF choice<1 OR choice>3 THEN GOSUB 3070:GOTO 1400 
 1420   prompt$="Pathname of "+name$(choice)+": " 
 1425   GOSUB 3000:IF fin THEN 1400 
 1430   ON ERR GOTO 1455 
 1435   array$=ary$(choice):IF choice<>3 THEN OPEN#3,line$:GOTO 1450 
 1440   ch=7:font$=CHR$(34)+line$+CHR$(34):PERFORM 
getfont(@font$,@array$) 
 1445   OFF ERR:GOSUB 3950:GOTO 1485 
 1450   IF TYP(3)=1 THEN READ#3;filtyp,ch,cw,sl:IF filtyp=choice THEN 
1470 
 1455   message$="Not a "+name$(choice)+" file.":GOSUB 3100 
 1460   OFF ERR:IF choice=3 THEN 1420 
 1465   CLOSE#3:IF TYP(3)=0 THEN DELETE line$:GOTO 1420:ELSE:GOTO 1420 
 1470   READ#3,1:PERFORM filread(%3,@array$,%size%(filtyp),@ret%) 
 1475   CLOSE#3:IF ret%=size%(filtyp) THEN 1485 
 1480   message$=name$(choice)+" in "+line$+" is invalid.":GOSUB 
3100:GOTO 
1420 
 1485   GOSUB 3600:message$=name$(choice)+" loaded.":GOSUB 3100 
 1490   RETURN 

 1500   prompt$="Invert Row, Column, Block or Work space? " 
 1505   GOSUB 3000:IF fin AND kvl THEN GOSUB 3500:GOSUB 450:GOTO 340 
 1510   IF fin THEN RETURN 
 1515   a$=MID$(line$,1,1) 
 1520   a=INT(INSTR("  Rr Cc Bb Ww",a$)/3) 
 1525   IF NOT a THEN GOSUB 3060:GOTO 1500 
 1530   ON a GOTO 1540,1570,1600,1640 
 1540   crow=15-cvert 
 1545   FOR i=0 TO sl:b$=HEX$(work%(i,crow)) 
 1550     

208



work%(i,crow)=TEN(MID$(HEX$(255-TEN(MID$(b$,1,2))),3,2)+MID$(HEX$(255 
          -TEN(MID$(b$,3,2))),3,2)) 
 1555     NEXT 
 1560   rs=crow:re=crow:bw=0:ew=sl 
 1565   GOSUB 3610:GOTO 1500 
 1570   cur.vert=cvert 
 1575   FOR cvert=15-ch TO 15 
 1580     GOSUB 450:GOSUB 470:GOSUB 400 
 1585     NEXT 
 1590   cvert=cur.vert 
 1595   GOTO 1500 
 1600   cloc=INT(chorz/16):chalf=(chorz-16*cloc>7):st=chalf*2+1 
 1605   FOR i=0 TO ch:b$=HEX$(work%(cloc,i)) 
 1610     SUB$(b$,st,2)=MID$(HEX$(255-TEN(MID$(b$,st,2))),3,2) 
 1615     work%(cloc,i)=TEN(b$) 
 1620     NEXT i 
 1625   bw=cloc:ew=cloc:rs=0:re=ch 
 1630   GOSUB 3610:GOTO 1500 
 1640   FOR crow=0 TO ch:FOR i=0 TO sl:b$=HEX$(work%(i,crow)) 
 1645       
work%(i,crow)=TEN(MID$(HEX$(255-TEN(MID$(b$,1,2))),3,2)+MID$(HEX$(2 
            55-TEN(MID$(b$,3,2))),3,2)) 
 1650       NEXT:NEXT 
 1655   GOSUB 3607:GOTO 1500 

 1700   prompt$="Clear Row, Column, Block or Work space? " 
 1705   GOSUB 3000:IF fin AND kvl THEN GOSUB 3500:GOSUB 450:GOTO 340 
 1710   IF fin THEN RETURN 
 1715   a$=MID$(line$,1,1) 
 1720   a=INT(INSTR("  Rr Cc Bb Ww",a$)/3) 
 1725   IF NOT a THEN GOSUB 3060:GOTO 1700 
 1730   ON a GOTO 1740,1760,1800,1830 
 1740   crow=15-cvert 
 1745   FOR i=0 TO sl:work%(i,crow)=0:NEXT 
 1750   rs=crow:re=crow:bw=0:ew=sl 
 1755   GOSUB 3610:GOTO 1700 
 1760   cur.vert=cvert 
 1765   FOR cvert=15-ch TO 15 
 1770     GOSUB 450:IF cstate THEN GOSUB 470:GOSUB 400 
 1775     NEXT 
 1780   GOTO 1700 
 1800   cloc=INT(chorz/16):chalf=(chorz-16*cloc>7):st=chalf*2+1 
 1805   FOR i=0 TO ch:b$=HEX$(work%(cloc,i)) 
 1810     SUB$(b$,st,2)="00":work%(cloc,i)=TEN(b$):NEXT 

209



 1815   bw=cloc:ew=cloc:rs=0:re=ch 
 1820   GOSUB 3610:GOTO 1700 
 1830   FOR crow=0 TO ch:FOR i=0 TO sl:work%(i,crow)=0:NEXT:NEXT 
 1835   GOSUB 600:GOTO 1700 

 1900   IF choice=1 THEN GOSUB 3605:RETURN 
 1905   IF choice=2 THEN GOSUB 3850:ELSE:GOSUB 3860 
 1910   GOSUB 3800 
 1915   GOSUB 3605 
 1920   RETURN 

 2000   ON filtyp-1 GOTO 2100,2200 

 2100   message$="Transferring Font format to Character set 
format":GOSUB 3100 
 2105   FOR k=0 TO 63:j=8*k-1 
 2110     FOR i=0 TO 7 STEP 2:j=j+1:a$=HEX$(cset%(j)):b$=HEX$(cset%
(j+4)) 
 2115       char%(k,i)=TEN(MID$(a$,1,2)+MID$(b$,1,2)) 
 2120       char%(k,i+1)=TEN(MID$(a$,3,2)+MID$(b$,3,2)) 
 2125       NEXT:NEXT 
 2130   FOR k=64 TO 127:FOR i=0 TO 7:char%(k,i)=0:NEXT:NEXT 
 2135   FOR k=0 TO 127:FOR i=8 TO 15:char%(k,i)=0:NEXT:NEXT 
 2140   RETURN 

 2200   message$="Transferring Character set format to Font 
format":GOSUB 3100 
 2205   FOR k=0 TO 63:j=8*k-1 
 2210     FOR i=0 TO 7 STEP 2:j=j+1:a$=HEX$(char%(k,i)):b$=HEX$(char%
(k,i+1)) 
 2215       cset%(j)=TEN(MID$(a$,1,2)+MID$(b$,1,2)) 
 2220       cset%(j+4)=TEN(MID$(a$,3,2)+MID$(b$,3,2)) 
 2225       NEXT:NEXT 
 2230   GOSUB 3950 
 2235   RETURN 

 2500   prompt$="Character height is now "+CONV$(ch+1)+". New value: " 
 2505   GOSUB 3000:IF fin THEN 2550 
 2510   a=CONV(line$) 
 2515   IF a<1 OR a>16 THEN message$="Character height must be between 1 
and 
16 
        ":GOSUB 3100:GOTO 2500 
 2520   ch=a-1:message$="Character height is now "+CONV$(ch+1)+".":GOSUB 
3100 

210



 2550   prompt$="Character width is now "+CONV$(cw)+". New value: " 
 2555   GOSUB 3000:IF fin THEN 2600 
 2560   a=CONV(line$) 
 2565   IF a<1 OR a>255 THEN message$="Character width must be between 1 
and 
25 
        5":GOSUB 3100:GOTO 2550 
 2570   cw=a:message$="Character width is now "+CONV$(cw)+".":GOSUB 3100 
 2600   prompt$="Work area width in dots (must be 16,32,48,64,80,96,112 
or 
128: 
         " 
 2605   GOSUB 3000:IF fin THEN 2700 
 2610   a=CONV(line$)/16-1 
 2615   IF INT(a)<>a THEN message$="Width must be a multiple of 
16":GOSUB 
3100: 
        GOTO 2600 
 2620   IF a<0 OR a>7 THEN message$="Width must be between 16 and 
128":GOSUB 
31 
        00:GOTO 2600 
 2625   sl=a:message$="Work area width is now "+CONV$((a+1)*16)+".:gosub 
3100 
 2630   right=(a+1)*16-1 
 2635   message$="Definitions complete.":GOSUB 3100 
 2640   RETURN 

 3000   REM Accept a message from the window 
 3005   GOSUB 3500:PERFORM moveto(%7,%9):PRINT#1;prompt$; 
 3010   line$="":fin=0 
 3015   GET a$:a=ASC(a$) 
 3020   IF a>31 THEN PRINT#1;a$;:line$=line$+a$:GOTO 3015 
 3025   IF a=13 THEN fin=LEN(line$)=0:RETURN 
 3030   IF a=27 THEN fin=2:RETURN 
 3035   IF a<>8 THEN 3015 
 3040   IF LEN(line$)=0 THEN 3015 
 3045   PERFORM moverel(%-7,%0):PRINT#1;" ";:PERFORM moverel(%-7,%0) 
 3050   line$=MID$(line$,1,LEN(line$)-1) 
 3055   GOTO 3015 

 3060   REM print an error message 
 3070   PERFORM moveto(%450,%9) 
 3075   PRINT#1;"INVALID";:FOR i=1 TO 500:NEXT 
 3080   PERFORM moveto(%450,%9) 

211



 3085   PRINT#1;"       "; 
 3090   RETURN 

 3100   GOSUB 3500 
 3110   PERFORM moveto(%7,%9):PRINT#1;message$; 
 3120   FOR i=1 TO 750*delay:NEXT 
 3130   RETURN 

 3500   PERFORM viewport(%5,%556,%1,%10):PERFORM fillport 
 3510   PERFORM viewport(%0,%559,%0,%191) 
 3520   RETURN 

 3600   ON choice GOSUB 3700,3800,3800 
 3605   GOSUB 600 
 3607   rs=0:re=ch:bw=0:ew=sl 
 3610   xdot=7:ydot=164:rows=2:width=16:srow=0 
 3615   GOSUB 3670 
 3620   PERFORM moveto(%7,%117) 
 3625   PERFORM drawimage(@work%(0,0),%16,%0,%0,%128,%ch+1) 
 3630   xdot=157:ydot=117:rows=1:width=8:srow=2 
 3635   GOSUB 3670 
 3640   xdot=7:ydot=87:rows=1:width=16:srow=0 
 3645   GOSUB 3670 
 3650   RETURN 

 3670   xhorz=xdot+16*bw*(width/4) 
 3675   FOR k=rs TO re:PERFORM moveto(%xhorz,%ydot-rows*k):FOR i=bw TO 
ew 
 3680       a$=HEX$(work%(i,k)):FOR j=1 TO 4:dhex%=TEN(MID$
(a$,j,1))*width 
 3685         PERFORM drawimage(@shex%(0,0),%32,%dhex%,%srow,%width,
%rows) 
 3690         PERFORM moverel(%width,%0):NEXT:NEXT:NEXT 
 3695   RETURN 

 3700   FOR i=0 TO 7:FOR j=0 TO ch:work%(i,j)=shape%(i,j):NEXT:NEXT 
 3705   RETURN 

 3750   FOR i=0 TO 7:FOR j=0 TO 15:shape%(i,j)=work%(i,j):NEXT:NEXT 
 3755   RETURN 

 3800   prompt$="Starting Character number to display: " 
 3805   GOSUB 3000 
 3810   IF fin THEN cr=0:GOTO 3850 
 3815   cr=VAL(line$) 

212



 3820   IF cr<0 OR cr>254 THEN message$="Number out of range":GOSUB 
3100:GOTO 3800 
 3822   IF choice=3 THEN 3900 
 3825   IF cr/2<>INT(cr/2) THEN message$="Character number must be even 
(0,2,4,etc.)":GOSUB 3100:GOTO 3800 
 3830   wd=cr/2:sl=7:IF wd+sl>127 THEN sl=127-wd 
 3835   FOR i=0 TO ch:FOR j=0 TO sl:work%(j,i)=char%(wd+j,i):NEXT:NEXT 
 3840   RETURN 

 3850   FOR i=0 TO ch:FOR j=0 TO sl:char%(wd+j,i)=work%(j,i):NEXT:NEXT 
 3855   RETURN 

 3860   FOR k=0 TO sl:j=skip+8*k-1 
 3865     FOR i=0 TO 7 STEP 2:j=j+1:a$=HEX$(work%(k,i)):b$=HEX$(work%
(k,i+1)) 
 3870       cset%(j)=TEN(MID$(a$,1,2)+MID$(b$,1,2)) 
 3875       cset%(j+4)=TEN(MID$(a$,3,2)+MID$(b$,3,2)) 
 3880       NEXT:NEXT 
 3885   RETURN 

 3900   IF cr>127 THEN message$="Character range must be 0-127":GOSUB 
3100:GOTO 3800 
 3910   skip=4*cr:sl=7:IF cr+2*sl>126 THEN sl=(126-cr)/2 
 3915   FOR k=0 TO sl:j=skip+8*k-1 
 3920     FOR i=0 TO 7 STEP 2:j=j+1:a$=HEX$(cset%(j)):b$=HEX$(cset%
(j+4)) 
 3925       work%(k,i)=TEN(MID$(a$,1,2)+MID$(b$,1,2)) 
 3930       work%(k,i+1)=TEN(MID$(a$,3,2)+MID$(b$,3,2)) 
 3935       NEXT:NEXT 
 3940   RETURN 

 3950   message$="Preparing the character font.":GOSUB 3100 
 3955   FOR k=0 TO 511:b$=HEX$(cset%(k)):cset%(k)=TEN(HEX$
(v256*flip(TEN(MID$(b$,1,2)))+flip(TEN(MID$(b$,3,2))))):NEXT 
 3960   RETURN 

 4000   DATA 0000,000F,00F0,00FF,0F00,0F0F,0FF0,0FFF 
 4005   DATA F000,F00F,F0F0,F0FF,FF00,FF0F,FFF0,FFFF 
 4010   DATA 0003,0C0F,3033,3C3F,C0C3,CCCF,F0F3,FCFF 
 4015   DATA 0123,4567,89AB,CDEF 
 4025   DATA 0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15  
 4026   DATA 
0,0,0,0,0,0,0,1,0,0,1,0,0,0,1,1,0,1,0,0,0,1,0,1,0,1,1,0,0,1,1,1 
 4027   DATA 
1,0,0,0,1,0,0,1,1,0,1,0,1,0,1,1,1,1,0,0,1,1,0,1,1,1,1,0,1,1,1,1 

213



 4028   FOR i=0 TO 15:READ block$(i):NEXT 
 4030   FOR i=0 TO 15:h%=TEN(block$(i)):shex%(i,0)=h%:shex%(i,1)=h%:NEXT 
 4035   FOR i=0 TO 7:READ a$:shex%(i,2)=TEN(a$):NEXT 
 4040   FOR i=0 TO 3:READ a$:shex%(i,3)=TEN(a$):NEXT 
 4045   FOR i=0 TO 15:READ lookup(i):NEXT 
 4050   FOR i=0 TO 15:FOR j=0 TO 3:READ bits%(i,j):NEXT:NEXT 
 4055   v256=256:v16=16 
 4060   FOR i=0 TO 255:a$=HEX$(i):flip(i)=v16*lookup(TEN(MID$(a$,4,1)))
+lookup(TEN(MID$(a$,3,1))):NEXT 
 4065   sh=7:sl=7:ch=7:cw=8:choice=2:cr=0:wd=0:skip=0 
 4070   name$(1)="Shape definition":name$(2)="Character 
set":name$(3)="Font" 
 4075   ary$(1)="shape%":ary$(2)="char%":ary$(3)="cset%" 
 4080   size%(1)=256:size%(2)=2048:size%(3)=1024 
 4085   ctrl$=CHR$(8)+CHR$(21)+CHR$(11)+CHR$(10)+CHR$(32)+"5"+"6" 
 4090   left=0:right=127:top=15:bot=0:cvert=15:chorz=0:delay=1 
 4500   RETURN 

214



Exploring Business Basic, Part XVIII 

Looking Through a Glass Backward 
Last month's article was a lengthy tome on editing character fonts and shapes, 
delivered under the promise that it could be used to create "fun stuff".  What 
else excuses the need to type in such a long program?  That program, or 
something equivalent, is going to become pretty important this time, as we 
continue our discussions of graphics by developing an arcade "Shoot-em-up" 
called "Bug-Mania".  In the process, we'll explore an area of graphics that most 
people overlook, the 40 column color-on-color text mode.


Now that we can create special character shapes and load them into the 
standard character set, a class of graphics known as "character set animation" 
is not only possible, but highly practical and rewarding.  Most people don't 
realize it, but the capabilities of the Apple ][ "DOS Toolkit" Animatrix package are 
supplied as standard in the Apple III, and work at hardware speeds!  However, to 
make all this neat stuff really work for you, you need a character set editor, such 
as the one discussed last time.  If you don't have last month's article, you can 
still use the programs, but they won't make much sense, and they certainly 
won't be pretty.


Since last month's article was written, a set of Business Basic Invokable 
Modules has appeared on the market from Foxware Products of Salt Lake City, 
Utah.  I highly recommend that you get a copy of this product, which they call 
"BASIC Extension".  In addition to routines to manipulate and search arrays, it 
contains useful functions like Reset lockout, reboot, upshift, and, most 
interesting to last month's article, the ability to change file types. Sepcifically, the 
editor from the last article has been modified with this routine to automatically 
change the edited font file to the system filetype "FONT", so that it can be used 
by other system proceedures.  This allows you to edit a font and then configure 
it with SCP, etc.  Congratulations, Foxware!


Doing the Sideways Scroll 
One of the critical elements of any "shoot-em-up" game is the ability to keep 
more than one activity going on the screen simultaneously.  This means that the 
targets should move along with the weapons, and firing at objects should not 
bring everything to a halt.  Since each of these activities takes some processing 
time, it is important that each take as little time as possible, in order to make the 
whole game smooth and fast.  Normally on the Apple ][ and other similar 
systems, this is accomplished with assembly language routines, which execute 
fast enough to make up for the fact that it takes a lot of work to move objects 

215



around on the hi-res screen.  Careful use of the Apple III built-in routines, and 
the user-definable character set will allow us to do much the same thing in 
Basic!  To begin, let's look at a routine which scrolls objects horizontally across 
the text screen.  We'll start with using groups of asterisks (realizing that we 
could redefine them to almost any shape). 


The program looks like this: 

 10   m$=" **  ****  **  ****  *** * ****   ** ***" 
 20   start$=CHR$(26)+CHR$(0)+CHR$(10) 
 30   PRINT CHR$(21);"1"; 
 40   PRINT CHR$(16);CHR$(1); 
 50   PRINT CHR$(19);CHR$(4); 
 60   PRINT CHR$(20);CHR$(13); 
 70   HOME 
 80   FOR i=0 TO 39 
 90     PRINT start$;MID$(m$,41-i,i);MID$(m$,1,40-i) 
 100     GET a$:IF ASC(a$)=27 THEN 130 
 110     NEXT i 
 120   GOTO 80 
 130   TEXT:HOME 
 140   END 

Line 10 defines a 40 character string, exactly as wide as the screen mode we 
will use.  Be sure when you type it in that the result is exactly 40 characters in 
length.  Line 20 puts a starting location to display the strings on the screen into 
"start$", using the cursor positioning command of the console driver.  The code 
shown will set a starting location at column 0, row 10.  Line 30 sets the cursor 
movement options to disable everything but "advance after character".  You 
should check out the Standard Device Drivers Manual for more details on the 
cursor options of the Console Driver.  Line 40 puts the screen into 40 column 
color text mode, and lines 50 and 60 set foreground color to dark green (4) and 
the background color to yellow (13). The HOME command sets the whole screen 
to the background color, and then the routine to scroll m$ begins in line 80.


It is important to go through the routine at lines 80 through 110 to see how this 
accomplishes the display of the string "m$".  For each value of "i", the string is 
split into two parts, on the boundary between the beginning and end of the 
string.  When i=0, then the result is "MID$(m$,41,0);MID$(m$,1,40)". This is the 
combination of the "null" string, together with the entire string (1,40).  For i=1, 
the combination is "MID$(m$,40,1);MID$(m$,1,39)", that is, the last character of 
the string, coupled with the first 39 characters.  The end of the sequence, i=39, 
is equivalent to "MID$(m$,2,39);MID$(m$,1,1)" and finishes rotating the string 
around to start again.  The GET statement in line 100 allows the display to freeze 
after each step, so you can see exactly how this works.  To see the effect of the 
scrolling, simply hold down any key (except ESCAPE) and the pattern will scroll 
rapidly to the right.  Holding down the "closed-Apple" key in combination with 

216



the other key will cause faster scrolling (since the characters are presented to 
GET faster).  If you want to see how fast this thing will really run, cut out line 100 
completely. Those asterisks will really fly!


Line 130 is important since it snaps you back to 80 column reality with the 
cursor options restored.


Well, so much for the simple stuff.  Now it's time to add the options to create 
objects and creatures of your own to populate your game world.


"Oh Scroll a Mio" 
We'll start by defining the characters which will bring our creature to life. To 
make things interesting, we'll use two versions of the "bug", so that we can 
produce some simple animation without getting too complicated. Arbitrarily the 
characters from decimal 20 through 25 are picked to be redefined.  These 
normally are "Control characters" and are not displayed unless referenced by 
their character number + 128, that is, decimal 148 through 153.  This prevents 
the animation characters from interfering with any other normal character 
printing we may have to do.  If you haven't seen the last issue, and don't have 
access to a character set editor, you may simply use the same character 
numbers without changing their definition, but the "creatures" will not make any 
sense.


In any case, here's a suggestion for the "bug" set:

   20 (148)           21 (149)           22 (150) 
_______________    _______________    _______________ 
|_|_|_|_|_|_|_|    | | |X|X|X| |_|    |_| |X|X|X| |_| 
|_|_| |_|_|_| |    |X|X|X|X|X|X| |    | |X|X|X| |X| | 
|_| |X|_|_| |X|    |X|X| |X| |X|X|    |X|X|X|X|X|X|X| 
|_|X|_|_| |X|X|    |X|X|X|X|X|X|X|    |X|X|_|_|_|X|_| 
|_|X| | |X|_|X|    |X|X|X|X|X|X|X|    |X|X| |_|_|_| | 
|_|_|X|X|_|_|_|    |_|_|X|_|_|X|_|    |_|_|X| | | |X| 
|_|_|_|_|_|_|_|    |_|_|X| |_|X| |    |_|_|_|X|X|X|_| 
|_|_|_|_|_|_|_|    |_|_|X|X|_|X|X|    |_|_|_|_|_|_|_| 
   23 (151)           24 (152)           25 (153) 
_______________    _______________    _______________ 
|_|_|_|_|_|_|_|    | | |X|X|X| |_|    |_| |X|X|X| |_| 
|_|_|_| | |_| |    |X|X|X|X|X|X| |    | |X|X|X| |X| | 
| |_| |X|X| |X|    |X|X|X| |X| |X|    |X|X| |X|X|X|X| 
|X|_|X|_|_|X|X|    |X|X|X|X|X|X|X|    |X|X| | | |X|X| 
|X| |X|_|_|_|X|    |X|X|X|X|X|X|X|    |X|X|X|X|X|X|_| 
|_|X|_|_|_|_|_|    | | |X|_| |X|_|    |_|_|X|X|X|_|_| 
|_|_|_|_|_|_|_|    |_|X|_|_|X|_|_|    |_|_|_|_|_|_|_| 
|_|_|_|_|_|_|_|    |_|X|_|_|X|_|_|    |_|_|_|_|_|_|_| 

217



Creepy, right?   Actually, you can probably create a better looking "bug" than 
this, so play around with the editor until you are satisfied.  Watch the "280 X 
192" window on the editor to get an idea of how your creature will look in 40 
column mode.  Notice also that the changes from the set in 20-22 to the set in 
23-25 are designed to make the mouth open and close, the legs move, and the 
tail wag!  This is the origin of the concept "character set animation", since the 
animation of an object is accomplished by displaying several related versions of 
the object rapidly on the screen as characters.


Since the shapes will be displayed as a character font, remember the rules for 
system character fonts:  Use the first seven dot positions only ( the eighth is 
used for "flash/no flash" in inverse mode and will not be displayed) and make 
sure the characters are no more than eight dots high.  Save the character set 
using the "font" option, with any name you like.  If you have a way to change the 
resulting file to the official "FONT" type (via the invokable module discussed 
earlier, or the Pascal System Filer), do so now.  This will save some hassles later.


Can't Tell One Bug from Another Without a 
Program 
Now for a program which will display these characters on the screen and 
accomplish the animation!  We'll use the scroll technique from the last program, 
together with character strings made up of our new character font.

 10   DIM a%(511),char$(3) 
 15   q$=CHR$(34):esc$=CHR$(27):slen=40 
 20   array$="a%":char$(0)=" " 
 25   text40$=CHR$(16)+CHR$(0) 
 30   b$=" ":b2$="  ":b3$="   " 

 35   INVOKE"/BASIC/download.inv" 
 40   INPUT"Name of font file: ";flname$ 
 45   name$=q$+flname$+q$ 
 50   INPUT"Line number to crawl on: ";l 
 55   tc$=CHR$(26)+CHR$(0)+CHR$(l) 

The lines above do the initalization of several arrays and values.  Note that the 
array "a%" is dimensioned to hold an entire character set which "Download.inv" 
will load off disk.  You'll have to change the pathname of "Download.inv" to be 
correct on your own system.  In addition, "text40$" contains the console 
commands to turn on 40 column black and white mode (mode 0), and "tc$" 
contains the cursor addressing command to position the cursor to row 0, line 
"l", using the line number that was input on line 50.  

 60   char$(1)=CHR$(148):char$(2)=CHR$(149):char$(3)=CHR$(150) 
 65   m$=".23...123.1223..13.123.3.23...123.1223.." 

218



 70   FOR i=1 TO 40:SUB$(m$,i,1)=char$(VAL(MID$(m$,i,1))):NEXT i 
 75   char$(1)=CHR$(151):char$(2)=CHR$(152):char$(3)=CHR$(153) 
 80   n$=".23...123.1223..13.123.3.23...123.1223.." 
 85   FOR i=1 TO 40:SUB$(n$,i,1)=char$(VAL(MID$(n$,i,1))):NEXT i 

Lines 60 through 85 look complicated, but they are simply the instructions on 
how to set up the strings to be scrolled across the screen.  First, line 60 creates 
values in the "char$" array which correspond to the pieces of our first "bug".  
Then the "m$" string in line 65 tells what piece to put in what position.  This 
allows us to create bugs which consist of a head only, a head and a tail, a head, 
body and tail, or any combination our imagination permits. The periods (".") in 
between the numbers are simply placeholders, which have a value of 0.  
Remember that we assigned a space to "char$(0)".  Line 70 reads the values in 
"m$", one character at a time, and substitutes the appropriate value from the 
"char$" array.  Then lines 75-85 do the same thing for a second string, "n$" 
which will contain the shifted versions of our bugs.  Although we kept the bug 
structures the same in m$ and n$, nothing prevents us from redefining even the 
length of the shapes from one string to the next.  This would allow bugs like 
caterpillars, which move by shortening and lengthening their bodies!  

 90   PERFORM getfont(@name$,@array$) 
 95   PRINT text40$;:HOME 
 100   PERFORM loadfont(@array$) 
 105   PRINT CHR$(21);"1"; 

Lines 90 through 105 get the font specified earlier, set up the screen mode, load 
the font into the standard character set, and turn off all screen options except 
advance, allowing us to write to the screen without interference from scrolling, 
etc.


