| HAYDEN |

counvm"‘“"

RASIC

JAMES S- COAN

]

HAYDEN BOOK COMPANY, INC.

Hasbrouck Heights, New Jersey

Equipment Needed

To use the programs in this book you will need:

¢ a Commodore 64 microcomputer

¢ a black and white or color television set (color is required for
certain programs)

* one disk drive (a Commodore Datassette can be used to save
programs)

Production Editor: TERRY DONOVAN

Production Service: EDITING, DESIGN & PRODUCTION, INC.
Art Director: JIM BERNARD

Printed and bound by: COMMAND WEB OFFSET INC.

Commodore 64™ is a trademark of Commodore Business Machines, Inc., which is
not affiliated with Hayden Book Co., Inc.

Copyright © 1984 by HAYDEN BOOK COMPANY, INC. All rights reserved.
No part of this book may be reprinted, or reproduced, or utilized in any form or
by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying and recording, or in any information storage and retrieval
system, without permission in writing from the Publisher.

Printed in the United States of America
i 2 3 4 5 6 7 8 9 PRINTING

84 85 86 87 88 89 90 91 92 YEAR

Preface

Regrettably, computer programming has acquired a mystique it doesn’t
deserve. Of course, professional programmers are highly skilled people. Race car
drivers are also highly skilled people. That doesn’t seem to prevent the average
person from learning to drive a car. And learning to drive a car doesn’t suggest that
we aspire to be arace car driver. Anybody who can manage a checking account can
write a computer program. Many important and useful programs are written
without any more mathematics than addition, subtraction, multiplication, and -
division. If your problem can be solved on the computer and you understand it
enough to solve it by using pencil and paper, then you can probably write a
computer program to solve it, too. While much of programming is mathematically
oriented, an effort has been made in preparing this book to include topics and
develop programming ideas that do not require advanced mathematics.

This book is suitable for use as a textbook in schools and colleges. It is equally
appropriate for use by individuals wishing to learn programming in BASIC on a
Commodore 64 computer.

The approach in this book is to begin with short complete programs and then
carefully and gently build them into larger programs that solve larger problems.
Each capability or organization of capabilities is introduced to create a desired
effect in a program. Generally, details are introduced in the context of their effect
on a program. Even though some of the topic headings appear to be oriented .
toward the BASIC language, each feature is brought in at a point where it helps to
solve a problem. The topic headings can be used as a reference after the reader has _
learned to program. v

Programming has developed tremendously since its early days. This book takes
advantage of many of the good programming practices we have learned in that
time. We always divide the program into small manageable segments. Most
segments will fit on a single screen. Longer programs include a control routine at the
beginning that handles all program management by using subroutines.

Chapter 1 gets us started on the Commodore 64: entering data and obtaining
results from the computer. Chapter 2 introduces some ideas for planning a
program. Commodore character graphics are presented in Chapter 3, which also
covers subroutines and presents more on program design and organization.
Chapter 4 contains a potpourri of BASIC features and programming techniques,
including functions and logical operators. Chapter 5 presents strings and string
functions, while Chapter 6 covers numeric and string arrays. Chapter 7 is a
collection of miscellaneous applications. Sequential files are presented in Chapter
8. Some bit-map high-resolution (Hi-Rés) graphics features of the Commodore 64

are presented in Chapter 9 with examples. Chapter 10 tells how to use Sprite
graphics, including a simple Sprite editor and an introduction to animation. Music
and sound are developed in Chapter 11.

Each chapter is followed by special sections, or Programmer’s Corners, that
highlight special features or advanced programming ideas. Programmer’s Corner 1
discusses the Commodore 64 screen editor. Immediate Mode Execution is covered
in Programmer’s Corner 2. Programmer’s Corner 4 explains how to control the
keyboard buffer to avoid accidental keystrokes while entering a program.
Programmer’s Corner 5 reveals a way to place the color PRINT codes in a string for
easy 0 to 15 access in programs, while Programmer’s Corner 6 presents integer
variables. The bitwise nature of operations with AND, OR, and NOT is discussed in
Programmer’s Corner 7. Programmer’s Corner 9 presents useful information about
using memory for graphics and graphics programs. Miscellaneous Sprite graphics
information is offered in 10. Programmer’s Corner 11 covers complex sounds and
effects. :

Appendix A is a chart of certain special print characters on the Commodore 64
as they appear in quote mode. Charts for the screen codes make up Appendix B.
Appendix C contains the CHR$ and ASC codes. Appendix D describes the features
of the VIC 1541 single disk drive needed for saving and loading programs.
Appendix E is an index of the programs in this book. Solution programs for the
even-numbered problems appear in Appendix F.

Commodore markets at least two software products that will be of interest to
the serious programmer. The VSP cartridge adds numerous high-resolution (Hi-
Res) graphics commands to Commodore 64 BASIC. Simons BASIC adds 114
commands to Commodore 64 BASIC in 12 categories. Graphics plotting is in-
cluded, with commands for lines, circles, and arcs. Sprite animation commands
are also included. There are commands to control such music parameters as wave,
envelope, and volume. Programming aids, such as TRACE, AUTO, UNN EW, and
renumbering, are included. All this does require a sacrifice of about 8K of memory.

I thank Barbara Garris, Neil Harris, Jim Gracely, and Andy Finkel who all
supplied important information for the preparation of this book.

New Hope, PA James S. CoanN

]
To the Reader

Learning to program a computer can be a very exhilarating experience. The
thrill of seeing your first apparently complicated idea implemented in a simple
program is wonderful. You will be well advised to look upon the computer as a
machine to be mastered and not as some impersonal monster that is out to do you in.
Everything that the computer does is explainable and predictable. You should take
care to evaluate the results that the computer produces: do not blindly accept
computer results as faultless. That is not to say that the computer is going to make
many mistakes. In fact, under normal conditions, the computer will execute your
instructions exactly. Mistakes in the results of a program execution are usually
caused by errors in the instructions written by the programmer. Once in a great
(and I mean great) while, the problem may be with the machine itself. Don’t count
on it, because it is most unlikely. Machine error is absolutely the remotest possible
cause of faulty program behavior: it almost never happens. Strongly resist the
temptation to blame anything other than your programming for incorrect or
unexpected results.

Learning to program a computer is not so complicated. You will probably find
that an iterative process works best. Read some of this book, and try a few things
on the computer. Then read more of the book and test out more of what you have
learned on the computer. There are certain aspects of programming that you
cannot possibly know without being told, and others that will just make sense based
on what you know so far. You will find that reading the text will help with writing
the next program; writing and executing a program will help with reading the text.

I hope that you are soon stimulated by your work in programming to bring to
the computer new and exciting problems. Above all, to be successful, you will have
to be an active participant. Actually write programs. Execute them. Then try to see
how what you have learned fits into the picture of the BASIC language and
programming in general.

Experiment. Write programs to solve problems of interest to you. Try
anything—you can’t do any physical damage to the computer by typing the wrong
thing at the keyboard. Don’t be afrald to try new and different things.

GOOD LUCK!

Contents

Chapter 1
Introduction to Commodore 64 BASIC 1
1-1...Getting Startedcovtiiiir ittt it ittt 2
e UM M AR Y ittt it ettt et e e 8
1-8.. . Printing Message8.covvetrrineereenneereonnaacennannns 8
«..UPPer-case, LOWeI-Cas8covverererneenconencannnssns v
B JRN 7N e D1 F: 1 o' o< U 7
1-4.. NUmMeEric Variables.civveiiiinnnrnneenneennecncaenanns 10
...The Assignment Statement (LET)cceeevvieiiinnnns 11
1-8.. The INPUT Statement.ccovvvertineeinnnenennnnenss 11
hBOT0 L e e et eteeheneaaaen 13
1-8.. READ. .. DA A .. ittt itteettrteearenneasaennsassens 13
e SUM M A RY ..ttt it ittt e e 15
Problems forChapter 1.....ciiiiiiii ittt ittt it iieiaeaaes 15
PROGRAMMER’'S CORNER 1
Screen Bditingccoviiiiiiiiiiiii i i it i it 16
B b5 (- 0) 1 (N 16
...CBSRLeﬁ.andeght 2 17
e THE INST KOY oo iviettinnntrrnnsstosaseceonsnccsnnnsnens 18
...CRSRUpand DOown Keyccvviviennirrnnnns ceeeeaes 18
QUOtE MOGE ...ttt e et 19
Chapter 8
WritingaProgramcnnle, 23
8-1...Planning YOUr PrOSraImovvevrenrrnncocnsacanscnsenns [
Counting onthe Computer............ccevvvviirnneeeennns R_3
B 1 - I P 24

Problems B0) s =e1r3 (o) s N> 29
2-8...Random Eventsccoiiiiiiinn, ettt 30
...ARaNDom ExXploration......cooiiinriniiiinineennennnes 32

B 11) . TS 3R
LIF. .. THEN Revisitedcovviiniiiiiiniiiinniniinnnnnens 33

B 10 .Y ., 7N " 33

: Problems for Section -8 . .iiviiiiiii i i i ittt ittt e 33
8-3...A Better Way to Count (FORand NEXT).........covvuunnn. 34
BRI 2 7: V5 (00 o T) o < TN N 34

e UMM AR Y vt ittt ittt it ettt e e e 358
Problems for Section -3cciiiiiiiiiiiii ittt it 38

PROGRAMMER'S CORNER 3

Immediate EXeCUbIonccoiitiiiiiiiiiiiiiriinnerteannnnnns 36

Stepping through a Program..........ccooiveeennneneennnn. a7

S 1 0 AP 37

Deleting Program Lines.covvvviirrinirennnnssnannes 38
Chapter 3

Commodore Character Graphics and
Much MOre.............ciiitiiiiirnnrnnnene... 39

3-1...Using the Commeodore Graphics Keyscovvennn. 39
...The Character Graphics Screencocevvvvveeennnn. 40

. AGraphic BXample.viieeetinnneneernneeerennneeennns 41

e DrAWINE @ DB, .ttt ittt i i i e it i i e, 4]
B AR Y ..ttt i e e it et e e 43
Problems for Section B-1 ...t i e i e 43
3-8...Divide and Conquer (Subroutines)ccvvvuvnunn 44
GOSUB and RETURNciiitiitine it trnnnenennnneesennnns 44

Make it Handle the General Case...........cceevvveerennnn. 46

TAB()ttt tetteiteeeennnernneeeeenaeeenussesnneeeenneennn 46
..Another Visit with IF. .. THENcovvvtttineerrnnnnsnes 48
Problems for Section B-R ... i e e e 49
3-3...BASIC Multiple FEeatures.......covvviiirinineerrneereennns 49
...GOSUB ReVISItEAcvvvitiiiiiiniiiiiinneennerennnnns 49

(00 N € 11111 - P 49

.. Multiple Statements (:)cvviiiiiieniiereeennnnnns 50

... Multiple Statements and IF...THENcccvvvuenn. 51
3-4. .. Miscellaneous Character Graphics Features 51
...Border and Screen Background Colors..........c.ovvvunnn. 51
B) . A 51
Character COLOPSvvviettineeeeeennneneennnessennnanns 53
Characters With POKEcciiiinirrniecnnecansennnns 83
) P 53
BRI 15 o 1 o1 -7 A A 54
e UMM ARY it et i 56

Chapter 4

Miscellaneous :I!'eatures and

Techniquesccvvvven..... B%
L INEPEAUCEION L. i i i e 87
. Prompted INPUTivittieieritneenetnneeeennnnnannns 58
4-1.. . NumericFunctionscciiiiiiiiiiiiiiiiiinenan, 89
...ABS,SGN,RND,SQR, and INTcccivvrrrennnneennnns 59
...Rounding Decimal Result8ccoeivineerninneennnnn, 61
...Compound Interestociiiiiiii it it et i e 623
... Programmer-Defined Functions (DEFFN) 64
..SIN,COS, TAN, anNd ATN0iiiiiiiinnnnereeeeecnnnnnnnns 65
WEXP(X) and LOG(XD) vvviiiiineieiineneeaanneeeneennnnns 66
UMM AR Y ..ttt e et e it 66
Problems for Section 4-1t i et 66
4-8...MOre GOOGIBSovvvviirreeenereerrrrrnnnnnnsnoenensnns 66
B 1 AN 66
O R ittt ittt ettt ienenenannsnnnanonsesaasssenaanans e7
SPCANA TAB ...coiitiitieieereeeeeeneeoronnnnenssaoanssns 67
0 A AP 87
BT . ittt ittt ettt etaeenaanannnseeaaeassanaananns 68
B .1 PP 68
4-8...Logical Operators with IF...THENc.covvvvunnnn. 70
B - 1 A 70
B0) 273NN 70
001 ORI 70

PROGRAMMER’'S CORNER 4

Controlling the Keyboardcccoiiiiiiiiiiiiiiiiiinnennns 71

Chapter 8
Character Strings and String Functions 73

8-1...8trings: An Introduction...........cvvviiiiiiiiiiiiin., 73
B 1611 7N 2 ™
Problems for Section 5-1 ...cvvviverrirrtnnerrnerrnsecnaseonnennnns idd
8-8...5tring PUNCEIONScoviiiiiiiiiii ittt iiiiiieneanans 78
B - 78

(032 15 78

LEFTS RIGH Tt iiiiiieiiiet e rnnennneneeneenanns 79

MIDS .ottt i it 80

B 1 3. 80

B 1 80

BN 27N 80

e SUMMARY .t iiitttttitenerernneeeesesnsasaasssaasssnsssss 83
Problems for SectiOn 8-R ...vvviiriiiiiiiireieriitiieiiecsnanns 83
B-3...5tring Goodiesccovviiiiiiiiiiiiiiii i ittt 84
B 5. 1. N 84

6 31 856
SUMMAR Y .t titetertrereeeesnneeeeeesssesssnsaasssnnans 86
Problems for Section 5-3 .. .vvittrriieretennteeettrnnstotsnnenenns 86

PROGRAMMER'S CORNER 8

Colors frOm CHERSottt ittt ie ittt erenenenas 86
Chapter 6
mays.O0....0.‘.'.0........C...O....CO.“.I..'BB
6-1...0ne-Dimensional NUmMeriC ATrays8......cccvviveeneeeennnnes 88
B) 91
SUMMARY S 92
Problems for Section 6-1coviiiiiiiririiiiiiiiiiinieneaas 92
6-8. .. Multidimentional Numeric Arrays.covvvvvnnnnn.. 93
o ZOTO SUDBCTIDES .\ vvvr et irireieiieeneneenenannnnnna... 04
...More Than Two SubSCrIDPtScooviiiiiiiiiiiiiineeeennns 94
=101 10,778 - 94

B-8...0tring ArrayS ...iiii ittt it ittt it et e, 94

RN € -To = - 1y o) | 99
B 0., ., 7N 2" 104
Problems for SeCtion B-3iivtirii ittt ittt e 104

PROGRAMMER'S CORNER 6

Integer Variablesccvviiiiiiiiiiiniinnsierionessnenennnans 108

A Word About Zero Subscripts and Spaceccoviiiiinn.nn 108
Chapter 7

Miscellaneous Applications107

7-1...Looking at Integers One DigitataTime 107

... Using Successive Division..........covviiiiiiiiiiiiiennnn, 107

L UBINE ST R i e e e 108

B 1017 . 7N " e 109

Problems for Section 7-1coiiiiiiiiiiiiiiiiiiiiiiiiiiiieeaanns 109

F-8.. . NUMDEr BSOS . .. covtvittnnrrrnrensseneeeccnseensennsenns 110

...Decimal to BInarycoiiiiiiiiiiiiiii ittt 111

...Binaryto Hexadecimalc.cccviiiiiiiiiinnanannnns 113

...HexadecimaltoDecimalccovvviiinnnnnneeeennannsns 114

B = 10,7 . 7 2" P 118

Problems for Section 7-R. ...ttt ittt ittt 118

7-83... Writing a Program Menucccovveeiinrennnieneonnns 118

...Developing the Menu Routine.............ccoeiiiennnens. 118

7-4...Miscellaneous Problems for Computer Solution 118

...Problems of General Interestciiiiiiiiii. 118

.. Math Oriented Problems.........ccoiiiiiieennnerenennenns 120

PROGRAMMER’'S CORNER 7

Bits of AND,OR, and NOTcotiiiiiiiiiiieiatennenenenennnns 123
B - N 1 123
B 0) PP 125

L R 00 126

8-8...Introduction to Sequential Files............coveenrennn... 127

o WhatIs A e .. i e e 127

0PN e e e e 127

B0 1 128

B 0 129

B 129

(0 0 S 129

B 3) - 130

8-3...Using a File: The Geography Gamecvveuennn. 131

Problems for Section 8-3........coviiitiiiie e 136

-8-4. .. Miscellaneous INformationo.veeeevnnrennnenns 136

...ComMma SEPAratOTSvvvttt it e s 136

...Updating a Sequential Filecovvvvurevrnnnennnnnnn 138

Chapter 9

Bit-Map Graphics: Hi-Res139

9-1...Introduction to Bit-Map GraphiCscvvvneennnn... 140

...The Bit-Map Graphics Screencvvvvvnnrnnn.. 140

...Enabling Bit-Map Graphicsooveeevnnrrnnnnnnnn. 142

...Colorsonthe HI-ReSSCre6Ncovvvvvennnreennnn... 143

<A BIMPIe BOPABr. ...t 144

... Point-to-Point Plottingcvviiiiiiinnnnnnn. 146

s SUMMARY .ottt e e 148

Problems for Section 9-1..... e e e et 149

9-8...A Graphics Example: A Lighthouseuvvv.n. 149

Problems for Section 9-2........ccovviiiinttin 152

9-3...Bit-Map Graphs from FOrmulasoveerennennnnnn.. 152

...Cartesian Coordinatescvvvrerveennnnnnnnnn.. 182

S (e 1E: A €53 o) o 154

Problems for SeCtion 9-3oiiiiiii e e 158
PROGRAMMER’S CORNER 9

Memory Use for GraphiCsoovvienereeenne e eenennnnnnn, 158

... Memory AllOCAtION . .. v vttt ettt 158

< ProOgram Size. ... e 159

Chapter 10

Sprite Graphics cereenee......160
10-1...0ur First Sprite: ASimple Figureccc0eevennn 180
BRI S)) 177 0 203017 <) - PSPPI 161

BRI S o) i 1 7= TN @01 o) < U 162

... Sprite POSItION ... i vttt i i it i i 182
UM MARY ittt ittt ittt 164
Problems forSection 10-1iiviiiiiiiiiii ittt ittt 164
10-8...9pritemakingviiiiiiiiiiiiiiiiii it 1684
..ASimple Sprite BAitor...........coiiiiiiiiiiiiiiiiiee 166

.. .Creat.ing the INlugion of Motionccovvviivennens, 168
...X Positions Greater Than 55cvvvveriineernnnns 171
UMM ARY ettt ittt ittt 171
Problems for Section 10-8 .. .vviiiii ittt it e 171
10-3...An Animation EXample.ccovvreerrrienrrnneeanenans 172

PROGRAMMER’S CORNER 10

Additional Sprite Features and Techniquesccuntn
... The Sprite SCreenccviiiiiiiiiiiiennennennnens

... Sprite EXpansionvve it e
...Collision Detectioncoiiiiiiiiiiiiieiiirnnennnans

... Memory AlloCatiONovvitiiiiiiir ittt

. .Spritemaker’'s Table of Sprite Registers...................

Chapter 11
by Scott Banks

Programming Sound and Music17%7

11-1...Frequency and VOIUINGcceiveinrnnnrnnncananans
e UMM AR Y .ottt ittt it it ettt
Problems for Section 11-1ivviiiiiininnernnrennsenneennens
11-B.. . Wave o S ... ittt ittt ittt e ittt
...The Triangle Waveformccoceviiiiniiernnnnrenennns
...The Sawtooth Waveformccovviiiviernerrerneanennes
...The Pulse WavefOrmcciiiiiiiiernrerecncnensnsans
..The Noise Waveform.........cciiiiiiiriritneeenonnennns

Problems for Section 11-Rccviiiiiitiiierrrnrennennnnnnnns 182
11-3...The Envelope Generatorc.vvuevnnreeneenneenns. 183
B € - 2 V- S 183
... Attack/Decay/Sustain/Releaseccoevuvenennnn. 183
...Playing a Song with SIDcoiiiiiiiiiiiiiineennnnn. 185
181 . 7N 2 187
Problems for Section 113coitiiitteieeennnnneenreeens 187
11-4.. . The Three VoiCescv v iiiiteneeeeeennenennnnns 187
S 1B DB oTe R r (o) - O 188
... Playing the Voices Together.c.cvvvrvinrenneennn. 189
Problems forSection 114covviiierinnnnnnnnn. e 192
11-8...The Filter Sectionc.cviiiiiiinriirnreneennnnnnnns 193
UG the FHlter .. .o e e 194
B SUMMARY ittt i e i e e e e, 188

PROGRAMMER’'S CORNER 11

Synchronization and Ring Modulationoevvvenennn.. 195
...The Output Registers e e e 196
Appendix A

Special Print Characters197

Appendix B

Commodore 64 ScreenCodes199

Appendix C
PRINT Codes on the Commodore 64. ceeene....803

Appendix D

TheDisk.....................cciiiiiieen......809
B s TJ0) {=Te1 o) "2 210

BN < 7 2 R[ll

L..DOS CommMANAS ...vvviriiiie ittt et R12

...Formatting a New DiSk (NEW)......covveerereiiennnannns Rl

B 0} 71 4 13l o) - J R_R13

i SO RATCH . .iett ittt et it i _13

RENAME . .o iiittttttreeereencnassssssstassnaesaseaanns R_l4

L INITIALLZE oot v eit e iineeeeenossseannosasnannaeaanes R_l4

BT 7N 1 5 Y-V o P Rl4

C-684 WEDGE COmMMANASovvteeerrneernsennsranesoaass R_l4

N B W i it e ettt i R_14

BORATCH ..o it tittiereennnereeennsessosaseeesnnnnens 14

RENAME ..viitttieneeeeeeeeooeseeeeananasnsannanen R_l5

INTTIALLZE & o vt vtieeetrrnnnneneesasessennsnsoanannens Rl5

o VALIDATE oot iietiiiieeeeennnsssersnosossaionnaanns 215

B 6 7\ o S PO R15

. LOAD ANARUN ..ottt iiiieeiinneeetttaneseenannsannns R_15

o BAVE L i 15
Appendix E

Indexof Programscccv0nvne... 816

Appendix F

Solution Programs for Even-Numbered
Problems...............ccoccenvenneeeneenn.... 880

Index e -1 1

-
Chapter 1

Introduction
to Commodore
BASIC

A program consists of a set of instructions that causes a computer to performina pre-
dictable way. The process of writing such instructions is called programming. We
can write programs to do an amazing variety of things. The Commodore 64 can
perform a wide range of arithmetic operations. Using the built-in electronic music
synthesizer, it can be programmed to play music on the speaker of a TV or other
sound system. We can make it draw graphs and pictures of all kinds—in color no
less. Paddles or joysticks can be used to provide a continuous range of responses by
moving a lever or rotating a dial. We can even write programs to respond to a light
pen drawing on a TV screen. The Sprite graphics are particularly suited to games.
There are many ways in which this computer can be used to help students learn
subject matter unrelated to computers. This same computer can be used to keep
track of all kinds of data necessary in the operation of a small business.

Every instruction used in a program has its own precise definition. The total
collection of these instructions is called a programming language; BASIC is one
such language. Each instruction in the language also has a form associated with it.
This form is called the instruction syntax. The syntax of each instruction that we
enter into the computer must be one of those the computer “recognizes.” For
example, the computer will reject the instruction QUIT, while it will find END
perfectly acceptable and, on encountering the END instruction, it will indeed end.
Even though QUIT and END have similar meanings in English, they don't to the
computer. Words that make up a computer language are called keywords. ENDisa
BASIC keyword.

Commodore 64 BASIC is the BASIC that is built right into the Commodore 64.
It resembles the BASIC that was developed at Dartmouth College by John G.

BASIC COMMODORE 64 BASIC

Kemeny and Thomas E. Kurtz, with numerous enhancements. BASIC is designed
so that anyone from a rank amateur to an exotic engineer can quickly and easily
write programs pertinent to their own interests.

Using Commodore 64 BASIC, we can easily calculate numeric results to nine
decimal digits. Or we might want to use the special feature that allows us to limit
calculations to integers in the range -32768 to 32767. It is just as easy to work with the
written word.

1-1...Getting Started

There are a number of things that we need to know, all at once, to get going. After
this initial burst of information, we can introduce things in smaller doses. So, here
we go!!

The computer is turned on, the word “READY.” appears on the screen, and a
little light blue block is blinking at us. That little block is the cursor. It is there to
show us where the next thing we type will appear. This makes it easy to follow along
with our eyes. We type

NEW

and then press the RETURN key. NEW erases any BASIC program in memory.
Never type NEW unless you really mean it: the old program is not recoverable.
Appendix D deals with the subject of saving programs for future use. Any time you
make a typing error you may simply pressthe RETURN key and beginthelineagain.
Commodore 64 BASIC includes a nice screen editor that you will want to use
shortly after you begin to do some actual typing. The editor is fully discussed with
examples in Programmer’s Corner 1, immediately following this chapter.
The Commodore 64 responds by displaying

READY.

This means just what it says. The computer is ready for our next step, and we are
ready to type in our first program. It all looks like Program 1-1:

NEW
READY.

100 PRINT "HERE IS AN EXAMPLE"
110 PRINT "OF A PROGRAM IN"
120 PRINT "COMMODORE 64 BASIC."

Program 1-1. Our first Commodore 64 BASIC program.

There you have it. Each line we type must be followed by pressing the
RETURN key. Every time we hit the RETURN key the 64 responded by moving to
the next line.

Our program consists of three statements, each labeled with a line number.
Line numbers may be any integer from 0 to 63999. After the READY message, we
typed:

o o o

INTRODUCTION TO COMMODORE 64 BASIC

100 PRINT "HERE IS AN EXAMPLE"

and then pressed the RETURN key. We then typed the next two lines in the same
manner. Get into the habit of striking the RETURN key after everything. If nothing
happens, it is probably because you pressed RESTORE instead. That's okay; just
press RETURN and proceed.

Each of these three statements is an example of a PRINT statement. When the
program is run, each PRINT statement is an instruction to the computer that
something is to be printed out to the screen of the TV monitor.

RUN

HERE IS AN EXAMPLE
OF A PROGRAM IN
COMMODORE 64 BASIC.

READY.

Figure 1-1. Execution of Program 1-1.

After entering the three PRINT statements, we typed RUN and then pressed
the RETURN key. In this case, as with the NEW instruction, we did not assign a line
number to the instruction. The presence of a line number implies that the line is to
be stored for later use by the computer. The absence of a line number implies that
the computer should immediately process whatever is on the line as an instruction.
The RUN instruction causes the computer to process the instructions of the
program stored in the computer’s memory. That is what is meant by running a
program. The RUN instruction may also be followed by a line number that names a
line in the program where the run should begin. For example, to use our little
program to display “COMMODORE 64 BASIC.”, simply enter RUN 120.

The result of running our first program is that the three PRINT statements cause
whatever is enclosed within quotes to be printed on the monitor.

When the computer runs out of instructions in the stored program, it simply
displays the READY message and politely waits for us to tell it what to do next. If
we now type RUN again, the 64 will again display the same three-line message on
the monitor.

Note the difference between the letter oh and the digit zero. The Commodore
64 uses an oval with a slash through it for the digit zero and an open oval for the
letter oh. You might just type O’s, zeroes, and eights so that you can study them on
the monitor. You will find the zero key between 9 and + in the top row of keys,
while the oh is in the second row from the top between I and P.

Here is a way to change the displayed message:

READY.
110 PRINT "OF A PROGRAM"
115 PRINT "WRITTEN IN"

Figure 1-2. Changing Program 1-1.

We have changed line 110 by retyping it, and we have inserted a new line numbered
115. Instructions are always processed in numerical order, so by choosing a line

o o o

BASIC COMMODORE 64 BASIC

number that falls between two existing ones, we have told the computer that we
want line 115 to be processed after line 110 and before line 120. It is a good idea to
leave intervals in your line numbering. The computer will always arrange the lines
of the program in increasing order. Now, if we tell the computer to follow the
instructions of the new program, we get:

RUN

HERE IS AN EXAMPLE
OF A PROGRAM
WRITTEN IN
COMMODORE 64 BASIC.

READY.
Figure 1-3. Execution of the modified version of Program 1-1.

The process of carrying out the instructions of program statements is termed
execution. Thus, when we type RUN, we are telling the computer to execute the
program.

At this point, we have a program that we have created in two distinct steps. We
first entered three lines and then some time later we entered two lines. One of those
two lines replaced a line of the earlier program, and the other added a new
instruction. The resulting program contains four lines.

It is now desirable to look at the program in its entirety by using the LIST
instruction.

LIST

100 PRINT "HERE IS AN EXAMPLE"
110 PRINT "OF A PROGRAM"

115 PRINT "WRITTEN IN"

120 PRINT "COMMODORE 64 BASIC. "

READY.
Figure 1-4. Demonstration of LIST.

The instructions NEW, RUN, and LIST are commonly called commands because
they are used to command the computer to manipulate the program as an entity
rather than perform a program instruction.

What happens when we make typing errors? That depends upon the error. If
we type LOST instead of LIST, we get the following message:

?2SYNTAX ERROR
READY.

No harm has been done; merely correct the request and proceed. If we type
100 PRIMT A
instead of

100 PRINT A

INTRODUCTION TO COMMODORE 64 BASIC

nothing will happen until the statement is executed. At that time, execution will cease
and Commodore 64 BASIC will display the following message:

?SYNTAX ERROR IN 100
READY.

Whenever READY is displayed, you know that the computer is waiting for you to
do something. We will begin to leave it out of our printed listings.

We can look at the statement where the computer has identified an error by
using an extension of the LIST command.

LIST 100

will display only line 100 of our program, if it exists. LIST 100-200 will display all of
the lines in our program from 100 to 200, inclusive. LIST 100- will display from line
100 to the end of the program. LIST -400 will display from the beginning of the
program to line 400. Now type the line correctly and execute the new program. A
detailed discussion of the special editing features of the Commodore 64 appears in
Programmer’s Corner 1.

If we type

100 PRINT B

instead of
100 PRINT A

we have a different kind of error that the computer will never find for us. The value
of B will be displayed where we expected to see the value of A. It is important to
evaluate our results for correctness.

A computer language is a defined set of instructions that have a specific meaning to
the computer. In BASIC each instruction of a program begins with a line number.
The PRINT statement is used to display a message on the computer monitor.

The NEW command prepares BASIC for a new program, the RUN command
causes the computer to carry out the instructions of the program stored in its
memory, and the LIST command displays the stored program on the monitor.
LIST 100 displays the line numbered 100, while LIST 100-200 displays all lines in
the interval from 100 to 200, including 100 and 200. LIST -200 displays from the
beginning of the program to line 200. LIST 200- displays from line 200 to the end of
the program.

1-8.. .Printing Messages

In the last section, there were no long program statements. The Commodore 64
monitor screen is 40 characters wide. (There is a way to make it 38.) The screen
width can be something of a limitation. However, we will very quickly get used to

BASIC COMMODORE 684 BASIC

it. When typing program statements that are longer than 40 characters, just keep on
typing. The computer will take care of everything. It looks like this:

100 PRINT "HERE IS AN EXAMPLE OF A LONG
PROGRAM LINE"

RUN
HERE IS AN EXAMPLE OF A- LONG PROGRAM LIN
E

LIST
100 PRINT "HERE IS AN EXAMPLE OF A LONG
PROGRAM LINE"

Figure 1-5. Demonstration of the 40-column display screen.

Notice that the Commodore 64 listed our program just as we typed it. Indéed,
the computer will take care that no characters are lost. In the interest of making the
results of printing readable, we should plan ahead so that the screen doesn’t break
the line in an awkward place during program execution. To print the little message
of the above program, we might prefer the following:

100 PRINT " THIS IS AN EXAMPLE OF A LON
G PROGRAM"
110 PRINT "LINE."

RUN
THIS IS AN EXAMPLE OF A LONG PROGRAM
LINE.

Figure 1-6. Planning messages on the Commodore 64 screen.

Now we can easily read the message. With a little practice, printing messages will
become second nature to us.

Some people appreciate anything that reduces typing. PRINT can be indicated
by typing a question mark. So, we might enter the above program as Program 1-2:

100 ? " THIS IS AN EXAMPLE OF A LONG PROGRAM"
Program 1-2. Using question mark as PRINT.

We have saved a little typing, but the Commodore will replace the question mark
with PRINT when we LIST the program. Most other BASIC keywords can be
abbreviated by typing the first character and then holding down the shift for the
second character. For example we can LIST a program by pressing L and SHIFT I.
When we type SHIFT I the right graphics character appears on the screen. So, we
will see the L followed by the rounded corner that appears to the right on the I key,
but the program is listed just the same.

We may make messages as long or as short as we like. A program could consist
of hundreds of PRINT statements. All programs should have at least one PRINT
statement. How would we know what the program does if it displays no message?

INTRODUCTION TO COMMODORE 64 BASIC

.. .Upper-case, lower-case

The Commodore defaults to upper-case mode. That is, left to itself, BASIC will
type all capital letters. Often it is nice to have messages displayed in upper- and
lower-case. You can access the lower-case characters by pressing the Commodore
key ({®) and the SHIFT key at the same time. When you do this, you will see all
upper-case characters on the screen suddenly displayed in lower-case. Press them
again and the display reverts to upper-case. This is known as a toggle action. The
- mode is changed every time those two keys are pressed simultaneously. We might
like to display a message using both upper- and lower-case. First, check that the
computer is in lower-case mode. Then type a program normally. For upper-case
characters, simply press the SHIFT key and the desired letter, just as you would do
on a typewriter. (See Program 1-3.)

100 print "This is a demonstration of up
per and lower case"

Program 1-3. Demonstration of lower-case mode.

It's that simple. Don’t make the mistake of trying to type PRINT by holding down

the SHIFT key or using SHIFT LOCK. That will result in PSSYNTAX ERROR.

Now, if we press the Commodore key and the SHIFT key, the upper-case T

displays as its corresponding graphics symbol, a vertical bar near the left of the

character space. We should be consistent for any one program, entering it in either

upper-case mode or lower-case mode. Do not change within a single program.
For more information about the keyboard, see Programmer’s Corner 1.

1-3...Calculations

Now that we know how to display messages, we might like to have something for
the messages to talk about. The Commodore 64’s ability to perform calculations is
readily available to us.

The --> shown in the following program and in other programs through-
out this book, is included to point out program lines that are specifically dis-
cussed in the text and is not to be considered part of the program.

100 PRINT "THE NUMBERS ARE:"
105 PRINT "234.56 AND 43901"
110 PRINT "THE SUM IS"
~-=>120 PRINT 234.56 + 43901
130 PRINT "THE DIFFERENCE IS"
-=->140 PRINT 234.56 - 43901
150 PRINT "MULTIPLY THEM"
-=>160 PRINT 234.56 * 43901
170 PRINT "NOW DIVIDE"
~->180 PRINT 234.56 / 43901

Program 1-4. Calculations.

BASIC COMMODORE 64 BASIC

Here we have a program that adds, subtracts, multiplies, and divides two
numbers. As you can see in lines 120, 140, 160, and 180, the Commodore 64 uses +,
—, *, and / as the symbols for these arithmetic operations. Let’s look at an execution
of this program:

RUN

THE NUMBERS ARE:

234.56 AND 43901

THE SUM IS
44135.56

THE DIFFERENCE IS

-43666.u44

MULTIPLY THEM
10297418.6

NOW DIVIDE
5.34293069E-03

Figure 1-7. Execution of Program 1-4.

Notice that the product displays nine digits. This is the maximum precision
available in Commodore 64 BASIC. That is not to say that all answers are accurate
to nine digits; the computer has to round things off from time to time. So, it is up to
you to verify the accuracy of computed results. In addition to evaluating the
accuracy of the computations that the computer carries out, you will need to know
the accuracy of the numbers that you give the computer to work with.

For the division problem in our program, something else interesting happens.
We get 5.34293069E-03 as the answer. This is another way of writing 0.00534293069,
which takes 11 digits to express. Commodore 64 BASIC uses scientific notation for
displaying very small and very large numbers. Ten-to-the-minus-third (107°) is
written “E-03” to get it on one line of display. This is often called E-format; any
value less than 0.01 or greater than 999999999.1 will be displayed in this manner.

Commodore 64 BASIC limits numbers to a range of from —1E38 to +1E38.
That should be entirely adequate for our needs for some time to come.

So far, we have been printing each item on a separate line. Often we would like
to display several items on the same line. This is easy to do by entering a semicolon
or a comma between the items that belong together. A semicolon calls for close
spacing, while a comma is used to divide the screen into four fields that are 10
characters wide. Symbols used to separate items in a list are called delimiters. So,
we now know about the comma and semicolon delimiters in a PRINT statement.
Program 1-5 demonstrates this nicely.

100 PRINT 1/4; 2/U; 3/4; u/4
110 PRINT 1/4, 2/4, 3/4, 4/4

Program 1-5. Demonstration of using comma and semicolon for spacing.

We have used semicolons in line 100 and commas in line 110. If we want to skip a 10-
character field, we can use an extra comma.

o o o

INTRODUCTION TO COMMODORE 64 BASIC

.25 .5 .75 1
.25 .5 .75 1

Figure 1-8. Execution of Program 1-5.

Commodore 64 BASIC includes a space before and after every numeric display
in a PRINT statement. If the value is negative, then the space before the value is
replaced by a minus sign.

Program 1-6 demonstrates printing a few values using scientific notation.

100 PRINT. "EXAMPLES OF SCIENTIFIC NOTATI
ON"

-->120 PRINT ".0001",, "="; .0001

-->125 PRINT ".00058293",, "="; .,00058293
130 PRINT ".00123456789", "="; .00123456
789
140 PRINT "1234567890", "="; 1234567890
150 PRINT "3939382827347456", "="; 39393
82827347456

Program 1-6. Demonstration of scientific notation.

Here we are using commas and semicolons to produce a readable display. Lines
120 and 125 use a double comma to skip a 10-column field. This way, all the results
are nicely lined up on the display screen.

Now let’s look at the display produced by Program 1-6.

RUN

EXAMPLES OF SCIENTIFIC NOTATION
.0001 = 1E-04
.00058293 = 5.8293E-04
.00123456789 = 1.23456789E-03
1234567890 = 1.23456789E+09
3939382827347456 = 3.93938283E+15

Figure 1-9. Execution of Program 1-6.

We will indeed get used to the 40-character screen on the Commodore 64.
However, we are not limited to 40 characters on the printed page. Therefore, we
will present most of our program listings in a wider format. If you type exactly what
is displayed in the programs of this book, BASIC will take care of the rest. We
present here Program 1-6 reformatted without any line breaks.

100 PRINT "EXAMPLES OF SCIENTIFIC NOTATION"

120 PRINT ".0001",, "="; .0001

125 PRINT ".00058293",, "="; .00058293

130 PRINT ".00123456789", "="; .00123456789

140 PRINT "1234567890", "="; 1234567890

150 PRINT "3939382827347456", "="; 3939382827347456

Program 1-6a. Demonstrate program listings without line breaks.

BASIC COMMODORE 64 BASIC

1-4.. . Numeric Variables

We can do some interesting things with what we know at this point, but some of the
real power of the computer begins to emerge when we can save the results of
calculations.

A variable may be thought of as a pigeonhole or a mailbox in which we may
save the value of any result as a computer program goes about solving our problem
for us. We establish an hourly wage and save it in W1. Then we determine the
number of hours worked and save the value in N. Next, we might find the net pay
by multiplying W1 by N and then saving it in N9. Or we might want to take the
average of some numbers. Program 1-7 uses numeric variables to do just that.

100 LET S1 = 34 + 45 + 65 + 89 + 91 + 56
110 LET N1 = 6 .
120 LET AV = S1 / N1

130 PRINT "AVERAGE ="; AV

140 END

Program 1-7. Calculating a simple average.

If we want to calculate an average for a different set of values, we need only
retype lines 100 and 110 of this simple program.

We have used three variables in this program. They are S1,N1,and AV. We are
free to choose a wide variety of names for variables. Commodore 64 BASIC
variables may begin with any letter, followed by digits or letters. However, only the
first two characters of the variable name are used to distinguish between two
variables. Thus, OLDNUMBER and OLDSCORE will be the same variable. You
should avoid names like this. One method of avoiding trouble is to limit variable
names to a single letter, two letters, or a letter followed by a digit. While variable
names like WAGES, NETPAY, PAYCHECK, PAYRATE, and NETTAXES are
descriptive, we run the risk of ambiguity. Besides, very long variable names will
tend to push program statements over to the second line, which makes the program
harder to read. Program statements are limited to 80 characters in length. If we
attempt to type a longer one, we are greeted with

?SYNTAX ERROR

BASIC keywords are reserved for use by BASIC itself. Errors caused by
incorrectly using reserved words for variable names can be tough to find. NEW,
LIST, RUN, and PRINT are reserved words. So is END. A statement such as

100 LEFTEND = 5
will produce the message
?SYNTAX ERROR IN 100

That is easy to see, because we know about the END statement. But, what about
100 TOP = 7

We get the same message. We will find out about the keyword TO in Chapter 2.

10

INTRODUCTION TO COMMODORE 64 BASIC

.The Assignment Statement (LET)
Each of the statements 100, 110, and 120 in Program 1-7 is an example of an
assignment statement. The effect of statement 100 is that the computer will
calculate the sum of the six numbers shown there and store it in the slot labeled S1.
Line 110 causes the value 6 to be stored in a pigeonhole labeled N1. And line 120
causes the computer to divide the value found in the slot labeled S1 by the value
found in the slot labeled N1 and place the result in a slot labeled AV.

RUN
AVERAGE = 63.3333333

Figure 1-10. Execution of Program 1-7.
The assignment statement in BASIC may take one of two forms.
100 LET X = 15 and 100 X = 15

are functionally equivalent. In practice, most programmers drop the use of LET.
However, many beginners find it helpful to include the LET keyword while
learning BASIC.

1-8...The INPUT Statement

The INPUT statement is used to provide data for a BASIC program to work on.
When BASIC encounters an INPUT statement, it causes the computer to wait for
data to be typed at the keyboard.

When the statement

200 INPUT X

executes, it will display a question mark as the signal to us that we are to typeina
single number.

200 INPUT X,Y,Z

will also display a question mark. However, we have provided for three values tobe
entered and the computer will insist on getting three.

Suppose we enter only one. Commodore 64 BASIC will gently prod us by
displaying two question marks repeatedly until we have entered the proper
amount of data.

Suppose we enter too much data. Commodore 64 BASIC will quietly display
the following message:

?EXTRA IGNORED

and proceed with the rest of the program.

Suppose we just hit the RETURN key. Then Commodore 64 BASIC will use
whatever value the variable had before the INPUT statement. If we want
RETURN to mean zero, then we’ll have to set that value before the INPUT
statement.

11

BASIC COMMODORE 64 BASIC

205 X = 0
210 INPUT X

will take care of it. But, suppose we type a letter or other symbol instead.

? 1

?REDO FROM START

21,2,3
A decimal point alone is taken as a zero.

Suppose we have the following record of gasoline purchases for a brand new
car:

Gallons Odometer

19.3 230.3
12.7 456.7
17.7 709.4
1.1 895.5
138 1131.6

We want a program that will calculate the gas mileage for each tankful of gasoline.
We have been careful to fill the tank each time. Since we do not know whether the
tank was full when we got the car, we should discard the figure for the first
purchase. What we do know is that 12.7 gallons took us 226.4 miles, 17.7 gallons took
us 252.7 miles, etc. Program 1-8 asks the right questions and does the miles-per-
gallon calculation for us.

-->100 PRINT "FIRST READING";
-->110 INPUT M1

195 PRINT
-->200 PRINT "GALS,READING";
-->210 INPUT GA, M2

220 LET MI = M2 - M1

230 LET MG = MI / GA

240 PRINT MG; "MPG"

250 LET M1 = M2

260 GOTO 195

Program 1-8. Calculating gasoline mileage.

Note the use of the semicolon at the end of lines 100 and 200. This enables us to
compose a single line of display on the screen from several lines in a program. Thus
the question mark displayed by the INPUT statement at line 110 will appear
immediately following FIRST READING from line 100, and the question mark
displayed by the INPUT statement at line 210 will appear immediately following
GALS, READING from line 200.

Itis always a good idea to display a label for an INPUT request. We may know
right now what that question mark means, but nobody else will and next week we
probably won't either.

Since we want the miles traveled, the program must subtract the previous
reading from the current one. This is done in line 220. M1 is the miles traveled, GA is
the number of gallons used, and MG is the number of miles per gallon. Once the

13

INTRODUCTION TO COMMODORE 64 BASIC

computer has calculated the number of miles traveled, the current reading becomes
the previous reading for the next data to be entered. This is the purpose of line 250.
Line 195 is referred to as blank PRINT. A blank PRINT will display as a blank line.

We use this to provide nice spacing on the screen.

We must introduce the GOTO statement at this point. The GOTO 195 you see at
line 260 is an instruction to the computer to execute the statement numbered 195
next in sequence. In this way, we are able to control the order in which BASIC
executes the statements of a program.

RUN
FIRST READING? 230.3

GALS,READING? 12.7,456.7
17.8267717 MPG

GALS,READING? 17.7,709.4
14.2768362 MPG

GALS,READING? 11.1,895.5
16.7657658 MPG

GALS,READING? 13.8,1131.6
17.1086956 MPG

GALS,READING? [enter STOP RESTORE here]

READY.
Figure 1-11. Execution of Program 1-8.

Clearly the value 17.8267717 shown in Figure 1-11 is more precise than 12.7, 456.7,
or 230.3, but it is not more accurate. We may safely say that we got about 17.8 miles
per gallon for the first calculation. The results of a calculation can never be more
accurate than the data. Soon we will learn how to round off results to any desired
precision.

This program would go on forever if we didn’t have a special procedure to get
out of an INPUT statement. We pressed the STOP and RESTORE keys at the same
time. Not only did this get us out of the program execution, but it also cleared the
screen. This is okay for programmers, but soon we will learn better ways to exit
from our programs. We should not require others who will be using our programs to
use STOP-RESTORE in this way.

1-6.. .READ...DATA

There are numerous ways to provide programs with data. We have entered
numbers into our programs by including them in PRINT statements, by assigning

13

BASIC COMMODORE 64 BASIC

values to variables with the assignment statement using LET, and by programming
with the INPUT statement. Now we add READ and DATA to the list.

The READ statement assigns values to variables by using a DATA statement as
the source. READ and DATA are always coordinated to solve the problem at hand;
it is not workable to have one without the other. Let’s simply convert the INPUT-
based program on gasoline mileage to an equivalent program using READ and
DATA. In this case the data will not be entered from the keyboard during
execution, so we display the gallons and miles traveled along with the miles-per-
gallon figure. The logic here is identical to the logic of our Program 1-8.

90 PRINT "GAL", "MILES", "MPG"
100 READ M1

200 READ GA, M2

210 LET MI = M2 - M1
220 LET MG = MI / GA
230 PRINT GA, MI, MG
240 LET M1 = M2

250 GOTO 200

900 DATA 230.3

902 DATA 12.7, 456.7
904 DATA 17.7, 709.4
906 DATA 11.1, 895.5
908 DATA 13.8, 1131.6

Program 1-9. Program 1-8 with READ...DATA.

Note that we have arranged the data so that the numbers are grouped to look like
the table of values first presented. The computer doesn’t care how many or how
few lines we use for data. The important point is that the values in DATA statements
must be in the correct order, matching the variables in the READ statements. We
may arrange the data so that it is well organized for humans to read. Since the
computer will never be confused, we should take care to make things better for us.

RUN

GAL MILES MPG
12.7 226. 4 17.8267717
17.7 252.7 14.2768362
11.1 186.1 16.7657658
13.8 236.1 17.1086956

?0UT OF DATA ERROR IN 200
Figure 1-12. Execution of Program 1-9.

We do indeed obtain the expected calculation results. However, we also triggered
an error message. The cause is clear enough: the program has read all of the data;
there is no more. Soon, we will learn a more orderly way to handle the end-of-data
condition in our programs.

Occasionally we come upon a situation in a program where we want to read
data over again. This is made possible with the RESTORE statement. After
RESTORE the data will be read from the very first item in the first DATA

14

o o o

INTRODUCTION TO COMMODORE 64 BASIC

statement of the program. Do not confuse this with the RESTORE key on the
keyboard; we are talking now about a statement in a program.

. .SUMMARY

We have covered a lot of ground in this first chapter. Very soon, nearly everything
presented here will be second nature to you. You can make your job easier by
remembering the right things. Don’t bother remembering exact error messages;
your job will be simply to recognize them. You need to remember NEW, LIST,
RUN, PRINT, LET, END, line numbers, GOTO, INPUT, variables, quotes, and
READ...DATA. Remember also that Commodore 64 BASIC allows numbers in
the range of —1E38 to +1E38.

The PRINT statement in BASIC is used to display labels in quotes, numeric
values expressed literally, and values stored in variables individually or in
combination. Items may be separated with semicolon or comma delimiters.

Variables are used in programs to retain numeric values during program
execution. Variable names must begin with a letter and may consist of letters and
digits intermixed after the first character. Commodore 64 BASIC accepts very long
variable names, but distinguishes only the first two characters. Keywords that are
part of the programming language, such as LET, PRINT, and END, may not be
used as variable names; they are reserved for use by BASIC only.

Values may be assigned to variables by using the BASIC assignment statement.
The use of the keyword LET in such statements is optional. Values may also be
assigned through the keyboard by using INPUT statements. When we have run out
of data, we can halt a program waiting for input by entering STOP and RESTORE
simultaneously.

Commodore 64 BASIC provides the companion statements READ and DATA
for storing data within the program itself.

Execution of an END statement halts the run of a program.

We have learned three commands for program manipulation thus far. RUN
calls for our program to be executed. RUN 100 calls for our program to be executed
beginning at line 100. LIST displays our program or a segment of our program on
the screen. NEW clears the BASIC work area for a new project.

Problems forChapter 1........................

You should not feel that you must limit yourself to the problems offered here. As
you get some programming under your belt, you should find lots of interesting
problems to try on the computer. Learning to program is unique in that the
computer itself will provide you with a measure of your success: you do not need
an answer book or a teacher to know how you are doing. The real joy of learning
anything comes when you begin to formulate the problems, solve them, and verify
that your solutions are correct all on your own. (It helps to have a computer.)

At this point you can write programs for printing messages of all kinds, request
data from the keyboard, and perform a variety of arithmetic operations.

18

DY

BASIC COMMODORE 64 BASIC

1. Write a program to display the sum of 123.45, 654, 1920, 114423, and
0.01.

&. Write a program to display the sum of five numbers to be supplied dur-
ing execution.

8. Write a program to print a decimal value of 2/3.

4. Assign 1/3 to the variable X. Display the value of X, 3°X, and
X+X+X.

8. Write a program to display decimal values for 1/7, 2/7, through
6/7.

8. Write a program to find a value for the following expression:

1/2+1/3
1/3—-1/4

7. Write a program to find the sum of the first ten counting numbers.
(integers).

8. Write a program to find the product of the first ten counting num-
bers.

9. Have the computer request the numerator and denominator for two
fractions to be multiplied. Print the numerator and denominator of the
product. (This problem does not call for the computer to perform division.)

10. Have the computer request the numerator and denominator for two
fractions to be added. Print the numerator and denominator of the sum.
(This problem does not call for the computer to perform division.) -

PROGRAMMER’S CORNER 1
Screen EBditingl

There is a wide range of typing skills among people who wish to learn about
computer programming. The Commodore 64 is designed to accommodate us all.
For the expert typist, the keyboard is laid out nicely, and there are only a few special
keys to learn about. For the novice, several keys are included to make it easy to fix
typing errors. Even without these special editing keys, we can always press the
RETURN key and begin again.

...The DEL Key
It often happens that we notice our typing errors almost immediately after we make
them. These are the easiest to fix. Suppose we have just begun a line as follows:

100 PRINT "THIS IS A TRIILEK==

and the cursor is right there after the L. We have not finished the line yet. It is easy to
press the INST/DEL key in the upper-right corner of the keyboard twice. (Be sure

16

INTRODUCTION TO COMMODORE 64 BASIC

not to press the SHIFT key here; that does something else.) This is the way to delete
the L and then the I. After this itis a simple matter to type AL and the rest of the line,
as originally intended.

At any time we may use DEL to erase characters to the left. If the key is held
down, it will repeat automatically, so it is easy to delete several characters quickly.
If that is what we want, it is very nice. If we only want to delete a single character,
then we simply press the key and release it right away. The beginner should
experiment with this to learn the feel of it. With a little practice this key will help us
produce accurate program lines quickly and easily.

At first we made changes in program lines by simply retyping the entire line. If
the line we wish to change is a long one and we merely want to change a character or
two, we may just end up making another typing error. Commodore 64 Basic
includes a set of commands that allow us to move the cursor around the screen to
change what is displayed there.

Whatever appears on the screen is stored in memory. In fact, program lines that
appear on the screen are stored in two places. One place is invisible to us, the
location in memory where BASIC keeps the entire program. When we type a line of
a program and press RETURN, BASIC incorporates it into any existing program
already stored in that invisible part of memory. The visible line on the screen is
stored in the visible part of memory used for text display and for some graphics.

The best possible way to learn about these screen editing features for your
machine is to sit down with the computer and experiment. Try everything
described here. Soon you will be doing all of this automatically.

.. .CRSR Left and Right Key

The two keys at the very right of the bottom row of keys are marked with arrows.
They can be used to save us a lot of typing effort. One of those keys moves the
cursor up and down, depending on whether or not it is shifted. The other key moves
the cursor right or left, again depending on whether or not it is shifted. Both of these
keys have a built-in repeat feature: the cursor will move repeatedly until we release
the key. Thus, if we have begun typing a line as follows:

100 LRT K = 76342.91

and we spot that we have mistyped LET we may immediately press the cursor left
key enough times to place the cursor over the R. To move the cursor left, we hold
down the SHIFT key while pressing the key with the right and left arrows.
Sometimes when we use the repeat feature, the cursor moves too far. That is no
problem: just move it back to the correct spot with the cursor right key. That is the
same key, only unshifted. Practice this a little until it becomes comfortable for you
to move the cursor back and forth without looking at the keyboard. When the
cursor is finally blinking over the R, we simply type an E and then press RETURN.
It is not necessary to retrace the line with the cursor. Whenever we press RETURN,
the whole line is read into the program. This is a great convenience. Thus it may
often make sense to finish typing a line even though we see a typing error at the
" beginning. Then we can use the cursor left key to go back and make the correction.

17

BASIC COMMODORE 64 BASIC

Or, it may make sense to use the CRSR left key to back up, make a change, and then
use the CRSR right key to retrace to the end of the line and finish typing as planned.

...The INST Key
The INST key may be used to provide space to insert characters on any line.
Suppose we type <

300 LET X = 3245982

and before pressing RETURN we realize that the number should have been
32459.82. That is easy to correct, too. Just use the CRSR left key to place the cursor
over the 8 and press INST. We access INST by holding down SHIFT and pressing
the INST/DEL key. This opens up a space on the line between the9 and the 8. That
is exactly where we want the decimal point. Press the dot key and press RETURN.
The line now reads

300 LET X = 32459.82

The various editing keys may be used in combination to achieve the desired
results. We may move the cursor right or left and then insert or delete characters as
needed to make one change and then do it again to make another change on the
same line. Even if the program line extends to a second line on the screen, the
editing will move back and forth between the two just fine.

...CRSR Up and Down Key

It often happens that we want to change a line in a program after we have gone on
to other things. This may come up because we spot a typing error, or because we
want to change what the program does. Either way the editing works the same. As
an example, let'’s work with the following program segment:

LIST

100 PRINT "THIS IS A EDIT EXAMPLE"

120 . PRINT "IF WE FOLLLOW ALONE WITH THE
COMPUTER,"

130 PRINT "THEN WE WILL BECOM EDITTING E
XPRTS"

Program 1-10. An editing example.
Each statement of Program 1-10 needs attention. With the program listed as shown,
we can move the cursor to line 100 by holding down the SHIFT key and pressing the
CRSR up key. Use this to place the cursor over the 1 in 100. Next, hold down the

CRSR right key until the cursor is over the space between the A and EDIT, as shown
in Figure 1-13.

100 PRINT "THIS IS ABEDIT EXAMPLE"
Figure 1-13. Editing a program line.

Now hold down the SHIFT key and press the INST/DEL key once. This

18

INTRODUCTION TO COMMODORE 64 BASIC

introduces the space we need for the letter N. Press N and the RETURN key. Now
the cursor is in place to work on line 120.
To fix line 120 we need to eliminate the triple L in FOLLLOW.

120 PRINT "IF WE FOLLLOW ALONE WITH THE
COMPUTER,"

Using the CRSR right key we place the cursor over either the second or the third L

and press DEL. Watch as the C on the second line moves up to the first line. Next we

fix ALONE by using the CRSR right key until the cursoris over the E and typing G.

Pressing RETURN now takes care of that line. The cursor moves to line 130.
There are three things to fix on line 130

130 PRINT "THEN WE WILL BECOM EDITTING E
XPRTS"

Use CRSR right to place the cursor to the right of the M. Press SHIFT INST once
and the letter E. Next, move the cursor to the second T in EDITTING. Press DEL
once. Now move the cursor to the R in EXPRTS. Press SHIFT INST once and the
letter E. Finally, press RETURN and the job is done.

At this point the cursor is flashing over the R in READY. We need to use the
CRSR down key to get a clear spot on the screen so that we can type RUN to test our
program. If we just type RUN at this point, the computer will try to process the
command

RUNDY.

That will produce the display
?UNDEF'D STATEMENT ERROR

On the other hand, if we simply press the RETURN key to move the cursor down
into a clear area of the screen, the computer will process “READY.” as our
instruction. Since the first four letters, READ, are part of READ...DATA, we get
the following message:

?0UT OF DATA ERROR

If it happens that the program in memory has a DATA statement in it, then
something else happens. The value of Y becomes whatever numeric value occurs in
the DATA statement. This is because the computer reads “READY.” as READY.
We still get the PSYNTAX ERROR message, because BASIC doesn’t recognize the
dot as anything.

...Quote Mode

Whenever a quotation mark is typed, something happens to the CRSR keys and the
CLR/HOME key. Typing any one of these keys after typing a quote transmits that
character to the program. In this way we may enter some of the editing functions
right in PRINT statements. The editing occurs when the program is run rather than
at the keyboard. Typing a second quote cancels Quote Mode and returns these keys

19

BASIC COMMODORE 64 BASIC

to their normal immediate editing functions. Each of these keys displays a reversed
graphics character when entered in Quote Mode, as shown in Table 1-1.

Keystroke Character
HOME
CLR (SHIFT)
CRSR down
CRSR up (SHIFT)
CRSR right
CRSR left (SHIFT)

=R 0OBE0O@

Table 1-1. Cursor controls in Quote Mode.

Note that DEL still works as before here. However, INST displays as an inverse
graphic character with a vertical bar near the left edge. This is the same graphics we
get with the inverse shifted T.

We may use Quote Mode to create interesting effects. For example, try
Program 1-11.

100 PRINT "RmEw=EEm CC0CMOMOOODO0CROERR
ooooaold

Program 1-11. Demonstration of CLR and CRSR keys in a PRINT statement.

Note the “special” characters in line 100. The k4 is obtained by pressing the SHIFT
and CLR/HOME keys, the [s are obtained by pressing the CRSR down key each
time, and the ([s are obtained by pressing SHIFT and CRSR down each time.
These characters and others used in this book are all shown in Appendix A. Later
we will learn about the numeric codes associated with the editing keys and about
ways to use them in programs. Figure 1-14 shows the result.

READY.
Figure 1-14. Execution of Program 1-11.

Note that it is the typing of the quote that produces all these effects. We may
still use the editing keys normally to change an existing program statement having
quotes in it. But, suppose we want to enter cursor controls in an existing statement.
In this situation, INST puts BASIC in Quote Mode. So we can place the cursor
where we want it and then make room in the statement with INST. Now any cursor

20

INTRODUCTION TO COMMODORE 64 BASIC

keys will behave as they do in Quote Mode. That is, they will be entered as controls
for when the program is run rather than moving the cursor immediately. Also, in
INST mode the DEL key now displays as an inverse T and causes the deletion when
the program is run, not immediately. So, be careful. The best way to see all this is to
experiment on the computer.

Anytime we use DEL to fill characters 1nserted with INST we get aninverse T.
When the program is run or listed the inverse T’s do not appear. Instead, the
deletions are made.

It is worth noting that we can change line numbers with the screen editor in the
same way that we change any other characters on the screen. It may be necessary to
delete the old line when this is done. Be careful not to replace the wrong lines with
this technique.

21

Chapter &

Writing a
Program

&-1...Planning Your Program

Computer programs are linear. That is, they define a single step at a time. Many
problems brought to the computer for solution, however, are nonlinear in nature.
For example, we would like to do many things in at least two dimensions. Many -
computerized processes are outlined by using large charts in which eachitem in the
chart represents a complete subsystem consisting of a whole collection of very long
computer programs. We need to develop some ideas that will help us begin with the
big ideas and systematically arrive at a completed project whose smallest elements
are computer program statements.

Good programming requires a plan. The planning should be completed before
any program statements are written down. You should write out the entire program
on paper before you sit down to type it into the computer. Major changes in
program organization are easy to deal with before the program has been typed into
the computer, as there is less inertia to overcome. Once a program has been typed
into the computer, part of the problem becomes how to make the desired change
while preserving as much as possible of what exists. While the program is still
written out longhand, such changes are much easier. Sure, we can easily write a
program to add two numbers without much fuss. The plan can be in our head and
we can “write down” the program statements directly at the computer keyboard.
But try writing a system to launch a satellite or a payroll system, or even a program
to find all prime integers from 1000 to 2000. Good planning requires a complete
understanding of the problem. What is known? What is the question? What will be
the form of the solution? How do I get from the known information to the solution?

WRITING A PROGRAM

...Counting on the Computer

Let’s start with something simple—developing a plan for instructing the computer
to count. Thisis a good first problem, since it is something we are all familiar with. A
thorough understanding of the problem at hand is essential for writing computer
programs. It is highly unlikely that we can write a program to solve a problem we
do not understand.

We can describe counting as a process of starting with the number 1 and
repeatedly adding 1 to obtain the next counting number in sequence. That is easy!
There are only two ingredients here: beginning and adding 1 repeatedly.

We can begin with a statement such as

110 C1 = 1
But, how do we add 1? Here’s a way:

120 C2 = C1 + 1
125 C1 = C2

In mathematics, the equal sign (=) usually asserts that two expressions have the
same value. However, assignment statements in BASIC use the equal sign for a
special purpose—to assign the result of a calculation on the right to a variable
named on the left. This allows us to combine statements 120 and 125 above into the
single statement

120 C1 = C1 + 1

The variable C1 contains one value before execution of this statement and another
value after execution of this statement. The prior value is replaced by the new
value. A variable cannot store two values simultaneously. Even though pigeonholes
and mail boxes may hold more than one item, variables cannot.

Now we need to tell the computer to repeat the work of line 120 over and over
again. We resist any possible urge to include a statement 130 C1 =C1 +1, and so on.
To count to 100 this way would require more than 100 statements. Computers are
supposed to save work, not make things harder. The way to repeat the action of line
120 over and over again is to include the following line:

130 GOTO 120

This will put the computer into a loop. Now we have three lines that would indeed
cause the Commodore 64 to count, beginning with 1:

110 C1 1
120 C1 C1 + 1
130 GOTO 120

Program 2-1. First counting program.

However, we have overlooked an important ingredient. We will never know which
number the computer is up to at any particular time, except when it gets to
something above 1E38. What we need here is to display each number as the
computer gets to it. Therefore, we will insert a PRINT statement between lines 110

BASIC COMMODORE 64 BASIC

and 120. In order for this statement to be executed every time the computer adds 1,
the GOTO statement at line 130 must be changed. The loop must include the
PRINT statement, as shown in Program 2-2.

110 C1 = 1
-->115 PRINT C1

120 C1 = C1 + 1
-->130 GOTO 115

Program 2-2. 4Counting with display.

Several comments and one warning are in order here. Program 2-2 has no
natural termination. If you execute this program, it will run for a very long time. You
will have to press the RUN/STOP key, pull the plug, or wait for BASIC to over-

- flow. In order to make this a useful counting program, we need to replace the un-
conditional statement 130 GOTO 115 with one that can make a decision. This brings
us to the IF...THEN statement.

...IF... THEN

Our counting program would be more useful if we had a way for it to terminate
when some predetermined number was reached. BASIC has the ability to alter the
order in which statements are executed, depending on the outcome of a decision.
This is called a conditional transfer. Suppose we want the computer to count to
seven and quit. In this case, we want to GOTO 115 on the condition that C1 is less
than or equal to seven. That is easy in BASIC:

130 IF C1 <= 7 THEN GOTO 115

Line 130 will do the job for us. Here “less than or equal to” is symbolized by < =.
The < symbol represents “less than” and the = symbol represents “equals.”

...REM: What'’s It All About?

While all of our programs are clear to us at the time that we write them, it is difficult
to come back to an old program and recall all of the clear thoughts that we had way
back when. BASIC offers the REM statement so that we may include REMarks as
part of the program. The computer will ignore all REM statements during program
execution, but it will list them along with the others in response to the LIST
command. Not only will those REM statements remind us about our own old
programs, but they will be invaluable to others reading our programs. No program
should be considered complete without REM statements. Some programmers
consider REM statements so vital to the program development process that they
write them first. Not a bad idea!

REM statements should describe the action of a program or segment of a
program. Remarks like LOAD Y WITH 17 actually detract from the readability
of a program, while INITIALIZE LOW TEMPERATURE CUTOFF describes
the function of part of a program. And now we have a program to type into the
Commodore 64 and run.

24

WRITING A PROGRAM

100 REM *#¥ COUNTING FROM 1 TO 7
110 C1 = 1

115 PRINT C1

120 €1 = C1 + 1

130 IF C1 <= 7 THEN GOTO 115
999 END

Program 2-3. Counting from 1 to 7.
RUN

~NOUVITEWN -

Figure 2-1. Execution of Program 2-3.
When using IF...THEN, there are six options available:

< less than

<= less than or equal to

= equal to

<> not equal to

> greater than

>= greater than or equal to

These symbols are called relational operators. Any BASIC expression may appear
on either side of a relational operator.

Counting is a process that pervades computer programming. We do it all the
time. How many players? How many problems? Count the number of specimens
so that we may compute the average for this lab test. The examples go on endlessly.
We might be interested in only the odd numbers. How would we change our
counting program to do that? That is easy—just change line 120 to read:

120 C1 = C1 + 2

Now don’t forget to change the REM statement to correctly reflect the new
function of the program.

100 REM *# ODD INTEGERS FROM 1 TO 7

Misleading REM statements are terrible. The extra time spent to make sure they are
right will pay off in the end. Suppose we have a problem that requires even integers.
In this case, line 110 should set the value of C1 to start at 2 or whatever we require as
the first even integer. Again, note that the REM statement should reflect the
function of the program.

Our little program has four important components.

1. We initialize, or set the initial value of, the counting variable.
8. Some action is programmed. In our example, we display the current value
of the counter.

o o o

BASIC COMMODORE 64 BASIC

8. The counter is incremented.
4. We test the value of the counter to determine whether or not to loop back
and repeat the programmed action.

Most counting routines are used for some higher purpose than merely
displaying the current value of the counter. Suppose we have a relative who has
promised to give us five times our age in dollars on each of our first 21 birthdays. We
might like to know the total number of dollars we will have received upon reaching
21. This problem can be solved with the logic of our counting program. Here the
programmed action consists of adding five times C1 for each year. We will use the
variable D1 for this. We initialize D1 to zero. We test for 21 rather than 7. When the
IF test fails, the program should print the value of D1 with an appropriate label.
Program 2-4 does all this.

50 REM ** TOTAL $5 EACH YEAR ON EACH BIR

THDAY

-->100 D1 = 0
110 C1 = 1

-->120 D1 = D1 + 5 # C1
140 C1 = C1 + 1

150 IF C1 <= 21 THEN GOTO 120
160 PRINT "$"; D1; "AFTER 21 YEARS"
999 END

Program 2-4. Birthday dollars.

Look at line 100. It turns out that BASIC automatically sets the values of all variables
to zero when we type the RUN command. So, for our little problem, D1 would be
initialized to zero for us. However, it is good programming practice to include an
assignment statement anyway. Having that statement in the program makes the
meaning of line 120 less mysterious—not to the computer, but to anyone reading
our program.

RUN
$ 1155 AFTER 21 YEARS

Figure 2-2. Execution of Program 2-4.

Now, imagine you are the inspector in a packaging plant. Quality Control
requires that for any lot to be accepted, the average weight of five packages
selected at random must be at least 180 grams. You want to write a program that
asks the right questions and accepts or rejects the lot. Here we have the four
components listed above. In this case, the programmed action is a little more
complex. We print a label for the INPUT request, request INPUT, and add the
entered weight to a variable designated for keeping track of the total weight of the
five packages. This last can be done with the statement

235 T1 = T1 + WT

where T1 is the running total weight and WT is the weight of each package in turn.
Before we have entered any package weights, the value of T1 must be zero. When
the value of the counter has passed 5, we will calculate the average in AV. If the

WRITING A PROGRAM

value of AV is less than the required 180 grams then we want a reject message.
Otherwise, we want an accept message.

100 REM *#* CHECK AVERAGE PACKAGE WEIGHT
FOR 180 GRAM MINIMUM
-=>200 T1 = 0
210 C1 = 1
220 PRINT "WT"; C1;
230 INPUT WT
235 T1 = T1 + WT
240 C1 = C1 + 1
250 IF C1 <= 5 THEN GOTO 220
260 AV = T1 / 5
-->270 IF AV < 180 THEN GOTO 290
275 PRINT "ACCEPT THIS LOT"
-->280 GOTO 295
290 PRINT "REJECT THIS LOT"
295 END

Program 2-5. Package weight monitor.

We have included a REM statement describing the purpose of the program. Look at
line 200. Note again that we have initialized a variable to zero even though we could
let BASIC do it for us. Later, if we want to include this routine as part of a more
complex program, the value of T1 will be reset to zero every time this program
segment is executed. Failure to include such a statement would cause the value of
T1 to grow ever larger as more and more lots are sampled. Thus the program would
erroneously accept every sample after the first. (Doubtless, the computer would be
blamed for this obvious programmer error.) Note that we have selected C1 for
counting, T1 for totaling, WT for the package weight, and AV for the average.
Selecting variable names carefully will make the meaning of each program
statement clearer. Don’t use A9 for weight or TF for counting. While TO might
have been nice for the total, that two-letter word is reserved. If we had used TO as a
variable in line 200, the Commodore 64 would have reported PSYNTAX ERROR.
Soon, we will discover what TO is reserved for. Line 270 determines which message
will be displayed according to the average weight. Line 280 assures that we get
exactly one message. Now let’s run the program.

RUN
WT 1
WT 2
WT 3 180

WT 4 179

WT 5 2 177
ACCEPT THIS LOT

Figure 2-3. Execution of Program 2-5.

182
190

D e) o) D

To check another lot, simply run the program again.

If this were all that the program did, it might be more practical to use a hand-
held calculator. In practice, there are many more factors to consider in the above
problem. While it may be illegal to be underweight, it is unprofitable to sell

a7

BASIC COMMODORE 64 BASIC

overweight packages. So, in addition to checking for minimum average, our
program ought to check for any package over a certain weight, say 185.
Furthermore, there may be a legal minimum weight, say 178.

The program can also easily be modified to process several batches of data.
Simply change

280 GOTO 295
to

280 GOTO 200
and replace

295 END
with

295 GOTO 200

Now, how do we terminate execution of the program? We may enter a value of zero
to indicate that there are no more batches to process. Then the statement

232 IF WT = 0 THEN GOTO 999

may be used to divert program execution to statement 999 for a welght of zero. We
had better include the statement

999 END
to avoid the following error message:
?UNDEF'D STATEMENT ERROR IN 232

Special data values used as signals to control the action of a program are
sometimes called dummy data. These changes are left as exercises.

While we could use STOP-RESTORE inresponse to an INPUT request, it is not
desirable to depend on this method to terminate the program. That is more for
programmers to use during program development. Our programs should provide
for more orderly control. We often want further computing after the last INPUT
item. STOP-RESTORE not only terminates the program, it clears the screen as
well, while the use of a special data value allows us to direct the program to continue
processing.

..SUMMARY

Know your problem well before coding your solution program. Have a plan. It is
easier to make major changes on paper than it is to make major changes in a
program that has already been typed into the computer.

TheIF...THEN statement may be used to determine the next statement to be
executed while the program is running.