NOTE:  If you used the font editor from the last issue, or some other font editing 
technique, and cannot change the saved file as an "official" system type "FONT" 
(as shown by the CATalog listing), you must make some modifications to what's 
been described so far.  The changes are:

35   INVOKE "/BASIC/download.inv","/BASIC/request.inv" 
90   OPEN#1,name$:PERFORM filread(%1,@array$,%1024,@ret%) 
92   IF ret%<>1024 THEN PRINT "Not a font file":GOTO 40 

Remember, make these changes if you use the font editor from the last article 
and cannot change the saved file type to "FONT".  And now, on with the show...

 110   FOR i=0 TO 39 STEP 2 
 115     PRINT tc$;MID$(m$,slen+1-i,i);MID$(m$,1,slen-i) 
 120     GET z$:IF z$=esc$ THEN 200 
 125     PRINT tc$;MID$(n$,slen-i,i+1);MID$(n$,1,slen-i-1) 
 130     GET z$:IF z$=esc$ THEN 200 
 135     NEXT i 
 140   GOTO 110 

219



Lines 110-140 are the main scrolling loop.  As you can see, it looks basicly (heh-
heh) like the lines in the last program, with several important differences.  Since 
we have two strings to print, we cut the number of interations in half, and adjust 
the subscripts in each MID$ function to print successive strings in the sequence.  
We still use the GET statement to pause between each change, but now it 
permits us to see the animation as it progresses.  Again, holding down any key 
will permit smooth scrolling and motion as the little creatures open and shut 
their mouths, move their legs and wag their tails.

 200   PRINT CHR$(21);"="; 
 205   PRINT CHR$(22);CHR$(14); 
 210   TEXT:HOME 
 215   name$=q$+"/BASIC/standard"+q$ 
 220   PERFORM getfont(@name$,@array$):PERFORM loadfont(@array$) 
 225   PRINT CHR$(15); 
 230   END 

Lines 200-230 perform cleanup, but in this case there's more to clean up than 
before.  After setting console options back to normal (line 200), line 205 shuts off 
the screen while the cleanup is being done.  The CHR$(22) is there to syncronize 
shutting off the screen with vertical blanking, to avoid funny flashes on the 
screen.  Line 210 restores the 80 column screen and clears it to blanks, and then 
lines 215 to 225 restore the standard character set and turn the screen back on.  
You should change the pathname to the name of the character set you normally 
use.


Well, that wraps up the example program.  When you run it, the creepy creatures 
should crawl across the screen at your command.  Its fun to elaborate on this 
program, by editing more complex characters, or creating more versions of them 
to get smoother animation.  In fact, the "Running Horse" demo on the System 
Demo disk was done somewhat in this way.


Business BASIC Gets a Little Gamey 
By now we've covered all the essentials necessary for you to quickly follow the 
discussion of the "arcade" type game below.  Basically, we're going to take our 
scrolling creatures and make them targets in a shooting gallery ("Oh, no" you 
cry, "not our poor creatures!").  To be a little fairer, we'll put some moving 
obstacles between the shooter and the creatures, and deduct points when the 
bullets hit the obstacles.  Both the creatures and the obstacles will be moving 
using the techniques from the previous program.  In addition, every good game 
needs some sound effects.  We'll use the ".audio" driver to make some tones to 
liven up the game.  With that said, lets look at the game:

 5   DIM a%(511),dq$(39),eq$(39),fq$(39),lin$(3),blk$(3),j(255),pnts(4) 
 10   DIM m(40),char$(3),beep$(3) 

220



 15   INVOKE".d3/download.inv" 

 17   OPEN#1,".audio" 
 20   bell$=CHR$(7):bp$=CHR$(128)+CHR$(63):ep$=CHR$(1)+CHR$(0) 
 22   beep$(0)=bp$+CHR$(7)+CHR$(4)+ep$:beep$(1)=bp$+CHR$(8)+CHR$(6)+ep$ 
 23   beep$(2)=bp$+CHR$(18)+CHR$(5)+ep$:beep$(3)=bp$
+CHR$(197)+CHR$(6)+ep$ 

These lines set up the arrays to be used and create the tones which will indicate 
different kinds of hits.  To understand lines 20 through 23 better, you should read 
the section of the Standard Device Drivers Manual on the programs.  

 25   q$=CHR$(34):array$="a%":b$=" ":b2$="  ":b3$="   ":char$(0)=" " 
 30   fg$=CHR$(19):bg$=CHR$(20):slen=40:na$=CHR$(21)+"0": 
av$=CHR$(21)+"1" 
 35   orange$=CHR$(9):green$=CHR$(12):mblue$=CHR$(6):white$=CHR$(15) 
 40   og$=fg$+orange$+bg$+green$:bw$=fg$+mblue$+bg$+white$ 
 45   text40$=CHR$(16)+CHR$(1):t$=CHR$(26):t1$=t$+CHR$(0):bu$=CHR$(11) 
 50   tc$=t1$+CHR$(4):t2$=t1$+CHR$(6):t3$=t1$+CHR$(8) 
 55   t5$=t$+CHR$(8)+CHR$(23):t7$=t$+CHR$(35)+CHR$(23) 

Lines 25-55 set up more constants for the program, especially the values for 
various foreground-background color combinations.  This time we'll be using the 
40 column color-on-color mode for more visual excitement.  If you have a black 
and white (or black and green), the result will be shades of gray (or green).  The 
strings "tc$", "t2$", "t3$", "t5$" and "t7$" will be used later on to position 
various other strings on the screen.  

 60   l$="|"+bu$:l4$=l$+l$+l$+l$:l12$=l4$+l4$+l4$ 
 65   e$=" "+bu$:e4$=e$+e$+e$+e$:e12$=e4$+e4$+e4$ 
 70   lin$(0)=na$+l12$+l4$+"*":lin$(1)=na$+l12$:lin$(2)=na$+l12$+l$+l$: 
      lin$(3)=lin$(1) 
 75   blk$(0)=e12$+e4$+av$:blk$(1)=e12$+av$:blk$(2)=e12$+e$+e$+av$: 
      blk$(3)=blk$(1) 
 80   j(32)=1:j(8)=2:j(21)=3:j(13)=4:j(141)=5:j(27)=6 

Lines 60-80 set up additional variables and strings needed for the program. In 
particular, the "lin$" array contains various versions of the characters used to 
represent firing of a shot at the creatures.  It is made up of sets of vertical bars 
(the "|" character) combined with the vertical tab character contained in the 
"bu$" string.  Vertical tab is used because the shot is fired from the bottom of 
the screen toward the top.  Each string in the array is prefixed by the "na$" 
string, containing the screen control codes to turn off "character advance".  This 
comes in handy in printing vertically, since it is only necessary to go up after 
printing, not back up and then go up as would be true if "advance" was on.  
Anything that reduces the number of characters printed on the screen speeds 
up the action.  Notice also that "lin$(0)" has an asterisk as the last character.  

221



This represents a burst as the shot goes through the barrier and explodes.  By 
adding some extra characters, you could make the line and the burst different 
colors.  Line 75 defines "blk$", which erases a shot right after it's fired.  This 
gives the impression of a quick blast from the gunner.  Notice that "av$" is 
added to the end of each occurrence of "blk$" to turn advance back on.


Line 80 sets up the values for the routine that decodes keystrokes and decides 
what to do.  More on that later.

 90   e$="==        ==     ===  ==       === =  ==" 
 95   f$="  ===     == =     == ===     ==     ===" 
 100   FOR x1=0 TO 39 STEP 2: 
       dq$(x1/2)=MID$(e$,slen+1-x1,x1)+MID$(e$,1,slen-x1): 
       eq$(x1/2)=MID$(e$,slen-x1,x1+1)+MID$(e$,1,slen-x1-1):NEXT 
 105   FOR x1=20 TO 39:j=x1-20:dq$(x1)=dq$(j):eq$(x1)=eq$(j):NEXT 
 110   FOR x1=0 TO 39:fq$(x1)=MID$(f$,x1+1,slen-x1)+MID$(f$,1,x1):NEXT 

Lines 90 through 110 set up the scrolling barriers mentioned above.   "E$" and 
"f$" can be any arrangement you like, but be sure to make them exactly 40 
characters long.  Notice that instead of waiting and performing the MID$ 
functions when the string is actually printed on the screen, they are done in this 
loop and the results stored in string arrays to be printed later.  Since these 
strings won't change, this becomes a more efficient, and therefore faster, way to 
handle them.  Line 110 handles this in a straight-forward way, but lines 100 and 
105 create "dq$" and "eq$" in a more confusing way. Basically, the process is 
this: "dq$" and "eq$" contain every other occurance of "e$", the string to be 
scrolled.  By printing them both successively, along with one occurance of "fq$" 
the result will be that the first set of barriers will appear to scroll twice as fast as 
the first.  Try this out in a simpler program if it's hard to follow.   

 140   GOSUB 700:REM get font 
 150   hr=20:points=0:hits=0 
 160   pnts(1)=0:pnts(2)=0:pnts(3)=0:hit=0 
 170   pnts(1)=pnts(1)+4:pnts(2)=pnts(2)+2:pnts(3)=pnts(3)+6:hit=hit+5 
 175   t4$=CHR$(26)+CHR$(hr-2)+CHR$(21):t6$=CHR$(26)+CHR$(hr-1)+CHR$(20) 
 180   GOSUB 800:REM load up the bugs   
 185   GOSUB 600:REM set up screen  

Lines 140-185 do the last of the setup and perpare to play the game (at last! at 
last!).  We'll discuss the subroutines in a minute.  First, note that line 150 defines 
the initial position of the gunner, "hr=20".  "Hr" will contain the horizontal 
position of the gunner at all times.  Points scored and number of hits are also set 
to zero. Line 160 clears the point value array, and sets the value of a hit to zero, 
and line 170 increments them by a standard amount. This allows us to up the 
points values in each round, or start over, by going to lines 150, 160 or 170.  The 
values in the "pnts" array are to be subtracted for hitting various combinations 
of barriers, and "hit" is a multiplier for scoring a hit on various parts of a 

222



creature.  "T4$" contains the position of the gunner, and "t6$" is the position 
from which the firing of "lin$" takes place.


Now we're ready to look at the additional setup subroutines.  The first, at line 
700, loads the font of our choice.  It looks very similar to the routine from last 
time:

 700   INPUT"Name of font file: ";flname$ 
 705   name$=q$+flname$+q$ 
 710   PERFORM getfont(@name$,@array$) 
 715   RETURN 

Again, if you can't change your edited font files to type FONT, make the changes 
in this routine which were suggested in the last program.


The routine at line 800 is used to set up the "bug" character strings.  It is derived 
from the last program and looks like this:

 800   temp$=".12...123.1234..12.123.1.12...123.1234.." 
 805   char$(1)=CHR$(148):char$(2)=CHR$(149):char$(3)=CHR$(150) 
 810   m$(0)=".23...123.1223..13.123.3.23...123.1223.." 
 820   FOR i=1 TO 40:SUB$(m$(0),i,1)=char$(VAL(MID$(m$(0),i,1))):NEXT i 
 830   char$(1)=CHR$(151):char$(2)=CHR$(152):char$(3)=CHR$(153) 
 840   m$(1)=".23...123.1223..13.123.3.23...123.1223.." 
 850   FOR i=1 TO 40:SUB$(m$(1),i,1)=char$(VAL(MID$(m$(1),i,1))):NEXT i 
 855   FOR i=1 TO 40:m(i)=VAL(MID$(temp$,i,1)):NEXT i 
 860   RETURN 

The only real difference here is in line 800 and 855.  These lines combine to 
create the array "m", which is used to score hits and quickly decide how long an 
individual creature is.  The game uses the principle that if you hit a creature, you 
destroy everything from the point of impact back, but whatever's left in front of 
the hit keeps going.  We'll see exactly how this is done later. 


The last setup routine creates the screen and playing area.  

 600   PRINT CHR$(14); 
 605   PRINT text40$;bw$;:HOME 
 610   PERFORM loadfont(@array$) 
 615   PRINT av$;:REM turn everything off but advance  
 630   PRINT og$;:PRINT USING"40c";b$ 
 635   PRINT USING"40c";"Bug-Mania":PRINT USING"40c";b$ 
 645   VPOS=23:PRINT USING"40c";b$:PRINT USING"40c";b$ 
 650   PRINT"  Score:";:HPOS=31:PRINT"Hits:"; 
 655   PRINT t5$;points;"    ";t7$;hits; 
 660   PRINT bw$;t4$;" X "; 
 665   PRINT CHR$(15); 
 670   RETURN 

223



First the screen is turned off, so the setup can be completed quickly and without 
being seen.  Then 40 column color mode (blue on white) is chosen and the 
screen is cleared to white (line 605).  The font is then loaded as the standard 
character set, and various parts of the screen are filled in using orange on green 
color text.  Then line 660 turns blue on white mode back on, and an "X" is 
printed at the current location of the gunner.  If you want, you can edit the "X" 
character to any shape you like.  Then the screen is turned back on in line 665 
and the game is ready to play.


Getting Underway in Bugland 
All the proceeding gets us ready for the actual playing proceedures.  To make 
the game fun, we want to have scrolling and motion taking place all at once. As 
we have seen in previous articles, the best way to tackle that is the "ON KBD" 
capability, where the Apple III can be doing something but still respond when a 
key is pressed.

 190   ON KBD GOTO 300 

 200   FOR i=0 TO 39:c=(i/2=INT(i/2)): 
       g=(MID$(fq$(i),hr,1)<>b$)+(MID$(eq$(i),hr,1)<>b$)*2: 
       PRINT tc$;MID$(m$(c),slen+1-i,i);MID$(m$(c),1,slen-i); 
       t2$;dq$(i);t3$;fq$(i);t2$;eq$(i):NEXT:GOTO 200 

Line 190 sets up an "ON KBD" jump to 300 when a key is pressed.  In the 
meantime, line 200 is continously executed.  This is a complicated routine, so 
let's look at each part of the line.  First, the scrolling loop is set up as before.  
Then a value for "c" is calculated.  "C" will be 0 if "i" is odd, 1 if "i" is even.  This 
allows us to choose which version of the creatures we will display on this round.  
Then "g" is calculated.  "G" is a number which indicated what the state of the 
barriers is.  When you analyse the complicated logical expression, you will find 
that "g" is 0 if both "fq$" and "eq$" are blank at the current location of "hr" (the 
gunner's position).  This would indicate that the barriers are open at that spot.  
"G" is equal to 1 if the bottom barrier ("fq$") is closed, and 2 if the top barrier 
("eq$") is closed. If both barriers are closed, then "g" is 3.  This will affect 
scoring, as we'll see later.  Note that we really only need to calculate "g" when a 
shot is taken, but we've got time to waste in this loop, and we will need every 
millisecond when a shot is actually fired to avoid slowing down the game.


Next the appropriate version of the creature string is printed, and then the 
barrier strings are printed.  Notice that printing "dq$", "fq$" and "eq$" in that 
order has the effect of scrolling the top barrier twice as fast as the creatures, in 
the same direction, and scrolling the bottom barrier at the same speed, except, 
because of the way "fq$" was created, it appears to scroll backwards.  After 
scrolling through the entire "m$" array, the routine goes back and starts over 
endlessly, until a key is pressed.


224



Which brings us the the "ON KBD" routine at line 300:

 300   OFF KBD:z= KBD 
 305   ON j(z) GOTO 400,330,340,150,170,500 
 310   ON KBD GOTO 300 
 315   RETURN 

First we turn off the keyboard interrupt, and assign "z" the ASCII value of the 
character that was typed.  This is used in line 305 to determine which 
processing routine to jump to.  Check the definition of the "j" array in line 80 for 
more information about what is happening.  This technique of branching is very 
wasteful of space (the "j" array takes up 1K of memory), but is extremely fast, 
which is what we need in processing these keystrokes.  Cross referencing line 
80 tells us that the jump to line 400 happens if z=32 (space bar).  This is the 
firing signal.  Lines 330 and 340 process right and left arrow keys (ASCII 8 and 
21), respectively, which are used to move the gunner around.  A RETURN (ASCII 
13) jumps back to line 150 to begin a new game, and an "Open-Apple" RETURN 
(ASCII 141) restarts with doubled point and penalty values.  Finally, an Escape 
(ASCII 27) jumps to 500 and ends the game. Looking at these individual routines 
will end our discussion of this game and get us down to playing it.  Let's go: 

 330   hr=hr-(hr>2):GOTO 350 
 340   hr=hr+(hr<39) 
 350   SUB$(t4$,2,1)=CHR$(hr-2):SUB$(t6$,2,1)=CHR$(hr-1):PRINT t4$;" X " 
 360   ON KBD GOTO 300 
 370   RETURN 

This simply resets the value of "hr" after being sure that "hr" is not already at the 
left or right edge.  You could reduce these values to restrict the gunner to a 
certain section of the screen.  Line 350 changes the values of "t4$" and "t6$" to 
represent the new value of "hr" and reprints the gunner with spaces on each 
side.  Printing the spaces erases the previous image of the gunner in the old 
position, no matter which way he moved.  Then the ON KBD statement is re-
activated, and the routine returns the the loop at 200.

 400   IF i=40 THEN 460 
 405   PRINT t6$;lin$(g);t6$;blk$(g) 
 410   IF g THEN points=points-pnts(g):PRINT#1;beep$(g):GOTO 450 
 415   ch=slen*(i>hr)+hr-i 
 420   IF NOT m(ch) THEN PRINT#1;beep$(g):GOTO 450:ELSE:PRINT bell$; 
 425   FOR j=ch TO ch-m(ch)+1 STEP-1:IF m(j) THEN 
points=points+m(j)*hit:m(j)=0:NEXT 
 430   SUB$(m$(0),j+1,ch-j)="    ":SUB$(m$(1),j+1,ch-j)="    
":hits=hits+1 
 450   PRINT og$;t5$;points;"    ";t7$;hits;bw$ 
 460   ON KBD GOTO 300 
 470   RETURN 

225



Lines 400-470 are the firing subroutine, and this is where all the action takes 
place.  First, a check is made to see if the keystroke happened during the loop 
exit and restart time.  If so, a return is made with no action taken. This rarely 
happens, but must be provided for.  Next, the gun is fired, by printing "lin$" and 
"blk$" at the current gunner location.  Then "g" is checked to see if the bullet 
struck a barrier.  If so, the appropriate number of points is deducted, and a tone 
is sounded with pitch corresponding to which barrier was struck.  Then a jump 
is done to 450 to print the new point values and return.


If g=0, then the bullet made it through the barriers and a check is made in line 
415 and 420 to see if anything was hit.  If the "m" array contains 0 at that point, 
then the shot was a miss, the appropriate tone is sounded, and a return is made.  
If "m" is not zero, then a machine "bell" is sounded (note that a "BELL" 
character sounds without slowing down the program like a tone does).  Line 425 
then backs up along the string adding up points and zeroing out the "m" array.  
Line 430 blanks out the appropriate parts of the "m$" strings and bumps the hit 
count.  With the strings changed, the next printing of "m$" will erase the bug 
from the point of the hit backwards.  Line 450 then prints the new score and play 
resumes.


Notice that the major work of the game is done in this routine.  Anything which 
makes this routine simpler or faster has the effect of speeding up play, and 
making the game more fun.


This finally brings us to the last routine, which ends the game:

 500   PRINT CHR$(21);"=" 
 505   PRINT CHR$(22);CHR$(14); 
 510   TEXT:HOME 
 515   nam$=q$+"/BASIC/standard"+q$ 
 520   PERFORM getfont(@nam$,@array$):PERFORM loadfont(@array$) 
 525   PRINT CHR$(15); 
 530   CLOSE:INVOKE 
 540   END 

This is essentially identical to the routine used in the previous program, and 
won't be elaborated on.


A Game a Day keeps Pac-man Away 
Sure, this game won't save you many quarters if you're an Arcade freak, and it's 
not exactly going to drive Bill Budge out of business, but hopefully the 
techniques will prove useful, and prove something else as well.  You don't need 
assembly language to get reasonable performance out of the Apple III, even in 
the realm of programming generally thought to absolutely require it, games.  If 
you're careful, use clever techniques, and remember that you can trade off 
memory space for tables, etc. for additional speed, then you can create some 

226



interesting things.  There is certainly a lot you can do to make this month's game 
more interesting too.  Try to figure out how to have the "heads" dive down 
through the barrier and attack the gunner when their bodies have been shot 
away.  You might also try to speed up the scrolling by just printing one third of 
the gun blast at a time, with scrolling in between, and then figure the hit out at 
the end of the process.  This would look more natural, and require the gunner to 
"lead" the target, quite a challenge.  You can also change the scoring rules to 
your liking, and of course, completely redefine the barriers and bug shapes.  
Have fun!


Next month we'll add one important capability to this game, that of smooth 
scrolling with the character download capability.  That's the real way the "Horse 
Demo" works.  In addition, we'll start our exploration of how these techniques, 
and some brand new ones not possible in "text" mode, can be implemented on 
the high-resolution graphics screen.  Until then, blaze away!


227



228



Exploring Business Basic, Part XIX 
Here's hoping all of you got a chance to see the March article in this series, 
'cause there's going to be lots of information in this month's missive which will 
build on that exploration of character graphics and the associated game which 
was dubbed "Bug-Mania".  As was said last time, Business Basic wasn't exactly 
designed for games (the name is one clue!), but with careful design, reasonably 
performing graphics is possible, and that has a lot of business applications.  In 
fact, the concept of redefining characters to new shapes can add tremendously 
to the effectiveness and readablity of your screen displays. For proof of this 
statement, take a look at Apple's Mail List Manager program some time.  
Special character sets in that program make it one of the best appearing and 
easiest to use applications on the Apple III.


But First, A Word from our Sponsors 
The mailbag this month brought a couple of items of general interest.  First, the 
question came up as to why Business Basic does not allow programs larger 
than 64K bytes.  That is, the BASIC program statements cannot total more than 
64K, excluding variable and array space, etc.  This question rarely comes up, 
because 64K is enough space for over 3000 program lines, which is a very 
impractical size for a single program.  One of these articles someday will cover 
all the tricks you can do with the "CHAIN" statement to break your program up 
into logical segments.  But, the question deserves an answer, and in doing so, 
we'll note some other limits of Business Basic as well.


One of the reasons that limits like 64K keep coming up relates to the fact that a 
16 bit pointer can store all the possible addresses in a 64K address space 
(2^15-1=65535).  The Apple III can address more than 64K because it uses 
"extended indirect addressing", which makes use of "3-byte", 24 bit pointers. 3-
byte pointers take up more space, however, and therefore are only used when it 
makes sense.  The designers of Business Basic built in several such limits to 
save space and improve performance.  For example, you are only allowed to 
have 64K of string variable space and 64K of simple numeric variable space. 
You are allowed as many numeric arrays as will fit, but each one must be no 
more than 64K.  These may sound like limits, but remember, most personal 
computer Basics have an absolute limit of 64K of total space, program, data, the 
works.  Ask your friends with an IBM PC what they get when they type FRE - 
right, about 61K no matter how much memory (above 128K) is actually installed!


It would be remiss to not note another, though more esoteric reason for the 
program size limit.  Since Business Basic saves and loads programs with a 
single SOS call, and SOS has a 64K limit on the total number of bytes in a single 

229



read or write, it would be impossible to use such a program, even if it could be 
written.  So now you know.


The other question is one for which this columnist has no ready answer, so your 
comments are solicited.  It concerns supporting the Qume letter quality printer 
as a graphics output device.  The Apple III Business Graphics package supports 
the Qume, producing hi-res screen dumps and other graphic images, but those 
routines are written in Pascal.  If anybody has developed Qume output routines, 
drop a note in care of Softalk and it will be passed along to the inquirer and to 
the rest of you in a later column.


Back to Work 
Last time, as you may remember, we used the fact that the Apple III has a RAM-
based, and therefore modifiable, character set to create some high speed 
animation effects.  These were accomplished by redefining certain characters, 
and then printing them rapidly to the screen, taking advantage of the fact that 
printing to the text screen goes very rapidly, compared to writing to the graphics 
screen.  Since the Apple III has a 16 color text mode, it can be tough to tell 
whether the action is occurring in text mode or graphics, especially if you do a 
lot of work with the character definitions.


There are, however, other ways to accomplish the rapid changing of characters 
on the screen for animation and other purposes.  For example, suppose you 
wanted to change every occurrence of one character shape on the screen to 
another shape.  You could simply re-print the character, and rely on the fact that 
printing in text mode is pretty fast, or you could take advantage of a little-known 
capability of the .Console driver, the partial character download feature.  This is 
a "control" call to the driver (remember our previous sessions about console 
capabilities?), specifically control call 17.  More information about how is works 
in in the Standard Device Drivers manual in the section on the Console driver.  
Basically, it allows you to change up to 8 character definitions "on the fly", and it 
does this very fast.  To give you a feel for how this process works, let's try the 
following program:

 10   DIM a%(511) 
 15   INVOKE"/basic/download.inv","/basic/request.inv" 
 20   q$=CHR$(34):array$="a%" 
 25   text40$=CHR$(16)+CHR$(1) 
 30   INPUT"Name of font file: ";flname$ 
 35   name$=q$+flname$+q$ 
 40   PERFORM getfont(@name$,@array$) 

The lines above set up the array which will hold an alternate character set, 
invoke the necessary modules, and load the font into the "a%" array.  Although 

230



we don't need all these characters, it saves us the trouble of entering the 
definitions manually.  The next section extracts two character definitions:

 45   ltr.a$="":ltr.b$="" 
 50   FOR i=260 TO 263 
 55     lt$=HEX$(a%(i)) 
 60     ltr.a$=ltr.a$+CHR$(TEN(MID$(lt$,1,2)))+CHR$(TEN(MID$(lt$,3,2))) 
 65     NEXT i 
 70   FOR i=264 TO 267 
 75     lt$=HEX$(a%(i)) 
 80     ltr.b$=ltr.b$+CHR$(TEN(MID$(lt$,1,2)))+CHR$(TEN(MID$(lt$,3,2))) 
 85     NEXT i 

The routine above looks a little complicated, but it's really straight-forward.  
Since the SOS Control call mechanism in the "request.inv" invokable module 
uses a string variable as the parameter list, it is necessary to convert the 
contents of the integer array a% into equivalent ASCII characters.  This is done 
in lines 55-60 and 75-80 by first converting the integer into HEX format, and 
then treating the result as a pair of two digit HEX numbers which are converted 
into ASCII characters by the CHR$ function. Notice also that since the integer 
format requires four locations for each character, the locations 260-263 and 
264-267 correspond to upper-case A and B respectively (which probably 
explains the variable names).


Now that "ltr.a$" and "ltr.b$" contain the definitions for the two characters, we'll 
load the font into the character generator, turn on 40 column mode, clear the 
screen, and print several lines of A's and B's on the screen, like this:

  90   PERFORM loadfont(@array$) 
  95   PRINT text40$:HOME 
 100   FOR i=1 TO 10:PRINT"ABABABABABABABABABABAB":NEXT i 

Next, we'll change those characters on the screen by using the partial character 
download that was mention before:

 110   name$=".console" 
 120   ctrlist1$=CHR$(1)+CHR$(65)+ltr.b$ 
 130   ctrlist2$=CHR$(1)+CHR$(65)+ltr.a$ 
 150   PERFORM control(%17,@ctrlist1$)name$ 
 160   GET a$:IF ASC(a$)=27 THEN 500 
 170   PERFORM control(%17,@ctrlist2$)name$ 
 180   GET a$:IF ASC(a$)<>27 THEN 150 

In line 110, we define the name of the device driver to be called, and then lines 
120 and 130 set up the parameter string for the control call.  Notice that the 
format is the number of characters to be loaded, then the character number, 
followed by the character definition.  If you load more than one character, the 
first value changes, and then each character definition in the string is preceeded 

231



with its character number.  In this case, character 65, which is normally an 
upper-case A, is being defined in "ctrlist1$" as a "B" and in "ctrlist2$" as an "A".   
Lines 150-180 do the character switching, with "GET" statements in-between to 
allow you to see what's going on.  By slowly pressing any key, you can watch 
the A's turn to B's and back.  Holding down a fast repeating key will give you an 
idea of just how fast these changes can take place.  Pressing ESCape will allow 
the routine to clean up and end:

 500   REM Restore Screen 
 510   PRINT CHR$(22);CHR$(14) 
 520   TEXT:HOME 
 530   nam$=q$+"/basic/standard"+q$ 
 540   PERFORM getfont(@nam$,@array$):PERFORM loadfont(@array$) 
 550   PRINT CHR$(15); 
 560   END 

Well, there you have it.  The routine above could just as easily change every 
character on the screen to a different definition, since the change is in the 
character generator, not in the screen memory itself.