Use remarks freely, but properly. Don’t state the obvious. State the purpose of a
statement or group of statements. It is vital that REM statements be accurate. Make

WRITING A PROGRAM

sure that your program documentation keeps up with any changes in your program
at all times. It is very frustrating to sort through a program code that does not agree
with the documentation; this can be worse than no documentation at all. However,
don’t use that comment as an excuse to omit REM statements.

Artificial values, called dummy data, may be used as data to control what
statements will be executed next.

Problems for Section 8-1............... i

At this point, we know enough about BASIC to program solutions to a wide variety
of problems. We could find the sum of the counting numbers from 1 to 100 (or from
A to B) as long as we don’t exceed 1E38. We could find sums of even integers or odd
integers or those divisible by five, etc. We could do something as simple as having
the computer display “I LIKE BASIC” some specified number of times. Use your
imagination—you needn’t limit yourself to the problems listed here. If you have a
Commodore 64 to yourself, then you can answer all of those “I wonder what would
happen if . . .” questions with, “I'll try it.” The computer never raises its voice or
remembers our “dumb” questions; it just quietly tells us when we have made a
mistake.

1. In the birthday problem (Program 2-4), have the computer print the
amount received for this birthday and the total so far for each birthday.

8. Inthe package inspection problem (Program 2-5), make the changesneces-
sary to repeat processing for many batches of data in a single execution.
Insert at least one blank PRINT statement so that the batches are sepa-
rated on the screen. :

8. Rewrite the package inspection program (Program 2-5) to test for a min-
imum package weight of 178 grams and a maximum of 183. Have the
program report the reason for rejecting a lot and repeat for another batch.

4. Four test scores were 100, 86, 71, and 92. Write a program to determine
the average.

8. Write a program to count the number of odd integers from 5 to 1191
inclusive.

8. Write a program to find the number and sum of all integers greater
than 1000 and less than 2213 that are evenly divisible by 11. (Start with
1001.)

7. Three pairs of numbers follow in which the first is the base and the
second is the altitude of a triangle. 10,21; 12.5,8; 289,114. Write a program
to print the area of each triangle. Use dummy data to end the program.

8. A person is paid $0.01 the first day of a job, $0.02 the second day, $0.04 the
third day, and so on, with the pay doubling each day on the job for 30 days.
Write a program to calculate the wages for the 30th day and the total
for the 30 days. .

9. Write a program to print the integers from 1 to 15, paired with their
reciprocals.

o o 0

BASIC COMMODORE 64 BASIC

10. A customer put in an order for four books that retail at $10.95 and carry a
25% discount, three records at $7.98 with a 15% discount, and one record
player for $59.95 on which there is no discount. In addition, there is a
2% discount allowed on the total order for prompt payment. Write a
program to compute the amount of the order.

11. In the song “The Twelve Days of Christmas,” gifts are bestowed upon
the singer in the following pattern: the first day she received a partridge
in a pear tree; the second day two turtle doves and a partridge in a pear
tree; the third day three French hens, two turtle doves, and a partridge in
a pear tree. This continues for 12 days. On the 12th day she received
124+ 11+ ... +2+1 gifts. Write a program to determine how many
gifts she received altogether. Another way to ask this question is to ask: If
she had to return one gift each day after the first, on what day would she
return the last gift?

18. For problem 11, have the computer print the number of gifts on each of
the 12 days and the total up to that day.

18. George took tests in two courses. For the first course the scores were
83, 91, 97, 100, 89. For the second course the scores were 65, 72, 81,
and 92. Write a program that will compute test averages for both courses.
You will need two dummy data values—one to signal the end of each set
of scores and the other to signal the end of each execution of the program.

2-3.. .Random Events

How do programmers instruct a computer to flip coins, deal cards, or roll dice?
These actions are really very easy to simulate. All we need is the ability to generate
numbers at random. BASIC includes exactly what we need for this—RND(X), an
instruction that produces a random number. RND is a little “black box” in BASIC
that brings forth a number at random each time it is invoked, producing decimal
numbers in the range 0 to 0.999999999. The number enclosed in the parentheses and
symbolized above by X is called the argument and is very important.
Here are the rules:

RND(I) I> 0 Yieldsa different random value for each successive access.

RND(I) I=0 Produces the last random number used.

RND(I) I< 0 Produces the same value each time the same value of I is
used.

If we want the same sequence every time a program is run, then we must use the
same negative value for I for the first access and a positive number for all
succeeding accesses. Then, to change the random sequence, simply use a different
negative number or any positive number for the first access. The ability to repeat a
random sequence is useful for program testing.

Program 2-6 prints 10 random numbers.

30

WRITING A PROGRAM

100 REM *¥* GENERATE A FEW RANDOM NUMBERS
200 T = 1

230 PRINT RND(1)

240 I = I + 1

250 IF I <= 10 THEN GOTO 230

999 END

Program 2-6. Generating 10 random numbers.

We have built a counting routine that enables us to print RND(1) 10 times. Hereis a
sample run of our program.

RUN

. 936928502
. 620447973
.98411756
.228080195
. 0444301156
-929139704
.228214184
. 954965809
. 641032259
. 946861798

Figure 2-4. Execution of Program 2-6.

Now we will adapt this new ability to simulate flipping a coin. Let’s flip it 39
times, to just fill one line of the screen without moving to the next line. There are
three parts to this problem. We need to count to 39, generate a random flip, and
print an H or a T depending on whether the toss comes up heads or tails. We know
all about counting. We can decide whether to print an H or a T if we know how to
tell which came up. All that remains is to distinguish heads from tails. We want half
of each. So if we designate all of the random numbers from 0 to 0.499999999 as
heads and all of the numbers from 0.5 to 0.999999999 as tails, the problem is solved.
We merely test RND(1) in an IF. .. THEN statement. If the value is less than 0.5,
then branch to a statement that displays an H; otherwise “drop through” to a
statement that displays a T. Following the PRINT “T”; statement, we must be sure
to put in a GOTO statement to divert execution around the PRINT “H”; statement.
Here is a program to do just that.

198 REM ** FLIP A COIN 39 TIMES
200 FL = 1

230 IF RND (1) < .5 THEN GOTO 270
250 PRINT "T";

260 GOTO 280

270 PRINT "H";

280 FL = FL + 1 v

290 IF FL <= 39 THEN GOTO 230

999 END

Program 2-7. Flip a coin 39 times.

RUN :
HHTHTHTHHHTTHTHTTTHHHTTHHTHTTHTHTTTTHTH

Figure 2-5. Execution of Program 2-7.

31

e o o

BASIC COMMODORE 84 BASIC

There you have it.
We have accomplished what we set out to do. However, we really want to
know as much about BASIC as possible. So, let’s probe further.

...A RaNDom Exploration

The random number generator may be bent to our needs in many ways. We have
chosen to select two equal halves by forming a boundary at 0.5. This works fine for
flipping a coin, but suppose we want to roll a die. Now, to deal with six numbers by
using the method of Program 2-7 there would be five boundaries, with values like
0.166666667 and 0.833333333. There is a much better way.

If we multiply all numbers in the range from 0 to 1 (including 0 and excluding 1)
by 6 then we get results in the range from 0 to 6 (including 0 and excluding6). Then
we could successively test to see if the result is less than 1, then 2, and so on through
6, to obtain a value for the face of a die. This will certainly work, but we can do even
better. Once again BASIC comes to the rescue. This time it is INT(N) that makes
life simple.

INT(N) is a special mechanism for developing an integer value that is the greatest
integer less than or equal to the argument. Thus, INT (3.9876919) = 3, INT(4) =4,
and INT(—9.8) = — 10. So, if we simply generate random numbers in the range
from 0 to 5.99999999, we can apply INT(N) to obtain integers in the range from0 to
5. We merely add 1 to the values 0 to 5 to get values in the range 1 to 6. This is, of
course, exactly what we want for rolling dice. Bingo, another problem solved. Let’s
look at Program 2-8 to roll a die ten times.

198 REM #*#* ROLL A DIE TEN TIMES

200 I =1

210 V1 = RND(1) * 6 + 1

220 PRINT Vi, INT(V1)

230 I = I + 1 :
-->240 IF I <= 10 THEN GOTO 210

Program 2-8. Rolling a die ten times.

RUN
4,.89597147
3.61340997
6.85094379
6.8514799
3.62058533
2.96008383
4.86195681
4.10220501
3.16562905
2.9053821

Figure 2-6. Execution of Program 2-8.

MDwWEENMDWOOCOWE

o o o

WRITING A PROGRAM

...IF.. . THEN Revisited
IF...THEN is used so frequently in BASIC to transfer program control that an
abbreviated form exists.

240 IF I <= 10 THEN 210

may be used in place of line 240 in our die rolling program above. Using this new
form of the IF...THEN statement, our coin flipping of Program 2-7 may be
rewritten as follows:

198 REM #*% FLIP A COIN 39 TIMES
200 FL = 1
-->230 IF RND(1) < .5 THEN 270
250 PRINT "T",;
260 GOTO 280
270 PRINT "H";
280 FL = FL + 1
-=>290 IF FL <= 39 THEN 230
999 END

Program 2-9. Program 2-7 showing shértened IF...THEN statement.
Lines 230 and 290 in Program 2-9 use the shortened form of IF...THEN.

...SUMMARY
RND(X) provides a source of random numbers. We get numbers in the range from
0 to 0.999999999. The argument of RND(X) affects the result. A positive value
simply produces a value at random. Any negative number gives us the same result
every time it is used. Zero recalls the last value produced by RND(X).

INT(X) returns the greatest integer not greater than X.

IF...THEN has an abbreviated form that we may use for conditional transfer.
100 IF X <5 THEN 230 will transfer control to line 230 if X <5 is true.

Problems for Section 8-8.............ccciiiiiiiian

1. Modify the coin-flipping program (Program 2-9) to repeat the 39 flips
five times.

8. Modify the coin-flipping program (Program 2-9) to count the number
of times tails comes up in 39 flips.

8. Write a program to flip a coin 1000 times. Count the number of tails. You
might choose not to display H’s and T’s.

4. Write a program to roll two dice ten times.

8. Write a program to provide math drill problems in addition. Request limits
and the number of problems by using INPUT. Display the number of
correct answers at the end.

o o o

BASIC COMMODORE 64 BASIC

2-3. . .A Better Way to Count (FOR and NEXT)

Having written numerous counting loops, we imagine that there is some more
compact method for doing this. After all, just about everything we do seems to
involve counting of some sort.

.. .BASIC Loops
FOR and NEXT in BASIC automate the control functions of a program loop. Thus
our earlier program to count from one to seven becomes Program 2-10:

100 REM ## COUNTING WITH FOR...NEXT
-=>110 FOR C1 = 1 TO 7

115 PRINT C1
-->130 NEXT C1

999 END

Program 2-10. Program 2-3 using FOR.. .NEXT.

Statement 110 automatically establishes the limits on C1 as 1 and 7. Statement 130
automatically adds 1 to the value of C1 and tests to determine if C1 is less than or
equal to 7. The value of C1 will be 8 when execution reaches line 999 of this
program. Look again at line 110. Now we know why TO is a BASIC keyword and
therefore must not be used in a variable name. If you want to save the last value used
of the loop variable, then you need a statement such as 120 C2 = C1 in this program.
It is important to note that the statements between FOR and NEXT will always be
executed at least once. If we program the statement FOR X =4 TO 1, then theloop
will be executed for X = 4. The NEXT statement willadd 1 to4, getting 5, and then
find that X is greater than 1. Execution will “drop through,” behaving in exactly the
same way as our hand-built loops. To count from A to B by twos, simply code FOR
C1 =A TO B STEP 2. The value of STEP may be — 3 or even N. Decimals are
allowed.

The FOR...NEXT statements provide several important benefits. FOR. ..
NEXT loops execute dramatically faster than hand-built ones. Their use reduces
the number of ideas that we have to keep in mind as we write our programs. Those
simple BASIC keywords embody the more complex controls actually used to
construct the loop itself, without requiring us to think about the details each time
that we use them, thus freeing our mental processes for the specific problem at
hand. The ability to make a small number of program statements represent
complex solutions greatly simplifies the writing of correct computer programs.

Now we can think about some of the counting loops we have looked at before.
Consider the birthday dollars program (Program 2-4). In the original program, we
had aline 110 C1 = 1. That line happened to be the opening statement of a counting
loop. But, that statement could have set the value of Cl at 1 for any number of
reasons. On the other hand, the statement

110 FOR C1 = 1 TO 21

is crystal clear. It can mean only one thing—we are going to do something 21 times.

34

WRITING A PROGRAM

In exactly the same manner, NEXT C1 conveys much more information to the
person reading the program than

150 IF C1 <= 21 THEN GOTO 120.
FOR and NEXT are designed to go together. Don't try to initialize a loop with
100 C1 = 1

and later close it with
200 NEXT C1

Luckily, if you do this you will receive the following message from the Commodore
64:

?NEXT WITHOUT FOR ERROR IN 200

Occasionally, you will be sure you have a loop that will repeat something
several times. But, alas, it only happens once and the computer sends no error
messages. While the computer requires that a NEXT statement be preceded by a
FOR statement, it does not necessarily report that a FOR statement was not
followed by a NEXT statement. Now you know.

...SUMMARY

FOR and NEXT are paired up to control program loops in BASIC. FORA = BTO
C STEP D opens a loop by assigning the value of B to A. Each iteration of theloop is
accomplished by adding the value of D to the value of A. When the value of A goes
past the value of C, the loop is finished. NEXT A causes the next iteration of the
loop that was opened with a FOR A statement. If STEP is omitted, the step value
is assumed to be 1.

Problems for Section 8-3..............

For each of the problems here, use FOR and NEXT where appropriate.

1. Modify the package inspection program (2-5) to use FOR...NEXT.

8. Write a program to count the number of odd integers from 5 to 1191
inclusive.

8. Write a program to find the number of and the sum of all integers greater
than 1000 and less than 2213 that are divisible by 11. (Start with 1001.)

4. A person is paid $0.01 the first day of a job, $0.02 the second day, $0.04
the third day, and so on, with the pay doubling each day on the job for
30 days. Write a program to calculate the wages for the 30th day and the
total for the 30 days.

B. Write a program to print the integers from 1 to 15, paired with their
reciprocals.

8. Solve the “Twelve Days of Christmas” problem from Section 2.1 by
using FOR...NEXT.

o o o

BASIC COMMODORE 64 BASIC

?. For problem 6, have the computer print the number of gifts on each
of the 12 days and the total up to that day.

8. Modify the coin-flipping program (Program 2-7) to repeat the 39 flips

© five times. o

9. Modify Program 2-7 to count the number of times tails comes up in
39 flips.

10. Write a program to flip a coin 1000 times. Count the number of tails.
You might choose to not display H’s and T’s.

11. Write a program to roll two dice ten times.

18. Write a program to provide math drill problems in addition. Request
limits and the number of problems by using INPUT. Display the number
of correct answers at the end.

18. Examine the following program:

100 FOR I = 1 TO 1.3 STEP .1
110 PRINT I
120 NEXT I

What values do you think it will display? Run it. Do you get what you
expect? Write a program to display the four values you expected.

PROGRAMMER’S CORNER 3
Immediate Executiont

We have performed a variety of calculations using LET and PRINT statements in
programs. This method of calculation is called deferred execution, and itis used for
most computing. Programs prepared for deferred execution may be saved and
used over and over again.

The features of our BASIC programs may be used in a second important way,
known as immediate execution. We can simply type BASIC instructions whenever
a BASIC prompt is displayed. Suppose we want to know the number of hours in a
- year. We are not required to enter a program line number to obtain such a simple
result. Simply type

PRINT 365%24

Press the RETURN key and instantly BASIC will execute our instruction to
produce the desired value.

8760
READY.

We can even type a series of BASIC instructions without creating a stored
program. We could find the number of hours in a year as follows:

WRITING A PROGRAM

D=365

READY.
H=24

READY.
PRINT D*H
8760

READY.

With this technique, each statement is executed immediately. The keyword PRINT
may be replaced with a question mark (?). This means that we may command the
computer to display a result with a single keystroke instead of the five keystrokes
required for PRINT.

Immediate mode execution may be used for several purposes. BASIC can be
used as a sophisticated calculator. Detailed and complex calculations can be
performed quickly and easily. Whatever we enter remains on the screen for us to
examine (up to 23 lines with spaces). Generally, calculators retain only a single
visible number on the display. The large screen provides the opportunity to check
our work. We can be more secure than with most calculators.

.. .Stepping through a Program

We can press the STOP key at any time to halt execution of a program. If the
program is waiting for a response to INPUT, then we must press STOP and
RESTORE at the same time. We can select strategic locations in our program to
insert END statements. When the program stops, we can switch to immediate
mode. The value of any variable can be displayed with a PRINT statement. If the
values are all okay, then we can proceed by typing the keyword

CONT

to continue the program. Qr we can pick up execution with a GOTO statement. If
355 is the next line in the program, then we would key in

GOTO 355 ¢

If we find a strange value with one of our PRINT statements, we need to determine
what it is in our program that produced it. We can still test the rest of the program,
however, by setting the expected value and going on with execution, using CONT
or GOTO statements as above.

We cannot enter a new line in the program or change an existing one in
immediate mode, however. This will set the values of all variables at zero. You will
have to run the program after this.

...8TOP
In addition, the STOP statement may be used to cause a program to stop at selected
points.

945 STOP

37

BASIC COMMODORE 64 BASIC

will cause execution to cease at line 945. When BASIC encounters a STOP
statement, a message will be printed as follows:

BREAK IN 945

If we are inserting temporary STOP statements, it is very nice to know which one
the program just encountered. When we have fixed everything, we can remove all
unwanted STOP statements.

Of course, certain BASIC statements make no sense entered directly from the
keyboard without line numbers. Keywords like READ, DATA, and INPUT are
clearly intended for use in executing programs. Entering INPUT A without a line
number evokes

?2ILLEGAL DIRECT ERROR
However, INPUT #1, A produces
?FILE NOT OPEN ERROR

We'll get to files.
On the other hand, certain commands are intended for the keyboard. LIST
does work in a program, but execution stops after the program is listed.

.. .Deleting Program Lines

We may delete any program line by typing the line number. But, suppose we want
to delete lines 100 through 190. If we have left intervals of 10, that’s 10 lines. We
could type 100, then 110, then 120, and so on, but that is a little tedious. Type this line
instead: ‘

FOR I = 100 TO 190 STEP 10 : PRINT I : NEXT I

The numbers of the lines we want to delete are now on the screen. Place the cursor
at the beginning of the 100 and press RETURN 10 times. Like magic the program
lines are deleted. The screen editor has saved us much typing. We have also avoided
potential errors from typing incorrect line numbers by hand.

Chapter 3
Commodore
Character

Graphics and
Much More

3-1...Using the Commodore Graphics Keys

We can easily use the Commodore graphics characters directly from the keyboard.
If we want an arrow pointing left, we simply press the leftmost key in the upper row
of keys. If we want to display this character in a program, we simply enclose it in
quotes in a PRINT statement. Normally, the Commodore displays the character
that appears on the top of the key. Where there are two characters on the top of the
key, we get the upper one by pressing the SHIFT key while also pressing the
desired character key. Thus, we have accessed the quote mark for our PRINT
statements by pressing SHIFT and 2. Many of the keys are labeled on the front with
two graphics characters. To display the right character, simply press SHIFT and
the desired character. To display the left character, simply press the Commodore
sign (@) and the desired character. All of these characters can be displayed within
a program by enclosing them in quotes in PRINT statements.

We can control the appearance of the characters provided in two important
ways. It is easy to display characters in reverse mode. To do this, we press the
CTRL key and 9. The 9 key is labeled ReVerSe ON. Now, instead of a light blue
character on a dark blue background, we get a dark blue character on a light blue
background. RVS ON is in effect until the RETURN key is struck or the program
issues a RETURN at the end of a PRINT statement. When we include RVS ON ina
PRINT statement, it appears as an “R” in reverse. The reverse feature takes effect
only when the program is run. In addition, we can control the color of each
character. This we do by using the 1 through 8 keys and either the CTRL key or the

BASIC COMMODORE 64 BASIC

Commodore key ((@®). Using the CTRL key causes subsequent characters to be
displayed in the color labeled on the front of the corresponding key. Besides these
eight colors another eight are available by holding the (&) key and any of the keys
1 through 8 (see Table 3-1).

KEY COTRL KEY (@) KEY

1 Black Orange

2 White Brown

3 Red Light Red
4 Cyan Gray 1

5 Purple Gray 2

6. Green Light Green
7 Blue Light Blue
8 Yellow Gray 3

Table 3-1. Colors from the keyboard.

You can use this to adjust the colors on your television or your color monitor. Simply
turn reverse on by pressing CTRL and 9, then display each of the colors in turn by
pressing the space bar a few times for each color. Notice that without RVS ON,
pressing the space bar simply leaves spaces in the screen color. Atany time we may
restore the screen to its original condition by pressing STOP-RESTORE. This also
stops execution of any program in progress.’

If we want to clear the screen for more work in the latest color while
maintaining RVS ON, SHIFT/CLR is the key to press. SHIFT/CLR may also be
used in a PRINT statement. It will appear as a reversed heart, but upon execution
the screen will be cleared. Further, we may simply begin again at the top of the
screen without clearing by pressing HOME. In a PRINT statement, this shows up
as a reversed letter S.

It is a good idea to experiment with these capabilities. Notice that some of the
graphics characters are grouped sensibly. The four corners of a circle appear at the
corners of a box on keys U, I, K, and J. The four open square half corners appear on
A, S, X, and Z, while the four filled square half corners appearon D, F, V, and C. All
we need is a little imagination and some patience to display interesting figures.

...The Character Graphics Screen
The character graphics screen on the Commodore 64 is the same screen that we use
for regular text display. Normally, we have 25 lines of 40 characters each. We may
mix graphics characters and text on the screen at any time; because the letters are
simply included among the graphics characters.

For some graphics applications, we will just PRINT what we want on the
screen. For others it will be important to lay out a screen gridwork. Each position on
the screen may be identified by its line and column. The position in the upper left
corner is labeled 0, 0. The position in the lower right corner is labeled 39, 24. We
may think of the lines as being numbered from 0 to 24 and the positions on each line
as being numbered from 0 to 39. This permits us to think of the screen as a 40-by-25
grid. We have 1000 positions on the screen. We may easily place any character in
any of them with PRINT statements. (There is one exception: we cannot print a

40

COMMODORE CHARACTER GRAPHICS AND MUCH MORE

+0,0 39,0+
40 x 25
Graphics
Screen

+0,24 39, 24+

Figure 3-1. The graphics screen layout.

character in the lower right corner without having it scroll the screen up one line.)
Columns are numbered from 0 to 39 from left to right and rows are numbered from
0 to 24 from top to bottom. This is not the same as the conventional rectangular
coordinate system widely used in mathematics, but this difference presents no
great obstacle. The screen is not exactly square, so we call the plotted points blocks
rather than squares. No special graphics keywords are required here; we just design
a figure and print it on the screen.

...A Graphic Example
In Chapter 2, we learned how to display values for “rolling” dice at random by using
RND(). Now we can use the Commodore 64 graphics features to display dice on
the screen. This will be surprisingly easy to do. Let’s concentrate on the nature of a
picture of one face of a die.

Think of drawing the six possible faces of a die on ordinary graph paper. This
can be done nicely, if we use arectangle seven blocks wide and five blocks high. We
come up with the following sketch:

T

Figure 3-2. The six dice.

Now the computer problem separates into two parts. First, we need the die
background. And second, we need six different configurations for the dots in some
contrasting color. Let’s see what solutions the Commodore 64 provides for these
two problems.

...Drawing a Die

How are we going to display the die background? A search of the keyboard fails to
reveal any completely solid blocks. The closest we can get is the left-graphics
character on the plus sign key. That character is a lot like the checkered flag in a

41

BASIC COMMODORE 64 BASIC

stock car race. But, look at the blinking cursor. That would make a good die
background. Remember RVS ON? If we simply display spaces with RVS ON, we
will have the background we need. Now all we need is a nice dot. The right-
graphics symbol of the letter Q will do the job for us. And finally, let’s clear the
screen by putting SHIFT CLR in a print statement. Examine Program 3-1.

98 REM #** THE "1" FACE OF A DIE
100 PRINT "Q";

110 PRINT "m "

120 PRINT "m "

130 PRINT "m @& "

140 PRINT "m "

150 PRINT "m "

Program 3-1. Draw the one face of a die.

The reversed heart in line 100 is the CLR character. The reversed R in each
statement from 110 to 150 assure that we have RVS ON for each line. Once we have
typed in line 110, the rest are very easy to obtain by using the screen editor
described in Programmer’s Corner 1. Simply place the cursor over the second 1 in
110 and press 2 RETURN to get line 120. Three more times and we have the blank
die. LIST the program and place the SHIFT-q in line 130.

Light
Blue

Dark
Blue

Figure 3-3. Execution of Program 3-1.

That is pretty nice. But, with the colors the way they are, we can’t distinguish the die
from the border. We can do two things. We can change the color, or we can place
the die away from the edge of the screen. We can easily experiment with colors
right at the keyboard. Press CTRL 2 and run the program. This gives a nice white
die with a blue dot.

42

COMMODORE CHARACTER GRAPHICS AND MUCH MORE

We can move the die away from the border by inserting 105 PRINT and by
inserting a leading space in lines 110 through 150. Alternatively, we can move the
die down the screen one line by removing the semicolon in line 100. This is leftas an
exercise. How do we get a three face? Simply use the screen editor to change lines
120 and 140 to produce Program 3-2.

98 REM *#* THE "3" FACE OF A DIE
100 PRINT "a";

110 PRINT "m "
120 PRINT "m ="
130 PRINT "m ® "
140 PRINT "B @ "
150 PRINT "m "

Program 3-2. Draw the three face of a die.

After we have had a chance to study the graphics screen, we may press STOP
RESTORE to return the screen to normal. We may easily edit this program to
display any of the six faces of a die.

We have examined numerous graphics features of the keyboard. The 40-by-25 text
screen is also used for the graphics characters supplied with the Commodore 64. We
can display characters in any of 16 colors. We can display them in reverse or normal
mode. We can easily clear the screen.

Problems for Section 8-1.

1. Write a program to display a die showing the six face in the lower left corner
of the screen.

8. Write a program to display a pair of dice, one showing a one and the other
showing a three.

8. Write a program to request a number from one to six and display the appro-
priate die (try using colors if you have a color monitor).

4. Modify Program 3-1 to move the die away from the corner of the screen.

8. Write a program to draw a bar graph picturing the following temperatures
for a seven-day period:

Day Temp
1 30
2 27
3 26
4 31
5 26
6 30
38

Make the bars horizontal and label each one with the day number and the
temperature. Experiment with different colors.

43

-~

BASIC COMMODORE 64 BASIC

8. Write a program to display the three of hearts. Form the corners of the card
with right graphics characters on the O, P, @, and L keys. Form the bound-
aries with the left graphics characters on the H, P, N, and Y keys. For now
we will settle for a figure with all symbols facing the same way. The ad-
vanced programmer could create an inverted heart and an inverted 3 to
make the card even more realistic.

3-2...Divide and Conquer (Subroutines)

Once we have written the code to display a die of a particular color having a
particular face value in a particular place, it is hard to be inspired to write new code
to display that same die in another location or another color. And it is even less
exciting to consider displaying five dice in this way. When we find ourselves writing
routine after routine, each of which is only a slight variation of the one just finished,
programming becomes tedious. The more experience we gain in programming, the
more opportunity we will have to use what we have already coded. Often a current
problem is only a slight variation of an old, already solved one.

If we want to display a black die and then a white die in the same location, the
only thing that changes is the color. Clearly, it is a nuisance to duplicate the code
that does the actual graphing. We can easily isolate that code and direct the
computer to execute it at will by using GOSUB and RETURN.

GOSUB 1000 causes the computer to execute line 1000 next regardless of where you
are in a program. However, GOSUB 1000 differs from GOTO 1000 in that GOSUB
remembers its place in the program. When a RETURN statement is encountered,
execution resumes following the most recent GOSUB. The program statements that
begin with the line number after the keyword GOSUB and end with a RETURN
statement are grouped together and referred to as a subroutine. Thus GOSUB
means “GO do the SUBroutine.”

For our black-die-followed-by-a-white-die problem we need to have the pro-
gram pause between the two displays. Otherwise, things will happen so quickly
that we will not see the first die. This pause can be accomplished with a time-waster
FOR...NEXT loop that does nothing else. The problem is solved in six easy steps:

1. Set green color.
8. Display the die.
8. Waste some time.
4. Set pink color.

8. Display the die.
8. End.

Putting off for the moment writing the actual die-display subroutine, let’s look
at a program to display our black and white dice. See Program 3-3a.

44

COMMODORE CHARACTER GRAPHICS AND MUCH MORE

98 REM *#* CONTROL DIE DISPLAY
110 PRINT "CLRmLK"
-=>120 GOSUB 1000
-->130 FOR X = 1 TO 1500
-=>135 NEXT X
140 PRINT "CLR=QT"
150 GOSUB 1000
190 END

Program 3-3a. The control segment of a die-drawing program.

We have been able to embody a group of statements in the single statement
120 GOSUB 1000

As with FOR loops, we have a method for organizing our thoughts more easily by
concentrating many computing steps in a single statement. We can think of

GOSUB 1000

as “display a die” without having to think about the actual BASIC statements
required to do the display. Look at 130 and 135. Those two lines make up a delay
loop. For alonger delay, use a value larger than 1500. Without a delay, we would not
even see the first die, because it would be replaced so quickly with the second.

Finally, the display routine is very easy. We may simply select those statements
from our earlier die-drawing program and use appropriate line numbers. We may
concentrate on the display without having to think about other parts of the
program. We know that the first line should be numbered 1000 and the last
statement should be RETURN. See Program 3-3b.

998 REM *¥ THE "1" FACE OF A DIE
1000 PRINT "Q®

1010 PRINT " m "
1020 PRINT " m "
1030 PRINT "m & "
1040 PRINT " m "
1050 PRINT " m "

1090 RETURN

Program 3-3b. Subroutine to display a one face of a die.

Programs 3-3a and 3-3b together make up a complete program to display the one
face of a die in two different colors, with a brief delay in between.

It is important to realize the impact of the END statement at 190 in Program
3-3a on the subroutine beginning at line 1000. It is improper to execute a RETURN
statement without a matching GOSUB. If we fail to obey this rule, the Commodore
64 will deliver the following message:

?RETURN WITHOUT GOSUB ERROR IN 1090

190 END assures that the routine beginning at line 1000 is not executed an extra
time.

48

BASIC COMMODORE 64 BASIC

...Make It Handle the General Case

Wouldn't it be nice to be able to display a die anywhere on the screen? With the idea
of subroutines well in hand, this new twist is easy. All we need is to “send” values to
our subroutine that specify where a corner of the dieis to be. Let’suse X and Y as the
horizontal and vertical position on the screen where we want the upper left corner
of our die to be placed (refer to Figure 3-1). The value of Y will tell the subroutine
how many blank lines to display before showing the die on the screen. We could use
the value of X to display the appropriate number of blank spaces in a FOR loop. But
we would have to do that for each line in the graphics display. It will be much easier
to use a special feature in BASIC to do this.

...TAB()

TAB(X) in a PRINT statement causes the computer to tab to column X, much like a

tab key on a typewriter. It is important to remember that the first column on each

line is numbered zero and the first line at the top of the screen is numbered zero.
Let’s use this idea to display a message exactly in the center of the screen. We

need a FOR loop to print 12 blank lines and we need to calculate a TAB value to

center our display on the screen. Examine Program 3-4.

90 PRINT "CRT";

98 REM ** CENTER A MESSAGE

100 FOR L = 0 TO 11

110 PRINT

120 NEXT L

150 PRINT TAB(14); "COMMODORE 64"

Program 3-4. Center a message on the screen.

If we need to place the cursor on the first line, we must avoid executing the FOR
loop at all. Remember that all FOR loops will execute at least once. So, we will use
an IF test before our loop in the general case.

Printed messages are displayed without any effect on other parts of the screen.
We can use this information to display novelty messages. For example, we might
like to display a message backwards but inreadable form. Such a message would be
displayed from right to left, so that the final message is readable in the normal way.
Program 3-5 is an example of this.

98 REM ** PRINT BACKWARDS
100 PRINT "QRT";

110 PRINT "&"; TAB(21); "4
120 PRINT "&"; TAB(20); "6"
130 PRINT "@E"; TAB(19); " "
140 PRINT "mM; TAB(17); "E"
150 PRINT "&"; TAB(16); "R"
160 PRINT "&"; TAB(15); "O"
170 PRINT "S": TAB(14); "D"
180 PRINT "@"; TAB(13); "o

COMMODORE CHARACTER GRAPHICS AND MUCH MORE

190 PRINT "@E"; TAB(12); "M"
200 PRINT "&"; TAB(11); "M®
210 PRINT "&"; TAB(10); "O"
220 PRINT "E"; TAB(9); "C"

Progiam 3-5. Novelty backwards message.

Notice that we clear the screen only once but we use HOME for each component of
the display.

We may apply a blank PRINT in a FOR loop along with TAB to place a die face
anywhere on the screen. We use the loop to move the first line of the die to where we
want it and use TAB in each PRINT statement for the die face to place the display
horizontally. However, we must make sure that the values of X and Y place the
entire die within the 40-by-25 graphics screen. That means that X may range from
zero to 33 and Y is limited to values from zero to 21 for our seven-by-five-block die
face. So, we first set values for X and Y. Next we GOSUB to a routine that moves the
cursor to the desired line (let’s put it at line 1000). And finally we GOSUB to a
routine that actually displays the desired die face.

Now the final piece of the puzzle will fit into place as soon as we write six
subroutines—one for each of the six possible faces of a die. Numbering the first line
of each subroutine 1100, 1200, up to 1600 will help to identify the die it displays.
Thus:

1098 REM *#* DISPLAY ™"
1100 PRINT TAB(X); "m "

1110 PRINT TAB(X); "m "
1120 PRINT TAB(X); "m @& "
1130 PRINT TAB(X); "m "

1140 PRINT TAB(X); "m "
1190 RETURN
1198 REM *% DISPLAY "2n

1200 PRINT TAB(X); "m "
1210 PRINT TAB(X); "m ."
1220 PRINT TAB(X); "m "
1230 PRINT TAB(X); "B ® "
1240 PRINT TAB(X); "m "

1290 RETURN

1598 REM ** DISPLAY "6"

1600 PRINT TAB(X); "m "
1610 PRINT TAB(X); "me & @& "
1620 PRINT TAB(X); "m "
1630 PRINT TAB(X); "B @ & ® "
1640 PRINT TAB(X); "m "
1690 RETURN

Note that with the Commodore 64 screen editor you can create this code with very
little actual typing. Just type one REM and one PRINT statement. The rest is easy to
obtain with editing.

The display separates nicely into placing the cursor and displaying the dice.

47

BASIC COMMODORE 84 BASIC

These two functions are performéd by distinct subroutines. GOSUB 1000 places the
cursor. GOSUB 1100 through GOSUB 1600 may be used to display one to six spots
on the die. We can set the colors independently. Once a die has been drawn on the
screen, we may erase it with CLR/ZHOME.

...Another Visit with IF.. . THEN

It is clear that once we have a number such as R that tells us which die to display, we
need a way to branch to the appropriate subroutine. Thus, we wish to execute just
one of the following statements:

GOSUB 1100
GOSUB 1200
GOSUB 1300
GOSUB 1400
GOSUB 1500
GOSUB 1600

We could do that with the following logic:

910 IF R <> 1 THEN 920

912 GOSUB 1100
914 GOTO 990

950 IF R <> 5 THEN 960
952 GOSUB 1500

954 GOTO 990

960 IF R <> 6 THEN 990
962 GOSUB 1600

964 GOTO 990

990 RETURN

However, that approach is cumbersome, requiring a lot of typing and 18 statements
for a very simple decision. It is a good idea to simplify our programs whenever
possible. We could eliminate the six GOTO 990 statements, as they are not essential.
Only one of those IF statements will test out true for any given value of R. That
would leave us with 12 statements, but we would still have a choppy structure that s
unnecessarily long and difficult to read (for humans—the computer doesn’t care).
Alternatively, we can use another feature of IF . . . THEN statements to simplify the
decision about which of the six die-display subroutines to execute. Any BASIC
statement may follow THEN inan IF...THEN statement. This new feature makes
it possible to achieve the same result with six simple BASIC program lines. We may
execute just one of the die display subroutines with the following code:

910 IF R = 1 THEN GOSUB 1100
920 IF R = 2 THEN GOSUB 1200
930 IF R = 3 THEN GOSUB 1300
940 IF R = 4 THEN GOSUB 1400
950 IF R = 5 THEN GOSUB 1500
960 IF R = 6 THEN GOSUB 1600

Not only is this shorter to type, but it is much clearer to read. For any value of R in

48

COMMODORE CHARACTER GRAPHICS AND MUCH MORE

the range 1 to 6, just one of the IF...THEN tests comes out true. The other five
come out false. Thus, the computer executes all six IF tests no matter what. But the
computer is very fast and the five false results will not delay execution in any
noticeable way for our present problem. Combining this approach with random
numbers, we can program a wide variety of events.