Some Relevance Rears its Ugly Head 
What, you ask, does this have to do with "Bug-Mania" and character set 
animation?  Good question, and one about to be answered by the next program. 
Remember, just because we changed one letter to another doesn't mean that's 
the only use of the principle.  Last time we looked at redefining characters (we 
used control characters 21 through 26) to make little creatures to populate our 
game.  The character definitions were created by the font editor from a few 
episodes back, or could be created with any font-editing program. The next 
program takes those character definitions and demonstrates how they can be 
used to make our little critters move.  It is similar in structure to the previous 
program, with a more general purpose design, and has some similarities to the 
game program from last time: 

  10   DIM a%(511) 
  20   INVOKE"/basic/download.inv","/basic/request.inv" 
  30   q$=CHR$(34):array$="a%" 
  40   fg$=CHR$(19):bg$=CHR$(20) 
  50   mblue$=CHR$(6):white$=CHR$(15) 
  60   bw$=fg$+mblue$+bg$+white$ 
  70   text40$=CHR$(16)+CHR$(1) 
  80   GOSUB 700:REM get font  
  90   GOSUB 800:REM load up the bugs    
 100   GOSUB 600:REM set up screen   

232



After the initialization in lines 10-70, three subroutines are called to set things up 
for the animation to follow.  They look like this (in order of use):

 700   RESTORE 
 705   head1$="":head2$="":body1$="":body2$="":tail1$="":tail2$="" 
 710   FOR i=1 TO 4 
 715     READ a%,b%,c%,d%,e%,f% 
 720     h1$=HEX$(a%):h2$=HEX$(b%):b1$=HEX$(c%):b2$=HEX$(d%) 
 725     t1$=HEX$(e%):t2$=HEX$(f%) 
 730     head1$=head1$+CHR$(TEN(MID$(h1$,1,2)))+CHR$(TEN(MID$(h1$,3,2))) 
 735     head2$=head2$+CHR$(TEN(MID$(h2$,1,2)))+CHR$(TEN(MID$(h2$,3,2))) 
 740     body1$=body1$+CHR$(TEN(MID$(b1$,1,2)))+CHR$(TEN(MID$(b1$,3,2))) 
 745     body2$=body2$+CHR$(TEN(MID$(b2$,1,2)))+CHR$(TEN(MID$(b2$,3,2))) 
 750     tail1$=tail1$+CHR$(TEN(MID$(t1$,1,2)))+CHR$(TEN(MID$(t1$,3,2))) 
 755     tail2$=tail2$+CHR$(TEN(MID$(t2$,1,2)))+CHR$(TEN(MID$(t2$,3,2))) 
 760     NEXT i 
 765   RETURN 
 780   DATA 7215,7215,14462,14462,0,0   
 785   DATA 32545,31555,27519,22399,1090,580    
 790   DATA 838,16156,32546,32546,16932,26640  
 795   DATA 15360,0,8806,4369,6144,0   

The routine above uses some of the techniques from the last program defining 
the characters, except that this time we are reading the font definition from the 
data statements in lines 780-795.  These numbers may look like gibberish, but, 
in the immortal words of many a programmer, "trust me".  These values define 
our tiny creature's head, body and tail, and were, in fact, extracted from a font 
created by the font editor from Article 17.  In the event you have a working 
version of that editor, or a similar one which produces system font files,  you 
could use the "Bug-mania" font from Article 18, substituting the following lines 
for lines 700-795 above:

 700   INPUT"Name of font file: ";flname$ 
 702   name$=q$+flname$+q$ 
 714   PERFORM getfont(@name$,@array$) 
 716   head1$="":head2$="":body1$="":body2$="":tail1$="":tail2$="" 
 718   FOR i=92 TO 95 
 720     hd$=HEX$(a%(i)) 
 722     head1$=head1$+CHR$(TEN(MID$(hd$,1,2)))+CHR$(TEN(MID$(hd$,3,2))) 
 724     NEXT i 
 726   FOR i=104 TO 107 
 728     hd$=HEX$(a%(i)) 
 730     head2$=head2$+CHR$(TEN(MID$(hd$,1,2)))+CHR$(TEN(MID$(hd$,3,2))) 
 732     NEXT i 
 734   FOR i=88 TO 91 
 736     bd$=HEX$(a%(i)) 

233



 738     body1$=body1$+CHR$(TEN(MID$(bd$,1,2)))+CHR$(TEN(MID$(bd$,3,2))) 
 740     NEXT i 
 742   FOR i=100 TO 103 
 744     bd$=HEX$(a%(i)) 
 746     body2$=body2$+CHR$(TEN(MID$(bd$,1,2)))+CHR$(TEN(MID$(bd$,3,2))) 
 748   FOR i=84 TO 87 
 750     tl$=HEX$(a%(i)) 
 752     tail1$=tail1$+CHR$(TEN(MID$(tl$,1,2)))+CHR$(TEN(MID$(tl$,3,2))) 
 754     NEXT i 
 756   FOR i=96 TO 99 
 758     tl$=HEX$(a%(i)) 
 760     tail2$=tail2$+CHR$(TEN(MID$(tl$,1,2)))+CHR$(TEN(MID$(tl$,3,2))) 
 762     NEXT i 
 764   RETURN 

That seems like a lot of repeating, and it is, mostly for clarity.  As set up, the 
lines above will extract the characters from last month's game set, if you have 
defined that font.  By changing the parameters on the FOR-NEXT loops, and in 
the build routine below, you could use any set of characters from any font. To 
simplify the screen display, and to show how powerful the character download 
capability is, we'll build strings of creature characters to populate the screen:

 800   char$(0)="":char$(1)=CHR$(149):char$(2)=CHR$(150): 
char$(3)=CHR$(151) 
 810   m$=".23...123.1223..13.123.3.23...123.1223.." 
 820   FOR i=1 TO 40:SUB$(m$,i,1)=char$(VAL(MID$(m$,i,1))):NEXT i 
 830   RETURN 

The routine above uses a technique borrowed from last article to create "m$" 
with the appropriate characters for the head, body and tail of the creatures. 
Notice that character values greater than 127 are used in order to map into the 
printable control character space.  Characters 149-151 correspond to 21-23 in 
the standard ASCII set and are the same as used in last month's game.


Now on to the subroutine at 600, which sets up the screen and prints lots of 
bug-filled strings:

 600   PRINT text40$;bw$;:HOME 
 610   PERFORM loadfont(@array$) 
 620   FOR i=1 TO 11 
 630     PRINT m$ 
 640     NEXT i 
 650   RETURN 

Now that the setup is done, it's on with the show:


  

 110   name$=".console" 

234



 120   ctrlist1$=CHR$(3)+CHR$(23)+head1$+CHR$(22)+body1$+CHR$(21)+tail1$ 
 130   ctrlist2$=CHR$(3)+CHR$(23)+head2$+CHR$(22)+body2$+CHR$(21)+tail2$ 
 140   ON KBD GOTO 200 
 150   PERFORM control(%17,@ctrlist1$)name$:FOR i=1 TO 10*pause:NEXT 
 160   PERFORM control(%17,@ctrlist2$)name$:FOR i=1 TO 10*pause:NEXT 
 170   GOTO 150 

This section is also similar to the last program, except this time we load three 
characters at a time.  Also, instead of requesting input between each character 
switch to slow the display changes down, FOR-NEXT loops are introduced, with 
a variable speed depending on the value of "pause".  Exits and speed changes 
are taken by pressing keys which use the ON KBD routine in line 200:

 200   OFF KBD 
 210   IF KBD=27 THEN 500 
 220   IF KBD>47 AND KBD<58 THEN pause= KBD-48 
 230   ON KBD GOTO 200 
 240   RETURN 

Notice above that if ESCape (ASCII 27) is pressed, a jump is taken to line 500, 
where the program ends.  If a number is pressed, then the pause factor is set to 
that numeric value.  This allows you to see the speeds possible with this 
technique, while the program is running.  Obviously, the routine could do lots of 
other interesting things.  The cleanup routine, very similar to last time, looks like 
this:

 500   PRINT CHR$(21);"=" 
 510   PRINT CHR$(22);CHR$(14); 
 520   TEXT:HOME 
 530   nam$=q$+"/basic/standard"+q$ 
 540   PERFORM getfont(@nam$,@array$):PERFORM loadfont(@array$) 
 550   PRINT CHR$(15); 
 560   END 

The only noticeable change in the routine above is that the 'CHR$(21);"="' in line 
500 sets all console options back to normal.  While this is not necessary in this 
case, it is good practice, and will be required in some later programs.


That's All Fine, but was it Good for You? 
Running the program above (the DATA statement version is recommended for 
starters) will demonstrate that this technique can produce some really fast in-
place animation.  With "pause" equal to zero, the critters will run in place so fast 
that you can hardly see their little legs move.  However, running in place is not 
what we're after.  The really interesting stuff is to use the character redefinition 
capability to produce smooth motion.  Remember in the last article where we 
got animation by printing several different versions of the characters in different 

235



places on the screen?  That looked ok, but it suffered from one fact of life about 
printing characters, that is, there are only a limited number of horizontal 
locations where you can print them.  In the case of the 40 column mode that we 
have been using, the characters appear to jerk from place to place, because 
there are only 40 places to draw them.  But are we doomed to jerky animation?  
Not the MicroKids!


One obvious solution to the dilemma, and one which will be discussed in a 
moment, lies in using the hi-res graphics screen instead of the text screen that 
we have been using.  Since you can draw any character at any dot location on 
the graphics screen, it's just a matter of repositioning and printing. Later on, and 
especially in the next article, we'll see how that can open up a whole new bag of 
tricks, but we're not finished with what text mode graphics can do for us yet.


It Ain't the Mode, it's the Motion 
The text mode character sets are so fast that a whole new possibility exists to 
make motion out of multiple character definitions, and therein lies the solution to 
our dilemma.  If we could create a definition of an object in all the phases of 
moving from one character cell to another, and could download these 
redefinitions rapidly, then the object would appear to move smoothly from one 
cell to another.  Since a character cell is seven dots wide, this implies that to 
create smooth horizontal motion will require seven different definitions of the 
same character, each one moved over one row of pixels into the next character 
cell.  All of which leads us to the following program:

 10   DIM a%(511),ctrlist$(13),head1$(6),head2$(6) 
 20   INVOKE"/basic/download.inv","/basic/request.inv" 
 30   q$=CHR$(34):array$="a%" 
 40   fg$=CHR$(19):bg$=CHR$(20) 
 50   mblue$=CHR$(6):white$=CHR$(15) 
 60   bw$=fg$+mblue$+bg$+white$ 
 70   text40$=CHR$(16)+CHR$(1) 
 80   GOSUB 700:REM get the head definitions 
 90   GOSUB 800:REM load the print line 
 100   GOSUB 600:REM set up screen   

If the program above looks familiar, it should.  With the exception of array 
dimension statements for the seven versions of the head, and the fourteen 
versions of the control list necessary to define the different versions of the head, 
it's the same as in the last program.  As in the description of that program, let's 
take the subroutines in order:

 700   RESTORE 
 710   FOR i=0 TO 6 
 715     head1$(i)="":head2$(i)="" 
 720     FOR j=0 TO 3 

236



 725       READ a%:h$=HEX$(a%) 
 730       head1$(i)=head1$(i)+CHR$(TEN(MID$(h$,1,2)))+CHR$(TEN(MID$
(h$,3,2))) 
 735       NEXT j 
 740     FOR j=0 TO 3 
 745       READ a%:h$=HEX$(a%) 
 750       head2$(i)=head2$(i)+CHR$(TEN(MID$(h$,1,2)))+CHR$(TEN(MID$
(h$,3,2))) 
 755       NEXT j 
 760     NEXT i 
 765   RETURN 
 770   DATA 7215,32545,838,15360,0,0,0,0 
 772   DATA 14430,32322,1548,30720,0,256,1,0 
 774   DATA 28732,31748,3096,28672,1,769,2,256 
 776   DATA 24696,30728,6192,24576,258,1794,4,768 
 778   DATA 16496,28688,12384,16384,773,3844,8,1792 
 780   DATA 96,24608,24640,0,1803,7944,17,3840 
 782   DATA 64,16448,16384,0,3607,16144,291,7680 

The code in 700-765 above looks simpler (certainly shorter) than last program, 
but notice that there is lots more data.  Simply put, each line of data defines two 
adjacent character cells.  If you look back at the data in the previous program, 
you'll notice that the first four elements of line 770 in this program match the 
data in the first column in the other program.  That's because 7215, 32545, 838, 
and 15360 are the four elements of the font definition which make up the 
creature's head.  This is loaded by 720-735 into the first "head1$" definition.  
The next four numbers, all zeros in this case, make up the definition of the 
adjacent cell.  This is logical, since the head starts in the first cell completely, 
with the second cell blank.  The next row of data (line 772) describes what the 
head looks like when it is shifted one dot over in the first cell, and the second 
cell picks up the column of dots from the rightmost column of the first cell.  The 
definition proceeds, each row representing the head shifted over one dot 
column into the adjacent cell. Since there is already a definition for the head 
completely in a cell, there is no need for an eighth definition, we can just switch 
the character definitions around.  More on that later.  Also, as you might have 
guessed, these numbers came from defining the characters with the font editor, 
and then printing out the results.  Changing the program to accomodate font 
editor output directly would be done in a similar way to the alternate subroutine 
in the previous program.


Next, the subroutine at 800-830 builds the character string in a similar fashion to 
last program, with some notable exceptions:

 800   char$(0)=" ":char$(1)=CHR$(128):char$(2)=CHR$(129) 
 810   m$="1212121212121212121212121212121212121212" 
 820   FOR i=1 TO 40:SUB$(m$,i,1)=char$(VAL(MID$(m$,i,1))):NEXT i 

237



 830   RETURN 

Notice that this time we use ASCII 0 and 1 as our characters to redefine 
(converted to 128 and 129 to make them displayable).  We don't need seven 
different characters, that will be handled by successively redefining the two on 
the screen.  Note also that we fill up "m$" completely, because we want smooth 
motion from one side of the screen to the other.


Next comes the routine to put our character strings on the screen.  This time 
we've chosen to fill nearly the whole screen up with characters, to wit:

 600   PRINT text40$;bw$ 
 610   HOME:PRINT:PRINT 
 620   FOR i=1 TO 21 
 630     PRINT m$; 
 640     NEXT i 
 650   RETURN 

Ok, now to make all these little heads pay attention:

 110   name$=".console" 
 115   FOR i=0 TO 6 
 120     ctrlist$(i)=CHR$(2)+CHR$(0)+head1$(i)+CHR$(1)+head2$(i) 
 125     NEXT i 
 130   FOR i=7 TO 13 
 135     ctrlist$(i)=CHR$(2)+CHR$(0)+head2$(i-7)+CHR$(1)+head1$(i-7) 
 140     NEXT i 
 145   ON KBD GOTO 200 
 150   FOR i=0 TO 13:PERFORM control(%17,@ctrlist$(i))name$:NEXT 
 155   GOTO 150 

This time we create a series of control strings for efficiency.  The first seven 
definitions in "ctrlist$" describe how the head moves from character 0 to 
character 1.  The second seven (in lines 130-140) show how the head looks 
moving from 1 to 0.  Recall that since the screen lineup is 010101... that steady 
cycling through the definitions will create the desired motion.  Line 150 and 155 
accomplish this, endlessly repeating the whole sequence.


The ON KBD routine is simpler this time, and just gives us a way out:  

 200   OFF KBD 
 210   IF KBD=27 THEN 500 
 220   ON KBD GOTO 200 
 230   RETURN 

The cleanup routine at 500 is identical to the one in the last program.  Just copy 
it and you'll exit to the normal world properly with the ESC character.


238



At Long Last, Bug 
When you run this, the effect is somewhat amazing.  With a simple Basic 
program, you're creating smooth animation which takes quite a bit of assembly 
language on an Apple ][, IBM PC, etc.  In fact, even the best assembly 
programmers would be hard-pressed to create smooth motion over such a large 
area of the screen.  But wait, you say.  You've seen smooth animation on the 
Apple III before.  What about that running horse demo on the System Demo 
disk? If you haven't seen it, take a moment to run the demo that comes with 
each Apple III and select the "horse" section.  You will see magnificent full color 
animation, that you probably always thought was done on the high-res screen. 
Think again, bucko!  That demo uses the save character set redefinition 
techniques that we've just been discussing.  If you are patient enough, you 
might create the horse by defining all the characters, each a small piece of the 
big puzzle.  By creating multiple definitions of these characters, both in place 
and in motion, you can repeat that display yourself, using the principles in this 
article.


RAMbling Onward 
As you might guess, the paragraph above contains enough suggestions to last a 
lifetime, but since it's only one short month until next month's article, we had 
best move on to the promised treatment of the high-resolution graphics mode.  
As was mentioned previously, smooth motion on the high-res screen is trivial, 
and there's nothing like a trivial program to demonstrate that fact:

 10   INVOKE"/basic/bgraf.inv" 
 15   OPEN#1,".grafix" 
 20   m$=" **  ****  **  ****  *** * ****   ** ***" 
 25   PERFORM initgrafix 
 30   PERFORM grafixmode(%3,%1) 
 35   PERFORM fillcolor(%4):PERFORM pencolor(%13) 
 40   PERFORM fillport 
 45   PERFORM grafixon 
 50   FOR i=0 TO 139 
 55     PERFORM moveto(%i,%180):PRINT#1;m$ 
 60     NEXT i 
 65   GET a$:IF ASC(a$)<>27 THEN 50 
 100   PERFORM release:PERFORM release:PERFORM release 
 105   CLOSE:INVOKE 
 110   TEXT 
 115   END 

239



This just prints the string "m$" starting at each successive location on the high-
res screen, in this case the 140X192 16 color mode.  One or two things should 
be noted here, which will become more important later, especially in the next 
article.  First, notice that we can print off the screen without any apparent 
problem, and without wrapping onto the next line.  Second, notice that the 
display seems to move faster as less and less of the string is actually printed in 
the display area.  Watch this closely, its a clue to what's happening in the 
graphics driver.  Another thing is interesting and it's worth experimenting with.  
Try changing the text character set before opening the ".grafix" driver, using the 
techniques previously described.  This allows you to print special characters like 
the bug's head onto the graphics screen, just as you would any other character.


If positioning was the only virtue of the graphics driver, then it would be not 
nearly as useful as we would want.  The next little program will give a clue to 
some of the graphic's drivers special capabilities, which will be used fully in the 
next exciting episode of this long-winded serial.  Try the following:  

 10   INVOKE"/basic/bgraf.inv" 
 15   OPEN#1,".grafix" 
 20   m$=" **  ****  **  ****  *** * ****   ** *****" 
 25   PERFORM initgrafix 
 30   PERFORM grafixmode(%3,%1) 
 35   PERFORM pencolor(%13) 
 40   PERFORM fillcolor(%4):PERFORM fillport 
 45   PERFORM setctab(%4,%9,%9):PERFORM setctab(%13,%9,%9) 
 50   PERFORM fillcolor(%9) 
 55   PERFORM viewport(%0,%6,%0,%191):PERFORM fillport 
 60   PERFORM viewport(%133,%139,%0,%191):PERFORM fillport 
 65   PERFORM fillcolor(%4) 
 70   PERFORM viewport(%0,%139,%0,%191) 
 75   PERFORM grafixon 
 80   FOR j=7 TO-77 STEP-1 
 85     PERFORM moveto(%j,%180):PRINT#1;m$ 
 90     NEXT j 
 95   GET a$:IF ASC(a$)<>27 THEN 80 
 100   PERFORM release:PERFORM release:PERFORM release 
 105   CLOSE:INVOKE 
 110   TEXT 
 115   END 

Getting Your (Color) Priorities Straight 
Looks pretty much like the last one, right?  Not right.  Notice that our primary 
colors are 4 and 13, the fillcolor and pencolor respectively.  Notice also the color 
priority definition in line 45.  This says that anytime color 4 or color 13 are 

240



printed over color 9 (which is the color of two border strips that are set up at 
each edge of the screen) that the result should remain color 9.  Run the program 
and see how this works.  You should also notice that this time the print string 
runs backwards, not forwards.  The color priority table is a very powerful feature 
of the Apple III graphics driver, one which is exploited very little by 
programmers.  Next time we will work this feature to death, and in the process 
do things which would challenge the best of the high-res jocks on less capable 
machines.  Until then, remember that a pixel a day keeps boredom away, which 
gives you 107,520 days to enjoy your Apple III!

 50   REM 7, 11 and 14 are best background colors 
 100   OPEN#1,".grafix" 
 110   INVOKE"/basic/bgraf.inv" 
 120   
black%=0:blue%=6:orange%=9:green%=12:white%=15:dgreen%=4:brown%=8:grey%=
10:yellow%=13 
 130   PERFORM grafixmode(%3,%1) 
 140   PERFORM initgrafix 
 150   vector(1)=dgreen%:vector(2)=brown%:vector(3)=grey%: 
vector(4)=yellow% 
 160   PERFORM setctab(%dgreen%,%blue%,%blue%) 
 170   PERFORM setctab(%dgreen%,%orange%,%orange%) 
 180   PERFORM setctab(%dgreen%,%green%,%green%) 
 190   PERFORM setctab(%dgreen%,%white%,%white%) 
 200   PERFORM setctab(%brown%,%orange%,%orange%) 
 210   PERFORM setctab(%brown%,%green%,%green%) 
 220   PERFORM setctab(%brown%,%white%,%white%) 
 230   PERFORM setctab(%grey%,%green%,%green%) 
 240   PERFORM setctab(%grey%,%white%,%white%) 
 250   PERFORM setctab(%yellow%,%white%,%white%) 
 255   INPUT"Background color number: ";a$ 
 260   a=VAL(a$):IF a$="" OR a<0 OR a>15 THEN 510 
 265   PERFORM grafixon 
 270   PERFORM fillcolor(%a):PERFORM fillport 
 300   PERFORM viewport(%20,%30,%40,%170):PERFORM 
fillcolor(%black%):PERFORM fillport 
 310   PERFORM viewport(%35,%40,%30,%160):PERFORM 
fillcolor(%blue%):PERFORM fillport 
 320   PERFORM viewport(%52,%65,%40,%170):PERFORM 
fillcolor(%orange%):PERFORM fillport 
 330   PERFORM viewport(%77,%92,%35,%175):PERFORM 
fillcolor(%green%):PERFORM fillport 
 340   PERFORM viewport(%110,%120,%20,%170):PERFORM 
fillcolor(%white%):PERFORM fillport 
 400   PERFORM viewport(%0,%139,%0,%192) 

241



 405   FOR i=1 TO 4 
 410     FOR j=1 TO 10 
 415       horiz=(i-1)*45+j*4 
 420       PERFORM moveto(%140,%horiz) 
 430       PERFORM pencolor(%vector(i)) 
 440       PERFORM lineto(%0,%96) 
 450       NEXT j 
 460     NEXT i 
 500   GET a$:IF ASC(a$)<>27 THEN TEXT:GOTO 255 
 510   TEXT 
 520   INVOKE:CLOSE 
 530   PERFORM release:PERFORM release:PERFORM release 
 540   END 
 1160   PERFORM setctab(%dgreen%,%blue%,%blue%) 
 1170   PERFORM setctab(%dgreen%,%orange%,%orange%) 
 1180   PERFORM setctab(%dgreen%,%green%,%green%) 
 1190   PERFORM setctab(%dgreen%,%white%,%white%) 
 1200   PERFORM setctab(%brown%,%orange%,%orange%) 
 1210   PERFORM setctab(%brown%,%green%,%green%) 
 1220   PERFORM setctab(%brown%,%white%,%white%) 
 1230   PERFORM setctab(%grey%,%green%,%green%) 
 1240   PERFORM setctab(%grey%,%white%,%white%) 
 1250   PERFORM setctab(%yellow%,%white%,%white%) 
 1260   RETURN 

 5   DIM shape%(1,15),x%(127),y%(127) 
 10   INVOKE"/basic/bgraf.inv" 
 15   OPEN#1,".grafix" 
 20   GOSUB 1000 
 25   PERFORM initgrafix 
 30   PERFORM grafixmode(%3,%1) 
 35   PERFORM fillcolor(%4):PERFORM pencolor(%13) 
 40   PERFORM fillport 
 45   PERFORM viewport(%0,%139,%0,%191) 
 50   PERFORM grafixon 
 55   f%=4:s%=16:z%=0 
 60   x%(8)=-3:x%(21)=3:y%(11)=3:y%(10)=-3 
 65   i=70:j=90 
 70   PERFORM moveto(%i,%j) 
 75   IF r%=0 THEN r%=16:ELSE r%=0 
 80   PERFORM drawimage(@shape%(0,0),%f%,%r%,%z%,%s%,%s%) 
 85   GET a$:a=ASC(a$) 

242



 90   IF a<>27 THEN i=i+x%(a):j=j+y%(a):GOTO 70 
 100   PERFORM release:PERFORM release:PERFORM release 
 105   CLOSE:INVOKE 
 110   TEXT 
 115   END 
 1000   FOR j=0 TO 15:FOR i=0 TO 1:READ shape%(i,j):NEXT:NEXT 
 1010   RETURN 
 2000   DATA 0,0  
 2005   DATA 0,0   
 2010   DATA 0,0    
 2015   DATA 0,1984     
 2020   DATA 1984,2080    
 2025   DATA 2080,4752     
 2030   DATA 4752,4112   
 2035   DATA 4112,5008   
 2040   DATA 5008,2080   
 2045   DATA 2080,1984   
 2050   DATA 1984,2336   
 2055   DATA 2976,2720   
 2060   DATA 1344,4752    
 2065   DATA 0,0   
 2070   DATA 0,0    
 2075   DATA 0,0   

 10   DIM mshape%(1,15),zshape%(1,31) 
 15   INVOKE"/basic/bgraf.inv" 
 20   OPEN#1,".grafix" 
 25   GOSUB 1000 
 35   PERFORM initgrafix 
 40   PERFORM grafixmode(%3,%1) 
 45   PERFORM pencolor(%4) 
 50   PERFORM fillcolor(%7):PERFORM fillport 
 55   PERFORM viewport(%40,%100,%15,%130) 
 60   PERFORM fillcolor(%13):PERFORM fillport 
 65   PERFORM grafixon 
 100   s%=16:t%=32:z%=0:f%=4 
 105   FOR k=0 TO 100 
 110     j=COS(k/5+2)*53+88 
 115     l=SIN(k/10)*30+58 
 120     m=SIN(k/10)*70+85 
 125     r%=s%*(r%=z%) 
 130     PERFORM moveto(%k+28,%j) 
 135     PERFORM drawimage(@zshape%(0,0),%f%,%r%,%z%,%s%,%t%) 

243



 140     PERFORM moveto(%k+14,%l) 
 145     PERFORM drawimage(@mshape%(0,0),%f%,%r%,%z%,%s%,%s%) 
 150     PERFORM moveto(%k,%m) 
 155     PERFORM drawimage(@zshape%(0,0),%f%,%r%,%z%,%s%,%t%) 
 160     NEXT k 
 200   GET a$:IF ASC(a$)<>27 THEN 105 
 300   PERFORM release:PERFORM release:PERFORM release 
 310   CLOSE:INVOKE 
 320   TEXT 
 330   END 
 1000   FOR j=0 TO 15:FOR i=0 TO 1:READ mshape%(i,j):NEXT:NEXT 
 1010   FOR j=0 TO 15:FOR i=0 TO 1:zshape%(i,j+8)=mshape%(i,j):NEXT:NEXT 
 1020   RETURN 
 2000   DATA 0,0 
 2005   DATA 0,0 
 2010   DATA 0,0 
 2015   DATA 0,1984 
 2020   DATA 1984,2080 
 2025   DATA 2080,4752 
 2030   DATA 4752,4112 
 2035   DATA 4112,5008 
 2040   DATA 5008,2080 
 2045   DATA 2080,1984 
 2050   DATA 1984,2336 
 2055   DATA 2976,2720 
 2060   DATA 1344,4752 
 2065   DATA 0,0 
 2070   DATA 0,0 
 2075   DATA 0,0 

 10   DIM shape%(7,15),tshape%(7,31) 
 15   INVOKE"/basic/bgraf.inv","/basic/request.inv" 
 20   OPEN#1,".grafix" 
 25   file$="next.shape":GOSUB 1000 
 30   FOR j=0 TO 15:FOR i=0 TO 7:tshape%(i,j+8)=shape%(i,j):NEXT:NEXT 
 35   PERFORM initgrafix 
 40   PERFORM grafixmode(%3,%1) 
 45   PERFORM pencolor(%4) 
 50   PERFORM fillcolor(%7):PERFORM fillport 
 55   PERFORM viewport(%40,%100,%15,%130) 
 60   PERFORM fillcolor(%13):PERFORM fillport 
 65   PERFORM grafixon 

244



 100   s%=16:t%=32:z%=0 
 105   FOR k=0 TO 100 
 110     j=COS(k/5+2)*53+88 
 115     l=SIN(k/10)*30+58 
 120     m=SIN(k/10)*70+85 
 125     r%=t%+s%*(r%=t%) 
 130     PERFORM moveto(%k+28,%j) 
 135     PERFORM drawimage(@tshape%(0,0),%s%,%r%,%z%,%s%,%t%) 
 140     PERFORM moveto(%k+14,%l) 
 145     PERFORM drawimage(@shape%(0,0),%s%,%r%,%z%,%s%,%s%) 
 150     PERFORM moveto(%k,%m) 
 155     PERFORM drawimage(@tshape%(0,0),%s%,%r%,%z%,%s%,%t%) 
 160     NEXT k 
 200   GET a$:IF ASC(a$)<>27 THEN 105 
 300   PERFORM release:PERFORM release:PERFORM release 
 310   CLOSE:INVOKE 
 320   TEXT 
 330   END 
 1000   ON ERR GOTO 1030 
 1010   array$="shape%":OPEN#3,file$ 
 1020   IF TYP(3)=1 THEN READ#3;filtyp,ch,cw,sl:IF filtyp=1 THEN 1070 
 1030   OFF ERR:CLOSE#3 
 1040   IF TYP(3)=0 THEN DELETE file$ 
 1050   error=1:REM Not a shape file   
 1060   RETURN 
 1070   READ#3,1:PERFORM filread(%3,@array$,%256,@ret%):OFF ERR:CLOSE#3 
 1080   IF ret%<>256 THEN error=2:RETURN:REM Shape definition is invalid  
 1090   error=0:RETURN:REM Shape loaded   

245



246



Exploring Business Basic, Part XX 
Greetings, BASIC buffs!  This month's article continues the never-ending (it 
seems that way) saga of graphics capabilities on the Apple III.  It's only fair to 
point out (as several of you have already) that many of the techniques shown in 
this series are useful from any language on the III.   Pascal in particular can 
make SOS calls and communicate to drivers through its own set of proceedures, 
similar to the Business Basic invokables.  In fact, the Pascal equivalent of 
BGRAF is called PGRAF (clever, those Apple programmers!). Since the ideas in 
this series utilize the unique hardware and operating system capabilities of the 
III, rather than just those of Business Basic, you can adapt most of the material 
whether you are working in Pascal, COBOL, FORTRAN or Assembler.