Problems for Section 3-8. i

1. Write a program to display a die face showing a six in the upper right corner
of the graphics screen.

8. Write a program to display a random die face in the upper left corner of the
screen.

8. Display a random die face, leave it for a few seconds, and then erase it.

4. Display two dice at random next to each other in the lower left corner.

8. Write a program to display a blinking die. Let it blink 10 times, then leave
the display on the screen.

8. Display a few dice at random in random locations on the screen to simulate
physically rolling the dice. Then display a pair of dice at random and leave
them on the screen.

3-3...BASIC Multiple Features
...GOSUB Revisited

At first we saw how we might use 18 statements to branch to one of six die-display
subroutines. We reduced this to six lines that were much easier to read by using an
extended feature of IF. . . THEN—executing any statement if the tested expression
is true. Now we can reduce the amount of code even further with a new feature of
the GOSUB statement.

...ON...GOSUB
We can duplicate the effect of the six IF statements with BASIC’s multiple GOSUB
capability.

910 ON R GOSUB 1100, 1200, 1300, 1400, 1500, 1600

Subroutines at lines 1100, 1200, . . . and 1600 are executed as the value of Ris 1, 2,

. and 6 respectively. Should the value of R be less than one or greater than six,
statement 910 will be ignored. However, values less than 0 or greater than 255 will
be rewarded with

?ILLEGAL QUANTITY ERROR IN 910

Now, even the relatively simple six-statement logic used to branch to the
proper die-plotting subroutine has been reduced to a single statement. Lest we get
the idea that all programs can be reduced by at least one statement (and therefore
eliminated entirely), be assured that there is a limit to the features available in

49

o o o

BASIC COMMODORE 64 BASIC

BASIC or any other computer language. Computers are finite and therefore limits
do exist. Computers and computer languages are amazing, but they are not magic.

...ON...GOTO
GOTO has the same multiple line-number branching capability as GOSUB. Thus

the single statement: _
100 ON N1 GOTO 310,320,330, 340, 350,360,370

replaces seven IF...THEN statements. The same restrictions apply to the
legitimate range for GOTO as for GOSUB.

Suppose we have a situation in which we want to execute line 1000 if N1 = 3,
1100 if N1 = 6, and 1200 if N1 = 11. Do not be tempted to use a multiple GOTO or
GOSUB statement. In such a situation, it is much clearer to code threeIF. .. THEN
statements. Having 11 line numbers, only three of which are real, is very confusing
to anyone reading your program. Don’t do it! Even you won’t understand it next
week.

...Multiple Statements (:)

The ability to place several program statements on a single numbered line has many
useful applications. Suppose we have a subroutine at 500 that needs values set for A,
B, and C. This will require the following set of lines every time we use the
subroutine:

100 A = 5
110 B = 9
120 C =

= 3
130 GOSUB 500

Where statements naturally belong together, it is helpful to place them all on the
same line. Using the colon (:) to separate statements, we may use the following
equivalent code:

100 A =5 :B=9:C=3: GOSUB 500

While it can be very handy to place several statements on the same line, there
may be good reasons not to. It may make the program harder to read when the
statement lists on two lines. This capability should be used with caution.

It may also be desirable to annotate program lines by using the colon:

180 E1 = 0 : REM ¥** CLEAR ERROR COUNT

Line 180 here is described with a REM statement on the same line. Anyone reading
this can see that the variable El is used to count errors and that at this point we are
setting the count to 0.

Line numbers do require memory. Occasionally, a program grows to the point
where it is too big for the available memory. One method for reducing the amount
of memory a program requires is to use multiple statements on each line. In doing

80

COMMODORE CHARACTER GRAPHICS AND MUCH MORE

this with an existing program, you must be careful not to change the logic of the
program by incorrectly combining lines that are referenced by a GOTO,
IF...THEN, or GOSUB statement.

...Multiple Statements and IF.. . THEN
BASIC allows multiple statements following IF...THEN. So a statement such as:

100 IF A = 5 THEN B =6 : T = 1

is perfectly legal. That statement will execute both B =6 and C =11 when A =5,
and neither B =6 nor C = 11 when A does not equal 5.

3-4...Miscellaneous Character Graphics Features

.. .Border and Screen Background Colors

We have been looking at a blue screen background with a light blue border all this
time. We know how to change the color of the characters as they are printed. Why
not the screen and the border?

Try this on your Commodore 64:
POKE 53281,0

Yes, go ahead and try it. The screen should instantly turn black. The number 53281
is a location in the memory of the Commodore 64 that controls the color of the
screen background. The number 0 specifies Black.

The POKE statement is a BASIC instruction to set the value in location 53281 to
0. POKE may be used in immediate or deferred mode. The location we POKE to is
determined by what we want to accomplish. We are interested here in the screen
background color. Don’t indiscriminately POKE values anywhere in memory—it is
possible to change a value that will cause the computer to stop functioning in a
rational manner. Turning the computer off and back on again will always restore t,
but you will lose any program in memory at the time. Each location in memory
holds a value in the range 0 to 255. This is because each location is limited to eight
binary bits, which allows numbers only in this range. (For more about binary
numbers see Chapter 7.)

To get the old color back type

POKE 53821,6

Try setting the background color to 14. Did everything disappear? The border
color is 14 and so is the normal cursor color. At this point we might press STOP and
RESTORE. Everything is back to normal.

81

BASIC COMMODORE 64 BASIC

If we want a black border, we simply key in
POKE 53280,0

There are 16 colors available for both border and screen backgrounds, so we have
256 possible combinations (16%). Obviously some of them are more pleasing to the
eye than others. If we combine this with the 16 possible colors for the characters we
have a truly wide selection. In some programs we might want to key different
colors to different functions in the program. It is very easy to just POKE the color
number into 53280 for border and POKE into 53281 for screen color. The 16 colors
we have already used in PRINT statements are numbered according to Table 3-2.

NUMBER COLOR NUMBER COLOR

0 Black 8 Orange

1 White 9 Brown

2 Red 10 Light Red

3 Cyan 11 Gray 1

4 Purple 12 Gray 2

5 Green 13 Light Green
6 Blue 14 Light Blue
7 Yellow 15 Gray 3

Table 3-2. Color values for POKE.

Don’t be confused by the fact that the colors numbered 0 to 7 here are found on the
keys labeled 1 to 8 on the keyboard. Both systems are right.

.. .Character Colors

Each character position on the character screen is matched with a location in
memory that can be used to control the color of the character displayed on the
screen. The character screen begins with location 1024 and runs to 2023, totalling
1000 characters. The color memory begins at 55296 and runs to 56295. Location
55296 controls the color of the character at 1024, while location 55297 controls the
color of the character at 1025. And 56295 controls the color of the character at2023.
The character screen positions are numbered from left to right and from top to
bottom, as we would read a printed page. So, the first character position on the
second line of the screen is numbered 1064; the color memory location is 55336. The
screen location of any character is determined from its line number and position
within the line by the formula

1024 + line®40 + position

where the lines are numbered from zero to 24 and the position within a line is
numbered from zero to 39. The corresponding memory location for the color is
given by

55296 + line®40 + position

COMMODORE CHARACTER GRAPHICS AND MUCH MORE

Or, if we label the line and position as Y and X, respectively, the formulas become

character screen =1024 +Y®40 + X
color memory =55296 + Y*40 + X

This conforms exactly to the screen layout in Figure 3-1. Notice that the screen
position (0, 0) comes out 1024.

Once a character is displayed on the screen we can set its color witha POKE to
the corresponding location of color memory. Try Program 3-6.

100 PRINT "QA"
110 POKE 55296, 1

Program 3-6. Setting a character color in color memory.

This program clears the screen and places the letter A in the upper left corner with
the PRINT statement. The POKE turns the letter A black. The value set in the range
55296 to 56295 has no effect on the PRINT statement. We must use the POKE after
the character has been displayed with a PRINT statement.

...Characters with POKE

We can also POKE values into screen memory to display characters. We must also
POKE a color value into color memory, or the character will be invisible. Evenif we
want the character to appear in the standard light blue, we must POKE a 14 into the
corresponding color memory location. We can even POKE a character to the lower
right corner of the screen without having it scroll the whole screen up one line. We
simply POKE the correct character to 1024 + 999 and POKE the desired color
number to 55296 + 999. All we need to know is what value produces what
character. If we are looking for the value of a single character it is quick and easy to
simply place that character on the screen and then use a new BASIC statement to
read its value.

...PEEBK

Let’s clear the screen and type the letter A in the upper left character position. Use
the cursor up to get there and cursor down to move to the third line of the screen.
Now type

PRINT PEEK(1024)

The Commodore 64 responds with “1”. That means that the value stored there is a
“1”. (This is not the famous ASCII system; we’'ll get to that in Chapter 5.) PEEK isa
BASIC statement that reads the value stored in memory. We will always obtain a
value between 0 and 255. So, we can display any character on the screen and PEEK
at the corresponding memory location to determine its numeric value. These values
are called screen codes for the Commodore 64. There are actually two character
sets. One we get normally when the machine is turned on. The other we get by
pressing the SHIFT and (&) keys simultaneously. You can watch the characters
change on the screen. Mostly this affects the letters, but the pi key, the British pound

e o o

BASIC COMMODORE 64 BASIC

key, the @ key, and the asterisk key are also affected. Let’s get one complete
character set on the screen to see what it looks like.

100 PRINT "a"

110 FOR I = 0 TO 255

120 POKE 1024 + 2%I, I

130 POKE 55296 + 2#I, 1

140 NEXT I

150 FOR I = 1 TO 11 : PRINT : NEXT I

Program 3-7. Display a character set.

Remember, we must POKE both the character and a color. White is used here. You
might like to POKE a variety of colors to see the effect on the screen. We added 2*1
rather than I here just to space the characters out a little.

Figure 3-4 shows the standard character set. Let’s see the alternate one. We
simply press (&) and SHIFT at the same time to produce Figure 3-5.

Notice in both character sets that every character is duplicated, appearing in
both normal and reverse modes. The characters with screen codes in the range 128
to 255 are the reverse of characters in the range 0 to 127. It isimportant to realize that
we cannot mix characters from the two sets on the screen at the same time. We can
change from one to the other with another POKE.

POKE 53272 ,23
puts the Commodore 64 into the alternate character set, while
POKE 53272, 21

restores the standard set. But, remember, one set completely replaces the other—no
mixing is allowed. (See Appendix B for the two sets of screen codes. The advanced
programmer can use features of the Commodore 64 to create individually tailored
character sets.)

... Bxamples
Just for fun let’s display some twinkling stars. Program 3-8 is an example.

100 PRINT "g"
110 FOR X = 0 TO 5
120 FOR Y = 0 TO 5
-->130 POKE 1024 + 40%Y + X, 108
130 NEXT Y
150 NEXT X
200 X = INT(RND(1)%6)
210 Y = INT(RND(1)*6)
220 SW = INT(RND(1)*100)
-=>230 CL = 1 : IF SW > 5 THEN CL = 6
240 POKE 55296 + 40%*Y + X, CL
250 GOTO 200

Program 3-8. Some twinkling stars.

We got the 108 in line 130 by printing the character generated by (€&) -D on the
screen and taking a PEEK at that location. We laid out a block in the upper left

84

COMMODORE CHARACTER GRAPHICS AND MUCH MORE

BASIC COMMODORE 64 BASIC

corner of the screen. In line 230 we select color 1 to display a star or select color 6 to
turn a star off. A star is turned off by setting it to the screen background color. You
could change the screen background color to black and experiment with other
things to create a realistic effect. Maybe you could program a sunset or a sunrise.
We can create crude animation with characters on the screen and a large dose of
imagination. Program 3-9 lets us get our exercise without getting out of breath.

100 PRINT "g";
110 PRINT " o"
120 PRINT "op"
130 PRINT "z N"
130 GOSUB 500
200 PRINT " o
210 PRINT "ARM
220 PRINT "m "
230 GOSUB 500
240 GOTO 110
-->500 FOR I = 1 TO 200 : NEXT I
510 PRINT "o";
590 RETURN

Program 3-9. Calisthenics.

You could have one figure displayed a line lower than the other to increase the
appearance of motion. You might experiment with the timing in line 500. With
creativity and imagination you can write fairly realistic animation with surprisingly
little in the way of sophisticated programming technique.

The POKE statement can be used to place values from 0 to 255 in memory. The
border color is controlled at memory location 53280. The screen background color
is controlled at memory location 53281.

The character screen is located in memory from 1024 to 2023. This means
that we can POKE values into those locations to place characters on the screen. In
order for the characters to actually appear, we are required to also POKE a color in
a corresponding location of color memory. Color memory is found in the range
from 55296 to 56295.

We can determine the screen code of a character by displaying it on the screen
in a known location and then reading the value with PEEK.

The rest is up to the creativity, imagination, and patience of the programmer.

]
Chapter 4

Miscellaneous
Features and
Techniques

IMtroductionci ittt i ittt

Certain calculations and other processes are required so frequently in program-
ming that high-level languages like BASIC supply them in nice packages. Many of
these packages are called functions. Some of them are called operators. And some
are just plain features. These tools are a tremendous convenience in any computer
language.

We have already used the INT function in some of our earlier programs in
Chapter 2. Remember? INT(X) returns the greatest integer that s less than or equal
to X, so that INT(5.699) =5 and INT(—4.091) = —5. When we are working with
decimal numbers it is often useful to round off results. We will explore this and
some other uses for INT in this chapter.

RND is a package that gives us access to random numbers in a program. We
used RND to good advantage in Chapter 2. RND may be used to add interest and
variety to games. This function is invaluable for writing simulation programs. By
randomly changing various factors in a proposed solution to a business problem, we
can predict results without imposing poor judgment on a frustrated public. We
may confine our failures to unpublicized runs of a computer program.

These BASIC packages and numerous others will reveal themselves as ex-
tremely useful. It is a good idea to learn about most of the features available to you
early on, so that as the need arises you will be able to recall a convenient solution.

87

BASIC COMMODORE 64 BASIC

It takes several BASIC statements to determine whether a number is positive,
negative, or zero:

890 REM *¥* DETERMINE +, 0, OR -
900 IF X > 0 THEN S 1
910 IF X = 0 THEN S
920 IF X < 0 THEN S
930 RETURN

"nouun
o

]
-

Having written such a subroutine, we should test it. Then, every time we need such
a calculation in another program, we must type the entire subroutine. The SGN
function does the same thing:

130 5 = SGN(X)

In just the same way we can determine the absolute value of a number in BASIC
with the ABS function.

140 A = ABS(X)

These functions are useful not only because they save us a lot of programming
effort and typing time, but also because they indicate the meaning of the statement
in which they appear. SGN(X) clearly conveys that we are interested in the sign of a
number, while X =T : GOSUB 900 fails to convey just why we are invoking the
subroutine at line 900 and that the result is returned in S. We would have to read the
code beginning at line 900 or put in REM statements to understand the meaning.

The number in parentheses following the function name is called the argument
of the function. This value is passed to the function and the result is returned in the -
entire expression.

Just as BASIC includes LET, GOSUB, END, IF...THEN, and FOR...
NEXT, it includes features such as INT, RND, SGN, and ABS as elements
of the language. This means that the necessary programming has already been
taken care of for us and incorporated into BASIC. There are many advantages to
this approach. The programming has been tested for us. The features will generally
execute much faster than if we write the same calculations in BASIC. This is
especially true for trigonometric and logarithmic functions.

.. .Prompted INPUT
Often we have printed messages as labels for our INPUT requests. This is always a
good idea. BASIC provides a convenient way to include the prompting message
right in the INPUT statement.

The statement

100 INPUT "ENTER HERE"; T1
will produce exactly the same results as:
100 PRINT "ENTER HERE"; : INPUT T1

Any message enclosed within quotes in an INPUT statement will be displayed

DY

MISCELLANEOUS FEATURES AND TECHNIQUES

exactly as typed. The message must be followed by a semicolon before the variable
list, and the variables in the list must be separated with commas.

4-1... Numeric Functions

.. .ABS, SGN, RND, SQR, and INT

For general programming, the most common functions are ABS,SGN,RND, SQR,
and INT. Functions that come with the language are sometimes called built-in
functions. :

As discussed earlier, ABS(X) returns the absolute value of X, and SGN(X)
returns —1, 0, or +1, according to whether the value of X is negative, zero, or
positive.

RND is the random-number generator. RND(X) returns random decimal
numbers in the range from 0 to 1, including 0 and excluding 1. If X is negative, the
number returned is the same for every occurrence of that negative value of X. If the
value of X is positive, a different value is returned for each successive use of the
RND function. We can repeat a random sequence by using a negative argument for
the first value and a positive argument for all subsequent ones. Using a negative
argument in this way is called seeding the random number generator. If X is zero,
the random number generated will be independent of any seeding we might do.

SQR(X) returns the square root of X. We could also code X".5, using the up-
arrow to indicate an exponent, to represent X to the one-half power, but SQR is
convenient and executes faster. Of course, the value of X must not be negative. A
negative argument in the SQR function will incur the wrath of BASIC. If we insist
on coding a statement such as:

100 PRINT SQR(-4)
we will be subjected to the following message:
?ILLEGAL QUANTITY ERROR IN 100

Once we gain familiarity with these functions, they will come to mind as they
are needed.

Suppose we are interested in finding factors of integers. Right away INT
should come to mind. We may program the computer to compare INT(N/D) to
N/D. If they are equal, then D divides into N without remainderand D is a factor of
N. If INT(N/D) does not equal N/D, then D is not a factor of N. For example:

INT(69/5) = 13

while
69/5 = 13.8

Clearly 13 and 13.8 are not equal, so 5 is not a factor of 69. On the other hand:
INT(69/23) = 3 '

BASIC COMMODORE 64 BASIC

and
69/23 = 3

Thus 23 is a factor of 69, and so is 3.

To find the largest factor of 1946, all that we have to do is write a program
that tries all of the values from 1945 down to 2. The first one that is a factor is the
largest factor. Display it and terminate the program. While we are at it, we might as
well make this a more general program. Let’s make our program request a value for
testing.

100 INPUT "FIND LARGEST FACTOR OF"; N
120 FOR D = N - 1 TO 2 STEP -1

-=>140 IF N / D <> INT(N / D) THEN 180
150 PRINT D : END
180 NEXT D
200 PRINT N; "IS PRIME"

Program 4-1. Finding the largest factor.

Note line 140. If we have a remainder, then we perform the next test. If not, then we
have the largest factor. Display it and quit.

RUN
FIND LARGEST FACTOR OF? 1946
973

Figure 4-1. Execution of Program 4-1.

There is something about this program that may not be obvious unless we wit-
ness the execution. The computer has to think for more than 10 seconds before
producing the answer for N = 1946. And it would delay for over 20 seconds for
N = 1949. The smaller the first factor, the longer the delay. Surely we could find the
largest factor of 1946 faster by hand. So can the computer.

Decimal division on a computer takes time. We could save one division for each
value of N by assigning N/D to an intermediate variable:

135 Q=N/D
140 IF Q <> INT(Q) THEN 180

The time saving is about 10%. While this might be worthwhile, we should also
carefully examine the method we have chosen for solving this problem.

Take the case of 1946. The largest factor is 973 and the smallest factor is 2. We
could simply test our factors beginning with 2. When we have found the smallest
factor, the largest factor may be found by division. Thus we have gone from 973
trial values in the FOR...NEXT loop of Program 4-1 to a single trial for this
particular value of N. We have also gone from 10 seconds to a small fraction of one
second. That is an improvement worth working on. But what if we enter 1949? This
new method will require 1947 trial values of D and just over 20 seconds to execute,
because 1949 is a prime. So, this method only helps for values of N that have factors.,
We should be searching for an improved method that also works for prime integers.

Let’s return to the observation that the largest factor of 1946 is 973 and the
smallest is 2. How are the rest of the factors paired? See Figure 4-2.

MISCELLANEOUS FEATURES AND TECHNIQUES

2 973
7 278
14 139
139 14
278 7
973 2

Figure 4-2. Factor pairs of 1946.

There are six pairs of factors, each of which appears twice. How can we determine
when we have found all of the unique pairs of factors? For every factor less than or
equal to the square root of a number, the other factor will be greater than or equal to
the square root. Once we are convinced of that the rest is easy; we need only test
divisors up to the square root. Simply change

"120 FOR D = N - 1 TO 2 STEP -1
to

120 FOR D = 2 TO SQR(N)
and change

150 PRINT D : END
to

150 PRINT N / D : END

This change in strategy reduces the number of tests for N = 1949 from 1948 to 43.
That is significant and worth incorporating into our program. We can also use the
intermediate variable Q to store N/D. Thus:

150 PRINT N / D : END
becomes
150 PRINT Q : END
See lines 120, 135, 140, and 150 of Program 4-2.

100 INPUT "FIND LARGEST FACTOR OF"; N
-~>120 FOR D = 2 TO SQR (N)
-->135Q=N/D
-=>140 IF Q <> INT(Q) THEN 180
-->150 PRINT Q : END

180 NEXT D

200 PRINT N; "IS PRIME"

Program 4-2. Finding the largest factor by using SQR(N).

.. .Rounding Decimal Results
Another use for INT comes up when we are working with dollars and cents and
calculations come out in fractional cents. We would like always to round figures
off to the nearest cent for printing. That is, 0.5 cents or more is rounded up and less
than 0.5 cents is rounded down.

6l

BASIC COMMODORE 64 BASIC

We can convert dollars and cents to cents by multiplying by 100. Then, if we
add 0.5 cents, all values from 0.0 to 0.49 will become values in the range from0.5 to
0.99, while all values in the range from 0.5 to 0.99 will become values in the range
from 1.0 to 1.49. If we next apply INT, all decimal portions that were less than 0.5
disappear, and all values that were 0.5 or more result in one cent being added. Then
we change from cents back to dollars and cents by dividing by 100. Thus we can
round values to the nearest cent with a statement such as

200 D1 = INT(D * 100 + .5) / 100

Then we can easily write a test program to verify our solution for rounding values to
the nearest cent (and incidentally for rounding any values to the nearest
hundredth). See Program 4-3.

100 REM ** DEMONSTRATE ROUNDING
-=->130 PRINT "ROUNDED", "DATA"

150 READ D

160 IF D = -9999 THEN END

200 D1 = INT(D * 100 + .5) / 100

210 PRINT D1, D

220 GOTO 150

900 DATA 3.09123, U4.94561

910 DATA 2390, -1.5102

920 DATA .0009, -1.4861

990 DATA -9999

Program 4-3. Rounding to the nearest hundredth.

We have included the labeling of line 140 to give the display some ‘meaning.

RUN
ROUNDED DATA
3.09 3.09123
4.95 4.9U4561
2390 2390
-1.51 -1.5102
0 9E-04
-1.49 -1.486

Figure 4-3. Execution of Program 4-3.

Note that this also handles negative values correctly. It is always a good idea to
verify that our programs work properly for a wide variety of values. Even though
the current problem doesn’t require a particular class of values, it is desirable to test
the program for them anyway. It is much easier to put the finishing touches on a
routine while we are familiar with the problem than to return to it months later
when we discover that we really do want to handle those previously unwanted
values.

...Compound Interest

Suppose we have $100 in a savings account at5.5% interest compounded daily. How
much will that be at the end of one year? We can easily write a program to calculate
that. There is a simple formula that gives the compound amount:

MISCELLANEQUS FEATURES AND TECHNIQUES

A=P(1+IN
where

A = amount

P = principal

I = interest rate per interest period
N = number of interest periods

The raised N indicates “to the power.” This formula is applied in Program 4-4.

100 REM *#* CALCULATE COMPOUND INTEREST
200 P = 100

210 I = .055 / 365 .

220 N = 365

300 =P * (1 +1I)"°N

A
310 PRINT A

Program 4-4. Compound interest by formula.

Note that the symbol * denotes “to the power” in BASIC. This symbol is found next
to the RESTORE key; it is an up-arrow on the Commodore 64 keyboard.

RUN
105.653643

Figure 4-4. Execution of Program 4-4.

Now, since it is hard enough to buy anything with a whole cent, let alone 0.3643
cents, we might as well round that value off to the nearest cent. We can do that
easily by replacing line 310 with:

310 PRINT INT(A *# 100 + .5) / 100

Program 4-4 tells us what will be in our savings account at the end of the year.
What this program doesn’t tell us is what has happened to the buying power of our
money because of inflation. It doesn’t tell us of the federal, state, and even city
income taxes we may have to pay on the interest. Still, earning interest is better than
hiding the money in a mattress.

The compound interest formula works fine if we are going to put $100 in the
bank and leave it there. But suppose we decide to put $20 into the account on the
first of each month. For simplicity, let’s consider that each month has 30 days and
that a year has 360 days. Let’s put $100 in the bank on January 1 and then put $20 in
on the first of the month each month all year. We can handle this computation with a
FOR...NEXT loop going from 1 to 12, as shown in Program 4-5.

100 REM *% ADD $20 EACH MONTH

200 P = 100

210 I = .055 / 360

220 N = 30

300 FOR M = 1 TO 12

310 P = P + 20
-=>320 A =P * (1 + I) "N
-->330 P = A

BASIC COMMODORE 64 BASIC

340 NEXT M
350 PRINT "$100 PLUS $20 EACH MONTH $";
360 PRINT INT (A * 100 + .5) / 100

Program 4-5. Compound interest with money added each month.

Note that the amount at the end of each month becomes the principal for the next
montbh, as indicated in lines 320 and 330 of Program 4-5.

RUN
$100 PLUS $20 EACH MONTH $ 352.94

Figure 4-5. Execution of Program 4-5.

.. .Programmer Defined Functions (DEF FN)

Often it is convenient to define a function of our own and use it at various places in
our program. BASIC DEFined FuNctions serve this purpose. We can set up a
rounding function at the beginning of a program and then use it wherever we need
to perform the same calculation. Our rounding function R may be defined as
follows:

110 DEF FNR(X) = INT(X * 100 + .5) / 100
To invoke our new function we code a line such as
360 PRINT FNR(A)

BASIC “knows” that we want the value of A in line 360 to be used wherever X
appears in the function definition on line 110. The X’s in line 110 simply hold places
where values will be inserted whenever an FNR is encountered in an expression.
The value of X at the time the function definition statement is executed has no effect
on the outcome of the program. The variable used in parentheses in the defining
statement is called a dummy variable, since no calculations ever use its value. The
calculations are based on whatever replaces the dummy variable. We may code
things like:

FNR(12345) FNR(12 * .098) FNR(RND(4) * 1000)

Let’s rewrite Program 4-3 to demonstrate rounding with a defined function. The
result is Program 4-6.

100 REM ** DEMONSTRATE DEFINED FUNCTION
-->110 DEF FNR(X) = INT(X * 100 + .5) / 100

140 PRINT "ROUNDED","DATA"

150 READ D

160 IF D = -9999 THEN END
-->210 PRINT FNR(D), D

220 GOTO 150

900 DATA 3.09123, 4.94561

910 DATA 2390, -1.5102

920 DATA .0009, -1.4861

990 DATA -9999

Program 4-6. Using DEF FN to round to the nearest hundredth.

64

MISCELLANEOUS FEATURES AND TECHNIQUES

In Program 4-6 we have defined the rounding function in line 110 and used it to
display values rounded off to the nearest hundredth in line 210.

RUN
ROUNDED DATA
3.09 3.09123
4.95 4.94561
2390 2390
-1.51 -1.5102
0 9E-04
-1.49 -1.485

Figure 4-6. Execution of Program 4-6.

Defined functions provide a way for us to put together packages of calculations
in a convenient form. This is an ideal way to make conversions of all kinds.
Programmer-defined functions are limited to one program statement, but that
allows us a lot of leeway. Calculations and processes that cannot be coded in a single
program statement are best handled as subroutines and invoked with a GOSUB
statement.

Converting from Fahrenheit to Celsius and vice versa is easy with two defined
functions:

100 DEF FNC(X) = 5/9 * (X - 32)
110 DEF FNF(X) = (9/5) * X + 32

Wherever we want to convert to Celsius from Fahrenheit, we simply code FNC
(Fahrenheit temperature), and wherever we want Fahrenheit from Celsius, we
code FNF (Celsius temperature). And if we want to round off the results, we can
include:

120 DEF FNR(X) = INT(X * 100 + .5) / 100

Now, to display the Celsius temperature rounded off to the nearest hundredth, we
code the following line:
210 PRINT FNR(FNC(T))

where T is the Fahrenheit temperature. We can even define one function in terms of
another defined function. Thus:

130 DEF FNT(X) = FNR(FNC(X))

will calculate the rounded value with any reference to FNT(X).
One convenient use of DEF is to define a random number in terms of the range
desired. A function to return a random number in the range 1 to X follows:

100 DEF FNR(X) = INT(RND(1) * X + 1)

...SIN, COS, TAN, and ATN
The functions SIN(X), COS(X), and TAN(X) all return the trigonometric values we
would expect, the sine, cosine, and tangent. The value of X must use radian

e o o

BASIC COMMODORE 64 BASIC

measure. The inverse function ATN(X) is also provided for determining the arc
tangent. ATN(X) returns radian values in the first and fourth quadrants.

From these trig functions all the others can be derived. It is up to the program-
mer to determine the correct quadrants where that is a problem.

.. .EXP(X) and LOG(X)
EXP(X) raises e (2.71828183) to the Xth power and LOG(X) finds the natural log of
X.

ABS, SGN, RND, INT, and SQR are commonly used built-in functions. They have
good mnemonic associations. We may also build our own functions with DEF FN,
which allows us to define any function that will fit in a single program statement.
More complex packages may be created with subroutines.

Problems forSection4-1...........................

1. Write a program to find all prime factors of an integer by rewriting the
guts of Program 4-2 as a subroutine and calling it repeatedly. Eliminate
duplicates.

8. Write a program to determine the effect of considering the banking year to
have 360 days instead of 365. Use interest rates of 5.5% and 12.5% on
$100,000.

8. Compare daily compounding with monthly compounding for $1000 in-
vested at 5.5% and 12.5% for one year.

4. Compound interest may also be calculated without the formula given in
this section, by simply building a loop that adds the interest at the effective
interest rate once for each period in the time that the money is on deposit.
Write a program to calculate interest this way and compare your results with
those in the programs of this section. Compare a 365-day year with a
360-day year.

8. Write a program to convert temperatures from Fahrenheit to Celsius. Re-
quest Fahrenheit temperatures from the keyboard. Be sure to have a way to
stop. (Zero may not be the best value for terminating this program
execution.)

4-8...More Goodies
.FRE

FRE(X) is a function that returns the amount of free memory in bytes. The value of
X may be any legal number. It is handy to use FRE(9) or FRE(8) because the8 and 9
are right there on the keyboard with the left and right parentheses. A byte
corresponds to a single character in memory. It takes two bytes to store an integer
and five to store a decimal value. BASIC keywords each require one byte. Arrays

66

e o 0

MISCELLANEOUS FEATURES AND TECHNIQUES

and strings require several bytes in addition to the space required for the data to be
stored in them. If we are working with arrays and we want them to be as large as
possible, this function will save a lot of trial and error. Be sure to run the program
before determining the amount of free memory. Even then we should allow a
margin of 50 or 100 bytes, because the program may use more memory during
future executions with different data. Additional memory is used and relinquished
during execution by such features as FOR loops and subroutines.

If more than 32767 bytes are available, the value of FRE(9) becomes negative.
This is a result of the way the computer stores integers in memory, and will be
explained further when we talk about binary numbering. To obtain the true value
use

190 X = FRE(9) : IF X < 0 THEN X = X + 65536

or
FRE(9) - (FRE(9)<0) * 65536

The second example requires less memory than the first example.
If your program requires more memory than is available in the computer,
BASIC will display the following message:

20UT OF MEMORY ERROR IN 90

190 X

where 90 is the line at which the computer ran out of space.

...CTRL

When the computer displays a lot of data, the screen may move too fast for us to
read. We can slow it down by holding the CTRL key. Otherwise we can display one
screenful at a time and use INPUT or GET (explained soon) to ask if the user is
ready to proceed.

...SPC and TAB
SPC and TAB are functions that must appear in a PRINT statement.

231 PRINT TAB(X); "MESSAGE"

will display the M in MESSAGE in the Xth column of the current line. The first
column is labeled 0. If X equals 40, then the rest of the display will begin in the first
column of the next line on the normal screen. The TAB function cannot move the
cursor to the left on the current line. The value of X may range from 0 to 255.

SPC(X) in a PRINT statement causes X spaces to be displayed. If X takes the
display past the end of the current line, SPC ‘moves to the next line and continues
‘counting. The range for X is 0 to 255.

...POS

~ The POS(X) function may be used to determine where on the line the cursor lies.
The argument of this function is a dummy and has no effect upon the function itself.
Commodore 64 BASIC works with an 80-character line, so the positions on the line

67

BASIC COMMODORE 64 BASIC

are numbered from 0 to 79. Positions 0 to 39 make up the first line and 40 through 79
occupy the second line on the screen:

...GET
The GET function provides a way to take input from the keyboard without

displaying any text on the screen.
250 GET A

looks for a single digit from the keyboard. RETURN need not be pressed in this
case. The program will not wait for us to press a key. If no key is pressed, BASIC
sets A to zero. So, we might hold program execution up with

250 GET A : IF A = O THEN 250

This way, we must enter one of the digits 1 through 9. If any other key is pressed,
BASIC delivers the

?SYINTAX ERROR

message. Any digit entered before executing the GET statement will be read in and
used. See Programmer’s Corner 4 for an explanation of how to control this function.
The Commodore 64 has a keyboard buffer that stores up to 10 characters. Any
characters beyond that number are lost. The GET statement can be executed over
and over again to read as many characters as there are in the buffer.
We will explore how to read nonnumeric characters in Chapter 5.

TIME is a reserved variable that keeps track of time in 60ths of a second. We call
this unit of time a jiffy. Since TIME is a variable, we may access it with the first two
letters of the variable name. The value of TI is set to 0 when we turn the
Commodore 64 on.We cannot set the value of TI with an assignment statement. T1I
is a handy tool for comparing the time required by different ways of doing things. If
we have a program with lots of long processes, timing becomes important.

Experienced programmers are aware of the relative amounts of time various
processes require. This becomes very important for operations that appear within
FOR...NEXT loops. Everything takes time. There are certain techniques that are
more efficient than others. Let’s look at a few examples.

You may have seen an expression such as

120 X = I¥*I
in a program and wondered why it wasn’t written as

120 X = I"2

MISCELLANEOUS FEATURES AND TECHNIQUES

The reason is that raising to a power takes much more time than multiplying.
Program 4-7 demonstrates the relative time required.

100 TO = TI

110 FOR I = 1 TO 100

120 X = I*I

130 NEXT I

140 PRINT "I#*I"; TI - TO
196 :

200 TO = TI

210 FOR I = 1 TO 100

220 X = I"2

230 NEXT I

240 PRINT "I%2"; TI - TO

Program 4-7. Comparing time for I°I and 172.
We are going to multiply 100 times and raise to the second power 100 times.

I*T 31
I"2 318

Figure 4-7. Execution of Program 4-7.

Raising to the second power seems to take ten times longer. But a little further
checking reveals that the difference is even more dramatic than that. The FOR. ..
NEXT loop without anything in it requires about 10 jiffies. That means the times for
I°I and I'2 are more nearly 21 and 308, respectively. That is a factor of more than 14.

Often, it is faster to work with a variable than a constant. That is, it is faster to
work with X than 342. Program 4-8 demonstrates this.

100 TO = TI

105 K = 342

110 FOR I = 1 TO 100

120 X = I + K

130 NEXT I

140 PRINT " I + K"; TI - TO
196 :

200 TO = TI

210 FOR I = 1 TO 100

220 X = I + 342

230 NEXT I

240 PRINT "I + 342%; TI - TO

Program 4-8. Comparing time for I + K and I + 342.

I +K 26
I + 342 43

Figure 4-8. Execution of Program 4-8.

We can see from Figure 4-8 that adding K requires 26 jiffies, while adding 342 takes
43. If we subtract the 10 jiffies for the loop to execute, we get 16 and 33. Running
Program 4-8 with 123456789 instead of 342 reveals that more digits require more
time.

BASIC COMMODORE 64 BASIC

We note that, while REM statements are not executed, they do require time to
process. For programs with a lot of loops with a wide range, we could place REM
statements outside the loop.

4-3...Logical Operators with IF.. . THEN
AND

Often in a program there are several conditions that may determine the next course
of action. We might want to execute a subroutine if AV >95 and SC<70. We can do
this with AND.

300 IF AV > 95 AND SC < 70 THEN GOSUB 900

will do the job. AND is one of the three logical operators in BASIC. BASIC
evaluates the expression AV >95. If that expression is true, BASIC sets its value to
—1. If the expression is false, BASIC sets its value to 0. The same holds for SC< 70.
We can even assign logical values to variables:

290 L1 = AV > 95 : L2 = SC < 70
295 IF L1 AND L2 THEN GOSUB 900

This is equivalent to the single statement 300 above. In line 290 the value of L1 is set
to —1 if AV >95 is true and 0 if AV >95 is false. Similarly, L2 becomes —1 or 0.
Finally, in line 295, the value of the expression L1 AND L2 becomes—1 or0. We can
even assign L1 AND L2 to another variable if that suits our purpose.

...OR
OR does just what you would expect.

230 IF AV > 90 OR GR = 100 THEN PRINT "VERY GOOD"

If either AV >90 or GR = 100, line 230 will display the message. If both of them are
true, the message will still be displayed. Logical values assigned to variables work
just fine with OR, too.

400 IF L1 OR L2 THEN PRINT "TRUE"
Line 400 prints TRUE if either L1 or L2 is true.

NOT reverses the truth of an expression. If the truth value of an expression is 0,
NOT sets it to —1. And if the truth value of an expression is —1, NOT sets it to 0.

NOT(A = 5 OR B = 6)
is the same as
A <> 5 AND B <> 6

We will take another look at AND, OR, and NOT when we study binary
representation of numbers in Programmer’s Corner 7.

70

MISCELLANEOUS FEATURES AND TECHNIQUES

PROGRAMMER’S CORNER 4

Controlling the Keyboard

So far, we have used the keyboard to interact with many of our programs. We have
often used INPUT to request data from the keyboard. As long as we wait for the
INPUT statement to actually execute, all's well. However, if we enter up to 10
characters during the delay, the INPUT statement will take those characters as part
of our response. The Commodore 64 has a 10-character buffer, so that we cantype
as fast as we like without losing data—a helpful feature for fast typists. Sometimes
we want to allow the user to type characters while the computer is doing something
else. But sometimes we want to make sure that no spurious characters are entered.
In this situation, we would like to take control of the input buffer. It turns out that
the Commodore 64 stores the number of characters in the input buffer in location
198. We can fool the computer into thinking there are no characters by using POKE
to put a zero value there. Before we do this, let'’s conduct an experiment to
demonstrate the problem we are describing. Type in Program 49 on your
Commodore 64.

100 FOR I = 1 TO 4000 : NEXT I
130 INPUT X

Program 4-9. Demonstrate keyboard buffer.

When you run this program, quickly type in at least 10 keystrokes. The delay in line
100 should allow you to complete this before the question mark from the INPUT
statement appears. There should be a delay, and then the characters you typed will
be displayed. Yet you stopped typing before this happened. At least INPUT waits
for the RETURN key before going on. The GET statement doesn’t wait. The value
we might have inadvertently entered is not displayed and we have no idea what is
going on. Even expensive, commercially available programs produce strange
results through failure to recognize this as a potential problem: a whole screen of a
menu can just flash by because a GET statement has grabbed our careless keystroke
as a valid response.
The cure is simple. Line 120 of Program 4-10 does it all.

100 FOR I = 1 TO 4000 : NEXT I
120 POKE 198,0
130 INPUT X

Program 4-10. Curing the stray character problem for keyboard input.

We might even place the POKE and the INPUT on the same line so that we don’t
inadvertently add a BASIC statement between lines 120 and 130.

71

BASIC COMMODORE 64 BASIC

In a situation like this we might also set the value of X to some special value so
that we can tell if just a RETURN was entered. Remember that Commodore 64
BASIC simply takes the previous value of X in that situation. So, we might routinely

use a line such as
920 X=0 : POKE 198,0 : INPUT X

This will protect our programs against some common keyboard errors.

73

I
Chapter S

Character
otrings and

String
Functions

Most of our work has used numbers and calculations. However, we have printed
messages and labels by enclosing them in quotation marks in PRINT statements.
Handling nonnumeric data is important in working with computers. Such data are
referred to as string data. String data may contain any of the letters, digits, and
special characters available on the computer. This includes the vast supply of
graphics characters on the Commodore 64. Thus, string data come in character
strings.

Strings may be used for a mailing list, instructions telling how to use a computer
program, labels to make displayed results more understandable, or as part
identification labels in an inventory control system. We might simply use strings to
make a game program more conversational. We can ask the player’s name and use it
in messages displayed later. BASIC provides a variety of features that make the
handling of string data very convenient. There are string variables that enable us
to store and manipulate character strings. Using string variables and string
functions, we can manipulate individual characters and groups of characters. We
can even print a string in reverse order just for fun.

8-1...8trings: An Introduction

BASIC provides string variables and a host of useful string manipulation functions.
A string variable is distinguished from a numeric one by using a dollar sign ($) as the
last character in the variable name.

73

BASIC COMMODORE 64 BASIC

We can work with string variables in many of the ways that we work with
numeric variables. For instance, any of the following statements can appear in a
program:

100 LET A$ = "FIRST"
100 A$ = "TESTING"
100 READ A$

100 INPUT A$

100 PRINT A$

Remember Quote Mode from Programmer’s Corner 1? Now that we are working
with strings, we are likely to runinto it a lot. This means that we can place the cursor
key functions, CLR/HOME, and DEL right in a string variable. It also means that
we cannot use them to carry out their editing function after we have typed one
quote. When we want to use them for editing, we simply type the closing quote
mark or press RETURN and come back to edit the line.

String variables may contain from zero to 255 characters at a time. In order to
execute READ A$ we must provide a corresponding DATA statement. If we want
to include a comma in the string, then we should enclose the string in quotation
marks. Without the use of quotation marks, any comma is interpreted as the end of
the current DATA item. Program 5-1 reads string data and prints it for us to see.

In this program we introduce a technique for making programs more readable.
It turns out ‘that we may obtain a nearly blank line by entering a line number
followed by a colon. This may be used to make a clear visual break between
different parts of a program. Beginning with Program 5-1, we will use this
technique often.

100 READ A$
120 PRINT A$
130 GOTO 100

495
-->500 DATA GEORGE M. COHEN, ABE LINCOLN
510 DATA JOAN OF ARC

Program 5-1. READ. .. DATA with strings.

The comma in line 500 is interpreted as a data separator or delimiter. We could have
provided the same data for this program by typing as follows:

500 DATA GEORGE M. COHEN, ABE LINCOLN, J
OAN OF ARC

Here the screen has automatically pushed characters to the next line as we type. In
the interest of making our programs more readable, we will usually type DATA
statements so that all the data fit on a single line. Doing this will take up additional
memory. However, we are writing very short programs that don’t require much
memory. So, we won't worry about memory use until we are writing longer
programs. The most readable form follows:

74

CHARACTER STRINGS AND STRING FUNCTIONS

100 READ A$
120 PRINT A$
130 GOTO 100

495 :
500 DATA GEORGE M. COHEN

510 DATA ABE LINCOLN
520 DATA JOAN OF ARC

Program 5-2. Program 5-1 with reformatted DATA statements.

It is always worth a little effort to make programs more readable. As we gain
experience with programming, this will come automatically.

RUN

GEORGE M. COHEN
ABE LINCOLN
JOAN OF ARC

?0UT OF DATA ERROR IN 100
Figure 5-1. Execution of Program 5-2.

That “OUT OF DATA” message is a little disturbing. Well-written programs
should never produce that message! In some situations, programs that end with an
error message will fail to perform as desired. We should always provide for an
orderly program termination. In this case we may simply add an artificial string
data item to the data list. Such a data item is sometimes called a dummy data item.
We will use this artificial data item as a signal to the program that all of the data have
been read. After line 100 and before line 120 we compare A$ to the signal data. If we
use STOP as the terminating signal the final program looks like Program 5-3.

100 READ A$
-->110 IF A$ = "STOP" THEN 900
120 PRINT A$
130 GOTO 100
495 :
500 DATA GEORGE M. COHEN
510 DATA ABE LINCOLN
520 DATA JOAN OF ARC
-=>599 DATA STOP
900 END

Program 5-3. Using dummy data to terminate program execution.

Now our little demonstration program terminates in an orderly way. Of course, the
actual signal is arbitrary, just so we select some value that will not be a real DATA
item and test for that value.

BASIC permits us to compare strings for order in much the same way that we
compare numbers with IF... THEN. The sequence used is known as ASCII
(American Standard Code for Information Interchange). For strictly alphabetical
strings, this code will alphabetize in the conventional order. ASCII places the digits
0 through 9 ahead of the letters of the alphabet. We can easily write a short program
to demonstrate order comparison.

78

BASIC COMMODORE 64 BASIC

95 REM ¥¥ COMPARE STRINGS FOR ORDER
100 PRINT
-->110 PRINT "As$";
-=>120 INPUT A$
130 IF A$ = "STOP" THEN 990
140 PRINT "B$";
-=>150 INPUT B$
160 IF A$ < B$ THEN 220
};9 IF A$ = B$ THEN 200
5
180 PRINT A$; " IS GREATER THAN "; B$
190 GOTO 100
195 :
200 PRINT A$; "™ IS EQUAL TO "; B$
210 GOTO 100
215 :
220 PRINT A$; "™ IS LESS THAN "; B$
230 GOTO 100
235 :
990 END

Program 5-4. String comparison.

Lines 120 and 150 are string INPUT requests. We have the same option to include a
message in quotes right in the INPUT statement itself for strings that we have for
numeric input. Lines 110 and 120 may be replaced with the following single
statement:

110 INPUT "A$"; A3

As with prompted INPUT requesting numeric data, the question mark is displayed.
String INPUT also retains the previous value of the string variable if we simply
press the RETURN key. We can first set the string equal to a null value if we are
going to test for real input.

Combining a quoted message with an input request can be convenient, but if
we want to use the same INPUT statement to ask different questions, we will still
have to use a PRINT statement that displays a message stored in a string variable.

RUN

A$? WHAT'S THIS
B$? WHAT'S THAT
WHAT'S THIS IS GREATER THAN WHAT'S THAT

A$? WHAT'S THIS
B$? WHAT'S WHAT
WHAT'S THIS IS LESS THAN WHAT'S WHAT

A$? WHAT'S WHAT
B$? WHAT'S WHAT
WHAT'S WHAT IS EQUAL TO WHAT'S WHAT

A$? STOP
Figure 5-2. Execution of Program 5-4.

76

CHARACTER STRINGS AND STRING FUNCTIONS

All of the comparison operators available for numeric comparisons are available for
string comparisons.
We can manipulate strings in many ways. Consider the following statement:

200 C$ = A$ + B$

This does not perform numeric addition. Instead, it assigns a new string to the
variable C$. The string variable assigned is the same as would be displayed by the
following PRINT statement:

200 PRINT A$; B$
We can enter a space in C$ in the following way:
200 C$ = A$ + n " 4 B$

This device might be used in a situation where A$ contains a person’s first name and
B$ contains the last name. To print out the name last name first we might use a
statement such as:

200 C$ = B$ + ", "™ 4+ AS$

Combining strings in this way is called concatenation, a very simple concept with a
fancy name. There can be no more than 255 characters in the final string to be
formed, or we will receive a message saying,

?STRING TOO LONG ERROR IN 200

and our program will stop dead. We can store up to 255 characters without any
special provision; there is no way to put more in a single string variable. We can
handle more characters by breaking the problem into segments, each requiring 255
or fewer characters.

...SUMMARY

BASIC provides string variables for storing character strings in a program. Strings
may be assigned with INPUT, READ...DATA, or an assignment statement. The
maximum number of characters in a string is 255. Strings may be compared for
orderinanlIF...THEN statement. Strings may be concatenated by using a plus (+)
sign.

Problems for Section 8-1..........................

1. Write a program that requests the user’s name and responds with, “HELLO
THERE [NAME],” using the entered name where [NAME] appears here.

8. Enter several words in DATA statements. Write a program that will display
the data item that comes earliest in the alphabet. Be sure to use dummy data.

8. Enter several words in DATA statements. Write a program that will display
only the word that is last in the list alphabetically.

4. Often in programs we want to ask the user questions for which “yes” or “no”
are the only acceptable answers. Since we might want to do this at many

™

BASIC COMMODORE 64 BASIC

points in the same program, it is useful to write one subroutine that sets a
numeric variable to 1 for “yes” and 0 for “no.” Write such a subroutine.

B. When comparing strings for order, BASIC searches for the first pair of cor-
responding characters that are unequal. If we happen to enter 12 in one
string and 6 in another, BASIC will report that 12 is less than 6 because thel
is less than the 6. Write a program to overcome this problem.

8-2...8tring Functions

A variety of string functions are available:

ASC
CHRS$
LEFT$
RIGHTS$
MID$
LEN
STR$
VAL

...ASC
ASC is referred to as the ASCII function. ASC() returns a number from 0 to 255
that is derived from the ASCII (American Standard Code for Information
Interchange) character set. ASCII is a standardized correlation between characters
and the numbers used to represent them. For example, the numeric code for A is 65
and the code for Z is 90. The Commodore 64 uses a variation of the full standard.
Note that this code is different from the one we use to POKE characters to the
character screen. If we PRINT the character A, whose ASC code is 65 on the char-
acter screen, and later PEEK the location where it is displayed, we will obtain a
value of 1. Try not to be confused by this. We use Screen Codes for PEEK and
POKE. We use ASC codes for strings. Any request for the ASC of a string of zero
length brings forth

?ILLEGAL QUANTITY ERROR

...CHRS

CHR$(X) becomes the character whose ASC code is X. CHR$(90), for example, is
Z, while the character for 32 is a space. The next time you get to a Commodore 64,
run Program 5-5:

100 FOR I = 32 TO 127
110 PRINT CHR$(I);

120 NEXT I

195 :

200 FOR I = 160 TO 191
210 PRINT CHRS$(I);

220 NEXT I

Program 5-5. Displaying the printing characters.

78

o o o

CHARACTER STRINGS AND STRING FUNCTIONS

RUN

1"#$%&' ()*+,-,./0123456789: ;<=>?@ABCDEFG
HIJKLMNOPQRSTUVWXYZ [£ JtiHAIHTHI | K1Y LN/
L [AXOe! 141K N

Figure 5-3. Execution of Program 5-5 in upper-case mode.

Figure 5-3 shows the character set in upper-case mode. See Figure 5-4 for the
lower-case character set.

RUN

1"#3%&' ()*+,-./0123U456789: ;<=>?@abcdefg
hijklmnopgrstuvwxyz[& Jt=—OS FNIN 7N
[\t s XOA |[ARF-N

Figure 5-4. Execution of Program 5-5 in lower-case mode.

We may display either mode, but only one at a time. This means, for example, that
we cannot display a check mark and the graphics lower right corner symbol on the
same screen. When we go to lower-case mode, we sacrifice 26 graphics characters
and replace four. The characters from 0 to 31 and from 128 to 159 are invisible.
Many of them cause some action. For example, an instruction to PRINT CHR$(5) is
the same as pressing CTRL-2 on the keyboard—that is, further display will be in
white.

The statement PRINT CHR$(8) cancels the ability to switch from one case to
the other by pressing (®) and SHIFT together; CHR$(9) restores it. CHR$(14)
sets lower-case mode and CHR$(142) sets upper-case. Note that we don’t need
inverse characters in this set, because it is easy to set inverse mode with CHR$(18)
and turn it off with CHR$(146). See Appendix C for a complete table of codes.

...LEFTS$, RIGHTS

The LEFTS$ function enables us to access the leftmost characters in a string. For
example, LEFT$(A$,5) yields the first five characters in A$. If there happen to be
fewer than five characters stored in the string, then this expression represents the
full string. LEFT$(AS$, X) represents the left X characters of A$, as long as the value
of X is greater than zero. If we try something like

PRINT LEFT$(A$,-1) or PRINT LEFT$(A$,256)
we will see the following message:
?ILLEGAL QUANTITY ERROR

The RIGHTS$ function is exactly analogous to the LEFTS$ function, but for the
right end of the string.

79

o o o

BASIC COMMODORE 64 BASIC

...MID$

To print characters within a string, we use MID$. MID$(A$, X, Y) gives us the
characters beginning with position X and continuing for Y characters. One way to
describe the characters from position X and continuing through to the end of the
string is with an expression such as MID$(A$, X). Note that this is not the same as
RIGHT$(A$, X). We will create an error condition if we allow X to equal zero.

...LEN

LEN(AS$) counts the number of characters actually stored in the string variable A$.
LEN(X$) may be used anywhere a numeric expression is legal. For instance, we
might code the line:

100 FOR X = 1 TO LEN(Y$)

if we want to perform some task for each character contained in the string Y$.

...STRS

The STR$ function converts a numeric value to string format. STR$(N) converts
the internal binary code used to represent the numeric value of N into the ASCII
code used for each of the digits. Let’s examine the effect of a statement such as

200 T$ = STR$(N)

While N stores a numeric value that we may command the computer to use in
arithmetic calculations, T$ stores the digits of the number N as string characters.
Thus T$ permits us to manipulate the digits by using the string functions of BASIC.
Note that the string T$ will include the leading space for positive numbers and the
leading minus sign for negative values.

...VAL

VAL is the reverse of the STR$ function. VAL(A$) converts the character string of
digits in A$ into the binary format used for storing numbers. If the first character
could not be part of a number, then a 0 is returned. If the function is successful in
converting the beginning of a string, then it continues until it finds an impossible
character. When this happens VAL simply stops processing and returns the value up
to that point. For example,

VAL("12 DAYS OF VACATTION")
will convert to
12

This function handles scientific notation as well. The value will be converted into
the standard form for BASIC. Thus

VAL("123E-1")
will convert to

12.3
80

CHARACTER STRINGS AND STRING FUNCTIONS

There they are: ASC, CHR$, LEFT$, RIGHT$, MID$, LEN, STR$, and VAL.
Now let’s use some of them.

We begin by displaying the days of the week. We can make up a string using
the common three-character abbreviations and select the individual day names
with MIDS$. Our string will look like:

100 DA$ = "SUNMONTUEWEDTHUFRISAT"

To display the names, we need to loop through the string, printing three characters
at a time, beginning with 1, 4, 7, etc. We could easily use a FOR loop such as FOR
D =1 to 19 STEP 3. It would be interesting, however, to relate the day number to
the position in the string DA$. If we number the days 0 through 6 that is easy to do;
we simply multiply the day number by 3 and add 1. See Program 5-6.

98 REM ** DISPLAY THE DAYS OF THE WEEK
100 DA$ = "SUNMONTUEWEDTHUFRISAT"
120 FOR D = 0 TO 6
-=>130 J9 = 3*D + 1
130 PRINT D; MID$(DA$,J9,3) '
150 NEXT D

Program 5-6. Displaying the days of the week.
Line 130 calculates the position in the string where the current day number begins.

RUN

SUN
MON
TUE
WED
THU
FRI
SAT

Figure 5-5. Execution of Program 5-6.

AU EWND =0

We could deal with the full names of the days in a string such as
"SUNDAY MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY "

We can use loops and string functions to display selected portions of strings in an
interesting variety of ways. For example, we can display a string in reverse order by
using STEP — 1 ina FOR loop.

Suppose we are working on a program to prepare financial reports. This means
that we will be printing numbers that represent money in dollars and cents (or yuan
and fen or whatever). BASIC doesn’t care what the units of our numeric values
might be. As far as it is concerned, one dollar and 20 centsis 1.2; we however would
like to show that quantity as 1.20. So, our first task is to write a routine that will
convert numeric values like 1.2 to string values like 1.20. We must also write a
routine to deal with values that come out with fractional cents, such as 381.2961.
Fundamentally, we are faced with a formatting problem.

Let’s write a subroutine that accepts a number in M1 and returns a string in D$.
Then we can easily write a control routine to test it.

81

BASIC COMMODORE 64 BASIC

One way to make sure that a number like 1.2 has a trailing zero is to multiply '
it by 100. So, 1.2 becomes 120. Of course we must later insert the decimal point in
the proper position. Our new number represents money in cents. Multiplying
381.2961 by 100 produces 38129.61. We need to round this off to the nearest cent.
That can be done by adding 0.5 and eliminating the fractional portion of the
resulting number. We saw in the last chapter that INT is made for just such a
purpose. So, we may calculate the money values in cents with a statement such as

M9 = INT(M1 * 100 + .5)

Notice that we have left the value of M1 unchanged. It is a good idea to write
subroutines that leave the input values intact.
Next, we can convert the number of cents from numeric to string data with

1010 X$ = STR$(M9)

Now, this string has no decimal point. We know that the two right digits represent
cents and must appear to the right of a decimal point. Further, we know that the
remaining digits represent dollars and must appear to the left of the decimal point.
We may create the D$ string from these three pieces: dollars, decimal point, and
cents. A decimal point may be included in one of two ways: enclosing a decimal
point in quotes or using CHR$(46). We find the code for a decimal point by printing
ASC(“.”). The number of digits in the dollar portion may be found by using the
LEN function:

D9 = LEN(X$) - 2

Summing up:

Dollars = LEFT$(X$, D9)
Decimal point = “” :
Cents = RIGHT$(XS$, 2)

All that remains is to build the output string by concatenating these three portions.
See Program 5-7.

990 REM ** FORMAT DOLLARS AND CENTS

1000 M9 = INT(M1 * 100 + .5)
1010 X$ = STR$(M9)
1020 D9 = LEN(X$) - 2
-->1030 D$ = LEFTS$(X$,D9) + "." + RIGHTS (X$,2)
1090 RETURN

Program 5-7. Formatting subroutine.

Now we can write a small control program to test our subroutine. This will
require an INPUT statement to enter test values, with some dummy value to
terminate, and a PRINT statement to display results. See Program 5-8.

CHARACTER STRINGS AND STRING FUNCTIONS

90 REM ** TEST FORMATTER
100 INPUT "TEST VALUE"; M1
110 IF M1 = -9999 THEN END
120 GOSUB 1000

130 PRINT M1; "= "; D$

140 PRINT:

150 GOTO 100

Program 5-8. Control routine to test Program 5-7.

It is a good idea to provide a special value of M1 that will allow us to exit the
program without having to enter STOP-RESTORE. —9999 serves that purpose in
this program.

RUN
TEST VALUE? 1.2
1.2 = 1.20

TEST. VALUE? -381.2961
-331.2961 = -381.30

TEST, VALUE? 19
19 = 19.00

TEST VALUE? 381.29499
381.29499 = 381.29 -

TEST VALUE? -9999
Figure 5-6. Execution of Program 5-8.

Our program works well for the sample input values. However, consider what
happens if the value of M1 is less than 10 cents. How could we add a dollar sign?
How could we put commas in to mark off thousands? Accountants like to put
negative numbers in brackets. How could we do this? These questions are left as
problems.

The string functions ASC, CHR$, LEFT$, RIGHTS$, MID$, LEN, STR$, and VAL
have been presented. ASC(A$) returns the numeric code for the first character in
A$, while CHR$(A) returns the character whose code is A. LEFT$, RIGHT$, and
MID$ provide access to portions of strings. LEN(A$) returns the number of
characters in A$. STR$(A) converts the numeric value of A to the string characters
required to display it, while VAL(AS$) converts the displayed characters to numeric
representation. '

Problems for Section 8-8............. ...t

1. Write a program to request a string from the keyboard and display
it backwards.

e o o

BASIC COMMODORE 64 BASIC

8.

10.

11.

18.

13.

Sometimes it is interesting to rearrange the contents of a string for display
purposes. Write a program that enters the days of the week in a single
string and displays them in the following format:

~PrQgzcw®
~p»oZzZ0oxZ
~P>owvmad
~POoYmZOMms
<> wmamA
<o
v iRl

Modify Program 5-7 to handle amounts less than 10 cents.

Modify Program 5-7 to place a $ to the left of the first digit in the
formatted result.

Modify Program 5-7 to insert commas to mark off thousands.

. Correct Program 5-7 to properly display 0.00 if the amount is zero.

Modify Program 5-7 to enclose negative values in angle brackets. That is,
—1.43 should display as <1.43>.

Write a program to perform the reverse conversion, so that the string
<$1234.51> would convert to the numeric value —1234.51. Hint: You'll
want to use a FOR. . .NEXT loop and the MID$ function to pick out all of
the possible special characters.

Problems 3 to 7 could be worked cumulatively, resulting in a program that
performs all of the tasks described in the five problems. Write such a
program.

Our formatter is a special case: it works only with hundredths. Extend this
program to allow the user to specify the number of decimal places
desired.

Given the date in yy/mm/dd form, display the date as Month dd, 19yy.
That is, 82/12/31 becomes December 31, 1982. You may want to test for
bad dates like 82/04/31.

Write a program to display messages on the screen so that they scroll
horizontally across the screen. Use DATA statements to supply the
messages.

Project: Write a program to justify text by inserting spaces between words
to fill a specified line width.

.String Goodies

...TIMES$

The Commodore 64 has a clock. The variable TIME$ has been set aside to keep
track of the time. In fact, we may use TI$, since BASIC really only uses the first two
characters of variable names. When we turn the computer on, TI$ is set to 000000.

84

DY

CHARACTER STRINGS AND STRING FUNCTIONS

The digits are considered in pairs to count hours, minutes, and seconds, in that
order. So, “010230” would tell us that the machine has been turned on for 1 hour, 2
minutes and 30 seconds. We can easily use the MID$ function to pick that string
apart to display the time in any format we need. We can even set it so that we have
the real time of day. Just realize that we are working with a 24-hour clock; the
statement

275 TI$ = ™130200"

would indicate that it is two minutes after one o’clock in the afternoon. Also note
that the numeric variable T1 is reset to correspond to TI$. So, line 275 would set T1
to 2815200. On the other hand, we cannot directly set the value of TI. The
Commodore 64 delivers a syntax error message in response to that. TI$ goes from
125959 to 130000 and from 235959 to 240000. The next time after 240000 is 000000.

The clock is turned off during access to the Datassette and during disk drive
activity. So, TI$ will be inaccurate after any use of tape or disk.

...GET A$
We can use GET to accept single characters from the keyboard. The RETURN key
is not needed for this. Nothing is displayed on the screen by the GET statement. Up
to ten characters may be entered into the keyboard buffer and read later by
repeated GET statements. If no keystroke has occurred, execution continues. The
computer does not wait. In this case A$ is empty—its lengthis0. GET is convenient
for entering information without interfering with the screen display. GET A$ is
usually more useful than GET A, as GET A will generate an error message if
anything other than one of the digits is entered. Furthermore, with GET A we can’t
tell whether A is zero because we pressed 0 or because no key has been pressed.
We can require the user to press a key by repeating the GET statement until
something happens:

210 GET A$: IF LEN(A$) = O THEN 210

Pressing STOP will halt such a program line. Adding PRINT ASC(A$) to the above
program gives the numeric values associated with the keystroke. If a key has been
pressed inadvertently during a delay, GET A$ will take it and keep going. As
described in Programmer’s Corner 4, we can prevent this by inserting

POKE 198,0

just before the GET statement.

We may find that we can instruct the computer to answer our questions about
itself faster than we can find the information in a manual. Suppose we want to find
out the codes for the function keys 1 through 8 to the right of the keyboard. What we
need is a program that will take characters from the keyboard and display the
corresponding PRINT code. If we use INPUT, then we have to know to enter a
quote as the first character to put the computer into quote mode. GET works
without this extra ingredient. Program 5-9 does it in three lines.

BASIC COMMODORE 64 BASIC

210 GET A$: IF LEN(A$) = O THEN 210
220 PRINT ASC(A$)
230 GOTO 210

Progmm 5-9. Using GET A$ to determine PRINT code.

The special variable TI$ is a 24-hour clock. The six digits report the hour, minute,
and second of the current time. GET A$ reads a single keystroke. If no key is
pressed, then A$ has zero length.

Problems for Section 8-3

1. Write a subroutine that will display the time in the form hh:mm:ss from TI$.

8. Use the technique of Program 5-9 to determine the numeric codes for the
cursor keys, the CLR/ZHOME key, and the INST/DEL key. Label each
request so that the program will create a useful chart.

8. Use the technique of Program 5-9 to determine the numeric codes for the
function keys 1 through 8. Label each request so that the program will create
a useful chart.

e PP . ___— 7

PROGRAMMER’S CORNER 8
Colors from CHRS0iiiiiinienennnnns

We can set the character color by putting the color character from the keyboard in
quotes in a PRINT statement. We can also PRINT the CHR$() of the appropriate
value. Let’s find the numeric values that go with the colors. We can’t do this with
INPUT because the computer will take the keystroke as an instruction and change
the color right away; we wouldn’t learn the numeric code used for the color. We
could type a quote to place the computer in quote mode. But, GET will find the
value without this complication. Program 5-9 is what we need. We simply run the
program and press the color keys in order. We will have the PRINT codes to go with
the colors. See Figure 5-7.

RUN

44 5 28 159 156 30 31 158 129
149 150 151 152 153 154 155
BREAK IN 210

Figure 5-7. Execution of Program 5-9 for the color keys.

CHARACTER STRINGS AND STRING FUNCTIONS

The BREAK message was caused by pressing STOP. This gives us the data we need
to make the color chart of Table 5-1.

COLOR VALUE COLOR VALUE

Black 144 Orange 129
White 5 Brown 149
Red 28 Light Red 150
Cyan 159 Gray 1 151
Purple 156 Gray 2 152
Green 30 Light Green 153
Blue 31 Light Blue 154
Yellow 158 Gray 3 155

Table 5-1. Color values for CHR$() in PRINT.

It is easy to see from the table that PRINT CHR$(5) will change the text display to
white. The other colors may be generated in a similar manner. It may be a nuisance
to learn all those color codes. They don’t seem to be in any order and they are
different from the 0 to 15 we are used to. One way to overcome this would be to
create a string containing these 16 codes in the correct order so that we can just use
the MID$ function to print the character in the color string needed to produce the
desired color. This can be done by putting the 16 ASC codes in DATA statements in
a program and reading them into the color string for later reference. Program 5-10
demonstrates this.

100 CO$ = "n

110 FOR X = 1 TO 16

120 READ I : CO$ = CO$ + CHR$(I)
130 NEXT X

200 FOR C = 0 TO 15

220 PRINT MID$(CO$,C+1,1);CHR$(18);" "
230 NEXT C

900 DATA 144, 5, 28, 159

910 DATA 156, 30, 31, 158

920 DATA 129, 149, 150, 151

930 DATA 152, 153, 154, 155

Program 5-10. Store color codes in a string variable.

Note that the value 18 in line 220 is the PRINT code for ReVerSe ON.

The whole idea here is to have a color routine that will enable us to think in
terms of the conventional color numbers that work for so many other things. We are
going to find that the same 0 to 15 values are used for Hi-Res graphics and for
Sprite graphics.

87

]
Chapter 6

ATTays

We have been using variables to store values one at a time. Such variables are
referred to as simple variables. We have been able to perform marvelous feats on
the computer with simple variables. We will accomplish even more with array
variables. An array variable allows us to designate a collection of data values with a
single variable name. Now, instead of designating the scores of the playersin a five-
player game with S1, 2, S3, $4, and S5, we can use an array variable. S(X) (read “S
sub X”) can be used to refer to the score of the Xth player. We can use the same
variable name for an array as for a simple variable. You may want to avoid
confusion by not doing this, though. The value in parentheses is called a subscript.
Each data value in the array is called an element. Using an array, we would code the
scoring for all five players with the same brief segment of our BASIC program.

Arrays are used for storing information that naturally belongs together. Tax
tables, pricing structures, inventory information, and life insurance premiums are
all appropriate for using arrays. There are many times that an array is useful for
storing information about the workings of the program itself. We can use arrays for
storing test scores, temperatures, random numbers , and lists of all kinds. If we are
working with Fibonacci numbers, it might be nice to have them all in an array.
(Fibonacci numbers are generated by adding the two previous numbers in the list.
They go: 1,1, 2, 3,5, 8,13 . . .) Even though we might be able to recreate a
particular sequence, it is convenient to have it right there at the flick of a subscript.

6-1...0ne-Dimensional Numeric Arrays

We can immediately benefit from the array concept by simply referring to array
variables as needed. If we want the sixth element of T to be 5, we simply code a
statement such as:

200 T(6) = 5

We can readily use arrays in every way that we have been using simple variables.

e o o

ARRAYS

We can write READ, PRINT, INPUT, and IF...THEN statements using array
variables. When a program is executed, all elements of all arrays are set to
zero.

To demonstrate the uses of arrays, in a given week we record the temperatures
in Table 6-1.

Sunday 72
Monday 78
Tuesday 76

Wednesday 79
Thursday 85
Friday 85
Saturday 71

Table 6-1. Temperatures for a week.

There are any number of questions we might ask. We might want to know the
average, the highest, and the lowest temperatures. By using an array we can easily
find the answers. Let’sread the data into Elements 1 through7 of an array named W.

The average is easy. We just add up the seven temperatures and divide by
seven. We can use T for the total. The first value of the total is the temperature for
the first day.

We may find the highest and lowest temperatures by using two variables: H for
high and L for low. Initially these variables may be set to the temperature of the first
day, as it is at the same time the highest and lowest temperature.

The solutions for the three questions regarding temperatures each call for
setting initial values and then performing some operation on each of the six days
after the first (Monday through Saturday). So our program will have a section to set
up all of these initial values and a section with a loop that performs some calculation
for each of the three questions. See Program 6-1.

90 REM * ENTER THE TEMPERATURES IN ARRAY W
100 FOR J = 1 TO 7
110 READ W(J)

120 NEXT J

145 REM ** SET UP INITIAL CONDITIONS
150 T = W(1)

160 H = W(1) : L = W(1)

190 :

200 FOR J = 2 TO 7

210 T = T + W(J)

230 IF W(J) > H THEN H = W(J)
240 IF W(J) < L THEN L = W(J)
250 NEXT J

290

300 l;RINT WAVERAGE TEMP:"; T / 7
320 PRINT "HIGHEST TEMP:"; H
330 PRINT' " LOWEST TEMP:"; L
890 :

900 DATA T72,78,76,79,85,85,T1
990 END

Program 6-1. Finding the average, highest, and lowest temperatures.

e o o

BASIC COMMODORE 64 BASIC

RUN

AVERAGE TEMP: 78
HIGHEST TEMP: 85
LOWEST TEMP: 71

Figure 6-1. Execution of Program 6-1.

The next thing someone might ask is, “How many times did the temperature
increase, decrease, and remain unchanged?” We might use the variablesI, D, and U
for this. We might want to know on what days the highest and lowest temperatures
occurred. These questions are left as exercises.

Suppose we wish to simulate drawing numbers from a hat. We can easily do it
with random numbers, provided that we may return each number to the hat before
drawing the next one. If we must simulate drawing without replacement, then we
must have a way of keeping track of what has been drawn. Here is an ideal
application for an array. We simply set each element of an array equal to 1 and
make the value 0 when that element has been selected. If the selected element is 1
then we know that it is available for use; use it and set it to 0. If a selected element is 0
then we know that it is not available for use and we must select again. Let’s look at a
program to draw five out of 10 numbers at random. See Program 6-2.

gg REM *#® DRAWING FIVE NUMBERS AT RANDOM FROM AMONG TEN
100 FOR J = 1 TO 10

110 A(J) = 1

120 NEXT J

190 :

200 FOR J = 1 TO 5

210 R = INT(RND(1) * 10 + 1)
250 IF A(R) = 0 THEN 210

260 PRINT " ";R;

270 A(R) = 0

280 NEXT J

290 PRINT

300 END

Program 6-2. Drawing five numbers at random from among ten.

RUN
2 6 1 3 8

Figure 6-2. Execution of Program 6-2.

From all appearances our program works just fine. It might be interesting to
evaluate how well it does work. One measure of quality is the number of unusable
random numbers generated. We can easily insert a counting variable to determine
this. This is left as an exercise.

Considering the problem set before us, the trial-and-error method of the above
program does not contain any serious flaws in design. Drawing five numbers from
among 10, or even drawing 10 from among 10, does not require major computer
resources. However, what happens when we increase the numbers? Suppose we
want to draw 100 from among 100? It is worth investing some effort to eliminate the
trial-and-error approach entirely.