That's about it for "News and Views" this month.  We've got a lot of material to 
go over, and after several months at this, it will be assumed that you are pretty 
familiar with the concepts.  This issue will cover one last technique (oh, no! not 
the Last Technique!) for character graphic animation, and then plunge headlong 
into the Apple III bit-mapped display, most notably the 140X192 sixteen color 
mode.


A Last Issue from Last Time 
As you may remember, one of the major events from last time was the use of the 
"character download" capability of the .console driver to create smooth 
animation by rapid switching of character definitions.  We proved how powerful 
the technique was by smoothly scrolling hundreds of little bug heads from one 
side of the screen to the other.  The question that somewhat naturally came up 
was "How can I move just one head across the screen?".  Curiously enough, its 
a little harder, enough so that its worth showing a program to accomplish it. If 
you read last month's article, you'll notice a fair amount of similarity in structure 
with other programs in that treatise.


The trick last time to moving lots of bug heads smoothly was to print alternating 
sets of character 128 and character 129 across the screen and then download 
definitions of each character which showed the head making a step-by-step 
transition from one character cell to the other.  Since a character cell is seven 
dots wide, it takes eight steps to go from completely in one cell to completely in 
the next one.  By reversing the process for every other cell, the illusion of 
smooth motion is created.  To create the character cell definitions, we used the 
font and shape editor which was described in the February issue (part 17).  
However, in case you missed that issue, or couldn't summon the strength to 
type the whole thing in, the following program uses data statements to define 
the bug head transitions.  Feel free to edit your own head definitions and 
substitute the approriate routine if you want.


247



As was mentioned above, moving a single head across the screen is a little 
trickier than flipping one character definition to the next.  The simplest solution 
is to print a string of characters across the screen, each one a different 
character number, but initially all defined to appear as a  blank. The program can 
then redefine the characters, one at a time, and give the appearance of motion 
across the screen, as each successive character is given the head definition.  
The following program illustrates one way to use this approach to solve the 
problem:

 10   DIM a%(511),ctrlist$(7),head1$(6),head2$(6) 
 20   INVOKE"/basic/download.inv","/basic/request.inv" 
 30   q$=CHR$(34):array$="a%":name$=".console" 
 40   fg$=CHR$(19):bg$=CHR$(20) 
 50   mblue$=CHR$(6):white$=CHR$(15) 
 60   bw$=fg$+mblue$+bg$+white$ 
 70   text40$=CHR$(16)+CHR$(1) 

Line 10 defines various arrays to be used in the program.  'Ctrlist$' contains the 
character redefinitions for downloading to the character generator, and the two 
'head$' arrays contain definitions of the bug head, coming and going. The other 
lines above establish constants which will be used later.


Now, to initialize the data and get ready to scroll, we will use several routines, 
which will be discussed in turn:

  80   GOSUB 700:REM get the head definitions 
  90   GOSUB 800:REM load the print line 
 100   GOSUB 900:REM set up control strings 
 110   GOSUB 600:REM set up screen   

The first routine loads the head definitions, in this case from DATA statements:

 700   RESTORE 
 710   FOR i=0 TO 6 
 715     head1$(i)="":head2$(i)="" 
 720     FOR j=0 TO 3 
 725       READ a%:h$=HEX$(a%) 
 730       head1$(i)=head1$(i)+CHR$(TEN(MID$(h$,1,2)))+CHR$(TEN(MID$
(h$,3,2))) 
 735       NEXT j 
 740     FOR j=0 TO 3 
 745       READ a%:h$=HEX$(a%) 
 750       head2$(i)=head2$(i)+CHR$(TEN(MID$(h$,1,2)))+CHR$(TEN(MID$
(h$,3,2))) 
 755       NEXT j 
 760     NEXT i 
 765   RETURN 

248



 770   DATA  7215,32545,  838,15360,    0,    0,    0,    0 
 772   DATA 14430,32322, 1548,30720,    0,  256,    1,    0 
 774   DATA 28732,31748, 3096,28672,    1,  769,    2,  256 
 776   DATA 24696,30728, 6192,24576,  258, 1794,    4,  768 
 778   DATA 16496,28688,12384,16384,  773, 3844,    8, 1792 
 780   DATA    96,24608,24640,    0, 1803, 7944,   17, 3840 
 782   DATA    64,16448,16384,    0, 3607,16144,  291, 7680 

The routine above is identical to one discussed last time, so you're on your own.  
If you want to use a font editor to create the heads, just load up the 'head$' 
arrays in the same sequence as found in the DATA statements (which are 
arranged as they would appear in an actual font definition).


Next comes the routine to create a print string for the screen, and to redefine all 
the characters in it to blanks:

 800   line$="" 
 810   FOR i=0 TO 31 
 820     line$=line$+CHR$(128+i) 
 830     NEXT i 
 840   cr0$=CHR$(0) 
 850   ctrl$=CHR$(1)+cr0$+cr0$+cr0$+cr0$+cr0$+cr0$+cr0$+cr0$+cr0$ 
 860   FOR i=0 TO 31 
 870     SUB$(ctrl$,2,1)=CHR$(i) 
 880     PERFORM control(%17,@ctrl$)name$ 
 890     NEXT i 
 895   RETURN 

Notice in lines 810-830 that line$ is built containing all the characters from 128 
to 159 which are the displayable versions of character definitions 0 to 31.  We 
could have used more characters, but it is necessary to skip character number 
32 (space) or risk redefining every space character on the screen.  As long as we 
just redefine control characters (0-31), we won't disturb anything important.  Of 
course, with some thought, you can build 'line$' to any reasonable length.


Next comes the routine which defines the character download strings, defining 
the successive versions of the characters:

 900   FOR i=1 TO 6 
 905     ctrlist$(i)=CHR$(2)+CHR$(0)+head1$(i)+CHR$(1)+head2$(i) 
 910     ctrb$(i)=CHR$(1)+CHR$(0)+head2$(i) 
 915     ctre$(i)=CHR$(1)+CHR$(31)+head1$(i) 
 920     NEXT i 
 925   ctrlist$(7)=CHR$(2)+CHR$(0)+head2$(0)+CHR$(1)+head1$(0) 
 930   ctrb$(7)=CHR$(1)+CHR$(0)+head1$(0) 
 935   ctre$(7)=CHR$(1)+CHR$(31)+head2$(0) 
 940   RETURN 

249



Note that in addition to the 'ctrlist$' definitions above, which define the 
transitions of the characters in the middle of the screen, there are two special 
arrays, 'ctrb$' and 'ctre'.  'Ctrb$' is the head definition as it appears onto the 
screen in the leftmost character position, while 'ctre$' is the definition of the 
rightmost character, as it disappears.  


Lastly comes the screen setup routine:

 600   PRINT text40$;bw$ 
 605   PRINT CHR$(21);"9"; 
 610   HOME:PRINT:PRINT 
 620   RETURN 

This just turns on the forty column mode, sets the color to blue on a white 
background, turns off character wrap (line 605), and clears the screen to white.


Now the fun begins:

 120   PRINT line$; 
 150   ON KBD GOTO 200 
 160   FOR i=1 TO 7:PERFORM control(%17,@ctrb$(i))name$:NEXT 
 165   FOR x=0 TO 30:FOR i=1 TO 7 
 170       SUB$(ctrlist$(i),2,1)=CHR$(x):SUB$(ctrlist$(i),11,1)=CHR$
(x+1) 
 175       PERFORM control(%17,@ctrlist$(i))name$ 
 180       NEXT:NEXT 
 185   FOR i=1 TO 7:PERFORM control(%17,@ctre$(i))name$:NEXT 
 190   GOTO 160 

We stated earlier that the animation would occur by successively redefining our 
string of characters.  Line 120 prints the character string on the screen, and line 
150 sets up an ON KBD jump to exit from the scrolling.  Scrolling begins in line 
160 by successively redefining the first character in the string through the seven 
phases required to bring the head fully into the first character position.  Line 
165-180 then set up a major loop to proceed through the characters in 
'line$' (remember that they are now printed on the screen), taking each through 
the seven phase redefinition necessary for the smooth scrolling.  Notice that the 
same 'ctrlist$' definition is used each time, with the appropriate character 
numbers plugged in line 170.  If you are unsure as to how the 'PERFORM 
control' statement works, review last month's article, the section in the Standard 
Device Drivers Manual on .Console control functions, and the 'Request.inv' 
documentation on the Basic disk.


All that remains now of our program is the keyboard service routine at line 200 
and the cleanup and exit routine at line 500, to wit:

 200   OFF KBD 
 210   IF KBD=27 THEN 500 
 220   ON KBD GOTO 200 

250



 230   RETURN 

 500   PRINT CHR$(21);"=" 
 510   PRINT CHR$(22);CHR$(14); 
 520   TEXT:HOME 
 530   nam$=q$+"/basic/standard"+q$ 
 540   PERFORM getfont(@nam$,@array$):PERFORM loadfont(@array$) 
 550   PRINT CHR$(15); 
 560   END 

Well, that's it.  When you run this program, the little creature's head should 
appear on the left side of the screen, move smoothly to the right, and disappear 
somewhere around the 30th character position, only to reappear again on the 
left of the screen.  One thing is noticeable, however.  If you watch closely, the 
head appears to zip onto and off the screen much faster than it chugs across 
the main part of the screen.  This is because the routines at line 160 and line 185 
are much faster than the main routine in lines 165-180. Although the routine can 
be speeded up somewhat, more drastic measures are required to make it 
substantially faster.  The tradeoff, as usual, is memory space for tables.  By pre-
storing the results of the various string substitutions in a large string array, the 
whole sequence can be rewritten as a simple loop.  We will declare a string array 
'zoom$' to accomplish this, with the following changes to the program above: 

 10   DIM a%(511),ctrlist$(7),head1$(6),head2$(6),zoom$(231) 

 160   FOR i=1 TO 231:PERFORM control(%17,@zoom$(i))name$:NEXT 
 165   GOTO 160 

 940   FOR z=1 TO 7:zoom$(z)=ctrb$(z):NEXT 
 945   FOR x=0 TO 30:FOR i=1 TO 7 
 950       SUB$(ctrlist$(i),2,1)=CHR$(x):SUB$(ctrlist$(i),11,1)=CHR$
(x+1) 
 955       zoom$(7*(x+1)+i)=ctrlist$(i) 
 960       NEXT:NEXT 
 965   FOR z=225 TO 231:zoom$(z)=ctre$(z-224):NEXT 
 970   RETURN 

Notice that we have added code in lines 940-970 to put the various string values 
into the 'zoom$' array, and therefore line 160 now performs the entire sequence, 
much faster than before (you can now delete lines 170-190).  The difference in 
speed should be really noticeable.


The uses of this basic idea are practically unlimited.  For example, by splitting 
up the string and printing it in various places on the screen, you can cause the 
head to move around, disappear from one spot, only to re-appear somewhere 
else.  Have fun!


251



Can't Tell One Pixel from Another Without a Bit 
Map 
While the preceding retrospective into character graphics was important to clear 
up some issues, the real purpose of this article was to get heavily involved in the 
graphics modes of the Apple III, called a "bit-mapped" display, since the image 
is created by reading out bits of data from certain areas of memory and 
translating them to dots (pixels) on the display screen. As a reminder, let's look 
at the program we concluded with last time, which gives a hint as to an 
important capability of the Apple III graphics driver, the setting of priorities in the 
'color table'.  Remember that all communication to and from the actual bit-map 
is via the .grafix driver, and the Bgraf.inv routine is used to make the functions of 
the driver easier to perform.  The Bgraf procedure 'setctab' is used to change 
single color entries in the table in a much easier manner than the .grafix driver 
permits directly. Type in the following program, and we'll begin our exploration:

 10   INVOKE"/basic/bgraf.inv" 
 15   OPEN#1,".grafix" 
 20   m$=" **  ****  **  ****  *** * ****   ** *****" 
 25   PERFORM initgrafix 
 30   PERFORM grafixmode(%3,%1) 
 35   PERFORM pencolor(%13) 
 40   PERFORM fillcolor(%4):PERFORM fillport 
 45   PERFORM setctab(%4,%9,%9):PERFORM setctab(%13,%9,%9) 
 50   PERFORM fillcolor(%9) 
 55   PERFORM viewport(%0,%6,%0,%191):PERFORM fillport 
 60   PERFORM viewport(%133,%139,%0,%191):PERFORM fillport 
 65   PERFORM fillcolor(%4) 
 70   PERFORM viewport(%0,%139,%0,%191) 
 75   PERFORM grafixon 
 80   FOR j=7 TO-77 STEP-1 
 85     PERFORM moveto(%j,%180):PRINT#1;m$ 
 90     NEXT j 
 95   GET a$:IF ASC(a$)<>27 THEN 80 
 100   PERFORM release:PERFORM release:PERFORM release 
 105   CLOSE:INVOKE 
 110   TEXT 
 115   END 

Setting your Priorities 
In the little demonstration of color priorities above, we set the primary colors to 
be 4 and 13, the fillcolor and pencolor respectively, in lines 35 and 40, and fill 

252



the screen with color 4 (dark green) .  The color table definition in line 45 says 
that anytime color 4 or color 13 are printed over color 9, the result will remain 
color 9.  Lines 50-65 use the window capability to set up two orange (color 9) 
borders.  Without the changes to the default color table, anything printed in the 
first or last column of the screen would destroy the borders.  A fairly complete 
description of this process can be found in the Device Drivers manual and in the 
Business Basic manual (Volume 2), but running the program is the best way to 
see how this works.  The loop in lines 80-90 makes the print string run 
backwards, one pixel position at a time.  As the string runs off the left side of the 
screen, the priority established in the color table insures that neither the fill or 
pen color will disturb the color 9 bars at the edge of the screen.


This very powerful feature of the Apple III graphics driver is exploited very little 
by programmers, but will be the subject of much of the rest of this article.  One 
comment is important before we proceed, however.  If you don't have a color 
monitor, there is no need for dispair.  The Apple III automatically translates color 
output into sixteen shades of gray (or green) on your monochrome display, and 
the color values in the following examples were arrived at to make sure that they 
would look OK without color.  So, get a good grip on your 'BGRAF.INV' module, 
'cause here we go!


Becoming a Fan of Hi-res Graphics 
The program below illustrates the abilities of the color priority table on a much 
grander scale, and even suggests how the capability can be used to give the 
illusion of depth to an image on the screen.  As explained in the Basic manual 
section on 'SETCTAB', every pixel to be plotted on the screen is first passed 
through the color table, and converted, if necessary, before being actually 
drawn.  The word "priority" is somewhat of a misnomer, actually, since the 
entrys in the table can produce any color as a result of plotting one color over 
another.  Its just as easy to specify that plotting dark green over orange will 
produce white as to say that orange will be unaffected.  In addition, the default 
is what you would expect, that is, the color you plot with is the color you get on 
the screen.  


Without further ado, let's look at the program:

  50   REM 7, 11 and 14 are best background colors 
 100   OPEN#1,".grafix" 
 110   INVOKE"/basic/bgraf.inv" 
 120   black%=0:blue%=6:orange%=9:green%=12:white%=15 
 130   dgreen%=4:brown%=8:grey%=10:yellow%=13 
 140   vector(1)=dgreen%:vector(2)=brown%:vector(3)=grey%: 
vector(4)=yellow% 
 150   PERFORM grafixmode(%3,%1) 
 160   PERFORM initgrafix 

253



 170   GOSUB 1000 

The program opens with the usual initialisation, and defines a number of 
variables as color constants in lines 120-140.  Line 150 sets the graphics mode 
to three, the 140X192 color screen.  This is the unrestricted sixteen color mode, 
which will be used for the rest of this article.  After initializing the graphics 
screen, we set up the changes to the color table in a routine at line 1000:

 1000   PERFORM setctab(%dgreen%,%blue%,%blue%) 
 1010   PERFORM setctab(%dgreen%,%orange%,%orange%) 
 1020   PERFORM setctab(%dgreen%,%green%,%green%) 
 1030   PERFORM setctab(%dgreen%,%white%,%white%) 
 1040   PERFORM setctab(%brown%,%orange%,%orange%) 
 1050   PERFORM setctab(%brown%,%green%,%green%) 
 1060   PERFORM setctab(%brown%,%white%,%white%) 
 1070   PERFORM setctab(%grey%,%green%,%green%) 
 1080   PERFORM setctab(%grey%,%white%,%white%) 
 1090   PERFORM setctab(%yellow%,%white%,%white%) 
 1100   RETURN 

In the case above, we are using the color table to establish priorities for the 
'vector' colors to be drawn.  As you can see, dark green won't affect anything 
but the background, since drawing dark green over blue, orange, green or white 
will have no effect.  Brown, however, will draw over blue, but loses to orange, 
green and white.  Grey draws over blue and orange, but has no effect on green 
and white.  Yellow effects everything but white.  These statements are easy to 
understand, and could be programmed in simple background situations, but 
imagine what it would be like to draw lines or shapes on complex backgrounds!  
Checking on every spot on the screen to see what color is already there would 
be incredibly time-consuming.  Since the color table is built into the .grafix 
driver, using it causes the check to be done at assembly language speeds, 
without having to worry about it.


Oh, well, enough praise for .grafix.  To continue:

 200   INPUT"Background color number: ";a$ 
 210   a=VAL(a$):IF a$="" OR a<0 OR a>15 THEN 510 

To further see the effect of the color table, the program allows you to set the 
overall background color for the screen.  You should choose this carefully, since 
the color table will affect the results of certain choices. Colors 7, 11 and 14 
should give good results.


Next, we'll use the viewport, fillport combinations to create various color bars on 
the screen, after first turning on the screen and clearing to the background color 
you have just chosen:

 220   PERFORM grafixon 
 230   PERFORM fillcolor(%a):PERFORM fillport 

254



 300   PERFORM viewport(%20,%30,%40,%170) 
 310   PERFORM fillcolor(%black%):PERFORM fillport 
 320   PERFORM viewport(%35,%40,%30,%160) 
 330   PERFORM fillcolor(%blue%):PERFORM fillport 
 340   PERFORM viewport(%52,%65,%40,%170) 
 350   PERFORM fillcolor(%orange%):PERFORM fillport 
 360   PERFORM viewport(%77,%92,%35,%175) 
 370   PERFORM fillcolor(%green%):PERFORM fillport 
 380   PERFORM viewport(%110,%120,%20,%170) 
 390   PERFORM fillcolor(%white%):PERFORM fillport 

Note that normally you would set up the screen, and then turn on the display 
(i.e. move statement 220 to after 390).  In this case, its worth looking at how the 
color bars are set up, especially if you use different background colors than 
those suggested.  The lines above could be replaced by some data statements 
and a loop for more compactness, since each set of two statements is identical 
except for parameters, but this way you get a feel for exactly what's going on.  
Next, we draw vectors over our landscape, and observe the color table effects: 

 400   PERFORM viewport(%0,%139,%0,%192) 
 410   FOR i=1 TO 4 
 420     FOR j=1 TO 10 
 430       horiz=(i-1)*45+j*4 
 440       PERFORM moveto(%140,%horiz) 
 450       PERFORM pencolor(%vector(i)) 
 460       PERFORM lineto(%0,%96) 
 470       NEXT j 
 480     NEXT i 
 500   GET a$:IF ASC(a$)<>27 THEN TEXT:GOTO 255 

The routine above sets the viewport to the whole screen, and then uses a 
double loop to draw lines from the point x=0,y=96 (middle of the left side of the 
screen) to various points on the right hand side.  The effect is somewhat like a 
fan, or rays projected from a single source.  Because of the color priorities 
established, the effect is quite dramatic, since the rays appear to go behind 
some objects, and in front of others.  Pressing Escape in line 500 terminates the 
program, like so:

 510   TEXT 
 520   PERFORM release:PERFORM release:PERFORM release 
 530   INVOKE:CLOSE 
 540   END 

Running the program above with various background colors and various 
settings of the color table will allow you to experiment with the SETCTAB 
proceedure enough to get to know its capabilities.  You might try setting 

255



different result colors, for example, setting some to the background color, and 
observing the effects.


The Bugs are Back 
Although the program listed above is interesting, even dramatic in its own way, 
you're paying to see the creatures from space, right?  So let's bring on the bugs!  
Actually, it is useful to look at a combining of the techniques which we have 
already discussed with the new capabilities of the bit-mapped graphics display.  
The following program introduces a new creature, somewhat larger than his 
character graphics ancestors, which was originally created using the Shape 
Editor from the February issue.  We will use this new kind of "bug" (which really 
resembles a squid), to begin our discussion of animation on the hi-res screen.  
The program below defines the creature, and lets us move him (ugly creatures 
are always male) around on the screen.  We begin with the usual declarations:

  5   DIM mshape%(1,15),x%(255),y%(255) 
 10   INVOKE"/basic/bgraf.inv" 
 15   OPEN#1,".grafix" 
 20   GOSUB 1000 

Mshape% in line 5 is the array which will contain the creature's shape definition, 
in two parts.  The first part (column) will show the tenacles extended, the second 
column defines the tenacles retracted.  This allows simple animation, along with 
movement.  The x% and y% arrays will be covered in a minute.  After invoking 
the 'bgraf.inv' module, we gosub to line 1000 for the shape definition, like so:

 1000   RESTORE 
 1010   FOR j=0 TO 15:FOR i=0 TO 1:READ mshape%(i,j):NEXT:NEXT 
 1020   RETURN 
 2000   DATA    0,   0  
 2005   DATA    0,   0   
 2010   DATA    0,   0    
 2015   DATA    0,1984     
 2020   DATA 1984,2080    
 2025   DATA 2080,4752     
 2030   DATA 4752,4112   
 2035   DATA 4112,5008   
 2040   DATA 5008,2080   
 2045   DATA 2080,1984   
 2050   DATA 1984,2336   
 2055   DATA 2976,2720   
 2060   DATA 1344,4752    
 2065   DATA    0,   0   
 2070   DATA    0,   0    
 2075   DATA    0,   0   

256



Lines 1000-1020 read the contents of the data statements into the mshape% 
array, thereby defining the two versions of our creature.  Hang on to these data 
statements, they will be used in several other programs later on in this article, 
and they are really too dull to repeat.  Next comes the screen setup:

 25   PERFORM initgrafix 
 30   PERFORM grafixmode(%3,%1) 
 35   PERFORM fillcolor(%4):PERFORM pencolor(%13) 
 40   PERFORM fillport 
 45   PERFORM viewport(%0,%139,%0,%191) 
 50   PERFORM grafixon 

The lines above clear the screen to dark green and set the pen color to yellow.  
Note that we again use the 140X192 color mode.  After this setup we initialize 
some general variables:

 55   f%=4:s%=16:z%=0 
 60   x%(8)=-3:x%(21)=3:y%(11)=3:y%(10)=-3 
 65   i=70:j=90 

Of note above is line 60, which establishes some entries into the large x% and 
y% arrays.  A quick check of your keyboard chart should tell you that ASCII 8 is 
the left arrow key, 21 is the right arrow key, 11 is the up arrow and 10 is the 
down arrow.  Left and right correspond to movement in the X direction, and up 
and down in the Y direction.  That makes it obvious that we will be using values 
in the x% and y% arrays to indicate the amount and direction of movement 
depending on which cursor key is pressed (left and down being negative 
movements, respectively).  As we have seen before, such techniques are 
wasteful of space, but increase speed.  We'll see an even more interesting 
application of this technique in just a minute.  For now, on with the program:

 70   PERFORM moveto(%i,%j) 
 75   IF r%=0 THEN r%=16:ELSE r%=0 
 80   PERFORM drawimage(@mshape%(0,0),%f%,%r%,%z%,%s%,%s%) 
 85   GET a$:a=ASC(a$) 
 90   IF a<>27 THEN i=i+x%(a):j=j+y%(a):GOTO 70 

The lines above constitute the main loop of the program.  After moving to the 
position established by the initial values of i and j, r% is set to alternate between 
0 and 16, which will be our bit index into the mshape% array.  The 'drawimage' 
proceedure (from 'bgraf.inv') is then used to put the appropriate bit pattern on 
the screen, at the current pen location.  See your Basic manual for a specific 
discussion of 'drawimage', but fundamentally, the parameters look like this:

PERFORM drawimage(@array,%Num.Row.Bytes,%X.skip,%Y.skip,%Dr.width,
%Dr.height) 

257



This definition parallels, of course, the DrawBlock capability of the .Grafix driver, 
and allows you to specify a source array, the number of bytes in a given row of 
the array (needed to find the offset for row 2, etc.), the number of bits to skip in 
the row before drawing, the number of rows to skip in a column before drawing, 
the number of row bits to draw from that point, and the number of rows to draw.  
This is sufficient information to define any arbitrary rectangular block of bits in 
any given array.  Any bits in the array that are 'on' (that is, 1's) are drawn in the 
current pencolor, and any that are 'off' (0's) are drawn in the current fillcolor.


Lines 85 and 90 get keystrokes and modify the values of 'i' and 'j' according to 
the contents of that character location in the 'x%' and 'y%' arrays and then 
jump back to 70 to redisplay the creature at the new location.  If the character 
typed is an Escape (27), then cleanup and termination is done:

 100   TEXT 
 105   PERFORM release:PERFORM release:PERFORM release 
 110   CLOSE:INVOKE 
 115   END 

If you type nothing else in from this article, at least try the program above.


You should have some fun watching the creature swim around the screen at 
your command.  For a little more excitement, try adding the following:

 61   x%(55)=-3:y%(55)=3:x%(49)=-3:y%(49)=-3 
 62   x%(57)=3:y%(57)=3:x%(51)=3:y%(51)=-3 
 63   x%(52)=-3:x%(54)=3:y%(56)=3:y%(50)=-3 

The lines above set up additional definitions of possible X and Y movements. 
Close examination of your ASCII chart will show that the codes correspond to 
numbers on the numeric pad of the Apple III.  ASCII 55 in line 61 corresponds to 
the character '7', which is in the upper left-hand corner of the keypad. Both x% 
and y% are affected, x% being decremented (indicating movement to the left) 
and y% being incremented (indicating movement up).  This combination creates 
diagonal motion.  Quick comparisons with the rest of the characters will show 
the remaining relationships.  Add these lines and run the program again.  You'll 
find that you can control the creature completely from the pad! Note also that 
changing the constant value will change the amount of movement in any 
direction.


Onward, Ever Diagonally 
Here's hoping that the program above has whetted you appetite for more 
creature features.  The next program will combine creature movement with the 
windowing techniques of the graphics driver to create interesting motions of 
several creatures at once.  First, however, some fooling around should be 

258



encouraged.  Try changing the displacement constants in the previous program 
to values higher than three.  For example, try:

60  x%(8)=5:x%(21)=-5:y%(11)=5:y%(10)=-5 

Now use the cursor keys.  Makes a mess, right?  Right.  What happens is that 
while the previous drawblock image had enough fillcolor bits (zero value bits) 
surrounding the image to blank out any movement of three pixels in any 
direction, when we move five at a time, some old bits are left on the screen 
without being cleaned up by the next occurance of drawimage. A quick glance 
at the data statements will show that only three rows on top and three on the 
bottom are completely zero.  Some analysis of the row values will prove that the 
same is true about zero bits on the left and right sides of the columns. To allow 
our next program some freedom as to how much displacement an image can 
have without leaving trash on the screen, we will do the following:

 10   DIM mshape%(1,15),zshape%(1,31) 
 15   INVOKE"/basic/bgraf.inv" 
 20   OPEN#1,".grafix" 
 25   GOSUB 1000 

The difference above is that we introduce the zshape% array, with twice as 
many rows as our mshape% array.  This array is initalized in the routine at 1000, 
as follows:

 1000   RESTORE 
 1010   FOR j=0 TO 15:FOR i=0 TO 1:READ mshape%(i,j):NEXT:NEXT 
 1020   FOR j=0 TO 15:FOR i=0 TO 1:zshape%(i,j+8)=mshape%(i,j):NEXT:NEXT 
 1030   RETURN 

Please note that we use the same data statements from the last program, and, 
once the mshape% array is defined, we load the middle of the zshape% array 
with it.  The offset in the rows between mshape% and zshape% gives eight 
extra blank rows at the top and bottom of zshape%, enough for the tricks we 
are about to pull.


Next, we initalize and declare a viewport, in which the visible part of our 
operations will occur:

 35   PERFORM initgrafix 
 40   PERFORM grafixmode(%3,%1) 
 45   PERFORM pencolor(%4) 
 50   PERFORM fillcolor(%7):PERFORM fillport 
 55   PERFORM viewport(%40,%100,%15,%130) 
 60   PERFORM fillcolor(%13):PERFORM fillport 
 65   PERFORM grafixon 

Note above that although the graphics routines will let us draw anywhere on the 
screen (and anywhere off the screen from -32768 to 32767), the only visible 

259



effects will occur in the 40,130 to 100,15 window.  Next, we get to the draw 
section, which is quite a bit more elaborate:

 100   s%=16:t%=32:z%=0:f%=4 
 105   FOR k=0 TO 100 
 110     j=COS(k/5+2)*53+88 
 115     l=SIN(k/10)*30+58 
 120     m=SIN(k/10)*70+85 
 125     r%=s%*(r%=z%) 
 130     PERFORM moveto(%k+28,%j) 
 135     PERFORM drawimage(@zshape%(0,0),%f%,%r%,%z%,%s%,%t%) 
 140     PERFORM moveto(%k+14,%l) 
 145     PERFORM drawimage(@mshape%(0,0),%f%,%r%,%z%,%s%,%s%) 
 150     PERFORM moveto(%k,%m) 
 155     PERFORM drawimage(@zshape%(0,0),%f%,%r%,%z%,%s%,%t%) 
 160     NEXT k 
 200   GET a$:IF ASC(a$)<>27 THEN 105 

The effect of the statements in lines 110-120 is to create different y values for 
each of three creature images.  Lines 130-155 then move to each unique 
location, draw the appropriate creature image, and go on.  Note that the 
incremental movement of the first and third shape is great enough that we need 
to use the zshape% version.  Since zshape% takes longer to draw, mshape% is 
used where possible.  Note also that the X positions are offset from each other, 
with the boundaries of the window responsible for "clipping" the images until 
they are within the display area.  Running this program will produce images of 
bouncing creatures, zipping through a box-like window on the screen.


Like most programs, this one has a cleanup section:

 300   PERFORM release:PERFORM release:PERFORM release 
 310   CLOSE:INVOKE 
 320   TEXT 
 330   END 

There, have fun with that one! 


By the way, if you want to edit your own creatures for the previous program, on 
any to follow, you can use the February Shape Editor, and make the following 
changes to the program above:

 10   DIM shape%(7,15),mshape%(1,15),zshape%(1,31) 
 15   INVOKE"/basic/bgraf.inv","/basic/request.inv" 

 22   INPUT"Shape file name: ";file$ 
 24   IF file$="" THEN 300 

260



 28   IF error THEN PRINT"Error number "error" in file '"file$"'.":GOTO 
22 
 30   FOR j=0 TO 15:FOR i=0 TO 1:mshape%(i,j)=shape%(i,j):NEXT:NEXT 
 32   FOR j=0 TO 15:FOR i=0 TO 1:zshape%(i,j+8)=mshape%(i,j):NEXT:NEXT 

 1000   ON ERR GOTO 1030 
 1010   array$="shape%":OPEN#3,file$ 
 1020   ftype=TYP(3) 
 1030   IF ftype=1 THEN READ#3;filtyp,ch,cw,sl:IF filtyp=1 THEN 1070 
 1040   OFF ERR:CLOSE#3:IF ftype=0 THEN DELETE file$ 
 1050   error=1:REM Not a shape file   
 1060   RETURN 
 1070   READ#3,1:PERFORM filread(%3,@array$,%256,@ret%):OFF ERR:CLOSE#3 
 1080   IF ret%<>256 THEN error=2:RETURN:REM Shape definition is invalid  
 1090   error=0:RETURN:REM Shape loaded   

The routine from 1000 to 1090 above can be used as a general purpose shape 
load routine.  Note the addition of the 'Request.inv' invokable to do the reading 
of the shape file.


Wrapping It All Up and Bouncing It Off a Wall 
The program above proves that you can get the shapes to move through some 
rather elaborate paths.  The program below puts together everything we have 
covered so far, and borrows from an idea in the old  Applesoft Tutorial manual, 
that of objects (the called the little square blocks "balls") bouncing off the walls 
of a video room, not unlike the old "Pong" game.  Since we have already shown 
how to endow our creations with X and Y movements, this should be easy:

 10   DIM mshape%(1,15) 
 15   INVOKE"/basic/bgraf.inv" 
 20   OPEN#1,".grafix" 
 25   GOSUB 1000 

The lines above are the usual warmup. The routine at 1000 is the usual, and 
uses the data statements from the previous programs, to wit:

 1000   RESTORE 
 1010   FOR i=0 TO 15:FOR j=0 TO 1:READ mshape%(j,i):NEXT:NEXT 
 1020   RETURN 

 Now on to setting up the screen:

 30   PERFORM initgrafix 
 35   PERFORM grafixmode(%3,%1) 
 40   PERFORM fillcolor(%5):PERFORM fillport 
 45   PERFORM moveto(%45,%145):PERFORM pencolor(%0):PRINT#1;"Bug Box" 
 50   PERFORM viewport(%40,%99,%15,%130) 

261



 55   PERFORM fillcolor(%13):PERFORM fillport 
 60   PERFORM viewport(%60,%80,%62,%82) 
 65   PERFORM fillcolor(%4):PERFORM fillport 
 70   GOSUB 600:REM set color table 

After clearing the screen to gray in line 40, We print the title "Bug Box" above a 
window of yellow created by lines 50-55.  Then a dark green square is drawn in 
the middle of the box by lines 60-65, and we go the the routine at 600 to set up 
our color table scheme:

 600   PERFORM setctab(%7,%2,%7) 
 610   PERFORM setctab(%2,%7,%7) 
 620   PERFORM setctab(%14,%2,%13) 
 630   PERFORM setctab(%15,%7,%13) 
 640   PERFORM setctab(%14,%13,%13) 
 645   PERFORM setctab(%14,%7,%7) 
 650   PERFORM setctab(%15,%13,%13) 
 655   PERFORM setctab(%15,%2,%2) 
 660   PERFORM setctab(%2,%4,%4) 
 665   PERFORM setctab(%7,%4,%4) 
 670   PERFORM setctab(%14,%4,%4) 
 675   PERFORM setctab(%15,%4,%4) 
 690   RETURN 

As the routine above might tend to indicate, we will employ two creatures in this 
demonstration, one dark blue (color 2) and one light blue (7).  The dark blue 
creature will use a fillcolor of aqua (14) and the light blue one will use fillcolor 
white (15).  As you can see from lines 600-610, the dark blue creature will always 
appear to pass behind (be covered up by) the light blue creature, should their 
paths cross.  Lines 620-655 insure that the background (fill) colors will always 
translate to yellow (13), the background color of the box in which our creatures 
will live (and bounce).  Study this carefully, until you are sure as to what is going 
on.  Finally, lines 660-675 insure that any movement in the area of the dark green 
(4) box will be hidden, that is, appear to go behind that object, since all colors 
drawn onto color 4 will result in color 4 on the screen.


Now that our colors are set, on with the show:

 75   PERFORM viewport(%40,%99,%15,%130) 
 80   PERFORM grafixon 
 100   f%=4:s%=16:t%=32:z%=0 
 105   s1x=INT(RND(1)*40)+40:s1y=INT(RND(1)*115)+15 
 110   s2x=INT(RND(1)*40)+40:s2y=INT(RND(1)*115)+15 
 115   x1m=3:y1m=3:x2m=3:y2m=3 
 120   ON KBD GOTO 250 

262



The lines above establish a viewport for operations, and set up the initial random 
X and Y locations for our two creatures (lines 105-110).  Line 115 sets the 
increment of movement in each direction for each creature, and 120 establishes 
an ON KBD jump to 250 to get us out of the program.  We now start the loop 
which will bounce our creatures off the walls of their tiny domain:

 125   x1n=s1x+x1m:IF x1n<37 OR x1n>89 THEN x1m=-x1m:GOTO 125 
 130   y1n=s1y+y1m:IF y1n<27 OR y1n>134 THEN y1m=-y1m:GOTO 130 
 135   x2n=s2x+x2m:IF x2n<37 OR x2n>89 THEN x2m=-x2m:GOTO 135 
 140   y2n=s2y+y2m:IF y2n<27 OR y2n>134 THEN y2m=-y2m:GOTO 140 

The lines above add the X and Y increments (or decrements, if negative) to their 
respective values, and check to see if the results are within the ranges of the 
window.  Note that the pen position is always the upper lefthand corner of the 
drawblock image, which explains the differences in the values from the viewport 
statement above.  Now we get into the actual draw routines, based on the 
positions calculated above:

 145   r%=s%*(r%=z%) 
 150   PERFORM moveto(%x1n,%y1n) 
 155   PERFORM pencolor(%2):PERFORM fillcolor(%14) 
 160   PERFORM drawimage(@mshape%(0,0),%f%,%r%,%z%,%s%,%s%) 
 165   PERFORM moveto(%x2n,%y2n) 
 170   PERFORM pencolor(%7):PERFORM fillcolor(%15) 
 175   PERFORM drawimage(@mshape%(0,0),%f%,%r%,%z%,%s%,%s%) 
 180   IF ABS(x1n-x2n)>10 OR ABS(y1n-y2n)>10 THEN 200 
 185   PERFORM moveto(%x1n,%y1n) 
 190   PERFORM pencolor(%2):PERFORM fillcolor(%14) 
 195   PERFORM drawimage(@mshape%(0,0),%f%,%r%,%z%,%s%,%s%) 
 200   s1x=x1n:s1y=y1n:s2x=x2n:s2y=y2n 
 205   GOTO 125 

Notice again that we use r% to calculate the offset into the mshape% array to 
animate our creature. Lines 150-160 move to the calculated position of our first 
creature, set the colors and draw the image.  Lines 165-175 do the same for the 
second creature.  Now comes something interesting.  Creature number two has 
priority over creature number one, if they are in the same space. Therefore 
drawing over number one will destroy part of the its image, which subsequent 
repositioning of the creatures cannot recreate.  Lines 180-195 check for this 
possiblity and redraw creature number one, to fill in any missing parts before the 
next erase at the top of the loop.  Try the program without these lines to see 
what happens.  In either circumstance, line 200 sets the current positions of the 
creatures to the positions just used, and starts over.  The effect is that of the two 
beasts bouncing off the four walls in quite a regular fashion.  Changing the 
values of x1m, x2m, y1m and y2m will effect the type, length and angle of 
bounce.  Experiment and see what you like (random numbers are fun too!)  


263



A little more and we're finished:

 250   OFF KBD 
 255   IF KBD=27 THEN 300 
 260   IF KBD=13 THEN POP:GOTO 40 
 265   ON KBD GOTO 250 
 270   RETURN 

This ON KBD routine allows termination (with Escape (27)) and if RETURN is 
pressed, the program starts all over with new random locations for the 
creatures.  This is useful if you want to see how the color table affects the 
creatures when they cross over, but the random values put them on paths that 
don't cross.  You just press RETURN and start over with a new scenario.


Finally: 

 300   TEXT 
 310   PERFORM release:PERFORM release:PERFORM release 
 320   CLOSE:INVOKE 
 330   END 

Does the usual cleanup.


A Cheerful Farewell 
This month's article should give you lots to work on.  As you might imagine, the 
color table presents all sorts of possibilities that this missive could only hint at.  
Next time we'll wrap up our discussion of graphics and get on to more 
interesting doings with the Apple III.  Until then...


264



Exploring Business Basic - Part XXI 
Two quick announcements before we begin are appropriate.  First, the long 
awaited SOS Reference Manual and Device Drivers Writer's Guide came off the 
presses in April and should have reached the far corners of the earth by now. 
They are an incredible wealth of information about how your favorite machine 
really works.  If anybody you know thinks SOS isn't the best single user 
operating system around, show him a copy!  In addition to great explanations of 
the inner workings, the Device Drivers manual contains listings of sample disk 
(block) and character drivers and the SOS manual contains a diskette with a 
program called "EXER-SOS", designed to help debug drivers and other routines 
by providing a full interface to operating system and driver 'calls'.  If your local 
dealer doesn't stock it, he should be able to easily order it for you from Apple.


The second announcement is a great one for those of you who read this article 
wistfully, because you have an Apple ][ and keep wondering what all the fuss is 
about concerning the Apple III, or because you need another Apple III for your 
business, etc.  Apple dropped the price of a 256K Apple III in April to $2695!  
That's a full $1600 less than this time last year, and represents (in this humble 
Apple III owner's opinion), the best bargain in personal computers anywhere.  So 
much for the commercial.


And Now, Back to our Regularly Scheduled 
Program 
As was mentioned last time, this article is the last in a series exploring the text 
and bit map modes of graphics on the Apple III.  We've covered a great deal in 
the last three months, from simple character set and shape definitions, through 
character set animation effects (including a game!!!!) and finally to color bit-
mapped graphics with it's own brand of animation. That's a lot of territory, and 
makes it even more reasonable that the last in the graphics series (at least for 
now) covers a combination of the two worlds, text on the bit-mapped graphics 
display.


Farewell, Faithful BGRAF.INV 
Those of you who have been following these articles for some time may be a bit 
confused by the last sentence in the paragraph above.  "I know how to do text 
on the graphics screen", you say, "just OPEN the .GRAFIX driver and print 
characters to it like any other driver!".  Right as rain, as they say in California, 
but what does that have to do with the graphics invokable in Business Basic?


265



If you carefully read the sections in your Basic manual on the BGRAF invokable 
module, and the section in the Standard Device Drivers manual on the .GRAFIX 
driver, you'll notice that the printing of text characters on the graphics screen is 
handled by the DrawBlock function of the driver, writing out the bit patterns of 
each character from the currently defined character set (normally the set used 
by the .CONSOLE driver).  By using the BGRAF module, it is possible to assign 
a new character set to be used by DrawBlock.  It is also possible to use the 
DrawImage function of the module to draw any shape (including text characters) 
onto the graphics screen.  For the last couple of episodes, we've been dealing 
with DrawImage's shape drawing ability, to populate our screen with creatures 
of various shapes which crawled their way into our hearts.  The marriage of the 
DrawImage flexibility with a text character set presents some interesting 
possibilities, among which is the ability to really dress up the appearance of text 
on the screen.  It is on this intriguing capability that our final (for a while) 
discussion of the BGRAF invokable module will rest.


Beauty in "Proportion" to its Cost 
By now many of you have probably looked at a photograph, if not an actual 
demo, of Apple's new Lisa system.  One of the things which immediately strikes 
people is how pleasing the display looks.  When you analyze it, it's not only the 
high-resolution display, but the fact that the characters are pleasingly arranged 
on the screen, more like text is found in a magazine or book than that found on a 
computer terminal.  The fundamental difference in the display modes is that all 
text on the Lisa screen is "proportionally" spaced, that is each character is 
arranged to be the minimum distance from the adjoining character, not evenly 
spaced as in normal computer printouts and screen displays.


It's easy to see that the characters "i" and "l" don't take up nearly as much room 
as an "M" or "X", yet in standard computer output they do, in order that all 
columns will automatically line up properly, and that editing can be simplified.  
Such constant spacing techniques are called "Monospacing", and for certain 
things, like columns of numbers, they are really important.  For ordinary text, 
however, monospacing is not only less natural and attractive, it wastes space as 
well.  In fact, several word processors for the Apple ][ use the 280X192 graphics 
mode to create "proportional" character sets.   These programs allow up to 70 
characters across a screen which can accommodate only 40 monospaced 
characters!  We will learn in this article that the higher resolution of the Apple III 
allows us to get over  one hundred characters across the screen, with no 
sacrifice in readability!


266



Beauty on a Budget 
This month's program allows you to play with the concepts of proportional 
spacing and text font appearance from within a program which works like a high 
resolution screen editor for text.  The editor program permits you to place 
porportional or mono-spaced text anywhere on the screen, use multiple fonts on 
the same screen, and use the graphics driver "transfer mode" feature to do such 
things as overstrikes and erasures.  The best feature of the program, however, is 
that it contains lots of routines you can use to create your own hi-res displays, 
both with the currently available fonts, and any of your own design.  Remember 
that with BGRAF and the .GRAFIX driver you can have individual characters 
which are much larger than the normal 7X8 character cell definition.   The 
program deals with normal size character fonts, but we'll discuss easy 
modifications which are possible if you want to use your own non-standard 
sizes.  There's plenty to cover, so let's go...

 10   DIM 
char%(63,7),cset%(511),lookup(15),flip(255),cstart%(127),clen%(127) 

 15   HOME:PRINT"High Resolution Screen Character Editor":PRINT 
 20   PRINT"Initializing variables, please wait" 
 25   GOSUB 4000 

The first section sets up our arrays and goes to the subroutine at 4000 to load 
up tables and do other initialization.  For those of you who have been following 
this series, the arrays 'char', 'cset', 'lookup' and 'flip' should be familiar.  'Char' 
contain the character set of our choice and it is defined as being 128 bytes wide 
by 8 rows high, enough to contain the 128 ASCII character definitions in a 
standard font, which is 8X8 pixels per character, with the right-most pixel 
column used for defining flash in inverse text mode (7X8 displayable).  Those of 
you who read the documentation will notice that a .BGRAF character set can 
actually contain 256 character definitions, but the standard system fonts are 
limited to 128, so that's what we'll go with for now.  'Cset' contains the actual 
image of a system font file, as read in by the "download.inv" invokable module.  
We'll look at a conversion routine which transforms fonts in the system format 
into character set definitions that BGRAF can operate on.  'Lookup' and 'flip' are 
used to accomplish this transformation quickly.


Which brings us to the 'cstart' and 'clen' arrays.  Their size of 128 elements 
each should be a clue that each element contains information about the 
respective character associated with the element number and the names should 
be a clue as to what that information is.  The characters in a normal character 
set are stored in blocks one byte wide in the 'char' array, but since we want to 
do proportional spacing, it is necessary to define for each character cell just 
how much of the character in it we want to display.  In this program that is 

267



accomplished by defining the starting pixel row within the character cell to start 
the display, and the number of pixel rows to display from that point.  Let's look 
at the initialization section, where this will become more clear:

 4000   REM initialize 
 4025   DATA 0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15  
 4045   FOR i=0 TO 15:READ lookup(i):NEXT 
 4055   v256=256:v512=512:v128=128:v16=16 
 4060   FOR i=0 TO 255:a$=HEX$(i):flip(i)=v16*lookup(TEN(MID$(a$,4,1))) 
        +lookup(TEN(MID$(a$,3,1))):NEXT 

The section from lines 4000 to 4060 above is identical to routines in previous 
programs.  It creates the 'flip' array, which is simply a lookup table of all the 
possible combinations of the value of a byte of data (256 in all) with their values 
if the bits in the byte were exactly reversed, that is, flipped over.  This table is 
required by the routine which transforms a character set from system font 
format to .GRAFIX format.  Apple cleverly made these two formats the exact 
reverse of each other.  Next comes more initialization of variables:

 4070   name$="Font":array$="cset%":size%=1024 
 4085   ctrl$=CHR$(8)+CHR$(21)+CHR$(11)+CHR$(10)+CHR$(13)+CHR$(27) 
 4090   left=0:right=559:top=191:bot=18:cvert=191:chorz=0: 
delay=1:noset=1 
 4100   hspace=7:vspace=8:reverse=0 
 4110   bell$=CHR$(7):eras$(0)="Replace":eras$(1)="Overlay": 
eras$(2)="Invert " 
 4120   eras$(3)="Erase  ":prop$(0)="Monospace  ": 
prop$(1)="Proportional" 

Several variables are worthy of note above.  First, in line 4085 a string is built of 
command characters which will be used later for fast lookup by the editor 
command routine.  In order, the characters are back arrow, forward arrow, up 
arrow, down arrow, carriage return and escape.  Line 4090 sets some initial 
constraints for the area which may be edited, and sets the initial position of the 
cursor to 0,191 (chorz and cvert).  Line 4100 sets the default for horizontal and 
vertical character spacing.  These are values you would want to change if you 
used other, non standard character sets.  Next comes a big table which will be a 
challenge to type in:

 4200   DATA 3,4,3,2,2,4,1,6,1,6,1,6,1,6,3,2 
 4205   DATA 1,4,3,4,1,6,1,6,2,3,2,5,3,2,1,6 
 4210   DATA 1,6,1,6,1,6,1,6,1,6,1,6,1,6,1,6 
 4215   DATA 1,6,1,6,3,2,2,3,1,5,2,5,2,5,1,6 
 4220   DATA 1,6,1,6,1,6,1,6,1,6,1,6,1,6,1,6 
 4225   DATA 1,6,2,4,1,6,1,6,1,6,1,6,1,6,1,6 
 4230   DATA 1,6,1,6,1,6,1,6,1,6,1,6,1,6,1,6 
 4235   DATA 1,6,1,6,1,6,2,5,1,6,2,5,1,6,1,6 

268



 4240   DATA 2,4,1,6,1,6,1,6,1,6,1,6,1,6,1,6 
 4245   DATA 1,6,2,4,1,5,1,6,2,4,1,6,1,6,1,6 
 4250   DATA 1,6,1,6,1,6,1,6,1,6,1,6,1,6,1,6 
 4255   DATA 1,6,1,6,1,6,1,6,2,3,1,6,1,6,0,7 

 4300   FOR i=32 TO 127:READ cstart%(i),clen%(i):NEXT 
 4500   RETURN 

Notice that there are eight sets of two values on each line and 12 lines, for a 
total of 96 sets of values, one for each of the "displayable" characters in a font 
definition.  To save trouble and improve performance, we have not bothered to 
make the control character definitions displayable, so the characters from 32 
('space') through 127 ('DLE') are the only ones defined. Notice that most 
characters seem to follow the pattern '1,6' meaning "start one pixel over in the 
character definition and use the next 6 pixels".  This is because a large number 
of characters in the standard set are five pixels wide, and we need one pixel for 
spacing.  For consistancy, we always steal the extra pixel from the leading edge 
of the character, leaving the spacing pixel at the end.  This does mean, however, 
that we save at least one pixel per character, which for 80 characters across on 
a normal screen is 80 pixels, or the equivalent of an extra 13 characters from 
that technique alone!  Six wide monospacing thus buys the ability to write 93 
characters across the screen and then, depending on the number of "i's" and 
"l's" and other skinny characters that get used, the actual total may be much 
higher.  An example would help:

  Normal "A" (7 wide)    New "A" (6 Wide)       Normal "i" (7)   New "i" (4) 
    _________               ________              _________        ______ 
    |   X   |               |  X   |              |   X   |        | X  | 
    |  X X  |               | X X  |              |       |        |    | 
    | X   X |               |X   X |              |  XX   |        |XX  | 
    | XXXXX |               |XXXXX |              |   X   |        | X  | 
    | X   X |               |X   X |              |   X   |        | X  | 
    | X   X |               |X   X |              |   X   |        | X  | 
    | X   X |               |X   X |              |  XXX  |        |XXX | 
    |_______|               |______|              |_______|        |____| 

Notice that the new "A" is obtained by simply shaving off the first column which 
would read "1,6" in our "starting pixel, character width" format.  In the case of 
the lower case "i", the formula is "2,4" since we are to skip the first two pixel 
columns and then only use four to draw the character.


In any case the table presented in lines 4200 to 4255 will define the slim new 
format for all the characters in the font we will be using.  Note that this definition 
is for the "Standard" font.  Several other fonts come with the Business Basic 
disk, such as "Roman", "Apple", etc.  These fonts contain characters which are 
designed a little differently than the standard font characters, so you should 
construct a different table for those characters.