20

ARRAYS

Here is a plan that allows us to use every random number selected. First
initialize the elements of the array as follows:

100 FOR J = 1 TO 10
110 R(J) = J
120 NEXT J

This means that each element stores one of the numbers in the range 1 to 10 withno
duplication. Next, select a random number in the range 1 to 10 and use that value as
the subscript, say S. Now display R(S) and replace R(S) with R(10). Next, select a
random number in the range 1 to 9. Since either we are on the first draw or we have
replaced R(S), we donot need to decide whether or not R(S) has already been used:
we know it has not. Since we have moved R(10) into a lower numbered element, we
may select from among fewer elements and still include all of the remaining
numbers in the next random selection. The second time through we move R(9) into
the selected element. We simply repeat the select-display-replace sequence until
the desired number of random draws have occurred.

We do need to calculate the number of elements remaining. As the draw
number (J) goes from 1 to 5, the number of elements remaining goes from 10 to 6.
Thus, we can calculate the last element with:

210 L = 10 - J + 1
See Program 6-3.

90 REM ** DRAWING RANDOM NUMBERS WITHOUT
REPLACEMENT AND WITH NO TRIAL AND ERROR
100 FOR J = 1 TO 10
110 R(J) = J
120 NEXT J
190 :
200 FOR J = 1 TO 5
-=>210 L = 10 = J + 1 A
230 S = INT(RND(1) * L + 1)
-=>210 PRINT -R(S);
-=>250 R(S) = R(L)
270 NEXT J
300 END

Program 6-3. Drawing without replacement efficiently.

Notice that the element is printed in line 240 and then replaced in line 250. The
variable L is always the number of active elements in the array. Even if the Lth
element happens to be the one selected at random, this method continues to
function properly. The Lth element will be assigned to itself. No harm done.

RUN
8 4 7 6 10

Figure 6-3. Execution of Program 6-3.
...DIM

The highest subscript we have used is 10. Whenever an array name is introduced,
BASIC automatically provides for subscript values up to 10. We may use the

91

BASIC COMMODORE 64 BASIC

DIMension statement to set the highest subscript ourselves. We may want to do this
to set either higher or lower limits.

100 DIM L(4), M(109), G3(1024)

This statement sets the highest subscript to 4 for array L, 109 for array M, and 1024
for array G3.

Every array we use allows the subscript to have a value of zero. This is true
whether or not a DIM statement is used. Therefore, in the absence of a DIM
statement we have 11 elements. In the sample statement above, L consists of five
elements, M consists of 110 elements, and G3 provides for 1025 numbers. When we
have no particular need for the zero element, we may simply ignore it.

...SUMMARY

An array enables us to manage a number of variables by using one variable name.
DIM X(N) sets aside N + 1 elements in an array named X. Array elements may be
used in program statements wherever a simple numeric variable may be used (with
the exception that array variables may not be used as the loop variable in FOR. . .
NEXT). With arrays we will often find it convenient to use FOR. . .NEXT loops to
process all elements or a block of elements.

Problems for Section 6-1..........................

1. Modify the daily temperature program (Program 6-1) to tabulate the
number of times the temperature increased, decreased, and remained
unchanged.

8. Modify the daily temperature program (Program 6-1) to determine on
which days the highest and lowest temperatures occurred.

8. In the first program that draws numbers from a hat (Program 6-2), insert
a variable to count the number of unusable numbers generated. Run the
program several times to get a range of values.

4. Do Problem 3, drawing 10 from among 10.

8. Modify Program 6-3 to select 100 numbers from among 100.

6. Write a program to find the largest value in a collection of data.

7. Write a program to find the smallest value in a collection of data and
find which position that value occupies.

8. Fill a 20-element array with twice the value of the subscript. Display all
of the elements in order and in reverse order.

9. Fill one array with the values 6, 3, and 9. Fill a second array with the
values 2, 8, 6, and 5. Display all possible pairs that use one element from
each array. (There are 12.)

10. Fill two arrays as in problem 9. Fill a third array with all elements from
these two arrays with no duplicates.

11. Fill a 100-element array with random numbers. Count the number of
increases, decreases, and the number of no changes. Calculate the average.

ARRAYS

6-3.. .Multidimensional Numeric Arrays

We have seen that one-dimensional arrays may be used to organize datainalist. We
may also use two or more subscripts to arrange data into tables of all kinds. We
might be interested in the temperature at 6:00 am, 12:00 noon, and 6:00 pm for a
week. For this we need an array with two subscripts, a two-dimensional array. We
will use one dimension to represent the days of the week and the other to represent
the three different times of day. And to tabulate several weeks, we might use a third
dimension. Let’s look at a program to find the average daily temperature using
three readings a day. See Program 6-4.

90 REM *#* FIND AVERAGE TEMPERATURE

100 FOR DA = 1 TO 7

110 FOR RE = 1 TO 3
-->120 READ TE(DA,RE)

130 NEXT RE

140 NEXT DA

175 :

180 PRINT " TEMPERATURE"

190 PRINT "DAY 6AM 12N 6PM AVG"

200 FOR DA = 1 TO 7

210 PRINT DA;

220 T = 0

230 FOR RE = 1 TO 3

240 T = T + TE(DA,RE)

250 PRINT TE(DA,RE);

260 NEXT RE

270 PRINT T / 3

280 NEXT DA

980 :
1000 DATA 76,79,75, 72,77,76
1020 DATA 74,79,81, 75,80,83
1040 DATA 80,77,70, 68,65,65
1060 DATA 65,67,76

Program 6-4. Finding daily average temperature.

By naming two subscripts in line 120 we caused BASIC to automatically allow for 11
elements in each dimension. Since we only require values up to seven in one
dimension and three in the other, we should use the statement

95 DIM TE(7,3)

It is good practice to include a DIM statement at the beginning of every program,
even if it is not required for our application. The DIM statement reveals something
about our program to the reader. Even if we want an array dimensioned to (10,10),
we should do so with a DIM statement. In the absence of the DIM statement, the
reader doesn’t know that we are using an array until it appears in a statement of the
program. Even then the reader has no idea how much of the array we are using.

BASIC COMMODORE 64 BASIC

RUN »
TEMPERATURE
DAY 6AM 12N 6PM AVG

1 76 79 75 76.6666667
72 77. 76 175
T4 79 81 78
75 80 83 79.3333334
80 77 70 75.6666667
68 65 65 66
65 67 76 69.3333334

Figure 6-4. Execution of Program 6-4.

.. .Zero Subscripts

The zero subscript is always available. In many programming situations the zero
subscript is a great convenience. The zero term of a polynomial is easily
represented in this way. The positions reserved for the zero subscripts are there
whether we use them or not. For most programs the impact of zero subscripts is
minor. However, when writing large programs it may become necessary to use
them just to get the program to fit.

~NOoUTEW N

...More Than Two Subscripts

The number of subscripts allowed in an array is limited by the amount of memory
and the 80-character program line length on the Commodore 64. Three dimensions
is often very convenient. As noted above, we should always include a DIM
statement at the beginning of the program. For more than three dimensions we
must include it, since a real array of 11 by 11 by 11 by 11 won’t even fit in a 64K
machine. Would you believe a 71.5K machine? Not only must we provide a DIM
statement, but it must call for a smaller array than that.

We have multidimensional arrays in Commodore BASIC. The expression D(3,4)
refers to the value in column 4 of row 3. Since 0 subscripts are included, column4 is
actually the fifth column and row 3 is actually the fourth row. We are not required to
use 0 subscripts, but using them will conserve memory.

As with one-dimensional arrays, the DIM statement specifies the maximum
subscript in each dimension. The statement

100 DIM X(6,3,8)

prepares for an array of three dimensions, seven by four by nine. Often we process
data in arrays with loops and nested loops. Even though BASIC automatically
provides 11 elements in each dimension, we should always include a DIM statement
to help document our program.

Problems for Section 6-8..........................

1. In Program 64, write a routine to find the maximum temperature for each
of the three reading times (6:00 am, 12:00 noon, and 6:00 pm).

94

ARRAYS

8. In Program 6-4, write a routine to find the maximum temperature for
each day.

3. In Program 6-4, write a routine to find the average temperature for each of
the three reading times (6:00 am, 12:00 noon, and 6:00 pm).

4. Fill two four-by-five arrays with random numbers and display them.

Then fill a third array with the sums of the corresponding entries from the

first two arrays and display the result.

In a 10-by-10 array enter all ones in the upper left to lower right diagonal

and the leftmost column, and all zeros elsewhere. Then beginning in the

third row, second column, enter the sum of the entry in the same column

of the row immediately above and in the column one to the left and the

row immediately above, through the 10th row, 9th column. That is:

230 P(R,C) = P(R-1,C) + P(R-1,C-1)

for the described range. Display the resulting array.

6-3...8tring Arrays

The ability to use arrays to store alphabetic data is very convenient. The
relationship between simple string variables and string arrays is exactly analogous
to the relationship between simple numeric variables and numeric arrays. Each
string array consists of a collection of string elements, all referred to by an array
variable name and a subscript.

Each element of the string array has the same properties as a simple string
variable. Each element may store up to 255 characters. We may read, input, assign,
and print elements of string arrays. And we may apply all of the string functions
discussed in Chapter 5: ASC, CHR$, LEFT$, RIGHTS$, MID$, LEN, STR$, and
VAL. Let’s explore the convenience of using string arrays for labeling. Program 6-5
reads the names of the days of the week into an array and then displays them.

90 REM %% READ AND DISPLAY DAYS OF THE WEEK
95 DIM W$(7)

100 FOR DA = 1 TO 7
110 READ W$(DA)

120 NEXT DA

190 :

200 FOR DA = 1 TO 7
210 PRINT W$(DA)
220 NEXT DA

990 :

1000 DATA SUNDAY
1010 DATA MONDAY
1020 DATA TUESDAY
1030 DATA WEDNESDAY
1040 DATA THURSDAY
1050 DATA FRIDAY
1060 DATA SATURDAY

Program 6-5. Displaying the days of the week.

BASIC COMMODORE 64 BASIC

RUN
SUNDAY
MONDAY
TUESDAY
WEDNESDAY
THURSDAY
FRIDAY
SATURDAY

Figure 6-5. Execution of Program 6-5.

Once the string data are stored in the elements of the string array, we may
manipulate them in many ways. It may be that on a report we want the days of the
week spelled out in one place and abbreviated in another. We can easily do this with
the LEFT$ function. We can demonstrate this with a simple change in line 210.

210 PRINT LEFT$(W$(DA),3); " "; W$(DA)

RUN

SUN SUNDAY
MON MONDAY
TUE TUESDAY
WED WEDNESDAY
THU THURSDAY
FRI FRIDAY
SAT SATURDAY

Figure 6-6. Execution of modified Program 6-5.

Recall that in Program 6-4, in order to average the three temperatures taken
each day for a week we labeled the days of the week from 1 to 7. We now have the
ability to produce a more readable report. We may modify that program to label
each line with the day name. If we use the full day names, then we have to deal
with the fact that not all names have the same number of letters. We can handle this
by using comma spacing. The longest name contains nine letters. That is a handy fit
for us as comma spacing creates 10-character columns. See Program 6-6.

90 REM ¥*% FIND AVERAGE TEMPERATURE
95 DIM W$(7), TE(7,3)
100 FOR DA = 1 TO 7
-=>105 READ W$(DA)
) 110 FOR RE = 1 TO 3
120 READ TE(DA,RE)
130 NEXT RE
140 NEXT DA
175 :
180 PRINT " TEMPERATURE"
190 PRINT "DAY"," 6AM 12N 6PM AVERAGE"
200 FOR DA = 1 TO 7
-->210 PRINT W$(DA),
220 T = 0
230 FOR RE = 1 TO 3
240 T = T + TE(DA,RE)
250 PRINT TE(DA,RE);

ARRAYS

260 NEXT RE
270 PRINT T / 3
280 NEXT DA

990 :

1000 DATA SUNDAY, 76,79, 75
1010 DATA MONDAY, 72,77,76
1020 DATA TUESDAY, 74,179, 81
1030 DATA WEDNESDAY, 75,80,83
1040 DATA THURSDAY, 80,77,70
1050 DATA FRIDAY, 68,65, 65
1060 DATA SATURDAY, 65,67,76

Program 6-6. Displaying average daily temperature with day names.

Look at the DATA section. We have included the days of the week right in with the
temperature data. Doing it this way helps to clearly document which temperatures
go with which day. Further, we have entered the temperature data neatly arranged
in columns.

RUN

TEMPERATURE
DAY 6AM 12N 6PM AVERAGE
SUNDAY 76 79 75 76.6666667
MONDAY 72 77 76 175
TUESDAY 74 79 81 78
WEDNESDAY 75 80 83 79.3333334
THURSDAY 80 77 70 75.6666667
FRIDAY 68 65 65 66
SATURDAY 65 67 76 69.3333334

Figure 6-7. Execution of Program 6-6.

This report is easy to read. We do not wonder whether Day 1 is Sunday or Monday.
Four of the averages are displayed with nine digits. We might want to round those
values off to the nearest tenth. If comma spacing doesn’t work out for us, we can
always use the TAB(X) function.

Suppose we have a record store and are using a computer to help calculate sales
slips for us. Each record is marked with a letter, H through P. This letter is assigned
according to the price of the record. Thus, H is the label on every $2.99 record and I
is the label on every $3.45 record. We can easily write a program using arrays to
calculate a total sale for us.

We can enter the correspondence between letters and prices into the program
by using READ and DATA statements. Two arrays will be required—one string
array for the letter codes, and one numeric array for the prices. Itis a simple matter
to arrange the data so that the letter codes and the prices are properly coordinated.
Placing the data in DATA statements makes it easy to add new codes or change
prices. We will use STOP as the signal to stop reading data. It is always a good idea

to leave a gap in line numbers between the real data and the termination signal. See
Program 6-7.

o7

BASIC COMMODORE 64 BASIC

90 R
100
200
210
220
230
250
285
290
300
310
320
330
340
350
360
370
380
400
410
420
490
500
510
520
900
990
1000
1010
1020
1030
1040
1190

EM ** CALCULATE SALES SLIPS
DIM N$(26), P(26)

FOR I =1 TO 26

READ N$(I),P(I)

IF N$(I) = "STOP" THEN 250
NEXT I

N1 =1 -1

REM ** REQUEST INPUT AND CALCULATE HERE
PRINT "('END' TO STOP)"
T=0:N=0

INPUT "RECORD"; R$

IF R$ "END" THEN 500

FOR J 1 TO N1

IF R$ N$(J) THEN 400

NEXT J

PRINT "NOT FOUND - REENTER"
GOTO 320

T =T + P(J)

N =N+ 1

GOTO 320

PRINT
PRINT "RECORDS:"; N
PRINT "TOTAL: $"; T

END
DATA H,2.99, 1I,3.45
DATA J,3.69, K,3.99
DATA L,4.49, M,4.99
DATA N,5.99, 0,6.99
DATA P,7.99
DATA STOP,0

Program 6-7. Total price in record store.

Program
the price
each sale

6-7 is set up in four segments. The first segment, from 100 to 250, reads in
data. The second segment, from 300 to 420, handles the entry of figures for
. Lines 500 to 520 display the final results. And the fourth segment is the

data in lines 1000 to 1190.

RUN

('EN
RECO
RECO
RECO
RECO
RECO
RECO
NOT

RECO

RECO
TOTA

D' TO STOP)
RD?
RD?
RD?
RD?
RD?
RD?
FOUND - REENTER
RD? END

> O uxm

RDS: 5
L: ¢ 30.45

Figure 6-8. Execution of Program 6-7.

28

ARRAYS

...Geography

Let’s write a program to play Geography, a simple game for two or more players.
We will write a program for a person to compete with the computer. Each player
says the name of a place such that the first letter is the same as the last letter of the
name chosen by the previous player. Of course the first name can be any place at all.
If I say Boston, then you might say New York. That fits the rule, because Boston
ends with an “N” and New York begins with an “N.” The next player might think of
Kansas. No name may be used a second time. The first person unable to think of an
appropriate name drops out.

We can easily program the computer so that it “remembers” all of the names
used. The more games the computer plays, the tougher it will be to beat.

We need a string array to hold all of the names. We can use a numeric array to
tell us if a specific name has been used. Let’s set up a numeric array AV () sothata
one indicates that the name in the corresponding position of the NA$() namesarray
is available for use and a zero means that the name has been used in this game. If
AV (5) = 1, then NA$(5) may be used. We can enter a few names into the NA$()
array by using DATA statements. This way the computer has some names to start
with. Let’s allow the computer to produce the first name.

It may sound like a big job to produce a program that performs as described.
We can easily trim the job down to size by spending a little extra time organizing
before we generate any BASIC program statements. Think about the steps in the
game. There are six easily defined segments in our program:

1. Read the names into the NA$ array.
&. Display the instructions.
8. Initialize the AV array to all ones.
4. Have the computer begin the game.
8. Process the person’s response;
stop if person quits.
8. Prepare the computer’s response;
repeat step 5 if computer doesn’t quit.

Each of these six jobs may be programmed as a subroutine. The advantages of
doing it this way are tremendous. When we first test our completed program it will
be easy to spot which subroutine is not performing properly. Once we are satisfied
that our program is working well, it will be a simple matter to determine which
subroutines we need to modify or replace to change the program so that the names
are stored in a file on disk.

Let’s begin by writing the control routine that will manage the six subroutines
listed above. In thinking about this routine we need to handle the situation when the
computer runs out of names in step 6. We cansave the computer’sresponseina string
variable and save “QUIT” when the computer quits. This leads us to think about
letting the person quit at any time. Thus we select CP$ for the computer’s response
and PES$ for the person’s response. Further, we may give players the option to play
another game. We arbitrarily decide to provide for 500 names. See Program 6-8a.

BASIC COMMODORE 64 BASIC

20 DIM NA$(500), AV(500)

30 GOSUB 8000 : REM ** READ NAMES ARRAY

35 GOSUB 9000 : REM ** INSTRUCTIONS

40 GOSUB 4000 : REM ** INITIALIZE AVAILABLE NAMES ARRAY
45 GOSUB 7000 : REM ** COMPUTER STARTS

50 GOSUB 6000 : REM ** PERSON RESPONDS

58 IF PE$ = "QUIT" THEN 80

60 GOSUB 5000 : REM ** RESPONSE OF COMPUTER
65 IF CP$ <> "QUIT" THEN 50

80 INPUT "DO YOU WANT ANOTHER GAME"; A$

90 IF LEFT$(A$,1) = "N" THEN END

100 FOR I9 = 1 TO 1000 : NEXT I9

120 GOTO 35

Program 6-8a. Control routine to play Geography.

The six steps have become six subroutines at lines 8000, 9000, 4000, 7000, 6000, and
5000. The choice of line numbers is arbitrary. Now we are well prepared to write
each individual subroutine. .

We read the names at 8000. The place names are entered in DATA statements.
We choose to provide the signal data DONE. See Program 6-8b.

7996 :
7998 REM *#* READ NAMES
8000 I9 =1

8010 READ NA$(I9)
8020 IF NA$(I9) = "DONE" THEN 8080
8030 I9 = I9 + 1 : GOTO 8010
-=->8080 NO = I9 - 1
8090 RETURN
8096 :
8100 DATA NEW YORK, CHICAGO, PHILADELPHIA, BOSTON
8590 DATA "DONE"

Program 6-8b. Reading names into an array for Geography game.

Notice that line 8080 saves the number of names in the array, using the numeric
variable NO.

Instructions are simple enough to provide—we can just display a description on
the screen. Think about that. How fast do people read? We must provide a way for
the fast reader to move on while allowing the slow reader a chance to finish. We can
do this by asking the person to tell the program when they are ready. See Program
6-8c.

8996 :
8998 REM *# INSTRUCTIONS
-->9000 PRINT CHR$(147); : REM ** CLEAR THE SCREEN
9005 PRINT "THIS PROGRAM WILL PLAY A GEOGRAPHY GAME" : PRINT
9010 PRINT "WITH YOU. YOU WILL TAKE TURNS WITH THE"™ : PRINT

9015 PRINT "COMPUTER. EACH OF YOU WILL BE TRYING TO"; : PRINT

9020 PRINT "THINK OF NAMES OF PLACES SUCH THAT THE" : PRINT

9025 PRINT "FIRST LETTER OF YOUR NAME IS THE SAME AS"; : PRINT

9030 PRINT "THE LAST LETTER OF THE PREVIOUSLY USED"™ : PRINT
9035 PRINT "PLACE NAME." : PRINT
9045 INPUT "ARE YOU READY? "; A$

100

ARRAYS

9065 IF LEFT$(A$,1) <> "Y" THEN 9045
9070 FOR I9 = 1 TO 1000 : NEXT I9

-->9080 PRINT CHR$(147); : REM ** CLEAR THE SCREEN
9090 RETURN

Program 6-8c. Geography game instructions.

The wording of instructions is somewhat subjective. Instructions should tell the user
what to expect. Note that we use PRINT CHR$(147) to clear the screen and place
the cursor at the top left corner in lines 9000 and 9080.

The initialization of the AV array beginning at line 4000 is very straightforward.
See Program 6-8d.

° 3995 :
3993 REM *% INITIALIZE AVAILABLE NAMES ARRAY
4000 FOR J9 1 TO NO

4010 AV(J9)
4020 NEXT J9
4090 RETURN

1

Program 6-8d. Initializing the available names array.

To start the game, at line 7000, we have the computer select a name at random
from the names array. The place must be recorded as used and the CP$ string
variable is loaded with the name selected. See Program 6-8e.

6996 :

6998 REM *# COMPUTER BEGIN THE GAME
T000 X9 = INT(RND(1) * NO + 1)
7010 CP$ = NA$(X9) : AV(X9) = O
7020 PRINT "FIRST PLACE : "; CP$
7090 RETURN

Program 6-8e. Beginning the Geography game.

Once the computer has produced a place name, the program proceeds to the
person response subroutine.

We agreed to have the person’s response stored in PE$. The person’s response
must pass a number of tests. It ought to have at least two characters. That ishandled
with the LEN() function. The first letter of the person’s response must match the
last letter of the computer place name. We take care of that with the RIGHT$()
and LEFT$() string functions. If PE$ passes these two tests then we must see if itis
in the list of names stored in the NA$() array. If PES$ is in the list, has it been used
during this latest game? If it is not in the list, then we put it in the list. See Program
6-8f.

5996 :

5998 REM ** PERSON GO

6000 PRINT

6010 INPUT ® YOUR TURN"; PE$

6012 IF PE$ = "QUIT" THEN 6190

6015 IF LEN (PE$) > 1 THEN 6030

6020 PRINT "NAME TOO SHORT" : GOTO 6010

6030 IF LEFT$(PE$,1) = RIGHT$(CP$,1) THEN 6040

101

BASIC COMMODORE 64 BASIC

6035 PRINT "NO MATCH" : GOTO 6010
6040 FOR I9 = 1 TO NO
6045 IF PE$ = NA$(I9) THEN 6100
6050 NEXT I9 °
6055 IF NO < 500 THEN 6065
-->6060 PRINT "NO ROOM FOR MORE NAMES"™ : GOTO 6010
6065 NO = NO + 1
6070 NA$(NO) = PE$: AV(NO) = O
6080 GOTO 6190
6096 :
6098 REM #** "FOUND NAME"
6100 IF AV(I9) = 1 THEN 6150 -
6110 PRINT "USED ALREADY" : GOTO 6010
6150 AV(I9) = O
6190 RETURN

Program 6-8f. Person response subroutine in Geography.

In the event that someone runs enough games to build the names array up to 500
names, line 6060 of this subroutine will display a message rejecting any additional
names. '

Finally, the computer response subroutine at line 5000 completes the program.
We simply search the NA$() array for a place name with the proper first letter that
has not been used in this latest game. If no such name is found we save the word
QUIT in CP$. See Program 6-8g.

4996 :
4998 REM *% COMPUTER RESPOND
5000 FOR I9 = 1 TO NO

5010 IF LEFT$(NA$(I9),1) = RIGHT$(PE$,1) AND AV(I9) = 1 THEN 5050

5015 NEXT I9

5020 PRINT : PRINT " I HAVE RUN OUT OF NAMES"
5025 CP$ = "QUIT"

5030 GOTO 5090

5050 CP$ = NA$(I9) : AV(I9) = O

5060 PRINT * I CHOOSE: "; CP$

5090 RETURN

Program 6-8g. Computer response subroutine for Geography.

The program does not verify that the names are actually legitimate place names.
That is left to the honor of the player. This same program allows the player to
change the rules of the game. We could just as well use people’s names or a
computer glossary. In that case, we would want to change the instructions and the
DATA statements. Notice that in the computer response subroutine at line 5000 the
entire list is scanned for names. Since every name that is added to the list during the
game is by definition not available for the remainder of this game, the program
need not do this. We could establish another variable to hold the number of names
at the beginning of the current game. We could also have the computer begin at a
random place in the NA$() array instead of beginning with the first name every
time. This change would add variety to the game.
We list the complete program here for your convenience.

1083

ARRAYS

20 DIM NA$(500), AV(500)

30 GOSUB 8000 REM ** READ NAMES ARRAY

35 GOSUB 9000 : REM *#% TNSTRUCTIONS

40 GOSUB 4000 : REM *%* INITIALIZE AVAILABLE NAMES ARRAY
45 GOSUB 7000 : REM ## COMPUTER STARTS

50 GOSUB 6000 : REM ¥*#* PERSON RESPONDS

58 IF PE$ = "QUIT"™ THEN 80

60 GOSUB 5000 : REM ** RESPONSE OF COMPUTER
65 IF CP$ <> "QUIT" THEN 50

80 INPUT "DO YOU WANT ANOTHER GAME"; A$

90 IF LEFT$(A$,1) = "N" THEN END

100 FOR I9 = 1 TO 1000 : NEXT I9

120 GOTO 35

3996

3998 REM #% INITIALIZE AVAILABLE NAMES ARRAY
4000 FOR J9 = 1 TO NO

4010 AV(J9) = 1

4020 NEXT J9

4090 RETURN

4996 :

4998 REM *% COMPUTER RESPOND

5000 FOR I9 = 1 TO NO

5010 IF LEFT$(NA$(I9),1) = RIGHT$(PE$,1) AND AV(I9) = 1 THEN 5050
5015 NEXT I9

5020 PRINT : PRINT " I HAVE RUN OUT OF NAMES"
5025 CP$ = "QUIT"

5030 GOTO 5090

5050 CP$ = NA$(I9) : AV(I9) =0

5060 PRINT " I CHOOSE: "; CP$
5090 RETURN

5996 :

5998 REM *# PERSON GO

6000 PRINT

6010 INPUT " YOUR TURN"; PE$
6012 IF PE$ = "QUIT"™ THEN 6190
6015 IF LEN (PE$) > 1 THEN 6030
6020 PRINT "NAME TOO SHORT" : GOTO 6010
6030 IF LEFT$(PE$,1) = RIGHT$(CP$,1) THEN 6040
6035 PRINT "NO MATCH" : GOTO 6010
6040 FOR I9 = 1 TO NO
6045 IF PE$ = NA$(I9) THEN 6100
6050 NEXT I9
6055 IF NO < 500 THEN 6065
-=>6060 PRINT "NO ROOM FOR MORE NAMES" : GOTO 6010
6065 NO = NO + 1
6070 NA$(NO) = PE$: AV(NO) =0
6080 GOTO 6190
6096 :
6098 REM ¥#¥ "FOUND NAME"
6100 IF AV(I9) = 1 THEN 6150
6110 PRINT "USED ALREADY"™ : GOTO 6010
6150 AV(I9) = O
6190 RETURN
6996 :
6998 REM #% COMPUTER BEGIN THE GAME

103

BASIC COMMODORE 64 BASIC

7000 X9 = INT(RND(1) * NO + 1)
7010 CP$ = NA$(X9) : AV(X9) = O
7020 PRINT "FIRST PLACE : "; CP$
7090 RETURN

7996 :
7998 REM ##%# READ NAMES
8000 I9 = 1

8010 READ NA$(I9)
8020 IF NA$(I9) = "DONE"™ THEN 8080
8030 I9 = I9 + 1 : GOTO 8010

-->8080 NO = I9 - 1
8090 RETURN
8096 :
8100 DATA NEW YORK, CHICAGO, PHILADELPHIA, BOSTON
8590 DATA "DONE"
8996 :
8998 REM *#% INSTRUCTIONS

-=->9000 PRINT CHR$(147); : REM *® CLEAR THE SCREEN
9005 PRINT "THIS PROGRAM WILL PLAY A GEOGRAPHY GAME" : PRINT
9010 PRINT "WITH YOU. YOU WILL TAKE TURNS WITH THE" : PRINT
9015 PRINT "COMPUTER. EACH OF YOU WILL BE TRYING TO"; : PRINT
9020 PRINT "THINK OF NAMES OF PLACES SUCH THAT THE"™ : PRINT
9025 PRINT "FIRST LETTER OF YOUR NAME IS THE SAME AS"™; : PRINT
9030 PRINT "THE LAST LETTER OF THE PREVIOUSLY USED" : PRINT
9035 PRINT "PLACE NAME."™ : PRINT
9045 INPUT "ARE YOU READY? "; A$
9065 IF LEFT$(A$,1) <> "Y" THEN 9045
9070 FOR I9 = 1 TO 1000 : NEXT I9

-=>9080 PRINT CHR$(147); : REM *¥* CLEAR THE SCREEN
9090 RETURN

Program 6-8h. Playing a Geography game.

String arrays are very convenient for maintaining a collection of string data in
memory while our program is running. String arrays may be declared in a DIM
statement. Zero subscripts may be used if required.

We have seen in the sample programs that it is easy to coordinate numeric
values with string data by using a string array in tandem with a numeric array. Thus,
the Kth element in the numeric array contains information about the string stored in
the Kth element of the string array.

Problems for Section 6-3..................cciuu.n.

1. In Program 6-8h the Geography program, notice that the loop beginning
at line 5000 scans every name in the list. None of the names that have been
added in this most recent game may be used by the computer, because they
have all been used by the human player. Fix this so that the computer scans
only those names that it “knows” at the start of the most recent game.
(Suggestion: Establish a new variable N2 that represents the number of

names at the beginning of the current game.) Don’t be tempted to change
line 6040.

104

ARRAYS

8. Modify the computer response subroutine (Program 6-8g) so that the
computer randomly selects a starting point in the names array. Be sure that
if no name is found that the computer scans from the beginning of the
array to the random starting point. ‘

8. Sometimes it is interesting to simply rearrange strings for display purposes.
Write a program that enters the days of the. week in a string array and
displays them in the following format:

S M T W T F S
U O U E H R A
N N E D UTITI T
D DS N R D U
A A D E S A R
Y Y A S DY D
Y D A A
A Y Y

Y

4. Write a program to enter a collection of names in a string array. Find the
element that comes first alphabetically. Display it and its position in the

array.

S

PROGRAMMER’'S CORNER 6
Integder Variables

Generally, we use conventional variables to work with numeric values. This gives us
up to nine decimal digits for calculation and display. These numbers are referred to
as real numbers. While one of the desirable features of the Commodore 64 is its
capability for real arithmetic, there may be times when we can solve our problem
with integer arithmetic. This is especially significant when we are working with
large arrays. Each of the numbers allocated in an integer array occupies two-fifths
of the memory of each number allocated to a real array.

We set up conventional arrays by simply naming ordinary variable names.
Commodore 64 BASIC distinguishes real and integer variables by requiring us to
append a percent sign to indicate integer values.

100 DIM A%(100,100)

allocates 10201 integers in a 101-by-101 integer array. We can’t even dimension such .
a real array on a Commodore 64.
Simple variables may be established for integers in the same way. For example,

100 B%=1.234

will result in storing the integer 1 in the integer variable B%.

108

BASIC COMMODORE 84 BASIC

...A Word About Zero Subscripts and Space

If we are working on a program that requires arrays and we are having problems
fitting into the available memory, we may be able to gain some space by using the
zero subscripts. Suppose we have a 100-by-100 array, because we really want 10,000
elements. We may simply dimension the array with

100 DIM A%(99,99)

and subtract one from all subscript references in the program. This saves the
memory required by 201 integer values or 402 bytes.

This effect increases as the number of dimensions in the array increases.
Suppose we require an array to be 10 by 10 by 10. That comes to 1000 elements. If
we dimension the array 10 by 10 by 10, we provide for 11 by 11 by 11, which is 1331
elements. That would be 331 more elements than the problem requires, a 33.1%
excess.

106

Chapter 7

Miscellaneous
- Applications

7-1...Looking at Integers One Digit at a Time

In general, the more detailed the control we have over a number in the computer,
the more complex the problems we might expect to be able to handle. We also will
find that as we learn more about what goes on inside the computer, we will be able
to apply more elegant solutions to problems. It is common to store a different piece
of information in each digit of a number. It is also common to group digits in twos or
threes for this purpose. Part numbers, serial numbers, and course numbers are just a
few examples of this. We have expressed the date in yymmdd form. In this section
we will simply develop methods of breaking up numeric values into their separate
digits.

... Using Successive Division

Consider the number 2789. The 2 means two thousand, which may be written 2 *
10%; the 7 means seven hundred, which may be written 7 ® 10%; the 8 means eight
tens, which may be written8 ® 10'; and the 9 means nine units, which may be written
9 * 10°. Looking at the numbers step by step,

2789 =2 * 10° + 789
789=17"*10"+ 89
89=8*10'+ 9
9=9*10+ 0

This is an example of the general relationship:
N=1IH%*10°E + R

107

BASIC COMMODORE 64 BASIC

where I is the integer quotient found by
I = INT(N/ 10°E)

and an iterative process whereby the new N is the old R and the value of E is
decreased by one for each iteration. Solving for R we get

R=N-1H%10%E

For nine-digit integers the value of E will have to begin at eight and go to zero in
steps of minus one. Carefully study Program 7-1.

90 PRINT CHR$(147);

100 PRINT "INPUT AN INTEGER";

110 INPUT N

120 IF N = 0 THEN END

130 FOR E = 8 TO O STEP -1
-=>140 T = 10 *~ E

150 I = INT(N / T)

160 PRINT I;
-=>1T0 R = N - I * T

180 N = R

190 NEXT E

200 PRINT : PRINT

210 GOTO 100

Program 7-1. Accessing digits by successive division.

Note line 140. In that line we simply save the value of 10°E. Exponentiation is a
slow process and there is no need to have the computer do it twice for each value of
E.

RUN
ENTER AN INTEGER?123U456789
1 2 3 45 6 7 8 8

ENTER AN INTEGER?999
0 0 0 0 00 9 9 8

ENTER AN INTEGER?0

Figure 7-1. Execution of Program 7-1.

A quick look at the display (shown in Figure 7-1) of the execution of our seemingly
simple program reveals that something is terribly wrong.

We have created a situation where the computer is rounding things off
internally in such a way that accuracy is lost. Even 999 comes out 998. If we insert a
statement at line 175 to display the values for R, we will see that it is just a little low.
The easiest way to fix this is to calculate the value of R by rounding off to the nearest
unit. This is left as an exercise.

... Using STR$

A very easy method of accessing the individual digits of a number is provided by
the STR$ function. Once we store a number as a string, we can use the LEFTS$,
MID$, and RIGHTS$ functions to pick numbers apart as we see fit. It becomes very

108

MISCELLANEOUS APPLICATIONS

easy to pick out any starting point and any number of digits. We can scan the
number to.look for a decimal. We can use the LEN function to find how many
characters it takes to display the number. For demonstration purposes, let’s write a
program to display each digit of a number individually.

90 PRINT CHR$(147);

100 PRINT "ENTER A NUMBER";
110 INPUT N

120 IF N = 0 THEN END

130 A$ = STR$(N)

140 FOR I = 1 TO LEN(A$)

150 PRINT MID$(A$,I,1); " ";
160 NEXT I

170 PRINT : PRINT

180 GOTO 100

Program 7-2. Using STR$ to separate numeric digits.

RUN
ENTER A NUMBER?695.32147
695.32147

ENTER A NUMBER?147896325523698741
1."789632654-17

ENTER A NUMBER?0
Figure 7-2. Execution of Program 7-2.

Note the second number entered in Figure 7-2. Since it is represented in exponential
notation for display purposes, that is the format used by STR$(). In the case of
decimal numbers and exponential notation we will have to construct more logic to
determine the actual numeric value represented by a particular digit according to
its position in the number.

We have seen two methods for picking apart numbers digit by digit in a computer.
Either successive division or the STR$() function may be used. We discovered that
we had to round off the value we obtained after removing the leftmost digit each
time we used successive division. Using the STR$() function, we can easily access
any individual digit in any order.

Problems for Section 7?-1

1. Write a program that requests a number without any decimals. Enter
each digit of the value into an element of an array. Display the contents
of the resulting array.