269



Well, having beaten initialization to death, let's get on with the show:

 30   INVOKE"/basic/bgraf.inv","/basic/request.inv","/basic/
download.inv" 
 35   OPEN#1,".grafix" 
 50   INPUT"Use Normal or Inverse screen (N or I)? ";a$ 
 55   IF a$="" THEN GOTO 1050 
 60   a$=MID$(a$,1,1):op=INSTR("NnIi",a$) 
 65   IF NOT op THEN 50:ELSE op=INT((op+1)/2)-1 
 70   fill=op*15:pen=( NOT op)*15 
 75   erasenum=2+4*op 

Because we'll be dealing with fonts as well as the .GRAFIX driver, we invoke the 
three modules listed in line 30, all of which are found on the Business Basic 
master diskette.  Then the graphics driver is opened, allowing us a path to print 
text commands on the graphics screen and perform other functions.


Line 50 through 75 then request whether the screen is to be displayed in normal 
mode (white characters on a black background) or inverse mode (just the 
opposite).  Notice the use of the INSTR statement and the calculations in lines 
60 and 65 to check for mismatches and then set 'op' to 0 or 1 for normal or 
inverse.  Line 70 then sets 'fill' and 'pen' to either 0 and 15 or 15 and 0, 
depending on the value of 'op'.  An IF statement would work just as easily, but 
practice in logical value calculations can't hurt.


The variable 'erasenum' in line 75 is used to define what transfer option is 
appropriate to use to draw the cursor so that it doesn't interfere with the text 
which will be on the screen.  If the pencolor is 0 (black) then transfer option 2, 
"invert", is used.  If the pencolor is 15 (white) then option 6 is used, "inverse 
invert".  More detail on how these transfer options work will be found later in this 
article.  Next comes more initialization:    

 100   PERFORM initgrafix 
 105   PERFORM grafixmode(%2,%1) 
 110   PERFORM fillcolor(%fill):PERFORM pencolor(%pen) 
 115   HOME:PRINT:PRINT"Initializing the graphics screen, please wait." 
 120   erase=0:prop=1 
 130   GOSUB 3600 

In line 105 the program sets mode 2, the 560X192 mode, and 110 uses the 
previously defined fill and pencolor variables.  Line 120 sets the initial values for 
'erase' which defines the transfer option used to write characters onto the 
screen, and 'prop' which defines whether proportional or monospaced character 
writing will be performed.  Then the subroutine at line 3600 is called to set up 
the screen:

 3600   PERFORM viewport(%0,%559,%0,%191):PERFORM fillport 
 3620   PERFORM moveto(%0,%9):PERFORM linerel(%559,%0) 

270



 3630   PERFORM moveto(%412,%9):PERFORM linerel(%0,%-9) 
 3640   IF reverse THEN RETURN 
 3650   warn=1:message$=eras$(erase)+" "+prop$(prop):GOSUB 3100 
 3660   RETURN 

Lines 3600-3630 clear the screen to the current fill color and then create a 
message area in the bottom ten lines of the screen.  If 'reverse' is on (more on 
that later), then the operation is finished.  Otherwise, the subroutine at line 3100 
is called to write the current state of the transfer option and the spacing mode:

 3100   PERFORM xfroption(%0) 
 3105   GOSUB 3500 
 3110   PERFORM moveto(%7+412*warn,%7):PRINT#1;message$; 
 3120   IF NOT warn THEN FOR i=1 TO 750*delay:NEXT 
 3125   PERFORM xfroption(%( NOT( NOT erase))*(erasenum-2+erase)) 
 3130   IF NOT warn THEN GOSUB 3500:ELSE:warn=0 
 3135   RETURN 

 3500   PERFORM viewport(%5+408*warn,%411+148*warn,%0,%8):PERFORM 
fillport 
 3510   PERFORM viewport(%0,%559,%0,%191) 
 3520   RETURN 

The subroutines above give the program a general purpose ability to write 
messages to the user on the bottom of the screen.  Line 3100 above first sets 
transfer option 0, called "replace", which will overwrite any message currently in 
the message area.  Then subroutine 3500 is called to clear the appropriate part 
of the message area.  If 'warn' mode is on, then the message is written from 
horizontal positions 413 to 559, between rows 0 and 8 on the screen, the lower 
righthand corner.  If 'warn' is zero, then the message is written between 
positions 5 and 411.  These techniques can be used to establish several 
message "windows" if necessary, each using the same routines.


Line 3110 then moves to the appropriate place on the screen and writes the 
message in 'message$'.  Messages in the "warning" window remain until 
changed by another message, but if the regular message window is used, the 
program pauses briefly (line 3120) and then sets the transfer mode back to its 
original state and calls line 3500 to clear the window.


Back Home from the Subroutines 
Now that the program has set up the screen and the default modes are 
established, we turn on the screen and start using the program:

 150   PERFORM grafixon 
 155   message$="High Resolution Screen Editor":GOSUB 3100 
 160   GOSUB 1400 

271



 165   IF fin=2 THEN 1000:ELSE IF fin AND noset THEN 1000 
 170   GOSUB 3500 

After putting an identifying message on the bottom of the screen, the section 
above uses the subroutine at line 1400 to load the character font which will be 
used to write on the screen.  That routine starts like this:

 1400   prompt$=name$+" pathname: " 
 1425   GOSUB 3000:IF fin THEN RETURN 

The font subroutine above first prompts for the pathname of the font file, by 
using the variable prompt$ and the high-resolution input routine at line 3000 
(more on that routine in a minute).  The variable 'fin' in line 1425 is used to 
indicate a non-standard exit from input, such as pressing "escape" or a carriage 
return at the beginning of the input.  In any case, the font name, if any, is 
returned in the variable 'line$'.  A quick look at the input routine is appropriate 
now (are you beginning to feel like the Apple III itself, plunging  deep into 
subroutines again?):

 3000   PERFORM xfroption(%0) 
 3005   GOSUB 3500:PERFORM moveto(%7,%7):PRINT#1;prompt$; 
 3010   line$="":fin=0 
 3015   GET a$:a=ASC(a$):IF a<32 THEN 3030 
 3020   IF LEN(line$)<40 THEN PRINT#1;a$;:line$=line$+a$:ELSE:PRINT 
bell$; 
 3025   GOTO 3015 
 3030   IF a=13 THEN fin=(LEN(line$)=0):GOSUB 3500:GOTO 3070 
 3035   IF a=27 THEN fin=2:GOSUB 3500:GOTO 3070 
 3040   IF a=24 THEN PRINT bell$;:GOTO 3005 
 3045   IF a<>8 THEN 3015 
 3050   IF LEN(line$)=0 THEN 3015 
 3055   PERFORM moverel(%-7,%0):PRINT#1;" ";:PERFORM moverel(%-7,%0) 
 3060   line$=MID$(line$,1,LEN(line$)-1) 
 3065   GOTO 3015 
 3070   PERFORM xfroption(%( NOT( NOT erase))*(erasenum-2+erase)) 
 3075   RETURN 

The routine above is very similar to others in this column which accept input 
while on the high-resolution screen.  It supports typing in characters, and 
erasing input with the back-arrow.  In addition, a check is made in line 3020 to 
be sure that the input doesn't overflow past 40 characters and thus into the next 
message window.  If everything's ok, the character is added to 'line$', and the 
routine loops back up to get the next character.


Control character processing, including back arrow erasing, is handled in lines 
3030-3065.  Backing up is a matter of moving the cursor location back one 
space, printing a blank, and then moving back to accept the new character. In 

272



addition, line 3060 removes the previous character from the end of 'line$', and 
then loops back to get the next character.  Lines 3030-3040 handle special 
character exits from the routine.  A carriage return exits with 'fin' set to 0 if there 
are characters in line$, or 1 if the string is null.  A value of 2 for 'fin' indicates that 
ESCape has been pressed, and a "control-X" erases the input line, just as it 
does in Basic, except that the prompt is redisplayed. In all, this is a useful 
routine which could be easily adapted for use anywhere on the screen.


Now that we have a general way to get input, and to check for certain control 
characters like ESCape, we continue our look at the font request routine:

 1435   ON ERR GOTO 1460 
 1440   font$=CHR$(34)+line$+CHR$(34):PERFORM getfont(@font$,@array$) 
 1445   OFF ERR:GOSUB 2000 
 1450   message$=name$+" loaded.":GOSUB 3100:GOSUB 2100 
 1455   RETURN 

The routine above first sets up an ON ERRor jump to line 1460 and then tries to 
use the 'getfont' proceedure from the "download.inv" module to load a font from 
the file specified in 'line$'.  If anything goes wrong, for example, the file specified 
is not a font file, then a jump is made to the error routine:

 1460   ON ERR GOTO 1490 
 1465   OPEN#3,line$ 
 1470   PERFORM filread(%3,@array$,%size%,@ret%) 
 1475   OFF ERR:CLOSE#3 
 1480   IF ret%=size% THEN GOSUB 2000:GOTO 1450 
 1485   message$=name$+" in "+line$+" is invalid.":GOSUB 3100:GOTO 1400 
 1490   message$="Not a "+name$+" file.":GOSUB 3100 
 1495   OFF ERR:IF TYP(3)=0 THEN CLOSE#3:DELETE line$:ELSE:CLOSE#3 
 1500   GOTO 1400 

The routine at 1460 attempts to open the file as a Basic file, and use the 'filread' 
procedure from "request.inv" to read a font definition array.  This might be the 
case if you used the Character and Shape Editor from a previous article, or 
some other means to get a font definition into a file without being able to change 
the file type to "FONT".  If something goes wrong this time, then the appropriate 
error message is displayed, either in line 1485 if the file could be opened and 
read from but contained wrong information, or line 1490 if there was trouble 
opening or reading the file.  The TYP function in line 1495 serves to check if the 
file is blank because the original OPEN caused it to be created.  If so, it is 
deleted and control goes back to the beginning to ask for the filename again.


In the hopeful event that the filename is correct and the program can read a font 
from it, a subroutine at line 2000 is called to prepare the font for use by the 
program (deeper, ever deeper into the routine abyss):

 2000   message$="Preparing the character font.":GOSUB 3100 

273



 2010   FOR k=0 TO 511:b$=HEX$(cset%(k)):cset%(k)=TEN(HEX$(v256* 
        flip(TEN(MID$(b$,1,2)))+flip(TEN(MID$(b$,3,2))))):NEXT 
 2020   RETURN 

The routine above has also been seen in previous episodes, since the standard 
system font definitions used by text mode are exactly the reverse (on a 
character basis) from those of the high-resolution DRAWBLOCK fonts.  Line 
2010 uses the 'flip' array to define all possible byte values and their 
corresponding reversed values.  The routine is compacted on one line for 
maximum performance.  Now that the font is flipped, it is necessary to expand it 
from the single dimensioned array 'cset%' to a form more readily usable by 
"Drawimage":

 2100   message$="Transferring Font format to Character set 
format":GOSUB 3100 
 2105   FOR k=16 TO 63:j=8*k-1 
 2110     FOR i=0 TO 7 STEP 2:j=j+1:a$=HEX$(cset%(j)):b$=HEX$(cset%
(j+4)) 
 2115       char%(k,i)=TEN(MID$(a$,1,2)+MID$(b$,1,2)) 
 2120       char%(k,i+1)=TEN(MID$(a$,3,2)+MID$(b$,3,2)) 
 2125       NEXT:NEXT 
 2140   message$="Font format transferred":GOSUB 3100:GOSUB 3500 
 2150   noset=0 
 2160   RETURN 

Note above that we are unpacking 'cset%' into a simple row, column format in 
the array 'char%, where rows represent rows of bits, and columns represent 
character definitions, two per integer value.  More information on this format can 
be found in previous articles in this series, and in the Business Basic manual, 
volume 2, under the discussion of the BGRAF invokable.  Note also that you 
could speed up this process considerably by pre-storing a font definition in a file 
as a character set array in the 'char%' format.  That would require modification 
of the subroutine at 1400 which reads in the array, but would allow quick 
switching of fonts without the complicated preparation routines.


Now for Something Completely Useful 
Those of you who have been following along with our nested subroutine calls 
above will now realize that we are back to the main routine, with a font definition 
loaded in the 'char%' array.  That brings us to the interesting stuff, actually 
putting some of these characters onto the screen using the proportional spacing 
tables.  Our first step is to put a "cursor" on the screen, to indicate where the 
character will be written:

 200   PERFORM xfroption(%erasenum) 
 205   PERFORM moveto(%chorz,%cvert) 
 210   PERFORM drawimage(@char%(0,0),%v128,%995,%0,%1,%vspace) 

274



 215   GET a$ 
 220   PERFORM drawimage(@char%(0,0),%v128,%995,%0,%1,%vspace) 

First we set the transfer option for "invert".  This allows the cursor to overwrite 
information on the screen by turning black to white, and white to black.  Line 
205 positions the cursor to the current horizontal and vertical value, and line 210 
writes the cursor on the screen using the "drawimage" routine.  This statement 
draws a vertical bar of bits from the 'char%' array which is one pixel wide and 8 
pixels ('vspace') high starting at bit location 995 in the character set.  It happens 
that 995 is the location in the standard character font of the "vertical bar" 
character (ASCII 124).  By multipling 128 by 8 (the width of a character 
definition) and adding 3 for the offset within the cell for the bar, we obtain 995.  
Thus our cursor consists of a vertical bar at the extreme lefthand edge of the 
current character cell.  This is a convenient definition of a proportional cursor, 
since we will be writing characters with many different widths, and we would like 
to know exactly where the character will be placed.  If you use different fonts, 
you may well want to define another character position to contain this cursor 
character, and change the values in lines 210 and 220.


In line 215 we get a character from the keyboard, and immediately print the 
cursor again, exactly on top of the previous one.  Since we are in "invert" mode 
on the transfer option, this second printing of the cursor simply changes 
everything back to its original state.


Now it's time to put this typed character onto the screen:

 225   PERFORM xfroption(%( NOT( NOT erase))*(erasenum-2+erase)) 
 230   key=ASC(a$):skp=1:IF key<32 OR key>127 THEN 270 
 240   IF prop THEN hspace=clen%(key):xskip=key*8+cstart%(key): 
       ELSE:hspace=7:xskip=key*8 
 245   IF right<chorz+hspace THEN PRINT bell$;:GOTO 200 
 250   PERFORM drawimage(@char%(0,0),%v128,%xskip,%0,%hspace,%vspace) 
 255   chorz=chorz+hspace 
 260   GOTO 200 

Notice that first we put the screen back into whatever transfer mode was 
selected, and then set 'key' equal to the ASCII value of the typed character. A 
check is made to see if the character is a control character or if "open-Apple" 
was pressed along with the character (key>127).  If not, then the character is a 
printing one which is to be put on the screen.  Line 240 sets 'hspace' and 'xskip' 
depending on whether proportional or monospace mode is being used.  
'Hspace' indicates how wide is the character to be written; 7 for monospace or 
the value in 'clen%' if proportional.  'Xskip' is the offset in the 'char%' array at 
which to start the transfer of the character.  It's always the character code times 
eight for monospace, with the additional value 'cstart%' if proportional.  Once 
the correct values are computed, a check is made to see if the result will go past 
the right edge of the window defined by 'right'.  If everything is ok then the 

275



character is written by line 250 and the current horizontal position is updated.  
Then a loop back to the beginning is done to redisplay the cursor and start the 
process over.


As was mentioned before, control and other special characters are handled by 
the routine at line 270:

 270   IF key=27 THEN 400 
 275   IF key>127 THEN skp=0:key=key-128 
 280   kvl=INSTR(ctrl$,CHR$(key)) 
 285   ON kvl GOTO 340,350,360,370,380,160 
 290   GOTO 200 
 340   hmove=chorz-skp*(hspace-1)-1:IF left<=hmove THEN chorz=hmove 
 345   GOTO 200 
 350   hmove=chorz+skp*(hspace-1)+1:IF right>=hmove THEN chorz=hmove 
 355   GOTO 200 
 360   vmove=cvert+skp*(vspace-1)+1:IF top>=vmove THEN cvert=vmove 
 365   GOTO 200 
 370   vmove=cvert-skp*(vspace-1)-1:IF bot<=vmove THEN cvert=vmove 
 375   GOTO 200 
 380   chorz=0 
 385   IF bot<=cvert-vspace THEN PRINT#1;CHR$(10);:cvert=cvert-vspace 
 390   GOTO 200 

First a check is made in line 270 to see if the character typed was an "ESCape".  
If so, an immediate jump is made to line 400 to do processing of commands.  If 
not, a check is made for "open-apple" in line 275, and if so, the skip flag is set 
to zero, indicating that cursor positioning is to be done in one pixel increments.  
The character typed is then checked against values in 'ctrl$' which was defined 
on line 4085.  It was defined a while back so let's reproduce it for quick study:

4085   ctrl$=CHR$(8)+CHR$(21)+CHR$(11)+CHR$(10)+CHR$(13)+CHR$(27) 

The first four characters represent the cursor arrows back, forward, up and 
down.  The fifth is the carriage return, and the sixth is ESCape.  Since we have 
already checked once for escape in line 270, ESCape can only be detected at 
line 280 if it was "open-apple ESCape".  Similarly, the "open-apple" key can be 
used with the cursor keys to signal single pixel or normal movement in a given 
direction.  This also allows you to define additional commands, either control 
characters or printing characters with "open-apple" on, to implement other 
features in the program.  The routines themselves from 340 to 390 are pretty 
straight-forward.  Cursor movements are first checked against the 'left', 'right', 
'top' and 'bot' limits, and then the cursor position is updated.  Remember that 
when the program redraws the cursor it first positions it to the current values of 
'chorz' and 'cvert' in line 200, which means there is no need to redraw the 
cursor in these routines.


276



Next let's look at the routines at line 400, which processes requests for 
command and mode settings: 

 400   prompt$="Proportional or Monospace characters: ":GOSUB 3000 
 405   GOSUB 3500:IF fin=2 THEN 200:ELSE IF fin THEN 425 
 410   a$=MID$(line$,1,1):a=INSTR("PpMm",a$):IF a THEN a=INT((a+1)/2) 
 415   ON a GOSUB 520,530 
 420   message$=eras$(erase)+" "+prop$(prop):warn=1:GOSUB 3100 

 520   prop=1:hspace=6:RETURN 
 530   prop=0:hspace=7:RETURN 

The request is made in line 400, and 'a' is given the value 0 (mismatch), 1 (if 
proportional) or 2 (if monospace).  The subroutine sets the appropriate flag, and 
the default spacing to be used.  Then line 420 takes care of writing the latest 
status in the "warning" window.


Next, the transfer option value is requested:

 425   prompt$="Replace, Overlay, Invert or Erase mode: ":GOSUB 3000 
 430   GOSUB 3500:IF fin=2 THEN 200:ELSE IF fin THEN 450 
 435   a$=MID$(line$,1,1):a=INSTR("RrOoIiEe",a$):IF a THEN a=INT((a+1)/
2) 
 440   ON a GOSUB 500,505,510,515 
 445   message$=eras$(erase)+" "+prop$(prop):warn=1:GOSUB 3100 

 500   erase=0:RETURN 
 505   erase=1:RETURN 
 510   erase=2:RETURN 
 515   erase=3:RETURN 

The settings of "Replace", "Overlay", "Invert" or "Erase" correspond to the 
descriptions in the Business Basic manual on the XFROPTION routine of 
BGRAF. 


Remember that the actual transfer option value used will depend on whether the 
screen is in inverse or normal mode.  The routines at 500-515 may look too 
simple to make into subroutines, but using this structure allows you to easily 
add enhancements to the options.  Now, on with more commands: 

 450   prompt$="Normal, Inverse, Clear or Reverse: ":GOSUB 3000 
 455   GOSUB 3500:IF fin THEN 200:ELSE:a$=MID$(line$,1,1) 
 460   a=INSTR("NnIiCcRr",a$):IF a THEN a=INT((a+1)/2) 
 465   ON a GOSUB 540,560,580,590 
 470   GOTO 200 

 540   fill=0:pen=15:erasenum=2 

277



 550   GOTO 565 
 560   fill=15:pen=0:erasenum=6 
 565   PERFORM fillcolor(%fill):PERFORM pencolor(%pen) 
 570   RETURN 
 580   GOSUB 3600 
 585   RETURN 
 590   reverse=1 
 595   SWAP pen,fill:PERFORM pencolor(%pen):PERFORM fillcolor(%fill) 
 600   PERFORM xfroption(%erasenum):GOSUB 3600 
 610   IF erasenum=2 THEN erasenum=6:ELSE erasenum=2 
 615   reverse=0 
 620   RETURN 

The same structure is used to get command values, but this time the command 
implementation is a bit more complicated.  The inverse and normal commands 
are handled in 540-570 by setting the appropriate values of 'fill' and 'pen' colors, 
and then using the BGRAF routines to pass those values to the driver. Clear 
simply calls the screen setup routine at line 3600 to redisplay everything, and in 
the process, erase everything on the current screen.


The "Reverse" command in lines 590-620 works by changing the pen and fill 
colors and then setting invert mode (which changes white to black and black to 
white) and then clearing the screen with the same subroutine at 3600 that was 
used to erase the screen in the previous command.  The result is really nice to 
watch, as a "curtain" rolls down the screen, inverting everything it encounters.  
Think how tough that would be to do if you had to examine every pixel yourself 
and decide what to do!


Farewell to the Fun Stuff 
Well, that about wraps up the commands to implement and the main routine 
which displays the characters in the various modes.  Now it's time to wrap up 
the program with the routine at line 1000:

 1000   REM clean up and go home 
 1005   prompt$="Quit the Screen Editor? (Y to confirm): " 
 1010   GOSUB 3000 
 1015   IF NOT INSTR("Yy",line$) THEN GOTO 170 
 1020   HOME:TEXT 
 1025   PERFORM release:PERFORM release:PERFORM release 
 1030   INVOKE 
 1035   CLOSE 
 1040   END 

That's it!  Have fun experimenting with the various modes.  Especially try to type 
a line of proportional text and then a line of the same text in monospace below 

278



it.  You'll find an average of 20 to 30 percent more characters per line can be 
written, and still be extremely easy (and some would say, more pleasant) to read.  
Be sure to also try the effect of the various transfer options on your ability to 
write to the screen.  Since you can position the cursor to exact pixel locations, 
you can also have fun with superscripts, subscripts, underlining, bold, and other 
effects.  Be sure also to try other character fonts, like Roman and Apple.  The 
proportional mode table will not work exactly right, but will do well enough to 
show the effect.


Whats's Next 
This program is one of those which you could almost infinitely enhance.  One 
immediate thought is that you will want to use GSAVE and GLOAD to store and 
retrieve your screen images, especially if you have a program to print screen 
images to a printer.  This would allow you to make copies of your edited 
screens.  You would probably want to clear the message line before saving the 
screen, however.


Other suggestions would include the ability to store several fonts in memory at 
once, and switch quickly between them for various effects.  You would also have 
to store proportion tables for each one.  If you have a font editor, you may want 
to create a special proportional font definition, with narrower characters than 
those found in the standard font.  This would enable you to put many more than 
the 100 characters across possible with the regular fonts. Another use would be 
to modify the character definitions to allow larger than normal fonts for such 
things as gothic, shadow and other uses.


With enough work the program could be a general screen design package, with 
the line and circle editor from Article 8, combined with with general character 
capabilities of this article.


As you can see, programming, like papers on a desktop or appointments in a 
day, has the ability to expand infinitely to fill up any available space and time.  
Use yours wisely, and come back next time for some new challenges!


279



280



Exploring Business Basic, Part XXII 
Last time we wrapped up our discussion of graphics (for a while) and envisoned 
some more practical activities with which to spend our programming hours. 
Somehow "bug-mania" and the bouncing "squid brothers" seemed frivolus at 
the time, but definitely fun.  In this article we will put together some of the tricks 
we learned in the graphics world to demonstrate a really superior input 
environment, which your can use as a general purpose data entry routine.


Getting Some Utility from Basic 
Everybody who has used the Apple III has had occasion to use the System 
Utilities program.  This is the program which comes with every system and 
handles the tasks of formatting disks, copying files, and configuring drivers 
(among a million other tasks).  As was said, lots of people have used this 
program, but not nearly as many have used one of it's special capabilities, one 
which we will copy extensively for this article.  This function is the "insert" mode 
in input fields within the program.  Try the following:


Boot System Utilities and select something simple like listing a file.  When the 
default file name appears in the filename field at the bottom of the screen, press 
"open-apple I" to put the field into "insert" mode. You will immediately see a 
strange looking shape at the beginning of the field, resembling an upside-down 
"T".  It looks something like this: _|_ .  By moving this new cursor, you can place 
it actually between two characters in the input field.  If you watch carefully, you 
will see that the characters appear to "ripple", that is quickly expand and 
contract, as you pass over them with this new cursor.  Any characters typed 
when this cursor is on will appear to the right of the cursor location, inserted 
between the two screen characters that were divided by the cursor.  Using 
"open-apple <--" and "open-apple -->" you can delete characters to the left or 
to the right of the cursor, respectively.


All in all, this "insert mode" editing is quite useful, especially since it is very clear 
where characters are to be inserted and deleted (not always obvious in 
Applewriter!).  For more information as to how this mode works, consult the 
owners guide, or press "open-apple ?" for a quick menu of features.


Shift to the Left, Shift to the Right... 
The rippling effect is a clue to how the insert mode editing works.  Normally 
there is one row of blank pixels on each side of a character definition.  That is, 
the normal character cell is seven pixels wide by eight high, but normally the 
characters only use five horizontal pixels and seven vertical ones (the bottom 
row is reserved for characters with descenders, like "g" and "p").  We used this 

281



fact in the last article to build a proportional spacing editor by squeezing out the 
extra blank columns and thereby packing the characters more tightly on the 
screen.  By packing the characters more tightly in text mode, we can create 
enough space between them to put a vertical cursor line, and thereby indicate 
exactly where the insertion of a character will occur.  The following example will 
summarize the possibilities:

       _______________________________________________________     
      | | | |X| | | | |X|X|X|X| | | | |X|X|X| | | |X|X|X|X| | | 
      | | |X| |X| | | |X| | | |X| | |X| | | |X| | |X| | | |X| | 
      | |X| | | |X| | |X| | | |X| | |X| | | | | | |X| | | |X| | 
      | |X|X|X|X|X| | |X|X|X|X| | | |X| | | | | | |X| | | |X| | 
      | |X| | | |X| | |X| | | |X| | |X| | | | | | |X| | | |X| | 
      | |X| | | |X| | |X| | | |X| | |X| | | |X| | |X| | | |X| | 
      | |X| | | |X| | |X|X|X|X| | | | |X|X|X| | | |X|X|X|X| | | 
      |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_| 

The diagram above shows how the letters "ABCD" are presented on the screen 
as 5 by 7 character definitions within a 7 by 8 character cell.  Notice that there 
are two blank rows between adjacent characters.  If we could squeeze two of 
the characters apart slightly, there would be room to put a cursor between them, 
like this:

       _______________________________________________________ 
      | | | |X| | | |X|X|X|X| | |+|+| | |X|X|X| | |X|X|X|X| | | 
      | | |X| |X| | |X| | | |X| |+|+| |X| | | |X| |X| | | |X| | 
      | |X| | | |X| |X| | | |X| |+|+| |X| | | | | |X| | | |X| | 
      | |X|X|X|X|X| |X|X|X|X| | |+|+| |X| | | | | |X| | | |X| | 
      | |X| | | |X| |X| | | |X| |+|+| |X| | | | | |X| | | |X| | 
      | |X| | | |X| |X| | | |X| |+|+| |X| | | |X| |X| | | |X| | 
      | |X| | | |X| |X|X|X|X| | |+|+| | |X|X|X| | |X|X|X|X| | | 
      |_|_|_|_|_|_|_|_|+|+|+|+|+|+|+|+|+|+|+|+|_|_|_|_|_|_|_|_| 

Notice that all the letters are legible and separated, but the "B" is moved to the 
left and the "C" is moved to the right to make room for the cursor in the middle.  
This leaves one space between "A" and "B" and between "C" and "D", but 
everything works out.


Getting There is Half the Fun 
Now that we know that we can put a cursor between text mode characters 
without destroying the character definitions, the next big trick is figuring out how 
to accomplish this task.  A solution to this problem was described in several 
previous episodes, and envolves creating different character definitions of each 
character, one definition with the "T" shaped cursor on the left, and one on the 
right.  Defining each character in this way will allow us to see how the 

282



compressed characters work.  Fortunately, we don't have to start character 
definitions from scratch.  The following program shows how a given character 
font can be transformed into the compressed set with cursors installed:

 10   DIM 
highr%(15),lowr%(15),carryr%(15),highl%(15),lowl%(15),carryl%(15) 
 20   DIM sleft%(255),sright%(255),char%(511),charl%(511),charr%(511) 
 30   INVOKE"/basic/request.inv","/basic/download.inv" 
 40   GOSUB 4000 

The arrays in line 10 above are used by the conversion routine which we will see 
in a minute, as are 'sleft%' and 'sright%'.  'Char%', 'charl%' and 'charr%' are 
used to store font definitions, for regular, left-shifted and right-shifted, 
respectively.  Line 30 invokes the 'request' module, which will be used to make 
control calls to SOS, and 'download' which puts the converted fonts into the 
system character set.  The GOSUBs to line 4000 is where all the excitement 
starts in the character conversion process:

 4000   DATA 0,2,4,6,0,2,4,6,8,10,12,14,8,10,12,14 
 4010   DATA 1,3,5,7,9,11,13,15,1,3,5,7,9,11,13,15 
 4020   DATA 0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1 
 4030   DATA 4,4,5,5,6,6,7,7,12,12,13,13,14,14,15,15 
 4040   DATA 0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7 
 4050   DATA 0,8,0,8,0,8,0,8,0,8,0,8,0,8,0,8 

 4100   FOR i=0 TO 15:READ highl%(i):NEXT:FOR i=0 TO 15:READ lowl%
(i):NEXT 
 4110   FOR i=0 TO 15:READ carryl%(i):NEXT 
 4120   FOR i=0 TO 15:READ highr%(i):NEXT:FOR i=0 TO 15:READ lowr%
(i):NEXT 
 4130   FOR i=0 TO 15:READ carryr%(i):NEXT 

Each constant in rows 4000 to 4050 represents the shifted version of one nibble 
(4 bits) of an 8 bit row definition of a character.  The exceptions are rows 4020 
and 4050, which contain the quantity to carry in the event that a shift right or left 
needs to shift a value into the adjacent nibble.  The nibble versions of this shift, 
along with the carry array are used to simplify the problem of having all 256 
combinations of shifts of a byte in one big table.  With the individual nibble 
shifts, it is easy to construct the table:

 4150   FOR i=0 TO 15:FOR j=0 TO 15 
 4160       sleft%(i*16+j)=16*(highl%(i)+carryl%(j))+lowl%(j) 
 4170       sright%(i*16+j)=16*highr%(i)+lowr%(j)+carryr%(i) 
 4180       NEXT:NEXT 

Lines 4150-4180 put the nibbles together and add the carry to build the 
conversion arrays 'sleft%' and 'sright%'.  These are the constants which a 

283



character definition will utilize to perform the actual shift.  To use the tables to 
translate a character font, we first need one: 

 4200   prompt$="Character font pathname: ":GOSUB 5000 
 4210   IF error THEN RETURN 

 5000   PRINT prompt$;:INPUT"";a$ 
 5010   IF a$="" THEN error=1:RETURN 
 5020   error=0:RETURN 

 4220   ON ERR GOTO 4260 
 4230   font$=CHR$(34)+a$+CHR$(34):charset$="char%" 
 4240   PERFORM getfont(@font$,@charset$) 
 4250   OFF ERR:PRINT"Font loaded":GOTO 4400 
 4260   ON ERR GOTO 4300 
 4270   OPEN#1,a$:PERFORM filread(%1,@charset$,%1024,@ret%) 
 4280   IF ret%=1024 THEN OFF ERR:GOTO 4400 
 4300   OFF ERR:PRINT a$" is not a valid character font file" 
 4310   IF TYP(1)=0 THEN CLOSE#1:DELETE a$:GOTO 4200 
 4320   CLOSE#1:GOTO 4200 

The routine above is yet another variation on the familiar theme of loading in a 
font definition from a regular font file, or from a file created by a font editor which 
cannot change the file type to system type "font".  When it exits to line 4400, the 
font is contained in 'char%', which is then sent to line 4400 for the actual 
conversion:

 4400   PRINT:PRINT"Preparing the character fonts" 
 4410   FOR i=0 TO 511 STEP 4 
 4420     FOR j=0 TO 2:a$=HEX$(char%(i+j)) 
 4430       l=TEN(MID$(a$,1,2)):r=TEN(MID$(a$,3,2)) 
 4440       charl%(i+j)=TEN(MID$(HEX$(sleft%(l)),3,2)+ 
            MID$(HEX$(sleft%(r)),3,2)) 
 4450       charr%(i+j)=TEN(MID$(HEX$(sright%(l)),3,2)+ 
            MID$(HEX$(sright%(r)),3,2)) 
 4460       NEXT j 
 4470     a$=HEX$(char%(i+3)):l=TEN(MID$(a$,1,2)) 
 4480     charl%(i+3)=TEN(HEX$(sleft%(l))+"7F") 
 4490     charr%(i+3)=TEN(HEX$(sright%(l))+"FE") 
 4500     NEXT i  
 4510   RETURN 

The routine above deserves some careful study.  What's happening is that the 
font definitions of each character are stored in four consecutive integer values in 
the 'char%' array.  The routine converts the quantity to a hex value, then splits it 
into two bytes, and passes those through a conversion and then a lookup of the 

284



corresponding value in 'sright%' or 'sleft%' depending on the desired shift.  
Lines 4470-4490 take care of the special case of the underline (part of the 
bottom of the upside down "T"), by forcing the line to contain all ones, no matter 
what character information was there.  Now that we have definitions in 'charl%' 
and 'charr%', we can proceed with the fun:

 50   PRINT"Press ESCAPE to switch fonts, RETURN to exit" 
 60   array$="char%" 
 70   start=0 
 75   PERFORM loadfont(@array$) 
 80   GET a$ 
 90   IF a$=CHR$(27) THEN 200 
 100   IF a$<>CHR$(13) THEN start=start+1:GOTO 120 
 110   IF start=0 THEN 300:ELSE:start=0:PRINT:GOTO 80 
 120   PRINT a$;:GOTO 80 
 200   IF array$="charl%" THEN array$="charr%":ELSE:array$="charl%" 
 210   GOTO 75 

After loading up the normal font in line 75, the routine accepts a character and 
checks it for "escape".  If so, the character set is toggled between left and right 
shifted characters by re-loading the new set in line 75.  Otherwise, the program 
allows you to type characters to observe them in this new definition.  A carriage 
return as the first character on the line gets you out to line 300:

 300   PERFORM loadfont(@charset$) 
 305   STOP 
 310   INVOKE 
 320   END 

One thing you will notice quickly is that the screen in this program is ugly. 
Because each character, no matter what, is shifted and bordered by an L-
shaped piece of the cursor, the whole screen appears to be made up of a grid in 
which you type letters.  This is true even for spaces, since they get converted 
too. In a minute we'll see how to take these capabilities and make an attractive 
field editor out of them, but for now you can remove the grid lines from the 
space characters by inserting this line in the program above: 

 4505   REM FOR i=128 TO 131:charl%(i)=0:charr%(i)=0:NEXT 

This will blank out the "space" code, and make spaces appear as normal 
blanks.


Two for "T" 
Our objective when we began this was to figure out a way to just change the 
two characters surrounding the cursor (our upside down "T"), and thereby make 
a lot clearer job of what's going on in the editing process.  The example above 

285



was designed to show that we really could convert character sets to have this 
shifted, embedded cursor.  Now we want to use these characters in a much 
more subtle way.


Basically, the Utilities program we referred to earlier accomplishes the cursor 
insertion in the following way.  Extra versions (left and right shifted) of the current 
character set are stored away.  When the cursor is to be inserted between two 
characters, say "A" and "B", the program defines two special characters (we'll 
use ASCII 0 and 1) as shifted versions of "A" and "B" and prints them where the 
"A" and "B" were.  The redefinition of the characters is done through a "Control" 
call to the Console Driver, call 17 to be exact.  This is the "partial character set 
download", which can load a maximum of eight character definitions.  More on 
how this works can be found in your Standard Device Drivers Manual, and a 
reference back to a previous article (18) in this series, which used "call 17" 
extensively to do graphics on the text screen.


The reason for redefining the special characters instead of "A" and "B" directly 
is that we don't want to affect any other occurrences of "A" and "B" which may 
be on the screen.  As soon as the cursor moves on to some other characters, 
we print the old characters back where they were, and redefine the special 
characters according to the characters in the new location.


The Program 
Our program starts with some of the same definitions, and adds some new 
ones:

 10   DIM 
highr%(15),lowr%(15),carryr%(15),highl%(15),lowl%(15),carryl%(15) 
 15   DIM lchar$(127),rchar$(127),flname$(9),vert%(9),horz%(9) 
 20   DIM sleft%(255),sright%(255),char%(511),fstart%(9),fend%(9) 
 30   INVOKE"/basic/request.inv","/basic/download.inv" 
 40   GOSUB 4000 
 45   GOSUB 6000 
 60   name$=".console" 
 75   PERFORM loadfont(@charset$) 

Notice that the 'charl%' and 'charr%' arrays are replaced in this version with 
string arrays 'lchar$' and 'rchar$'.  Each occurance of the array contains a string 
defining an individual ASCII character.  This was done because the "Control" 
invokable requires a string as a parameter for the call.  Other new arrays are 
'flname$','vert%','horz%', 'fstart%' and 'fend%'.  These arrays define the fields 
we will use in mocking up a simple data entry screen as an example of how to 
use the field editing commands.


286



Next comes the initalization routine at line 4000.  You should copy lines 4000 
through 4320 from the previous program, since nothing has changed in that 
part.  That goes for the little entry routine in line 5000 as well.  The changed part 
of the initialization is below, with the major modification designed to create the 
string arrays 'lchar$' and 'rchar$':

 4400   PRINT:PRINT"Preparing the character fonts" 
 4410   FOR i=0 TO 511 STEP 4 
 4415     k=i/4:lchar$(k)="":rchar$(k)="" 
 4420     FOR j=0 TO 2:a$=HEX$(char%(i+j)) 
 4430       l=TEN(MID$(a$,1,2)):r=TEN(MID$(a$,3,2)) 
 4440       lchar$(k)=lchar$(k)+CHR$(sleft%(l))+CHR$(sleft%(r)) 
 4450       rchar$(k)=rchar$(k)+CHR$(sright%(l))+CHR$(sright%(r)) 
 4460       NEXT j 
 4470     a$=HEX$(char%(i+3)):l=TEN(MID$(a$,1,2)) 
 4480     lchar$(k)=lchar$(k)+CHR$(sleft%(l))+CHR$(127) 
 4490     rchar$(k)=rchar$(k)+CHR$(sright%(l))+CHR$(254) 
 4500     NEXT i 
 4510   RETURN 

Each element of the string arrays now contains the eight bytes required to define 
that particular character, either right or left shifted.  Next we have an initialization 
routine to set the field names and parameters described earlier:

 6000   DATA 5 
 6005   DATA "Name: ",6,1,7,30 
 6010   DATA "Address: ",8,1,10,40 
 6015   DATA "City: ",10,1,7,26 
 6020   DATA "State: ",12,1,8,9 
 6025   DATA "Zip: ",14,1,6,10 
 6050   READ n:max.field=n-1 
 6055   FOR i=0 TO max.field 
 6060     READ flname$(i),vert%(i),horz%(i),fstart%(i),fend%(i) 
 6065     NEXT i 
 6090   lcursor$=CHR$(128):rcursor$=CHR$(129):cursor$=lcursor$+rcursor$ 
 6095   blank$="                                        " 
 6100   RETURN 

Notice that in line 6090 above that definitions are established for versions of the 
cursor, composed of the characters 0 and 1 (using the values 128 and 129 
makes them printable).  The single character cursor definitions are for opposite 
ends of an individual field, and the 'cursor$' definition is for insertions in the 
middle of a field.


287



Now that all the definitions are established, it's time to put fields on the screen 
and start editing:

 500   HOME 
 505   FOR field=0 TO max.field 
 510     VPOS=vert%(field):HPOS=horz%(field):PRINT flname$(field); 
 520     flen=fend%(field)-fstart%(field)+1 
 530     cpos=1 
 540     value$=MID$(blank$,1,flen) 

The lines above set up a loop to process all the fields, and then position the 
cursor, print the name of the field, set 'cpos' (the current position within the field) 
and clear the field value 'value$' to blanks.   

 550     HPOS=fstart%(field):PRINT value$;:HPOS=fstart%(field)+cpos-1 
 560     IF cpos>1 THEN 590 
 570     rval%=ASC(MID$(value$,1,1)) 
 575     ctrlist$=CHR$(1)+CHR$(1)+lchar$(rval%) 
 580     PERFORM control(%17,@ctrlist$)name$ 
 585     PRINT rcursor$;:GOTO 650 

 590     lval%=ASC(MID$(value$,cpos-1,1)):rval%=ASC(MID$(value$,cpos,1)) 
 600     ctrlist$=CHR$(2)+CHR$(0)+rchar$(lval%)+CHR$(1)+lchar$(rval%) 
 610     PERFORM control(%17,@ctrlist$)name$ 
 620     HPOS= HPOS-1:PRINT cursor$; 

The routine from 570 to 585 handles the case of the current position being the 
extreme lefthand position in the field.  'Rval%' is set to the first character in 
'value$' and a control list is built in line 575 with the shifted definition of that 
character as ASCII 1.  The control call in 580 redefines ASCII 1, and then 585 
prints it to the screen.  Line 590-620 handles the case of mid-string positions, 
and redefines the characters on both sides of the cursor position.

 650     GET a$:a=ASC(a$) 
 660     IF a<32 OR a>127 THEN 800 
 670     IF cpos=flen THEN 750:ELSE:IF cpos>flen THEN 650 
 675     SUB$(value$,cpos+1)=MID$(value$,cpos,flen-cpos) 
 680     SUB$(value$,cpos)=a$ 
 690     cpos=cpos+1 
 700     GOTO 550 

Lines 650-700 accept input from the user, checking it for control characters and 
"open-apple" commands.  If it is an ordinary character, it is inserted into 'value$' 
and the routine jumps back to 550 to display the new version of the string.  
Notice the check made in line 670 to see if the cursor is at the right-hand end of 
the field.  That situation is processed in line 750:

 750     SUB$(value$,cpos)=a$:IF cpos=1 THEN 760 

288



 755     HPOS= HPOS-2:PRINT MID$(value$,cpos-1,1); 
 760     lval%=a:ctrlist$=CHR$(1)+CHR$(0)+rchar$(lval%) 
 770     PERFORM control(%17,@ctrlist$)name$ 
 780     HPOS=fend%(field):PRINT lcursor$;:cpos=cpos+1:GOTO 650 

The routine above is the "flip side" of the routine at 560, and sets up a single 
character definition at the right edge of the field.


The routines above handled simple character inserts.  Now comes the control 
character processing for all the fun stuff:

 800     IF a>127 THEN a=a-128:GOTO 900 
 805     IF a=9 THEN 970 
 810     IF a<>8 THEN 830 
 815     IF cpos=1 THEN 650:ELSE IF cpos<flen+1 THEN 825 
 817     HPOS= HPOS-1:PRINT MID$(value$,cpos-1,1); 
 820     HPOS= HPOS-1:cpos=cpos-1:GOTO 560 
 825     HPOS= HPOS-2:PRINT MID$(value$,cpos-1,2); 
 827     cpos=cpos-1:HPOS= HPOS-2:GOTO 560 

Line 800 dispatches the use of "open-apple" keys to line 900, and 805 sends 
the routine to the next field if "TAB" is pressed.  Next comes the routine for the 
cursor backarrow, ASCII 8.  This must first restore the character on the right of 
the cursor by printing it from 'value$', and then jump back to 560 to do the new 
cursor display.


 830     IF a<>21 THEN 860

 835     IF cpos>flen THEN 650:ELSE 
         IF cpos=flen THEN a=ASC(MID$(value$,cpos,1)):GOTO 755 
 840     IF cpos=1 THEN HPOS= HPOS-1:PRINT MID$(value$,cpos,1);:GOTO 850 
 845     HPOS= HPOS-2:PRINT MID$(value$,cpos-1,1);:HPOS= HPOS+1 
 850     cpos=cpos+1:GOTO 560 

The routine above does the same thing for ASCII 21 (forward arrow), and returns 
to either 755 if at the end of the field or 560 if in the middle.

 860     IF a=13 THEN SUB$(value$,cpos,flen-cpos+1)=blank$:cpos=1:GOTO 
550 
 870     IF a=27 THEN 990:ELSE:GOTO 650 

Line 860 above handles the carriage return by chopping off anything to the right 
of the cursor and sending the cursor back to the beginning of the field, exactly 
as it would be done on a typewriter.  Line 870 handles ESCAPE, by exiting to the 
wrapup routine in line 990.

 900     IF a<>8 THEN 920 
 905     IF cpos=1 THEN 650 
 910     SUB$(value$,cpos-1)=MID$(value$,cpos)+" " 
 915     cpos=cpos-1:GOTO 550 

289



 920     IF a<>21 THEN 960 
 925     IF cpos>flen THEN 650 
 930     SUB$(value$,cpos)=MID$(value$,cpos+1)+" " 
 935     GOTO 550 

Remember that lines 900-935 above can only be reached if the "open-apple" 
key was pressed along with another key.  In this case, 900-915 handles "open-
apple <--", which deletes characters from the cursor position back to the 
beginning of the field, one character at a time.  Lines 920-935 handle the 
opposite, "open-apple -->" which deletes characters in from the cursor position 
to the end of the field, also one at a time.  In this way all the functions of the 
System Utilities editing are duplicated.

 960     GOTO 650 
 970     HPOS=fstart%(field):PRINT value$; 
 980     result$(field)=value$ 
 985     NEXT field 
 990   PRINT:PRINT:FOR i=0 TO max.field:PRINT result$(i):NEXT 

Lines 970-985 wrap up the processing of a field by reprinting it to insure 
correctness and storing the value in the 'result$' array for future use.  Then 985 
takes the program back to process the next field, or on to 990 to print out the 
accumulated data.


Into the Home Stretch 
One last bit of wrapup and we're finished.  Since the program could use any 
font, we restore the standard font at the end, cleanup the invokables, and end, 
like so:

 2000   stdset$=CHR$(34)+"/basic/standard"+CHR$(34) 
 2005   PERFORM getfont(@stdset$,@charset$) 
 2010   PERFORM loadfont(@charset$) 
 2020   INVOKE 
 2030   END 

There you have it.  This is no great shakes as a data entry program, of course.  
Its purpose was to give the editing posibilities of the new cursor insert mode a 
workout.  With some spiffing up you could use this as a decent routine, however, 
especially if the performance was improved.  No real effort was made to 
streamline the typing of characters, so since it has a lot of work to do, you can 
easily get ahead if you're a fast typist.


Another area for improvement is to store the string arrays which define the 
characters in disk files and read them in at run time.  This should take less time 
than generating the characters each time.


290



Finally, there are some differences in how this program works and the editing 
capability of the System Utilities program.  One nice thing that utilities does is to 
flash the underline part of the cursor.  This is accomplished by setting the high-
order bit in the bottom row of the character definitions, and turning on inverse 
mode before printing the cursor.  Since this also requires that you create the 
INVERSE version of the shifted character (so the inverse of inverse is normal, get 
it?), that got a little messy for this article. Those of you with patience will have it 
rewarded by being able to exactly duplicate the utilities program.  Well, now that 
that's said, there is one "little" thing more.  Utilities also handles the problem of 
characters which have descenders.  Our program ignores descenders on 
characters and just puts the underline in regardless.  Utilities actually moves the 
character up one row, which it can do since only lower case letters have 
descenders.  Some people find this bothersome, but it eliminates the legibility 
problem which sometimes occurs when the descender is cut off.


The suggestions in the paragraph above come under the heading of SMOP's.  
SMOP stands for "Simple Matter Of Programming" which is roughly equivalent 
to "it can easily be shown that..." for  mathematicians.  There is no task which 
you can't accomplish with a computer, it's just a SMOP.


Until next time, may all you SMOP's be little ones! 


291



292



Exploring Business Basic - Part XXIII 
Last month we undertook a challenge to use the flexibility of the 
"soft" (programmable) character set of the Apple III to do something usually 
reserved for systems using bit-mapped graphics displays, that is, to create a 
cursor on the screen which actually lived between  two adjacent screen 
characters. This was done in response to the need to know exactly where 
inserting of typed characters would occur.  The example was borrowed from the 
Apple III System Utilities program, where this "insert mode" cursor is used in the 
input fields.  Some other Pascal programs use this technique, but it turned out 
that it was fairly easy to implement in Basic as well ('Yay, Basic!).  However, the 
way things were done last time was somewhat different from the Utilities 
implementation, and so the article concluded with some challenges to make the 
routine better and more useful in data entry programs, as well as more like the 
way things work in Utilities.  Shame on this column!  This month's intrepid 
episode revisits the program and the previous column's parting challenges and 
delivers a more robust and useful version.  For those of you who undertook to 
solve the problems raised last time, this will serve as a check on one way (not 
necessarily the best) to attack the solution.


Quick as a Wink 
Just to refresh your memory, the way we attacked to problem of putting a cursor 
between two characters was to create two new sets of character set definitions 
in which each character was moved to the left or right one pixel position within 
the character cell (since most characters occupy 5X7 dots within a 7X8 cell).  A 
vertical row of dots was put into the vacant space left when the shift occured.  
By redefining two adjacent characters on the screen with a left-shifted and a 
right-shifted version, the result was two standard characters with a double width 
bar between them, indicating where the insertion would occur.  To make things 
clearer, the bottom row of pixels was turned on as well, in the space normally 
occupied by the descenders of lower case characters.


While this was a good first pass, the System Utilities program does several more 
things which make this easier to use and more legible.  First, to draw attention 
to where the cursor is, the program flashes the underline below the two 
characters, instead of leaving it constantly on.  Secondly, the program handles 
the problem of the flashing underline destroying lower case descenders by 
physically moving the character up one row so that the descenders are 
preserved.  It can do this because only five lower case characters have 
descenders (g,j,p,q,y) and in each case the character can be moved up without 
losing its appearance.  Granted, the "j" loses its top dot, but life is like that.


293



In the program below, we'll first tackle the problem of making the underline 
"wink" (rhymes with blink) at us, and then look at a method of shifting up the five 
lower case characters.  To get the blinking underline, it's necessary to remember 
that the high order bit in a character definition (the left-most or Most Significant 
Bit, some people would say) is used to control blinking for that line of pixels in 
the character cell, but only if the character is written in "inverse" mode.   This 
means that you can have normal mode and either inverse or blinking, but not 
both.


Programming Inverse 
The information above suggests a simple solution, namely to set the high order 
bit of the last row of the cursor character definitions and print them in inverse 
mode.  However, since we must print the whole character in inverse, for the top 
seven rows to come out normally, it is necessary to create an inverse (black on 
white) character definition, which, when printed in inverse will result in the 
"normal" white pixels on black.  Fortunately, as we will see, inverting the 
character definition is much simpler than shifting it. Those of you with 
exceptional memories (or exceptional faithfullness to this column) will remember 
that this technique was covered when we created the character and shape 
editor in the February episode.  Then, as now, the way to invert a bit pattern is to 
subtract it from a bit pattern of all "ones". Thus:

                     1111111             1111111 
                    -1001101            -0011101 
                    --------            -------- 
                     0110010             1100010            ,etc. 

In decimal, it's as simple as subtracting from 127, 255 or any other number 
which is all "ones" in binary.


Dividing up the Work 
One of the other challenges from last time was to divide the program into two 
parts, one which created the shifted (and now inverted) characters and the field 
definitions, and the other of which used the character definitions to do data 
entry into the fields.  The major reason for this division of labor was to avoid 
spending the time inverting and shifting the characters each time the data entry 
program was run.  Also, by building files of shifted character definitions, field 
names and specifications, it would be possible to use the same data entry 
program to enter many different sets of data, depending on which definition file 
the data entry program used.  This is much more the way that real applications 
are built.


294



Since the details of the character shifting process were fully described last time, 
the description of the program below will just note changes from the previous 
version:

 10   DIM 
highr%(15),lowr%(15),carryr%(15),highl%(15),lowl%(15),carryl%(15) 
 15   DIM lchar$(127),rchar$(127),sleft%(255),sright%(255),char%(511) 
 20   DIM flname$(20),vert%(20),horz%(20),fstart%(20),fend%(20) 
 30   INVOKE"/basic/request.inv","/basic/download.inv" 

 35   PRINT"Initializing values, please wait" 
 40   GOSUB 4000 
 45   GOSUB 6000 

The section above uses the same routines at lines 4000 and 6000 to build the 
character definitions and field descriptions, but this time, instead of using these 
definitions immediately, the program section below writes this information out to 
a definition storage file:

 50   INPUT"Storage file: ";a$ 
 60   IF a$="" THEN 500 
 70   OPEN#1,a$ 
 80   PERFORM filwrite(%1,@charset$,%1024) 
 90   WRITE#1,10;font$ 
 100   FOR i=0 TO 127 
 110     WRITE#1;lchar$(i),rchar$(i) 
 120     NEXT i 
 130   WRITE#1,20;max.field+1 
 140   FOR i=0 TO max.field 
 150     WRITE#1;flname$(i),vert%(i),horz%(i),fstart%(i),fend%(i) 
 160     NEXT i 
 170   PRINT"Information stored." 