&. Rewrite line 170 of Program 7-1 so that the value in R is rounded to the
nearest unit. This will eliminate the errors we experienced.

8. Modify Program 7-1 so that leading zeros are not displayed. Be careful
that you don’t eliminate all zeros!

109

® 6 6 00 00 00 0000000000000 0000

BASIC COMMODORE 64 BASIC

4. Write a program to construct an integer by reversing the digits of an en-
tered integer. Place the result in a numeric variable and print its value.

8. Find all three-digit integers that are prime. Form new integers by reversing
the digits and see if the new number also is prime. Print a number only
if it and its reverse number is prime. There are 43 such pairs of numbers,
some of which appear twice.

8. Do Problem 5, but eliminate duplicates.

7-8...Number Bases

The day-to-day world of business, commerce, and general communications
reckons in the familiar base ten number system. The ultimate reckoning of the
computer is in base two. Base two requires only the two digits 0 (zero) and 1 (one).
Computers may represent a1 with a positive voltage level or a magnetized state and
a 0 with a zero voltage level or a demagnetized state. Therefore, it is useful to be
familiar with the base two number system. The base two number system is also
referred to as the binary number system. A number is a number is a number is a
number. The number does not change by virtue of being expressed in a different
number system. As we change from one base to another, we may be using different
symbols to name the same number. In the binary number system, there are only two
possible digits.

Addition in base two is very simple. Either there is a “carry” as the result of two
ones being added or there is not. Thus,

0+0=0 0+1=1 1+1=10

Multiplication is also simplified by the two-digit structure. When multiplying
by one the digits shift according to the position of the one; when multiplying by
zero the result is zero. When multiplying by one in the rightmost position the shift is
zero. When multiplying by one in the second position from theright, the shift is one
place. If we choose to number the positions from right to left as0,1,2,3,. . . N,
then the shift is equal to the position of the 1.

1 * 101001 = 101001 (shift of 0)
10 ® 101001 = 1010010 (shift of 1)
1000 ® 101001 = 101001000 (shift of 3)

Thus:
10 11011
* 10 * 101
100 11011
00000
11011
10000111
Note that in the second multiplication example, there is a carry across several
positions.

One disadvantage of the binary number system is that it takes so many digits to

110

MISCELLANEOUS APPLICATIONS

represent numbers. For instance, 15 base ten is written as 1111 in binary and 127
base ten is written 1111111 in binary. However, this is a disadvantage only to
humans, not computers. In fact, computers are very good at accessing individual
bits and turning them on or off one at a time. This is discussed further in
Programmer’s Corner 7. The number 255 base ten is written 11111111 in binary. It
requires eight binary digits to represent the number 255. Each binary digit is
referred to as a bit. Bits are collected into groups of eight to form bytes. The
Commodore 64 is an eight-bit machine. That is, it uses electronic circuits in sets of
eight to represent numbers and instructions in memory. Everything that the
computer does is stored in a byte or a group of bytes. This is why a number of the
limits for the Commodore 64 are 255.

Each digit of any integer represents an integral power of the base. So the digits
in binary represent 1, 2, 4, 8, 16, 32,64, 128, 256,512, etc., in base ten, corresponding
to bit positions 0, 1, 2, 3, 4, 5,6, 7, 8, 9, etc., in binary. On the Commodore 64 the
largest true integer value allowed is 32767, while the smallest is —32768. That is
65536 numbers. Zero base ten is zero in binary. The number 65535 base ten is
represented by 1111111111111111 in binary notation. That is 16 binary digits. We
get 16 binary digits by grouping two bytes together. It takes two bytes to represent
integers from 0 to 65535. In practice, however, the leftmost binary bit is used to
designate whether the integer stored in the other 15 bits is positive or negative. A 1
indicates that the number is negative, while a 0 indicates that it is positive. Thus for
two-byte storage, we are limited to the range of —32768 to +32767 as mentioned
above. Values from 0 to 32767 are stored as we would expect. Values from 32768 to
65535 are translated into values in the range —1 to —32768. The 16th bit is used to
determine the sign of the number.

...Decimal to Binary

Let’s begin by writing a program to convert decimal to binary. If the base ten
number we have is odd, then the first base two digit on the right is a one. If we have
an even base ten number, then the first base two digit on the right is a zero. Now, to
move the base two decimal point one to the left, we divide our base ten number by
two and ignore the decimal part. (We can ignore the decimal part by simply
chopping it off.) This process for eliminating the decimal part of a number is called
truncation. If the truncated result is zero, then we are finished. If the truncated
result is nonzero, then we repeat the process for the next binary digit. Consider the
process for 53:

53 is odd 1
divide by 2 and truncate 26 is even 01
divide by 2 and truncate 13 is odd 101

divide by 2 and truncate 6 is even 0101
divide by 2 and truncate 3 is odd 10101
divide by 2 and truncate 1 is odd 110101
divide by 2 and truncate = 0 We have finished;
53 base ten = 110101 base two.

111

|

BASIC COMMODORE 64 BASIC

Now we simply need to work out a way to print the results and a program will
be forthcoming. The method we use is to store the digits in a 16-element array as we
determine them. We store the rightmost (or lowest order) digit in the 16th element,
the second digit in the 15th element, and so forth until we are finished. Later this can
easily be expanded to accommodate larger numbers.

For any base ten number, if division by two comes out even, then the
corresponding base two digit is 0. If division by two leaves a decimal portion, then
the corresponding base two digit is 1. This we can easily describe with two lines of
BASIC code:

310
320

IF I /2= INT(I /2) THEN A(J)
IF I /2 <> INT(I / 2) THEN A(J)

0

=1

Line 310 enters a zero in the Jth element if the integer is divisible by two, while line
320 enters a one in the Jth element if the integer is not divisible by two. Examine
Program 7-3. '

100
110
200
210
220
230
296
298
300
310
320
340
360
396
398
400
410
420
455
460
999

REM *# CONVERT DECIMAL TO BINARY
DIM A(16)

INPUT "ENTER AN INTEGER"; I

IF I <= 0 THEN 999 -

IF I < 65536 THEN 300

PRINT "TOO LARGE"™ : PRINT : GOTO

REM #% LOAD THE ARRAY

FOR J = 16 TO 1 STEP -1

IF I /2 = INT(I / 2) THEN A(J)
IF I / 2 <> INT(I / 2) THEN A(J)
I = INT(I / 2)

NEXT J

REM *#* DISPLAY RESULTS
FOR J = 1 TO 16

PRINT STR$(A(J));

NEXT J

PRINT : PRINT

GOTO 200

END

200

uu
-

Program 7-3. Converting decimal to binary by using successive division.

RUN

ENTER AN INTEGER? 127
0000000001T1T11111

ENTER AN INTEGER? 32512
0111111100000000

ENTER AN INTEGER? 53
00000000001 10101

ENTER AN INTEGER? 32767
o111111111111111

-
ot
]

MISCELLANEOUS APPLICATIONS

ENTER AN INTEGER? 32768
1000000000000 000O0

Figure 7-3. Execution of Program 7-3.

Program 7-3 does not handle negative numbers.

Commodore 64 BASIC uses two’s complement form to store negative in-
tegers in the range —1 to —32768, Once we have the binary form of the absolute
value of our negative number, the rule for finding two’s complement is to change
every zero to a one, change every one to a zero, and add one. Let’s look at an
example. Running Program 7-3 for 32000 gives us

0111110100000000 = 32000
According to the rule we change ones to zeros, zeros to ones, and add one, like this:

1000001011111111
+1
1000001100000000 = —32000 in two’s complement

.. .Binary to Hexadecimal

The hexadecimal number system reckons in base sixteen, because hex uses 16
possible digits. The hex digitsare0,1,2,3,4,5,6,7,8,9,A,B,C,D,E, and F.So 10 in
hex is 16 in base ten and EF in hex is 14°16 + 15°1 or 239 base ten. While the place
values for binary representation are 1, 2, 4, and 8, the place values for hexadecimal
representation are 1, 16, 256, and 4096. (NOTE: In all numbering systems the place
values are really 1, 10, 100, and 1000, when expressed in the notation of the
numbering system itself. The numbers 1, 10, 100, and 1000 in hex are written as1, 16,
256, and 4096 in base ten notation.) It takes four binary digits to form a hex digit:

1011 0001 binary
B 1 = Bl hex.

So, two hexadecimal digits may be used to represent any number stored in one byte
and four hexadecimal digits may represent two bytes. This is very convenient for
use with an eight-bit machine.

The hexadecimal numbering system offers some advantages when working
with a computer. The term Bl is more compact and much easier to read than
10110001. There are some parameters associated with computers that are just plain
easier to remember in hex than in base ten. Computer memory is often blocked off
in segments containing 16384 bytes each. That is 16 times 1024 or 4000 bytes in hex.
One common unit of measure for computer memory is the “K.” One K is 1024 bytes.
So, for a 64K machine, the four 16K segments begin at 0000H, 4000H, 8000H, and
CO000H. Those numbers are much easier to remember than 0, 16384, 32768, and
49152,

BASIC COMMODORE 64 BASIC

... Hexadecimal to Decimal

The conversion from decimal to hex is exactly analogous to the conversion from
decimal to binary, except that we have to work out how to get the extra digits A
through F into the picture. Since the extra digit problem also occurs in the hex to
decimal conversion, this is where we start.

Let’s convert 1B3A Hex to Decimal:
Thedigit A in the l’s column represents 10
Thedigit 3 in the 16’s column represents 48
Thedigit B in the 256’s column represents 2816
Thedigit 1 in the4096’s columnrepresents 4096

1B3A hex equals 6970 base ten

To work in hex, our programs must have a way to accept hex input and display
hex output. Obviously this cannot be done with numeric variables. We may store
the 16 hex digits in a string variable. All hex input should be checked to verify that
no invalid digits have been entered. Let’s start by writing a program that simply
requests hex input, verifies it, and displays the verified number.

100 REM ** DEVELOP HEX INPUT/OUTPUT
130 H$ = "0123456789ABCDEF"

140 GOSUB 400 : REM ¥** REQUEST & VERIFY
150 PRINT N$

190 GOTO 140

396 :

398 REM ** REQUEST & CALL VERIFY
400 PRINT : INPUT "HEX NUMBER"; N$
410 L = LEN(N$)

420 IF L = O THEN END

430 IF L < 5 THEN 440

432 PRINT "TOO MANY DIGITS"

434 GOTO 400

Lyo GOSUB 700

450 IF FL = O THEN 490

460 PRINT "BAD FORMAT" : GOTO 400
490 RETURN

696 :

698 REM ¥** VERIFY HEX STRING
700 FL = 0 : REM ** GOOD INPUT
710 FOR J = 1 TO L

720 FOR K 1 TO 16
-->730 IF MID$(H$,K,1) = MID$(N$,J,1) THEN 760
T40 NEXT K

750 FL = 1 : REM *%* BAD INPUT
755 GOTO 790

760 NEXT J

790 RETURN

Program 7-4. Hex input/ output.

114

MISCELLANEOUS APPLICATIONS

RUN

HEX NUMBER? ABCD
ABCD

HEX NUMBER? AFAF
AFAF

HEX NUMBER? HEX
BAD FORMAT

HEX NUMBER? FF
FF

HEX NUMBER?
Figure 7-4. Execution of Program 7-4.

Now, how do we get the computer to “know” thatan A is 10,aBis11, and so on?
Since the digits are not numeric, we have this problem even for 0, 1, etc., as well.

This is not so tough as it might seem at first. Line 730 of Program 74 gives us all
the information we need. The value of K there tells us which digit in the sample
string H$ matches the Jth digit of the input string. If K = 1 then the digit in H$ is a
zero, while if K = 16 then we come up with F. So, subtracting one from K gives us
the values from 0 to F corresponding to 0 to 15. Then, knowing which digit we are
on tells us which place that digit represents, so we know what power of 16 to use.

The digit value is K — 1. The place is L — J. So the base ten value is:

(K—-1)*16" (L—-])

We simply need a numeric variable in which to accumulate this information. Using
this information, the subroutine at line 700 could easily return the base ten value of
the hex input. Simply set a numeric variable to zero at about line 705 and
accumulate at line 760, while moving NEXT] to line 770. This is left as an exercise.

...SUMMARY

We have seen that the rationale for base two or binary notation is that the digits 0
and 1 can be represented as electrical states of one sort or another. The hexadecimal
number system is convenient because it correlates so nicely to data as it is stored in
computer memory. While it takes eight digits to represent a byte of computer
memory in binary, it requires only two hexadecimal digits. All conversion
techniques rely on determining the position of a particular digit and its actual value.

Problems for S8ection 7-8

1. Write a program to convert binary to hex.
8. Modify Program 7-3 to eliminate leading zeros and display the result with
no spaces.

118

BASIC COMMODORE 64 BASIC

8. Modify Program 74 to perform the conversion as described in this section.
4. Rewrite Program 7-3 to display two’s complement form for integers in the
range —1 to —32768.

7-3...Writing a Program Menu

It is common practice where programs are run on a fast video display to present the
user with a list of options. Usually the options are numbered and the user simply
enters the number of the preferred option followed by a carriage return.

A sample menu might look like Figure 7-5.

1) PLAY TIC TAC TOE
2) SUPER LO-RES DEMO
3) QUIT

Figure 7-5. Sample menu.

Note option 3. This is very important. By providing this option right in the menu we
give the user proper control of the program. Many of the programs for sale in
computer stores and by mail order are menu-driven—that is, they include a menu.
The quality of menus is not consistent. One of the most common problems is the
failure to include an option to terminate the program. We have to press STOP to do
that. Sometimes we even have to shut the machine off and back on again to run
other programs. In some cases this is done to make it difficult for the user to make
unauthorized copies of a program.

Another common affliction is that entering something not in the list of choices
produces a messy display. In some cases the menu even begins to disappear from
the screen if we enter several out-of-range choices. With some programs pressing an
extra key before the menu even appears on the screen produces surprising results.
We will endeavor to write a menu program that avoids all of these problems.

.. .Developing the Menu Routine
Each of the options in theé menu may be a subroutine in a single program, or each
may be a separate program. That doesn’t matter much. What we are about to do
here is to develop a good menu processing routine.

First of all, PRINT CHR$(147); should be used to clear the text screen.

Next, we should give some thought to how we take the choices from the
keyboard. We may use an INPUT request or we can use GET A$ to process the
keystrokes directly.

INPUT is quick and easy to code. However, if we code:

940 INPUT X

and the user enters anything other than a numeric value, BASIC takes over,
displaying error messages and rerequesting data. This results in a messy screen and
may cause the menu to scroll out of sight. We could use

116

MISCELLANEOUS APPLICATIONS

940 INPUT X$

and then convert the response to numeric data with the. VAL function. This nicely
handles the:situation where the user fails to enter a numeric response. In any
program where we may expect the user to know enough to press the RETURN key
this is a good method to use.

GET A$ and POKE 198,0 give us the ultimate in control. We can request a
character from the keyboard and not worry about whether or not the user knows to
press the RETURN key. Programming with GET and POKE 198,0 will require a
little more effort to write the BASIC routine. But it seems worth doing. Once we
have written a menu routine that works, we may plan future programs so that they
use it, too. All we will have to change are the names of the options and the control
routine. Program 7-5 does it all.

98 REM #* TEST THE MENU SUBROUTINES
100 DIM A$(10)

200 GOSUB 9400

210 GOSUB 9000

220 IF S = NO THEN END

230 PRINT "YOU CHOSE - "; A$(S)

240 FOR I = 1 TO 1200 : NEXT I

290 GOTO 210

8994 :
8996 REM #* DO THE MENU"
8998 REM RETURN SELECTION IN S

9000 PRINT CHR$(147);

9002 PRINT : PRINT TAB(18); "MENU"
9004 PRINT : PRINT

9006 FOR I = 1 TO NO

9008 PRINT STR$(I); ") ™; A$(I) : PRINT
9010 NEXT I

9020 PRINT "YOUR CHOICE: ";

9022 POKE 198, 0

9024 GET A$: IF LEN(A$) = O THEN 9024
9026 S = VAL(A$) .
9030 IF S >= 1 AND S <= NO THEN 9080
9036 PRINT TAB(19); "NOT OFFERED"
9038 FOR I = 1 TO 1200 : NEXT I

9040 GOTO 9000

9080 PRINT S : PRINT

9090 RETURN

9394 :

9396 REM ## READ MENU OPTIONS

9398 REM NUMBER OF OPTIONS IN NO
9400 READ NO

9405 IF NO < 10 THEN 9410

9407 PRINT "TOO MANY OPTIONS" : STOP
9410 FOR I = 1 TO NO

9420 READ A$(I)

9430 NEXT I

9490 RETURN

9496 :

BASIC COMMODORE 64 BASIC

9500 DATA 9

9510 DATA PLAY TIC TAC TOE

9515 DATA SUPER LOW-RES DEMO

9520 DATA SWELL SOUNDS

9525 DATA GOLF EXTRA

9530 DATA COMPLICATED ARITHMETIC
9535 DATA NEXT OPTION

9540 DATA ANOTHER ONE

9545 DATA THIS IS THE LAST OPTION
9555 DATA QUIT

Program 7-5. Processing a menu.

We have set up this menu program so that the options are entered in data
statements. Lines 9000 to 9090 take care of displaying the menu and accepting a
response from the keyboard. Note that line 9022 clears the character count before
line 9024 reads the character buffer. In this way, no stray characters will be read in
before the user is ready. Remember that VAL returns zero for any character other
than the digits 1 through 9. We have even arranged to display the message “NOT
OFFERED” on the same line as the question.

We might want more than nine options. One method for handling this is to
break the selections into categories so that each category has nine or fewer options.
This is not a bad idea anyway—it makes the selection process easier for the user.
Simply include an earlier question that tells the program which category to offer.
This structure can be extended to provide various levels of menu, where some
selections bring forth another menu offering another selection. Finally, a selection
takes the user into the process or program desired.

- If you simply must have more than nine options, then you might try using hex
digits to get up to 15 options, or using the alphabet. Alternatively, it is very easy to
use INPUT with a string variable and VAL to get any number of options. This is fine
as long as it is acceptable to expect the user to press the RETURN key.

7-4...Miscellaneous Problems for
Computer Solution

We offer a few interesting problems for computer application here. Do not limit
yourself to the problems suggested here. You should be bringing your own
problems to the computer. While it is important to have problem suggestions in any
book, you will find a tremendous satisfaction comes with developing your own
ideas on the computer..

.. .Problems of General Interest

1. There is an old number puzzle about cows, pigs, and chickens that lends
itself nicely to computer solution. A farmer has exactly $100 to spend on
animals. He wants to buy at least one cow, at least one pig, and at least
one chicken. Cows are $10 each, pigs are $3 each, and chickens are $0.50
each. How many of each must he buy to have exactly 100 animals?

118

MISCELLANEOUS APPLICATIONS

3.

At first, this looks like an easy algebra problem. Soon, however, we
find that we have only two equations with which to solve a problem
having three unknowns. This is where the computer comes in. We simply
try all combinations of cows, pigs, and chickens until these equations are
satisfied:

10°CO+3°*PI+ CH/2=100
CO +PI+ CH =100

Observing that there must be many more chickens than either pigs or cows
we could solve this by hand using trial and error. But we still might be-
come frustrated with the number of calculations required.

The key to this problem is to realize that each of the three numbers
we are looking for must be an integer. We could easily write a program
with three nested FOR...NEXT loops where CO goes from 1 to 10, PI
goes from 1 to 33, and CH goes from 2 to 100 by twos. If we do that, we
will find that the program has to “think” for some time. We can greatly
speed things up by using more of the information available to us. Clearly,
if there must be at least one of each animal, there cannot be 10 cows or
33 pigs or 100 chickens. There could be no more than 9 cows, no more
than 29 pigs, and no more than 98 chickens. We can derive the greatest
speed improvement by using the fact that once the number of pigs and
cows to try has been established, we can find the number of chickens
from:

100 — CO —PI

Next we check this number to see that it is even, since the price is $0.50.

Write a program to solve this puzzle.
Sometimes it is fun to try to guess a number that someone else is thinking
of. It is fairly easy to program a computer to play this simple game. Have
the computer request the largest number from the user. Then the program
should compute a random number in the range from one to the largest
number entered earlier. Next the program should ask for guesses from
the user. Each guess should be checked. If the number is less than one,
or greater than the upper limit, a message should put the user back on the
right track. If the number is a correct guess, the program should say so.
The program should also note whether the actual number is higher or
lower than the most recent guess.
There are many famous chess puzzles from antiquity that are appropriate
for computer solution. A notable one is the eight queens problem. How
many ways can eight queens be placed on a chess board so that no queen
attacks another?

This puzzle may be solved by using one eight-element array. Placing
a queen in a position of the array assures that no two queens occupy the
same row. A queen may be placed in the row by entering her column
number there. Now we assure that no two queens occupy the same column
by avoiding duplicate column numbers in the eight-element array. Finally,

119

BASIC COMMODORE 64 BASIC

4.

we check for diagonal attack by noting that for two queens at positions
(X,Y) and (X',Y’), one diagonal is shared if X — X' =Y — Y’, while the
other diagonal is shared if X + X’ =Y + Y’. We need to have the computer
test this for each queen in every column of one row. Write a program to
print the positions of all queens for each solution.

For more about the eight queens problem see the October 1978 and
February 1979 issues of BYTE magazine.
It is always instructive to learn about the cost of homeownership. Aside
from the ongoing costs of painting, fixing the roof, real estate taxes, and
insurance, there is the ever-present mortgage interest. Most mortgages
are set up so that the monthly payment stays constant. In the beginning,
there is a large interest payment and a small payment toward the principal.
At the end, the interest payment is small and more goes toward the
principal. The following formula may be used to calculate the monthly
payment PA:

I(1+1DN

PA=P
(1+D¥-1

where

P is the principal
I is the monthly interest rate
N is the number of months

Write a program to request the principal, annual interest rate, and
number of years. Have the program display the monthly payment, the
total amount paid, and the total interest paid.

...Math Oriented Problems

1.

Every positive integer may be expressed as the sum of the squares of
four integers. Zero may be included as one or more of those integers to
be squared. For example:

1=0"4+0"4+0*+1

Write a program to find all sets of four such integers for a requested
integer. Be careful about efficiency in this one. Test your solution with
small integers before trying large ones!

Suppose you have to find the greatest common factor of 23902 and
15096. What would you do? The famous mathematician Euclid would
have found the remainder after dividing 23902 by 15096, which is 8806.

Then he would have found the remainder after dividing 15096 by 8806,
which is 6290. Then he would have continued this pattern as follows:

23902 =1 * 15096 + 8806
15096 =1 * 8806 + 6290
8806 =1 * 6290 + 2516
6290 =1 * 2516 + 1258
2516=2"*% 1258+ 0

120

MISCELLANEOUS APPLICATIONS

Next, Euclid would have reasoned that since the remainder of the last
division was zero, the greatest common factor must be the last divisor, in
this case 1258. This method required only five iterations. How many
would it have taken using other methods?

8. The sieve of Eratosthenes is an ingenious method for generating prime
integers. Write down all the integers from two to the desired upper limit.

-Keep the first prime number—two—and cross out all of its multiples.
Now keep the next uncrossed out number and cross out all of its multiples.
Repeat this process until there are no more numbers to cross out. The
remaining numbers are prime.

There are two areas in this algorithm that are potential pitfalls for
unnecessary extra processing. First, if the first multiple in any case has
already been crossed out, then so will all other multiples have been
crossed out. Second, we only have to check for uncrossed out integers
up to the square root of the largest number in the original range.

This algorithm can easily be implemented in an array. First, enter
the integers from two to the upper limit into the array elements two
through the upper limit. Next, use a FOR...NEXT loop to access the
multiple positions in the array. Set the contents of any element to be
crossed out to zero. Finally, print all subscript positions for which the
element is not zero.

4. Perfect numbers are integers the sum of whose proper factors is the
integer itself. The proper factors of 15 are one, three, and five. The sum
of the factors of 15 is nine. Therefore 15 is not a perfect number. The
proper factors of six are one, two, and three. The sum of the proper
factors of six is six. Thus six is called a perfect number. Write a program
‘to find the first four perfect numbers. Since the fifth perfect number is
33,550,336, and there is a significant amount of execution associated with
determining “perfectness,” we would be unwise to test each integer
up to that one! It turns out that there don’t seem to be any odd perfect
numbers, so let’s test only even numbers.

8. Euclid was an active mathematician! He concluded that all possible
even perfect numbers are of the form

N=2E&NeR
where
F=2E—1

and F is an odd prime.

Using Euclid’s algorithm, write a program to calculate perfect numbers.
Try a range of two to 12 for E.

8. Pythagorean triples are sets of three integers that can be the lengths of
the sides of a right triangle. Thus, the sum of the squares of the two smaller
integers must equal the square of the largest one. The first Pythagorean
triple is 3, 4, 5. Write a program to generate Pythagorean triples.

%. The number 7 has fascinated mathematicians for many many centuries.

131

o o o

BASIC COMMODORE 64 BASIC

Values for = may be calculated in a variety of ways. The following
sequence is known to approach the value of

41-13+1/5—-1/7+1/9—-1/11. .)

Write a program to evaluate this sequence for several large numbers
of terms.

8. There are many sequences that approach 7 as the number of terms in-
creases. Here is another one.

1 1 1
2+16 (1°3°5+5“7°9+9°11°13+‘ :)

Write a program for this sequence. If you also did problem 7, which
sequence converges faster?

One method for approximating the value of 7 derives from the fact that
the area of a circle with radius r is known to equal 77> A circle having a
radius of 1 unit has an area of 7. Thus, if we inscribe a circle in a square
having a side of 2 units and examine one quarter of the figure, we have
a quarter circle inscribed in a smaller square with a side of 1 unit.

The area of the square is 1 unit and the area of the quarter circle is /4. If
we have some way of measuring the area of the quarter circle, then we
simply multiply that number by four to get an approximation of 7.

If we generate random values between 0 and 1 for the coordinates
X and Y, we will always obtain a point in the square. Sometimes we will
obtain a point in the circle. The ratio of the number of times the point falls
in the circle to the number of points selected is proportional to the areas
of the quarter circle and the square. If we find 80 points in the circle out of
1000 points selected, then the approximation of 7 we come up with is
4 * (80/100) or 3.2. Write a program to calculate 7 in this way for 100,
500, 100, and 5000 random points. Assume that if a point lands on the
circle then it counts as part of the circle.

You might experiment to see whether or not excluding the points
that fall on the circle has an impact on how fast the value you get approaches
the known value of 7. (7 = 3.1415926536 . . .)

133

o o o

MISCELLANEOUS APPLICATIONS

’

PROGRAMMER’S CORNER 7

Bits of AND, OR, and NOT

We have used the logical operators AND, OR,and NOT inIF. .. THEN statements
to evaluate the truth of an expression in BASIC. Logical expressions as used with
IF. .. THEN have two states: true or false. The values assigned are 0 for false and
—1 for true. In addition, the logical operators can perform operations on any integer
values. This is done on a bit-by-bit basis. The result of any logical operation is
always an integer. Remember, integers are whole numbers in the range — 32768 to
32767 on the Commodore 64.

The idea of working with numbers on a bit-by-bit basis is common in computer
work, where we use various collections of bits to control the computer. This makes
it easy to work with a byte as eight little switches. When this approach is used in
conjunction with PEEK and POKE, we gain lots of power in a small space. We will
discuss this in detail when we work with graphics in Chapters 9 and 10, and with
sound in Chapter 11.

The bits of a byte are numbered from 0 to7, while their values go from1 to 128.
We can refer to them as the 1 bit, 2 bit, 4 bit, etc., up to the 128 bit. When we want to
refer to the position, we call them bit0, bit 1, bit 2, etc., up to bit 7. The value of a bit
is derived by raising 2 to the power of the bit number. So bit 5 has a value of 2° or32.

Where we need more than 256 values we place two bytes together and work -
with them as a unit. The result is a 16-bit storage package. This is exactly what the
Commodore 64 does to obtain integer values in BASIC. We call the byte that
contains bits 0 through 7 the low byte, and the byte that contains bits 8 through 15
the high byte.

For some purposes, we break a byte into two groups of four bits. These groups
are commonly called nibbles. In this situation, the nibble containing bits 0 through3
is called the low nibble and the other 4 bits are referred to as the high nibble.

The operator AND produces a value that has all bits turned on that were turned
on in both of two numbers. For example

5 AND 6

is 4. It is 4, because the 4 bit is turned on in both the number 5 and the number 6. Itis
the only one turned on in both values.

5=101
6 =110

Suppose we are using bit 5 to control some function. There are two
considerations. We might want to know if bit5 is turned on, or we might want to set
it. We can easily look at the condition of bit 5 with an expression such as the
following:

133

BASIC COMMODORE 684 BASIC

310 IF SW AND 275 = 275 THEN PRINT "BIT 5 IS ON"

Suppose we want to turn off bit 5. In this case we want to preserve the status of
all bits except bit 5. What we need is the value of the number 11011111 . If we link it
by AND to the value of SW the result will have bit 5 turned off and all others
unaffected. We could convert 11011111 to decimal, or we could realize that the
value of 11111111 is 255 and the value of 11011111 is 255 — 2°5. We can easily
calculate that to be 223 or we could leave it in the form 255 — 2°5 so that the purpose
of the BASIC statement is clear right in the program.

420 SW = SW AND (255 - 275)

In line 420, if SW is an integer in the range 0 to 255, we turn bit 5 off. If SW is larger
than 255, then we turn off bits 8 through 15 as well.

What happens when the value of SW in line 240 exceeds 327677 All the logical
operators are designed to work with integers. 32768 is not a true integer, so, we will
produce

?ILLEGAL QUANTITY ERROR

There must be some way to examine the low byte of a number in the range 32768 to
65535. All we need to do is subtract any number that has none of the bits in the low-
order byte turned on. The result will have the same low-order byte as the original
number. The smallest value to do that is 256. Try it. The statement 256 AND 255
equals 0. So for a number N, we could obtain the low-order byte with

(N - 256) AND 255

Now we can obtain numbers up to 33023. The next larger value with all zeros in the
low-order byte is 512 or 2°. Continuing this process, we find that for just bit 15 on,
we get 32768 or 2". This is ideal for moving values in the range 0 to 65535 to the
range from —32768 to 32767.

How do we obtain the high byte of a two-byte integer? This is done by dividing
by 256. The expression

INT(N/256)

gives the high byte as an integer. Note that if we happen to be using POKE to place
that value into memory, we don’t even have to use the INT function.

So, to obtain the low byte of any integer in the range 0 to 65535, use the
following expression:

(N - 32768) AND 255

If we will never see a value greater than 32767, we don’t even need to subtraét
32768. And to obtain the high byte use

N / 256 or INT(N/256)

1234

MISCELLANEOUS APPLICATIONS

...OR

OR produces a value that has all bits turned on that were turned on in either or both
of two numbers. Earlier, we used AND to turn bit 5 off in variable SW. It is very
easy to turn bit 5 on in variable SW with

420 SW = SW OR 275

Itis as simple as that. If bit 5 was already on, it stays on. Suppose we want to turn on
bit 5 and bit 7. Then we would use 2° +2’ or 160. Often we would put an
expression such as 2° + 2’ right in the final program so that the meaning of the
BASIC statement is clear.

..NOT
The operator NOT works on a single value. The NOT operator simply reverses
all of the bits in a value. Since numbers are stored in two’s complement form, it may
take a minute to get used to this. For example, NOT 0 = —1. And NOT —1 = 0.
Think about the two’s complement form for —1. Referring to Section 7-2, we
take the binary form for +1, reverse all the bits, and add 1.

1= 0000000000000001

reverse 1111111111111110

add1l +1
yields 1111111111111111 which is the two’s complement form of —1.

Minus one has all bits turned on. That is exactly what we should expect from
NOT 0.

It turns out that for any number N

NOT N = -(N + 1)

138

Chapter 8
oequential
Files

8-1...D0S

DOS stands for Disk Operating System. The disk is contained in the little square
envelope that we insert into the disk drive. The disk drive is the machinery required
to read and write the disk itself. DOS is a program, just as BASIC is a program. DOS
and BASIC together make it possible for us to work with data files in programs that

- we write. It is DOS that allows us to save programs on a disk. This single capability
often justifies the purchase of a disk drive. With a disk system we may save many
programs on one disk and retrieve them later by using program names. The
Commodore Datassette is a cassette tape recorder that makes it possible for us to
save programs and data on tape cassettes. The disk is much faster than tape. See
Appendix D for a discussion of the various commands available for managing
programs on disk.

The ability to store data on a disk turns our computer into a powerful data
processing system. We can now use a Commodore 64 to handle a name-and-
address list. We can enter statistical data with one program and use one or more
other programs to perform a variety of analytic processes. It will not be necessary
to enter the data separately for each program. With text stored on a disk we can use
a word processing program for writing of all kinds. Data for many Sprites in Sprite
graphics can be stored on disk for easy access with a graphics program. There are
many uses for disk-based programs.

Data stored on a disk are referred to as a data file. There is a set of BASIC
keywords that we may use to manipulate data on a disk. These may be used in
programs to create files, write data, read data, and delete files. -

You should read Appendix D before proceeding further in this chapter.

126

SEQUENTIAL FILES

8-23.. .Introduction to Sequential Files
...What Is a File?

A file is simply some area of the disk where we may save data. As stated earlier, we
may save programs on disk, too. When we save a program on disk, DOS does
everything for us. When we save data in a data file, it is up to us to organize the
data.

One of the aspects about data files that encourages mystery is that they are
invisible. Well, so are programs during execution. We have found that we could
perform fantastic feats with programs even though we could see nothing of what
was going on until the final printed result. We will now expand our capabilities
tremendously by using programs to create and access data files. We can LIST a
program, but we are going to have to write programs to LIST any data file we
create.

All programs in this chapter were developed on the Commodore 1541 single
disk drive.

Sequential files are easy to set up and use. We simply do everything beginning
at the beginning. If we want to place 15 items in the file, then we simply write them
in order from 1 to 15. We are not concerned with the relative space required by the
various entries. We need to be aware that there is space on the disk for the data that
‘we want to store there, but DOS decides where to store things. If we later wish to
read the 14th item, then we read them all in order, beginning with item 1, and stop
when we get to item 14. Structurally, data in sequential data files are just like data in
the DATA statements of a program. There is no skipping around.

OPEN, PRINT#, INPUT#, and CLOSE are the four most commonly used
commands required for performing any useful work with data files. For some
purposes, the GET# command is also very helpful. Let’s discuss them all before we
attempt our first example.

...OPEN

OPEN establishes a communications channel between our program and the data
file on the disk. OPEN creates the link between the file and the program and points
to the beginning of the file. The OPEN statement must specify a file number, a
device number, and a channel number. The OPEN statement must also declare the
file type. We are working with SEQuential files. We need to open sequential files in
either READ or WRITE mode. All of this is done in a single statement.

100 OPEN 3,8,2,"TEST FILE,SEQ,WRITE"

Three is the file number, the eight is our familiar value for the disk drive, and two is
the channel number. (You did read Appendix D, right?) We can have up to three
sequential files open at the same time. We may have any number in a single
program, it is just that we can only open three of them at once. You might like to use
the same value for file number and channel number. TEST FILE is the name of the
file. SEQ indicates a sequential file, and WRITE indicates that we wish to write to

1387

BASIC COMMODORE 64 BASIC

the file. We may abbreviate the SEQ and WRITE, so we might use a statement such
as

100 OPEN 3,8,2,"TEST FILE,S,W"

As time goes on, we may want to replace the data stored in a disk file. If we
execute an OPEN statement on an existing file we will have the same experience
that we had resaving a program. The program seems to be all right, but the red light
keeps blinking. In order to replace an existing file, we need to declare our intention
right in the OPEN statement. Again, we use the at symbol (@), here.

100 OPEN 3,8,2,"@:TEST FILE,S,W"

is what we need. The at symbol may also be used to create a new file.
Any of the values in an OPEN statement may be expressed as variables.

80F =3:C=2: A$ = "@:TEST FILE,S"
100 OPEN F,8,C,A$ + ", uW"

has the same effect as the last OPEN statement above. We may use file numbers in
the range from 1 to 127, while channel numbers for files are limited to the range
from 2 through 14.

Channel 15 is special. It is used to send commands to the disk itself. Channel 15
is used for things like the SCRATCH command, and for reading the error channel
to look for disk errors. (We'll get to errors.)

.. .PRINT#
PRINT# X writes data to file number X. PRINT# performs exactly like PRINT. It
has to be PRINT#; PRINT # (with a space) won’t do.