Line 80 writes out the character set which corresponds to the shifted definitions 
in "lchar$" and "rchar$".  This insures that the data entry program will use 
consistant definitions for regular characters and redefined ones, no matter what 
font is selected in this program.  After writing out the character set, the shifted 
definitions are written in lines 90 through 120. Note that the pathname of the 
original font is written for reference.  In 130-160 then field name definitions are 
written, along with the display location and length information.  At that point this 
program is finished:

 500   REM end of program   
 510   CLOSE:INVOKE 
 520   END 

295



Most of the routine at line 4000 which builds the shifted character definitions is 
the same, but is repeated so that you can recreate the whole program:

 4000   DATA 0,2,4,6,0,2,4,6,8,10,12,14,8,10,12,14 
 4010   DATA 1,3,5,7,9,11,13,15,1,3,5,7,9,11,13,15 
 4020   DATA 0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1 
 4030   DATA 4,4,5,5,6,6,7,7,12,12,13,13,14,14,15,15 
 4040   DATA 0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7 
 4050   DATA 0,8,0,8,0,8,0,8,0,8,0,8,0,8,0,8 

 4100   FOR i=0 TO 15:READ highl%(i):NEXT:FOR i=0 TO 15:READ lowl%
(i):NEXT 
 4110   FOR i=0 TO 15:READ carryl%(i):NEXT 
 4120   FOR i=0 TO 15:READ highr%(i):NEXT:FOR i=0 TO 15:READ lowr%
(i):NEXT 
 4130   FOR i=0 TO 15:READ carryr%(i):NEXT 
 4150   FOR i=0 TO 15:FOR j=0 TO 15 
 4160       sleft%(i*16+j)=16*(highl%(i)+carryl%(j))+lowl%(j) 
 4170       sright%(i*16+j)=16*highr%(i)+lowr%(j)+carryr%(i) 
 4180       NEXT:NEXT 

 4200   prompt$="Character font pathname: ":GOSUB 5000 
 4210   IF error THEN RETURN 
 4220   ON ERR GOTO 4260 
 4230   font$=CHR$(34)+a$+CHR$(34):charset$="char%" 
 4240   PERFORM getfont(@font$,@charset$) 
 4250   OFF ERR:PRINT"Font loaded":GOTO 4400 
 4260   ON ERR GOTO 4300 
 4270   OPEN#1,a$:PERFORM filread(%1,@charset$,%1024,@ret%) 
 4280   IF ret%=1024 THEN OFF ERR:GOTO 4400 
 4300   OFF ERR:PRINT a$" is not a valid character font file" 
 4310   IF TYP(1)=0 THEN CLOSE#1:DELETE a$:GOTO 4200 
 4320   CLOSE#1:GOTO 4200 

The shift preparation routines below contain the changes for inverting the 
character set to allow for our blinking underline cursor:

 4400   PRINT:PRINT"Preparing the character fonts" 
 4410   FOR i=0 TO 511 STEP 4 
 4415     k=i/4:lchar$(k)="":rchar$(k)="" 
 4420     FOR j=0 TO 2:a$=HEX$(char%(i+j)) 
 4430       l=TEN(MID$(a$,1,2)):r=TEN(MID$(a$,3,2)) 
 4440       lchar$(k)=lchar$(k)+CHR$(127-sleft%(l))+CHR$(127-sleft%(r)) 
 4450       rchar$(k)=rchar$(k)+CHR$(127-sright%(l))+CHR$(127-sright%
(r)) 
 4460       NEXT j 

296



 4470     a$=HEX$(char%(i+3)):l=TEN(MID$(a$,1,2)):r=TEN(MID$(a$,3,2)) 
 4480     lchar$(k)=lchar$(k)+CHR$(127-sleft%(l))+CHR$(256-sleft%(r)) 
 4490     rchar$(k)=rchar$(k)+CHR$(127-sright%(l))+CHR$(319-sright%(r)) 
 4500     NEXT i 
 4510   RETURN 

Notice that in lines 4440,4450,4480 and 4490 that the value of the individual row 
definition is first subtracted from 127 to form the inverse of the regular value.  
We use 127 (seven bits of ones) because we want the high order (flash) bit to be 
left off on all rows but the bottom.  The bottom row left is handled in line 4480, 
where subtracting from 256 not only inverts the bottom seven bits (the 
character's pixel definition) and inverts (turns on) the flash bit, but also (255+1) 
turns on the low order bit, to be consistant with the state of the other bits 
(remember that sleft% forces the low order bit to one for the cursor center line, 
and the invert operation performed by the subtraction turns it back off).  Line 
4490 performs a similar operation, except this time we must subtract from 319 
(255+64) which has the effect of inverting all the bits and then turning the bit 
next to the flash (high order) bit on.  Trust it, it works!


The rest of the routine is very similar to the version from last time:

 5000   PRINT prompt$;:INPUT"";a$ 
 5010   IF a$="" THEN error=1:RETURN 
 5020   error=0:RETURN 

 6000   DATA 5 
 6005   DATA "Name: ",6,1,7,30 
 6010   DATA "Address: ",8,1,10,40 
 6015   DATA "City: ",10,1,7,26 
 6020   DATA "State: ",12,1,8,9 
 6025   DATA "Zip: ",14,1,6,10 
 6050   READ n:max.field=n-1 
 6055   FOR i=0 TO max.field 
 6060     READ flname$(i),vert%(i),horz%(i),fstart%(i),fend%(i) 
 6065     NEXT i 
 6100   RETURN 

Descending Ever Upward 
As was mentioned before, it is possible to modify the character shifting and 
inversion routine to more nearly match how the System Utilities program 
behaves.  The lines below, when added to the program above, will move the 
definitions of the characters g,j,p,q,y up one row of pixels, so that a blinking 
underline can be used without distorting the character appearance. This has the 
disadvantage of making the character appear to bounce up when the cursor 
moves over it, but its purely a matter of personal taste.  The best way is to make 

297



the modifications and try creating both kinds of definitions.  Use the one you like 
and which makes the most sense to you.  Anyway, here are the changes:

 4432     IF k<103 OR j>0 THEN 4440 
 4433     IF k<>103 AND k<>106 AND k<>112 AND k<>113 AND k<>121 THEN 
4440 
 4435     lchar$(k)=CHR$(127-sleft%(r)):rchar$(k)=CHR$(127-sright%(r)): 
          GOTO 4460 

 4472     IF k<103 THEN 4480 
 4473     IF k<>103 AND k<>106 AND k<>112 AND k<>113 AND k<>121 THEN 
4480 
 4475     lchar$(k)=lchar$(k)+CHR$(127-sleft%(l))+CHR$(127-sleft%(r))+ 
          CHR$(255) 
 4478     rchar$(k)=rchar$(k)+CHR$(127-sright%(l))+CHR$(127-sright%(r))+ 
          CHR$(255) 
 4479     GOTO 4500 

As you can see, it works by skipping the loading of the top row (line 4435) and 
adds an extra row (now the new bottom row) which just consists of a solid 
flashing line ( the chr$(255) in line 4475 and 4478).


Spreading the Word 
Having created and stored the character definitions and the data entry 
definitions, it's time to show the data entry program which takes advantage of all 
this work.  Because the program below follows the program from last time 
almost exactly in the way it displays the fields and accepts data, only the 
changed parts will be described in detail:

 10   DIM 
highr%(15),lowr%(15),carryr%(15),highl%(15),lowl%(15),carryl%(15) 
 15   DIM lchar$(127),rchar$(127),flname$(9),vert%(9),horz%(9) 
 20   DIM sleft%(255),sright%(255),char%(511),fstart%(9),fend%(9) 
 30   INVOKE"/basic/request.inv","/basic/download.inv" 

 40   GOSUB 3000 
 50   IF error THEN 2000 
 60   name$=".console" 
 70   blank$="                                                           
" 
 75   lcursor$=CHR$(128):rcursor$=CHR$(129):cursor$=lcursor$+rcursor$ 
 80   INPUT"Name of recording file: ";a$ 
 85   IF a$="" THEN a$=".console" 
 90   OPEN#2,a$ 

298



Our first task after allocating the arrays is to read in the definitions from the file 
created in the previous program.  That's done at line 3000 and looks like this:

 3000   INPUT"Screen definition file: ";a$ 
 3005   error=0:IF a$="" THEN error=1:RETURN 
 3010   charset$="char%" 
 3015   ON ERR GOTO 3900 
 3020   OPEN#1,a$ 
 3025   PERFORM filread(%1,@charset$,%1024,@ret%) 
 3030   OFF ERR 
 3035   IF ret%<>1024 THEN 3900 
 3040   PERFORM loadfont(@charset$) 
 3100   READ#1,10;font$ 
 3105   FOR i=0 TO 127 
 3110     READ#1;lchar$(i),rchar$(i) 
 3115     NEXT i 
 3120   READ#1,20;n:max.field=n-1 
 3125   FOR i=0 TO max.field 
 3130     READ#1;flname$(i),vert%(i),horz%(i),fstart%(i),fend%(i) 
 3135     NEXT i 
 3200   PRINT"Information loaded" 
 3205   RETURN 

 3900   PRINT"Invalid definition file, try again" 
 3905   OFF ERR 
 3910   GOTO 3000 

The routine above reverses the process used to originally write the file, and 
stores the information used by the data entry routine in the appropriate arrays.


Glancing back up to the rest of the routine in lines 80-90, we now allow a file to 
be opened to store the data which will be input.  The example used here is a 
simple one, and typically would have lots more complications, like creating keys 
and writing out data into a database structure, etc.  but for now the example 
given simplifies the issues.  Notice that the default is the screen (.console) which 
gives a convenient way to test that the data we see is really the data which was 
accepted as input.


Next we come to the input routine itself, which was heavily described last time.  
It basically cycles through all the fields and accepts data while displaying the 
"insert mode" cursor created by the new character definitions.

 500   HOME 
 505   FOR field=0 TO max.field 
 510     VPOS=vert%(field):HPOS=horz%(field):PRINT flname$(field); 
 520     flen=fend%(field)-fstart%(field)+1 
 530     cpos=1 

299



 540     value$=MID$(blank$,1,flen) 
 550     HPOS=fstart%(field):PRINT value$;:HPOS=fstart%(field)+cpos-1 
 560     IF cpos>1 THEN 590 
 570     rval%=ASC(MID$(value$,1,1)) 
 575     ctrlist$=CHR$(1)+CHR$(1)+lchar$(rval%) 
 580     PERFORM control(%17,@ctrlist$)name$ 
 585     INVERSE:PRINT rcursor$;:NORMAL:GOTO 650 

 590     lval%=ASC(MID$(value$,cpos-1,1)):rval%=ASC(MID$(value$,cpos,1)) 
 600     ctrlist$=CHR$(2)+CHR$(0)+rchar$(lval%)+CHR$(1)+lchar$(rval%) 
 610     PERFORM control(%17,@ctrlist$)name$ 
 620     HPOS= HPOS-1:INVERSE:PRINT cursor$;:NORMAL 

 650     GET a$:a=ASC(a$) 
 660     IF a<32 OR a>127 THEN 800 
 670     IF cpos=flen THEN 750:ELSE:IF cpos>flen THEN 650 
 675     SUB$(value$,cpos+1)=MID$(value$,cpos,flen-cpos) 
 680     SUB$(value$,cpos)=a$ 
 690     cpos=cpos+1 
 700     GOTO 550 

 750     SUB$(value$,cpos)=a$:IF cpos=1 THEN 760 
 755     HPOS= HPOS-2:PRINT MID$(value$,cpos-1,1); 
 760     lval%=a:ctrlist$=CHR$(1)+CHR$(0)+rchar$(lval%) 
 770     PERFORM control(%17,@ctrlist$)name$ 
 780     HPOS=fend%(field):INVERSE:PRINT 
lcursor$;:NORMAL:cpos=cpos+1:GOTO 650 

 800     IF a>127 THEN a=a-128:GOTO 900 
 805     IF a=9 THEN 970 
 810     IF a<>8 THEN 830 
 815     IF cpos=1 THEN 650:ELSE IF cpos<flen+1 THEN 825 
 817     HPOS= HPOS-1:PRINT MID$(value$,cpos-1,1); 
 820     HPOS= HPOS-1:cpos=cpos-1:GOTO 560 
 825     HPOS= HPOS-2:PRINT MID$(value$,cpos-1,2); 
 827     cpos=cpos-1:HPOS= HPOS-2:GOTO 560 
 830     IF a<>21 THEN 860 
 835     IF cpos>flen THEN 650:ELSE IF cpos=flen THEN 
         a=ASC(MID$(value$,cpos,1)):GOTO 755 
 840     IF cpos=1 THEN HPOS= HPOS-1:PRINT MID$(value$,cpos,1);:GOTO 850 
 845     HPOS= HPOS-2:PRINT MID$(value$,cpos-1,1);:HPOS= HPOS+1 
 850     cpos=cpos+1:GOTO 560 
 860     IF a=13 THEN SUB$(value$,cpos,flen-cpos+1)=blank$:cpos=1:GOTO 
550 

300



 870     IF a=27 THEN 990 
 875     GOTO 650 

 899     REM routine below handles "open-apple" keys 
 900     IF a<>8 THEN 920 
 905     IF cpos=1 THEN 650 
 910     SUB$(value$,cpos-1)=MID$(value$,cpos)+" " 
 915     cpos=cpos-1:GOTO 550 
 920     IF a<>21 THEN 650 
 925     IF cpos>flen THEN 650 
 930     SUB$(value$,cpos)=MID$(value$,cpos+1)+" " 
 935     GOTO 550 

 969     REM put value into the result array and get next value 
 970     HPOS=fstart%(field):PRINT value$; 
 980     result$(field)=value$ 
 985     NEXT field 

Notice above that in lines 585, 620 and 780 we now turn on inverse mode, print 
the cursor characters, and then turn normal back on.  This, in combination with 
the high bit "on" in the character's bottom row, creates the flashing underline we 
want.  After all the fields are filled (remember that TAB gets us to the next field 
and ESCAPE jumps out of input mode), we write out the results in the storage 
file: 

 990   REM end of input cycle, write out results  
 1000   PRINT:PRINT 
 1005   FOR i=0 TO max.field 
 1010     PRINT#2;result$(i) 
 1015     NEXT i 
 1020   PRINT"Record written" 
 1030   INPUT"Continue? ";a$ 
 1035   IF a$="" THEN 500 
 1040   a$=MID$(a$,1,1):IF INSTR("Yy",a$) THEN 500 

As was said previously, the routine from lines 1005 to 1015 can, and probably 
needs to be much more complicated to be useful.  After prompting to see if 
there are more records to be entered, line 1040 either takes the user back for 
more input, or terminates using the routine below:

 2000   stdset$=CHR$(34)+"/basic/standard"+CHR$(34) 
 2005   PERFORM getfont(@stdset$,@charset$) 
 2010   PERFORM loadfont(@charset$) 
 2020   CLOSE:INVOKE 
 2030   END 

301



Lines 2000-2030 load the standard character set back using "getfont" and 
"loadfont" and terminate the program.


Exiting Data Entry 
The data entry program above with its nice field handling capabilities can be the 
basis for lots of applications.  Because the definition of the data to be entered is 
stored separately from the data entry program itself, one program can truly 
serve many needs.  This is much more characteristic of the way real database 
query and update programs work, with one piece of program code operating on 
lots of different database definitions.  One thing which would make this 
combinition much more useful is if you modified the definition program to allow 
the input and editing of the field definitions, rather than having to type them into 
data statements.  You might even want to store the field definitions in separate 
files, since one set of character definitions would serve many different sets of 
fields, and would save considerable disk space as well.


Tune in next time for a special treat, as this intrepid column brings you some 
news which will delight every Apple III owner (and make some of you Apple // 
owners a bit jealous!).  'Till then...


302



Appendix -- Additional Information 

                         P O W E R    C A T    III


             Sorted Catalog List for Device : {MIXED}


----------------------------------------------------------------------------


Catalogs Referenced in this Listing :


Ref Nmbr          Catalog Name  {id info} 

1               /THREE.SIG.1017A/ARTICLE1/ 
2               /THREE.SIG.1017A/ARTICLE2/ 
3               /THREE.SIG.1017B/ARTICLE3/ 
4               /THREE.SIG.1017B/ARTICLE4/ 
5               /THREE.SIG.1017B/ARTICLE5/ 
6               /THREE.SIG.1018A/ARTICLE6/ 
7               /THREE.SIG.1018A/ARTICLE7/ 
8               /THREE.SIG.1018B/ARTICLE8/ 
9               /THREE.SIG.1018B/ARTICLE9/ 
10              /THREE.SIG.1019A/ARTICLE10/ 
11              /THREE.SIG.1019A/ARTICLE11/ 
12              /THREE.SIG.1019A/ARTICLE12/ 
13              /THREE.SIG.1019B/ARTICLE12/ 
14              /THREE.SIG.1019B/ARTICLE13/ 
15              /THREE.SIG.1019B/ARTICLE14/ 
16              /THREE.SIG.1019B/ARTICLE15/ 
17              /THREE.SIG.1020A/ARTICLE16/ 
18              /THREE.SIG.1020A/ARTICLE17/ 
19              /THREE.SIG.1020A/ARTICLE18/ 
20              /THREE.SIG.1019B/ARTICLE18/ 
21              /THREE.SIG.1019B/ARTICLE19/ 
22              /THREE.SIG.1021A/ARTICLE20/ 
23              /THREE.SIG.1021A/ARTICLE21/ 
24              /THREE.SIG.1021B/ARTICLE21/ 
25              /THREE.SIG.1021B/ARTICLE22/ 
26              /THREE.SIG.1021B/ARTICLE23/ 

303



File  Name      Ref#  Type   Blks 

ARC                7 BASIC  00005 
ARC.SUB            7 BASIC  00003 
ARC.TIME           7 BASIC  00006 
ARTICLE.1          1 TEXT   00040 
ARTICLE.2          2 TEXT   00039 
ARTICLE.3          3 TEXT   00044 
ARTICLE.4          4 TEXT   00055 
ARTICLE.5          5 TEXT   00052 
ARTICLE.6          6 TEXT   00060 
ARTICLE.7          7 TEXT   00052 
ARTICLE.8          8 TEXT   00043 
ARTICLE.9          9 TEXT   00067 
ARTICLE.10        10 TEXT   00068 
ARTICLE.11        11 TEXT   00064 
ARTICLE.12        13 TEXT   00033 
ARTICLE.13        14 TEXT   00023 
ARTICLE.14        15 TEXT   00054 
ARTICLE.15        16 TEXT   00054 
ARTICLE.16        17 TEXT   00057 
ARTICLE.17        18 TEXT   00070 
ARTICLE.18        20 TEXT   00064 
ARTICLE.19        21 TEXT   00069 
ARTICLE.20        22 TEXT   00078 
ARTICLE.21        23 TEXT   00074 
ARTICLE.22        25 TEXT   00049 
ARTICLE.23        26 TEXT   00040 
B.SORT.2D         16 BASIC  00001 
BINARY.SORT       16 BASIC  00005 
BINARY.SORT       17 BASIC  00005 
BOUNCE.PRIOR      22 BASIC  00005 
BOUNCE.SCRUB      22 BASIC  00004 
BUBBLE.SORT       15 BASIC  00001 
BUBBLE.SORT       16 BASIC  00001 
BUBL.PNTR.SORT    15 BASIC  00001 
BUBL.PNTR.SORT    16 BASIC  00001 
BUG.BOX           22 BASIC  00005 

304



File  Name      Ref#  Type   Blks 

BUG.FONT          18  FONT   00003 
BUG.FONT          19  FONT   00003 
BUG.FONT          21  FONT   00003 
BUG.FONT.1        18  FONT   00003 
BUG.FONT.1        19  FONT   00003 
BUG.MANIA         19  BASIC  00008 
BUILD.FILE.1      26  BASIC  00006 
BUILD.INV.BYTES    8  BASIC  00001 
CHANGES.PROG       4  BASIC  00003 
CHAR.ARROW        18  DATA   00007 
CIRCLE             7  BASIC  00001 
CIRCLE.ASPECT      7  BASIC  00001 
CIRCLE.FINAL       7  BASIC  00003 
CIRCLE.PROG        7  BASIC  00003 
CIRCLE.SCALE       7  BASIC  00001 
CIRCLE.SUB         7  BASIC  00001 
COMMAND.TEST       8  BASIC  00008 
CREATE.TRASH      10  BASIC  00003 
CREATE.TRASH      11  BASIC  00003 
CREATEJUNKFILE    16  BASIC  00001 
DATA.PARTS.PROG    3  BASIC  00007 
DATABASE.PROG      9  BASIC  00013 
DB.BTREE          17  BASIC  00019 
DECODE            10  BASIC  00003 
DECODE.DUMP       10  BASIC  00004 
DEMO.MOVE.FONT    25  BASIC  00005 
DEMO.PRIORITY     19  BASIC  00005 
DIR.DUMP.OUT       6  TEXT   00001 
DIRECTORYDUMP      6  TEXT   00006 
DUMP.DATA          5  TEXT   00005 
DUMP.DIR           6  BASIC  00001 
DUMP.OUT           5  TEXT   00013 
DUMP.STATUS       10  BASIC  00004 
DUMP.USING.GET     5  BASIC  00001 
EDIT.FONT          8  BASIC  00010 
EDIT.SHAPE        18  BASIC  00025 
EDIT.SHAPE        21  BASIC  00025 
EDITOR             8  BASIC  00009 
ELLIPSE            7  BASIC  00001 
EXTENDED.ADD       6  BASIC  00004 
FAST.B.SORT       16  BASIC  00005 
FAST.CIRCLE        7  BASIC  00001 

305



FAST.MOVE         21  BASIC  00004 
FILL.PIC           8  FOTO   00033 
FINAL.B.SORT      16  BASIC  00005 
FINAL.FIRE        22  BASIC  00006 
FINAL.PROP.EDIT   24  BASIC  00011 
FONTLOAD.SUB      19  BASIC  00001 
FONTLOAD.SUB      21  BASIC  00001 
FOR.NEXT.OUT       6  TEXT   00001 
FORMAT.DUMP        5  BASIC  00001 
FREE.FIRE         19  BASIC  00006 
FREE.FIRE         21  BASIC  00006 
GENERATE.JUNK      9 BASIC  00001 
GET.STATUS        10 BASIC  00003 
GOSSIPFILE        10 TEXT   00009 
GOSSIPFILE        11 TEXT   00015 
HASH.EXAMPLE       9 BASIC  00001 
HASH.SUB           9 BASIC  00001 
HASH.TEST          9 BASIC  00001 
HEX.CONVERT        5 BASIC  00001 
HIRES.CRAWL       19 BASIC  00001 
HIRES.CRAWL       21 BASIC  00001 
HIRES.DUMP         8 BASIC  00006 
HSCROLL           10 BASIC  00001 
HSCROLL.ARRAY     10 BASIC  00001 
INPUT.DATA        26 BASIC  00007 
INPUT.FIELDS      25 BASIC  00009 
INPUTEXAMPLE       3 BASIC  00001 
INSERT.MODE       25 BASIC  00005 
INV.BYTES          8 DATA   00003 
INVERT.FONTDEMO    8 BASIC  00003 
INVERT.HEX         8 BASIC  00001 
INVERT.INSERT     25 BASIC  00009 
INVERT.INT         8 BASIC  00001 
INVERT.SORT       15 BASIC  00005 
INVERT.SORT       16 BASIC  00005 
LAST.TRY          24 BASIC  00012 
LIKE.UTILITIES    26 BASIC  00006 
LINETO.CIRCLE      7 BASIC  00001 
LIST.PARTS         3 BASIC  00001 
LISTP             11 TEXT   00001 
LISTROUTINE        4 TEXT   00001 
LONG.ADD.SUB       6 BASIC  00001 
LONG.INPUT.SUB     6 BASIC  00001 
LONG.QUICK        15 BASIC  00004 

306



LOOP.EXAMPLE      19 BASIC  00003 
MODE.CIRCLE        7 BASIC  00003 
MODE1.CIRCLE       7 BASIC  00001 
MOVE.BUG          21 FONT   00003 
MOVE.BY.THREE     21 BASIC  00003 
MOVE.HEADS        21 BASIC  00004 
MOVE.SINGLE       21 BASIC  00005 
MOVE.SINGLE       22 BASIC  00005 
MOVING.DOWNLOAD   25 BASIC  00006 
MYPROGRAM          6 BASIC  00001 
NEW.BUG.MANIA     19 BASIC  00008 
NEW.CREATE.JUNK    5 BASIC  00001 
NEW.FDEMO          8 BASIC  00003 
NEW.INVERT        25 BASIC  00009 
NEW.INVERT        26 BASIC  00009 
NEW.MOVE.THREE    22 BASIC  00003 
NEW.PROG.DATA      4 BASIC  00008 
NEW.SCRUB         22 BASIC  00004 
NEW.TRY           17 TEXT   00001 
NEWCIRCLE          7 BASIC  00001 
NEXT.SHAPE        21  DATA   00004 
NOTE              12  TEXT   00001 
NOWAIT.2BYTE      14  BASIC  00003 
NUMBERFILE         3  TEXT   00003 
NUMBERFILE1        3  DATA   00003 
OUTPUT.CREATE      5  TEXT   00003 
PARTS.LIST         4  BASIC  00001 
PARTS.PROG         3  BASIC  00007 
PARTS.PROG         5  BASIC  00009 
PNTR.BUBBLE       15  BASIC  00003 
PNTR.BUBBLE       16  BASIC  00003 
PRIME              9  BASIC  00001 
PRINT.DATA         3  BASIC  00001 
PROGRAM1           1  BASIC  00001 
PROGRAM1           2  BASIC  00001 
PROGRAM2           1  BASIC  00001 
PROGRAM2           2  BASIC  00001 
PROGRAM3           2  BASIC  00001 
PROGRAM4           2  BASIC  00001 
PROGRAM5           2  BASIC  00001 
PROGRAM6           2  BASIC  00003 
PROP.PART         24  TEXT   00004 
PROPORTION.EDIT   24  BASIC  00012 
QUICK.BYTES        8  BASIC  00001 

307



QUICK.FONT.DUMP   21  BASIC  00001 
QUICKSORT         15  BASIC  00003 
QUICKSORT         16  BASIC  00003 
RANDOM.ARC         7  BASIC  00005 
RANDOM.CIRCLE      7  BASIC  00004 
RANDOM.TEST        9  BASIC  00001 
RANDOM.TEXT        7  BASIC  00005 
READ.BUBBLES      21  BASIC  00003 
READ.SCRUB        22  BASIC  00004 
READ.WAG          21  BASIC  00005 
SCREEN.DATA.PGM   12  BASIC  00008 
SCREEN.EDIT       11  BASIC  00008 
SCREW.AROUND      22  BASIC  00003 
SCROLL.4.WAYS     10  BASIC  00004 
SCROLL.HIRES      19  BASIC  00001 
SCROLL.HIRES      21  BASIC  00001 
SCROLL.TEXT       19  BASIC  00001 
SCROLL.VARIABLE   10  BASIC  00006 
SCRUB.BUBBLES     21  BASIC  00003 
SET.CONTROL       10  BASIC  00009 
SHAPE.ARROW2      18  DATA   00004 
SHAPE.LOAD.SUB    21  BASIC  00001 
SHELL             15  BASIC  00003 
SHELL             16  BASIC  00003 
SHELL.SORT        15  BASIC  00001 
SHELL.SORT        16  BASIC  00001 
SHELL.SUB         15  BASIC  00001 
SHORT.WAG         21  BASIC  00004 
SIMPLE.BUBBLE     15  BASIC  00001 
SIMPLE.HASH        9  BASIC  00001 
SMOOTH.SCROLL     21  BASIC  00001 
SORT.FRAME        15  BASIC  00001 
SORT.FRAME        16  BASIC  00001 
SORT.PROG.DATA     4  BASIC  00009 
SORTSUB            4  TEXT   00003 
STANDARD          19  FONT   00003 
STANDARD.FONT     18  FONT   00003 
STATUS.OUT        10  TEXT   00001 
SWITCH            21  BASIC  00003 
TABLE              7  BASIC  00001 
TABLE             18  BASIC  00003 
TABLE.CIRCLE       7  BASIC  00001 
TEST.DUP           9  BASIC  00001 
TEST.FIL.OUT       6  TEXT   00001 

308



TEST.FILWRITE      6  BASIC  00003 
TEST.FOR.NEXT      6  BASIC  00003 
TEST.RECORD        6  BASIC  00001 
TEST.REQUEST       6  DATA   00017 
TEST.SHAPE        21  DATA   00004 
TESTFORMAT         6  BASIC  00001 
TESTNUMBER         3  BASIC  00001 
TESTNUMBER1        3  BASIC  00001 
TIME.CIRCLE        7  BASIC  00004 
TIME.INVERT       15  BASIC  00005 
TRY.STAT          10  BASIC  00003 
TWO.SPD.SC2       10  BASIC  00005 
TWO.SPD.SCROLL    10  BASIC  00005 
TWO.SPD.SCROLL    11  BASIC  00005 
ZOOM.SINGLE       22  BASIC  00005 

309


	Exploring Business BASIC, Part I
	Exploring Business BASIC, Part II
	Exploring Business BASIC, Part III
	Exploring Business Basic - Part IV
	Exploring Business Basic - Part V
	Exploring Business Basic, Part VI
	Exploring Business Basic, Part VII
	Exploring Business Basic, Part VII
	Exploring Business Basic - Part IX
	Exploring Business Basic - Part X
	Exploring Business Basic, Part XII
	Exploring Business Basic, Part XIV
	Exploring Business Basic, Part XV
	Exploring Business Basic, Part XVI
	Exploring Business Basic, Part XVII
	Exploring Business Basic, Part XVIII
	Exploring Business Basic, Part XIX
	Exploring Business Basic, Part XX
	Exploring Business Basic - Part XXI
	Exploring Business Basic, Part XXII
	Exploring Business Basic - Part XXIII
	Appendix -- Additional Information