2830 PRINT# 3, A$; X; Z1

sends data out to file 3 on the disk in exactly the same format that the data would
appear in on our video screen. Numbers are preceded by a space or a minus sign
and followed by a space. Semicolons and commas generate the same spacingin a
file as they do on the screen. Even a carriage return goes out to the file at the end of
any line where it would do so on the screen.

For general purpose programs, it is usually best to simply PRINT# each item,
one to a PRINT# statement. Then the file will look very much like a collection of
data in the DATA statements of a program. We can even separate each data item in
the file with a comma by using a statement such as

240 PRINT# 3, A$; ",";

The advantages of having the data in a file are numerous. We can use the same
data for several programs. The data do not have to be in memory, so we save lots of
program space. Eventually, we can write a program to edit data in a file to deal
with typing errors and such. One program can process data from one file and write
the results to another file for further processing. All this provides tremendous
flexibility.

138

SEQUENTIAL FILES

.. . INPUT#

Data are retrieved from a file with the INPUT# statement. This is a variation of the
INPUT statement used for requesting input from the keyboard. Itis important that
we use INPUT# and not INPUT #.

300 INPUT# 3, A$, BS$, X

will attempt to read three separate items—two strings and a numeric value. In
order for that to work, the three items must be separated by either commas or
carriage returns in the file.

...GBT#
Just as GET accepts data from the keyboard one character ata time, GET# accepts
data from a file one character at a time.

GET# 3, A$

takes a single character from file 3. This is especially useful for programmers. If we
have a file with mysterious contents, simply put GET# F, A$ with PRINT A$ ina
loop. Many a program error can be solved by examining the contents of a file in this
way. If a file contains more than 255 characters without a comma or a carriage
return, this is the only way we can read it.

...CLOSE

Just as important as opening files is closing them.
180 CLOSE 3

This CLOSE statement takes care of all of the management associated with
disconnecting our program from the file. If we omit the CLOSE statement, we will
encounter strange situations. We may lose all of the data in the file. END will not
close files for us. If the little red light stays on and you are sure that the program is
completed, then it may be that the CLOSE statement is missing. Files must be
closed one at a time. We cannot use CLOSE 2, 3; file 2 will be closed, but file 3 will
not and no error message will be displayed.

Strange things can happen. Especially for the new programmer, it may be
difficult to retrace just how we got to some strange error condition. If after we use
CLOSE on all the files we know about, the red light still will not go out, then we
may have to use the INITIALIZE command. (See Appendix D.) Many unex-

-plainable errors are cured by

OPEN 15,8,15,"I"

CLOSE 15
Or, if you have C-64 WEDGE in place, @I will do it just as well.

So, we have OPEN, PRINT#, INPUT#, GET#, and CLOSE. Any program

accessing files must have an OPEN and a CLOSE statement. In addition, foritto be
useful, we must use at least one of the other three statements.

139

BASIC COMMODORE 64 BASIC

...HBrrors
We all strive to write error-free programs. The ability to detect errors is especially
important when we are working with the disk drive on the Commodore 64. The
1541 drive is called an intelligent peripheral. It can accept an instruction and go off
on its own while BASIC continues on its merry way. That is wonderful, as long as
the disk drive is able to carry out our wishes. Usually it can and will. But, sometimes
the unexpected happens. The disk runs out of space, we have forgotten to insert the
disk, we have the wrong disk, the file we need is not there, a file that shouldn’t be
there is there—the list goes on and on. In order to benefit from this intelligent
peripheral we must be responsible for checking disk errors at all times.

We are going to need to check for errors in all of our file programs. We should
check for an error after every file operation. So, let’s take time now to examine a
subroutine that will help us in every program. Program 8-1 is what we need.

800 INPUT# 15, E,E$,T,S
810 IF E < 20 THEN 890
820 PRINT E$

830 STOP

890 RETURN

Program 8-1. Error reading subroutine for files.

This program takes some explaining. File 15 must be opened to the command
channel. So, the main program must have an OPEN statement such as

100 OPEN 15,8,15

As mentioned in Appendix D, there are four parameters available to help us analyze
errors. Line 800 reads them for us. The E is the error number. These numbers are
keyed to a table in the user’s manual supplied with each 1541 disk drive. Values less
than 20 do notreflect an error. Therefore, in line 810 we ignore them and RETURN.
The E$ is a character string that describes the error. Usually this expression is
enough for us to determine the cause of the trouble. For many purposes, it is enough
for a program to simply halt with a display of the error. As we gain more
programming experience we find that we can perform some corrective operations
in some situations—and we will have fewer errors anyway. As beginners, we just
stop right there upon encountering any error. The values of T and S are the track
and sector on the disk where the difficulty occurred. Usually this is not important.
But, if the error is due to a damaged disk, a truly advanced programmer may be
able to use the track and sector to bypass the problem and recover valuable data.
We won't attempt that here.

Let’s look at an example. Program 8-2 is a simple program that does nothing but
open a sequential file in write mode.

100 OPEN 15,8,15

110 OPEN 3,8,2,"TEST FILE,S,W":GOSUB 800
180 CLOSE 3 : CLOSE 15

190 END

800 INPUT# 15, E,E$,T,S

810 IF E < 20 THEN 890

130

SEQUENTIAL FILES

820 PRINT E$
830 STOP
890 RETURN

Program 8-2. Demonstration of how to read file errors.

Running this program will produce a simple READY message. The red light will
come on briefly and go off. All's well. Notice in line 180 that we CLOSE the data file
channel and then the file on the error channel. That is the order in which they should
be closed. Suppose we run it again. Now we have a different story. See Figure 8-1.

RUN
FILE EXISTS

BREAK IN 830
READY.

Figure 8-1. Execution of Program 8-2 a second time.

What we do about this depends on whether we want to replace the file named
TEST FILE or not. If we don’t want to replace it, then we may have run the
program by mistake and we have saved ourselves from the possibility of erasing
valuable data. If we do want to replace it, then we have a programming error and
line 110 in Program 8-2 should read as follows:

110 OPEN 3,8,2,"@:TEST FILE,S,W":GOSUB 800

The “@:” will cause the already existing file to be replaced. The old data will belost.
Whenever a files program is halted by an error, we are in danger of losing data.
BASIC and DOS are not coordinated at this point. If you expect data to be written
to a file, then it is important to use the INITIALIZE command to minimize the
damage.
We have covered all the information needed to work with sequential files. Itis
best to know everything before we begin to actually write useful programs: Now
we can work on a project in the next section.

8-3...Using a File: The Geography Game

Remember the program we wrote to play Geography in Chapter 6? We wrote that
program using subroutines so that it would be easy to convert to store the namesina
disk file. This way, we can arrange to have the computer “remember” place names
from one day to another. Let’s first write a program to store the four beginning
names, Program 8-3.

98 REM **% INITIALIZE GEOGRAPHY FILE
100 OPEN 15,8,15

110 F$ = "PLACES,S,W"

120 OPEN 2,8,2,F$: GOSUB 800

130 READ NO

140 PRINT#2, NO

131

BASIC COMMODORE 64 BASIC

150 FOR I9 = 1 TO NO
160 READ P$: PRINT#2, P$
170 NEXT I9

180 GOSUB 800

190 CLOSE 2 : CLOSE 15
190 GOSUB 800

290 END

796 :

798 REM *# READ ERROR CHANNEL
800 INPUT# 15, E,E$,T,S
810 IF E < 20 THEN 890
820 PRINT E$

830 STOP

890 RETURN

896 :

898 REM #% A FEW CITIES
900 DATA 4

902 DATA NEW YORK

904 DATA CHICAGO

906 DATA LOS ANGELES
908 DATA PHILADELPHIA

Program 8-3. Writing initial names to a file for Geography game.

When we run this program, we will have a file containing five items. The first item
will be a 4 and the next four items will be four city names. If we try to runit a second
time, it will fail with the error message

FILE EXISTS

That prevents us from accidentally reinitializing the names file after we have built it
up to a hundred or so names. A good idea.

It is important to note that the number we wrote to the file will be converted to
the characters of the number, just like STR$. Thus, if NO = 25, then there will be a
space, a 2, and a 5 in the file. However, we may retrieve the value with INPUT# X,
NO, just the same. Or in some special situation we might want to retrieve that
number in a string variable. INPUT# behaves the same way that it does at the
keyboard. Any leading spaces will be ignored. So, “25” in the file will appear in the
resulting string as “25”.

As the value representing the number of names increases from one to two digits,
the space required to store it in the file goes from three characters to four. So when
we rewrite the entire file, each of the place names will be located one character
position further along in the file. We can program solutions to many problems
without even realizing this. As we seek more elegant solutions, however, informa-
tion of this kind will be important to have.

Let’s now convert the Geography game from Chapter 6 to store namesin a file.
We simply need to replace the READ...DATA concept with a subroutine that
reads the place names from the file into the array. We also need to provide a
subroutine that writes out all of the names to the file at the end of a series of games.

The array version reads the names from DATA in a subroutine at line 8000. So
we may simply replace that subroutine with a new one that reads the names from a

138

SEQUENTIAL FILES

file. Of course, we will still need the error reading subroutine of Program 8-1. That
means that we should note that the control routine needs to OPEN the command
channel on file 15. See Program 8-4a.

7996 :

7998 REM ** READ NAMES FILE 6
8000 OPEN 2,8,2, F$ + ",S,R" : GOSUB 800

8010 INPUT# 2, NO :

8030 FOR I9 = 1 TO NO

8040 INPUT# 2, NA$(IQ)

8050 NEXT I9

8060 CLOSE 2

8090 RETURN

Program 8-4a. File reading subroutine for Geography game.

We have checked the error channel just once in this subroutine. In a crucial file
process, we might be more cautious and check it in lines 8010 and 8040 as well. On
the other hand, writing the number of items at the beginning of the file helps to limit
the possibilities for error here.

At the end of a series of games in this file version, we want to write all the names
to the sequential file. Since there was nothing special to do at the end of the array
version, our new routine to write the names to the file at the end will be a new
subroutine rather than a replacement. Let’s put it at 8500. Then the two files
subroutines will be near each other in the final program. It is a good idea to isolate
the files handling portion of any program when that is a practical thing to do. See
Program 8-4b.

8496 :
8498 REM #¥* UPDATE NAMES FILE
-->8500 OPEN 2,8,2,"@:" + F$ + ",S,W" : GOSUB 800
8520 PRINT# 2, NO
8530 FOR I9 = 1 TO NO
8535 PRINT# 2, NA$(I9)
8540 NEXT I9
8580 CLOSE 2
8590 RETURN

Program 8-4b. Writing names to the file in the Geography game.

Notice in line 8500 that we incorporate the at sign (@) because we are always going
to replace the contents of an existing sequential file. In this subroutine we might
include a GOSUB 800 in lines 8520 and 8535. This routine writes data to a file. In this
situation, the program could run out of disk space. So, that might be a good idea.

We can easily incorporate these two subroutines into the array Geography
program. In addition, we need to be sure to include the subroutine of Program 8-1.
Next, we must assign the file name in F$ and modify the end-of-game logic to
execute the subroutine at 8500 if the game just ended will be the last. And we need to
make sure the error channel is opened on file 15. All of this is accomplished by the
six lines of Program 8-4c.

133

BASIC COMMODORE 64 BASIC

10 F$ = "PLACEsS"

15 OPEN 15,8,15

90 IF LEFT$(A$,1) = "N" THEN 140

140 GOSUB 8500 : REM ** REWRITE THE NAMES FILE
150 CLOSE 15

190 .END

Program 8-4c. Changes in the control routine to convert array Geography to file
Geography.

It might be a good idea to include a GOSUB 800 just before line 150 in Program 8-4c
as a catch-all error checker. We present the complete program here for your
convenience as Program 8-5.

-=>10 F$ = "PLACES"
-->15 OPEN 15,8,15
20 DIM NA$(500), AV(500)
30 GOSUB 8000 : REM %% READ NAMES ARRAY
35 GOSUB 9000 : REM #%# INSTRUCTIONS
40 GOSUB 4000 : REM *¥* INITIALIZE AVAILABLE NAMES ARRAY
45 GOSUB T000 : REM *% COMPUTER STARTS
50 GOSUB 6000 : REM ¥¥* PERSON RESPONDS
58 IF PE$ = "QUIT" THEN 80
60 GOSUB 5000 : REM *#* RESPONSE OF COMPUTER
65 IF CP$ <> "QUIT" THEN 50
80 INPUT "DO YOU WANT ANOTHER GAME"; A$
-->90 IF LEFT$(A$,1) = "N" THEN 140
100 FOR I9 = 1 TO 1000 : NEXT I9
120 GOTO 35
-~>140 GOSUB 8500 : REM ** REWRITE THE NAMES FILE
-=>150 CLOSE 15
-=>190 END
-=>796 :
-->798 REM ¥** READ ERROR CHANNEL
-->800 INPUT# 15, E,E$,T,S
-->810 IF E < 20 THEN 890
-->820 PRINT E$

-->830 STOP

-->890 RETURN
3996 :
3098 REM ** INITIALIZE AVAILABLE NAMES ARRAY
4000 FOR J9 = 1 TO NO

4010 AV(J9)
4020 NEXT J9
4090 RETURN

1

4998 REM #* COMPUTER RESPOND

5000 FOR I9 = 1 TO NO

5010 IF LEFT$(NA$(I9),1) = RIGHT$(PE$,1) AND AV(I9) = 1 THEN 5050
5015 NEXT I9

5020 PRINT : PRINT " I HAVE RUN OUT OF NAMES"

5025 CP$ = "QUIT"

5030 GOTO 5090

5050 CP$ = NA$(I9) : AV(I9) = 0O

5060 PRINT " I CHOOSE: "; CP$

5090 RETURN

134

SEQUENTIAL FILES

5996 :

5998 REM ** PERSON GO

6000 PRINT

6010 INPUT " YOUR TURN"; PE$

6012 IF PE$ = "QUIT" THEN 6190
6015 IF LEN (PE$) > 1 THEN 6030
6020 PRINT "NAME TOO SHORT"™ : GOTO 6010
6030 IF LEFT$(PE$,1) = RIGHT$(CP$,1) THEN 6040
6035 PRINT "NO MATCH" : GOTO 6010
6040 FOR I9 = 1 TO NO
6045 IF PE$ = NA$(I9) THEN 6100
6050 NEXT I9
6055 IF NO < 500 THEN 6065
6060 PRINT "NO ROOM FOR MORE NAMES" : GOTO 6010
6065 NO = NO + 1
6070 NA$(NO) = PE$: AV(NO) = O
6080 GOTO 6190
6096 :
6098 REM ##% wEFQUND NAME"
6100 IF AV(I9) = 1 THEN 6150
6110 PRINT "USED ALREADY"™ : GOTO 6010
6150 AV(I9) = O
6190 RETURN
6996 :
6998 REM ** COMPUTER BEGIN THE GAME
7000 X9 = INT(RND(1) * NO + 1)
T0O10 CP$ = NA$(X9) : AV(X9) =0
7020 PRINT "FIRST PLACE : "; CP$
7090 RETURN
-=>7996 :
-=>T7998 REM ¥*¥# READ NAMES FILE
-->8000 OPEN 2,8,2, F$ + ",S,R" : GOSUB 800
-->8010 INPUT# 2, NO
-=>8030 FOR I9 = 1 TO NO
-->8040 INPUT# 2, NA$(I9)
-->8050 NEXT I9
-=->8060 CLOSE 2
-=->8090 RETURN
-=>8496 :
-->8498 REM ** UPDATE NAMES FILE
-->8500 OPEN 2,8,2,"@:" + F$ + ",S,W" : GOSUB 800
-->8520 PRINT# 2, NO
-=->8530 FOR I9 = 1 TO NO
-->8535 PRINT# 2, NA$(I9)
-=>8540 NEXT I9
-->8580 CLOSE 2
-->8590 RETURN
8996 :
8998 REM ** INSTRUCTIONS
9000 PRINT CHR$(147); : REM ** CLEAR THE SCREEN
9005 PRINT "THIS PROGRAM WILL PLAY A GEOGRAPHY GAME" : PRINT
9010 PRINT "WITH YOU. YOU WILL TAKE TURNS WITH THE" : PRINT
9015 PRINT "COMPUTER. EACH OF YOU WILL BE TRYING TO"; : PRINT
9020 PRINT "THINK OF NAMES OF PLACES SUCH THAT THE" : PRINT
9025 PRINT "FIRST LETTER OF YOUR NAME IS THE SAME AS"; : PRINT
9030 PRINT "THE LAST LETTER OF THE PREVIOUSLY USED"™ : PRINT

138

o o o

BASIC COMMODORE 64 BASIC

9035 PRINT "PLACE NAME." : PRINT

9045 INPUT "ARE YOU READY? "; A$

9065 IF LEFT$(A$,1) <> "Y" THEN 9045

9070 FOR I9 = 1 TO 1000 : NEXT I9

9080 PRINT CHR$(147), : REM *% CLEAR THE SCREEN
9090 RETURN

Program 8-5. File-oriented Geography game.

.Once again we have reaped tremendous benefits from good program
orgamzatlon and extensive use of subroutines. By segmenting the array Geography
program we made it a relatively simple exercise to convert to operate with a data
file. We replaced one subroutine, added two subroutines, and made minor changes
in the control routine. By making minor changes in a well-structured program we
have made major changes in that program’s behavior. It is important to realize that
we have isolated all possible sources of error to small areas of the resulting program.
If the first program had been badly put together, we would have found ourselves
tinkering in numerous places to create the new program. The tinkered program
would have contained many more potential sources of error.

Problems for Section8-8..............cciiiia..

1. Write a program that will list the place names in the Geography game file.

8. Try as people will, somebody will misspell a namein a game of Geography.
Write a program that enables us to edit place names.

8. Write a program that will enable you to eliminate a place name from the
Geography names file.

4. The Geography game logic for the computer response scans the names
array from the first item every time. Modify the game so that the scan
begins at some random point. Don’t forget to come around to the beginning
of the list after checking the last name.

8. The scan for the computer’s turn in Geography covers the entire names
array. That unnecessarily includes the names that have been added during
the current game. Modify the program so that the scan for the computer’s
turn covers only those place names that came from the names file at the
beginning of the current game.

8-4. . .Miscellaneous Information

Let’s explore sequential files behavior in a little more detail. It is important to be
familiar with the use of commas and carriage returns in sequential files. Generally,
the carriage-return character is used to separate data items in sequential files. This
character is automatically sent to the file by a PRINT statement with no trailing
semicolon or comma.

...Comma Separators

Commas also act as a kind of separator. Consider Program 8-6.

136

SEQUENTIAL FILES

100 OPEN 2,8,2,"TEST,S,W"
140 PRINT#2, "THIS, AFTER ALL, IS THE MAIN POINT."
150 CLOSE 2

Program 8-6. Demonstration of commas in @ PRINT# statement.

Some special things happen when a comma is used (or we wouldn’t be discussing
it). The comma in the quoted string will be written into the file. If we try toread this
with an INPUT statement each comma will be interpreted as the end of a data item.
We cannot read those data with three separate INPUT# statements. INPUT#
statements used to read data from a file behave in the same manner as they behave
reading data from the keyboard. We will need three string variables in a single
INPUT# statement to read the file. See Program 8-7.

100 OPEN 2,8,2,"TEST,S,R"
110 INPUT#2, A$, B$, C$
120 CLOSE 2

130 PRINT A$

140 PRINT B$

150 PRINT C$

Program 8-7. Demonstration of multiple INPUT# from a file.

RUN

THIS

AFTER ALL

IS THE MAIN POINT

Figure 8-2. Execution of Program 8-7.

Contrast this with what happens when we use the following statement to write
to a sequential file:

100 OPEN 2,8,2,"TEST,S,R"
130 A$ = "ONE" : B$ = "TWO"
140 PRINT#2, A$, B$

160 CLOSE 2

Program 8-8. Demonstration of comma in PRINT# A$, BS.

Just as the comma separating A$ and B$ would cause spaces to be inserted in the
display for a PRINT statement, they will be inserted in the file. Program 8-9
demonstrates the result.

100 OPEN 2,8,2,"TEST,S,R"
140 INPUT#2, A$

150 CLOSE 2

190 PRINT A$

Program 8-9. Reading file data written by Program 8-8.

RUN
ONE TWO

Figure 8-3. Execution of Program 8-9.

As you can see, A$ reads in the entire string “ONE TWO.” It should be clear that

137

BASIC COMMODORE 64 BASIC

the reading of data from a sequential file must be carefully coordinated with the
writing, and vice versa. For many purposes, it is best to use PRINT# statements to
enter data items into the file one at a time. Let DOS provide the carriage return.

... Updating a Sequential File

In the Geography game program, we updated the sequential file by reading the
whole file into an array in memory at once. Then we simply recreated the entire file
at the end of a game. For very large files that is not possible because the data will not
fit in memory at once. Here is another way.

OPEN a second file in write mode. INPUT# each item from the first file and
immediately PRINT# it to the second file. Develop the necessary logic to make the
necessary changes on the way. Once the updated information is in the new file,
scratch the old file and rename the new one. We are relying here on knowing how
many items are in the file. We could save an item count as the first item in the file, as
we did in the Geography game, or we could even OPEN another sequential file to
hold just that number. The method of using a separate file for the item count is
useful for situations when the count is not known until the program has already
written the data out to the file. Once we have begun to write a sequential file, it is
not possible to back up. Alternatively, it is possible to read the error channel and
stop reading when the error number is equal to 50. That error number tells us that
we have read the last record of the file. In general, anything we can do in our
programs to control the contents of a file is good. It is better to know the number of
items than to risk triggering errors in our programs. This method limits us to files
half the size of a disk. That ought to allow us to work on some reasonable projects
before we buy a second disk drive.

138

Chapter 9
Bit-Map
raphics:
Hi-Res

In Chapter 3 we worked with the display screen, using some of the built-in graphics
characters. The screen accommodates 1000 text and/or graphics characters,
intermixed as we choose. Sixteen colors are available, individually selectable by
character. All of the color character graphics features are accessible by including
the appropriate information and symbols in PRINT statements. Alternatively,
characters and colors can be controlled individually by using POKE.

Bit-map graphics is a whole new world that offers a bit-map screen grid 320
dots wide by 200 dots high. This means that the screen contains 64,000 individually
accessible dots. Sometimes these dots are referred to as pixels. The bit-map screen
is laid out in a grid similar to the character screen. We may think in terms of an X, Y
position on the screen for each dot. Values for X may range from 0 to 319, while Y
goes from 0 t0 199. The point (0, 0) is in the upper left corner and the point (319, 199)
is in the lower right corner. We may create images on this screen in 16 colors.

The bit-map screen occupies a portion of memory in the Commodore 64 con-
taining 8000 bytes. Each byte holds eight bits. Each bit represents a dot on the
screen. Therefore we will be creating images on the screen by actually turning bits
on and off in memory. We will do this by using the commands PEEK, POKE, AND,
and OR.

The 8000 bytes of bit-mapped memory are coordinated with the 1000 bytes of
the character screen beginning at memory address 1024. One byte of the character
screen is used to control the colors possible in an eight-byte block of the bit-map
screen. Bits 4 to 7 are used to set the color of any bit turned on, while bits 0 to 3 are
used to set the color of any off bit. In other words, the high nibble is used to set the

139

BASIC COMMODORE 64 BASIC

color of the on bits, and the low nibble is used for the color of the off bits. That
provides four bits to determine each color. Four bits are all we need for numbers in
the range 0 to 15. A perfect fit!

9-1...Introduction to Bit-Map Graphics
...The Bit-Map Graphics Screen

Bit-map graphics is controlled by directly changing values in memory using the
POKE command. Often we desire to change only a single bit in memory without
changing the rest of the bits in the same byte. So, once we know the memory
address of the byte and the bit position of the bit within the byte, we will use a
statement such as:

1250 POKE MA, PEEK(MA) OR (2"BP)
to turn that bit on. To turn it off we could use
POKE MA, PEEK(MA) AND (255 - 2°BP)

Refer to Programmer’s Corner 7.

The color is determined by setting values in a corresponding location of
memory. But we’ll get to that. For now, we need to examine the layout of the Hi-
Res screen in detail.

The Hi-Res screen is structured just like the character screen. (So we can use
the character screen to set colors.) Each character position is coordinated with an
eight-byte portion of bit-map memory. Each byte consists of eight bits, so we have
the 64000 dots on the screen we need for the 320-by-200 grid. The character position
in the upper left corner of the screen is made up of bytes numbered 0 through 7. The
character position next to it is made up of bytes 8 through 15. The character position
to the extreme right on that line is made up of bytes 312 through 319. The character

_position in the lower right corner of the screen is made up of bytes 7992 through

7999. This is the way in which the 40-by-25 character screen is related to the 320-by-
200 Hi-Res screen. See Figure 9-1.What we need here is a formula that will enable
us to begin with an X, Y position on the screen and come up with a byte and bit-
within-byte in bit-mapped memory.

Given a Y position in the range 0 to 199, we can determine which of the 25 text
character lines it falls within on the character screen by dividing by eight.

1200 TL = INT(Y/8) : REM #* FIND TEXT LINE

The eight comes from 200 divided by 25. This gives a value in the range from 0 to 24.
Since each text line requires eight bytes, TL ® 8 bytes are accounted forand Y — TL
° 8 is the one byte within this text line we need. We can arrive at the same value by
using the logical AND operator to determine which of the bits 0, 1, and 2 are set.
Note that 2° + 2' + 2> =7. Thus, Y and 7 yields the same information.

1210 BL = Y AND 7 : REM ** FIND BYTE WITHIN TEXT LINE

140

BIT-MAP GRAPHICS: HI-RES

Bits

6343210 <———Character Line

)

[Fets
C -
p— ot { 2.

l — Z :l§ I 319

| Character

Block
40x25Characters
25 Lines < 320x200 Pixels

7680- —7992-7999
i 7687 .
= =17999

N

40 Characters

Figure 9-1. Hi-Res screen layout.

Similarly, we can determine which character position we want on the 40-
character text line from the value of X in the range 0 to 319 by

1220 CP = INT(X/8) ¢ REM %% CHARACTER POSITION

This eight comes from 320 divided by 40. Now we have the eight-byte block and
the byte within that block identified.

All this tells us how far from the beginning of the bit-map screen our byte is. For
general purposes we may begin the screen at memory address 8192. That is the 8K
boundary and is easily accessible. BASIC programs begin at 2049, which is the 2K
boundary. So, this leaves 6K for BASIC programs. Programmer’s Corner 9 tells how

to provide for larger programs. We assign the actual memory address for plotting a
dot with

1230 MA = 8192 + TL¥*320 + CP¥*8 + BL

All that remains is to determine the bit position. We can use AND 7 to examine
bits 0, 1, and 2 in the value of X, as we did to find the byte from the value of Y. But
the bits within the byte are numbered from right to left, so we need to subtract that
bit position from 7.

141

BASIC COMMODORE 64 BASIC

1240 BP = 7 - (X AND 7) : REM *#* FIND THE BIT POSITION
does it. And finally,

1250 POKE MA, PEEK(MA) OR 2°BP
does the actual plotting. Adding

1290 RETURN

places all this in a subroutine so we will never, ever have to go through all this logic
again. If we ever get to the point of changing where in memory we locate the bit
map then we will need to change line 1230, but that’s all. We simply set values for X
and Y and GOSUB 1200. See Program 9-la.

1196 :

1198 REM ¥% BIT MAP PLOTTING

1200 TL = INT(Y/8) : REM *# FIND TEXT LINE

1210 BL = Y AND 7 : REM %% FIND BYTE WITHIN TEXT LINE
1220 CP = INT(X/8) : REM ** CHARACTER POSITION

1230 MA = 8192 + TL*320 + CP¥8 + BL

1240 BP = 7 - (X AND 7) : REM #*¥¥* FIND THE BIT POSITION

1250 POKE MA, PEEK(MA) OR 2"BP
1290 RETURN

Program 9-1a. Bit-map graphics plotting routine.

.. .Enabling Bit-Map Graphics

We need to turn bit-map graphics on. This is controlled by a single bit at memory

- address 53265. Bit 5 on turns bit-map graphics on, bit 5 off turns it off. Memory

address 53265 controls other things as well, so we want to change only bit 5.
POKE 53265, PEEK(53265) OR 275

turns bit 5 one, and
POKE 53265, PEEK(53265) AND (255-2"5)

turns it off.
Bit-map graphic occupies 8000 bytes of memory. Setting bit 3 at 53272 in
memory to 1 sets the bit map to begin at 8192.

POKE 53272, PEEK(53272) OR 273

We need to clear out memory beginning at 8192. Otherwise, we will be looking at
whatever happens to be in that segment of memory at the time. We clear this outby
setting all 8000 memory addresses to 0. In BASIC it takes a few seconds. In general,
bit-map graphics is slow in BASIC. But Sprite graphics (see Chapter 10) is quite
fast. Many of the fancy graphics games are programmed in machine language.
Program 9-1b sets up bit-map mode and clears out the Hi-Res memory.

1000 POKE 53265, PEEK(53265) OR 2°5 : REM ** BIT-MAP MODE ON
1010 POKE 53272, PEEK(53272) OR 2°3 : REM *#* SET MEMORY

1423

e o 0

BIT-MAP GRAPHICS: HI-RES

1020 FOR I9 =

8192 TO 16191

-->1030 POKE I9, 0

1040 NEXT I9

Program 9-1b. Setting up the Hi-Res screen.

: REM *% CLEAR MEMORY

Notice that in line 1030 we zero out all eight bits of a memory byte with a single

POKE. Let’s go on.

...Colors on the Hi-Res Screen
We use the 1000 bytes of the character screen beginning at 1024 to set colors in the
8000 byte Hi-Res screen. The byte at 1024 controls bytes0 to 7, 1025 controls bytes8
to 15, and so on up to 2023, which controls bytes 7992 to 7999. The byte in the
character screen sets the color of both on and off bits within the eight bytes of the
Hi-Res screen. The high four bits set the color for on and the low four bits set the
color for off. We arrive at the value of the color byte by multiplying the on color
value by 16 and adding the off color value. The color values are the same as for the
character screen. See Table 9-1.

COLOR VALUE COLOR VALUE
Black 0 Orange 8
White 1 Brown 9
Red 2 Light Red 10
Cyan 3 Gray 1 11
Purple 4 Gray 2 12
Green 5 Light Green 13
Blue 6 Light Blue 14
Yellow 7 Gray 3 15
Table 9-1. The color values.

Thus, a value of 1 establishes white for off and black for on. We would never select
the same color for on and off; that would produce a blank screen. Some
combinations are better than others. Try to select contrasting colors. Itis fairly easy
to experiment. Let’s look at a few sample values in Figure 9-2.

ON COLOR
Black (0)
White (1)
Green (5)
Gray 3 (15)

OFF COLOR 76884 3810
0001
0000
1111
0101

White (1) 0000
Black (0) 0001
Gray 3 (15) 0101
Green (5) 1111

VALUE
1 (0°16+ 1)
16 (1°16 + 0)
96 (5°16 + 15)
245 (15°16 + 5)

Figure 9-2. Sample color values for controlling bit-map screen.

Program 9-1c sets the whole screen to white for off and black for on.

1050 FOR I9 =
1060 POKE I9,
1070 NEXT I9

1024 TO 2023
1

: REM *#% SET BIT MAP COLOR

Program 9-1c. Setting bit-map color in character screen area.

143

BASIC COMMODORE 64 BASIC

The best way to handle setting up and clearing the screen is to create a sub-
routine to use as needed. For this subroutine we should be able to specify the value
to be poked into the character screen to set the two colors. Let’s use C, as in line 1060
of Program 9-1d.

996 :

998 REM #*#% BIT-MAP SCREEN SETUP

1000 POKE 53265, PEEK(53265) OR 2°5 : REM ¥*¥% BIT-MAP MODE ON

1010 POKE 53272, PEEK(53272) OR 2”3 : REM *¥* SET MEMORY

1020 FOR I9 = 8192 TO 16191 : REM #¥* CLEAR MEMORY

1030 POKE 19, 0

1040 NEXT 19

1050 FOR I9 = 1024 TO 2023 : REM *% SET BIT-MAP COLOR
-=>1060 POKE 19, C

1070 NEXT I9

1090 RETURN

Program 9-1d. Bit-map screen setup subroutine.

This subroutine allows us to select a color pattern for the whole screen by setting a
value for C and using GOSUB 1000. We do not have to think about the detail again.

Similarly, we may create a subroutine to restore the normal character screen.
Besides undoing the POKE commands, we should clear the character screen.
Remember, we used that area of memory for the colors on the Hi-Res screen. The
statement PRINT CHR$(147); clears the screen for us and leaves the cursor in the
upper left corner. See Program 9-le.

1096 :

1098 REM %*# RESTORE NORMAL CHARACTER SCREEN
1100 POKE 53265, PEEK(53265) AND (255-2"5)
1110 POKE 53272, PEEK(53272) AND (255-2"3)
1120 PRINT CHR$(147);

1190 RETURN

Program 9-1e. Restoring the normal character screen.

We have created three subroutines. GOSUB 1000 sets up the Hi-Res screen for
us. GOSUB 1200 plots the point (X, Y). GOSUB 1100 restores the normal character
screen.

.. .A S8imple Border

Finally, we can begin to draw figures on the screen. Let’s first write a routine to
display a border around the screen. We need four straight lines. Here is a line on the
left edge of the screen:

X =0

FOR Y = 0 TO 199
GOSUB 1200

NEXT Y

We might write three similar routines for the other edges, or we might combine
them and create a subroutine as follows:

144

BIT-MAP GRAPHICS: HI-RES

196
198
200
210
220
230
250
260
270
280
290

REM ##* PLOT A BORDER
FOR Y = 0 TO 199 : REM ** LEFT AND RIGHT
X=0 ¢ GOSUB 1200
X = 319 : GOSUB 1200

NEXT Y

FOR X = 0 TO 319 : REM ** TOP AND BOTTOM
Y=0 ¢ GOSUB 1200

Y = 199 : GOSUB 1200

NEXT X

RETURN

Program 9-1f. Routine for displaying a border at the edge of the screen.

Program
change t
exercise.

9-1f displays a border at the very edge of the Hi-Res screen. It is easy to
his routine to display a box anywhere on the screen. This is left as an

All we need now is a control routine and our first Hi-Res graphics program is
complete. See lines 100 to 190 of Program 9-2.

100
110
120
-->130
140
190
196
198
200
210
220
230
250
260
270
280
290
996
998
1000
1010
1020
1030
1040
1050
1060
1070
1090
1096
1098
1100
1110
1120
1190
1196
1198

cC =1 REM #% WHITE ON BLACK

GOSUB 1000 REM #%* SET UP

GOSUB 200 : REM ** PLOT A BORDER

GET A$: IF LEN(A$) = O THEN 130

GOSUB 1100 : REM ** RESTORE CHARACTER SCREEN
END

.
.
.
.

REM **# PLOT A BORDER

FOR Y = 0 TO 199 : REM ** LEFT AND RIGHT

X =0 : GOSUB 1200

X = 319 : GOSUB 1200

NEXT Y

FOR X = 0 TO 319 : REM ** TOP AND BOTTOM

Y =0 : GOSUB 1200

Y = 199 : GOSUB 1200

NEXT X

RETURN

REM ## BIT-MAP SCREEN SETUP
POKE 53265, PEEK(53265) OR 2°5 : REM ##% BIT-MAP MODE ON
POKE 53272, PEEK(53272) OR 2°3 : REM #* SET MEMORY

FOR I9 = 8192 TO 16191 : REM **% CLEAR MEMORY
POKE 19, 0
NEXT I9

FOR I9 = 1024 TO 2023 : REM *# SET BIT-MAP COLOR
POKE I9, C
NEXT I9
RETURN

REM ** RESTORE NORMAL CHARACTER SCREEN
POKE 53265, PEEK(53265) AND (255-2°5)
_POKE 53272, PEEK(53272) AND (255-2°3)
PRINT CHR$(147);

RETURN

REM #% BIT MAP PLOTTING

148

BASIC COMMODORE 64 BASIC

1200 TL = INT(Y/8) : REM ** FIND TEXT LINE

1210 BL = Y AND 7 : REM *¥* FIND BYTE WITHIN TEXT LINE
1220 CP = INT(X/8) : REM. #* CHARACTER POSITION

1230 MA = 8192 + TL*320 + CP*3 + BL

1240 BP = 7 - (X AND 7) : REM ¥*¥* FIND THE BIT POSITION

1250 POKE MA, PEEK(MA) OR 2"BP
1290 RETURN

Program 9-2. Plotting a black border on a white screen.

Look at line 150. We simply freeze the drawing on the screen until someone hits any
key at all.

. . Point-to-Point Plotting
Program 9-2 shows how to plot horizontal and vertical lines. That is fine, but what
about lines on a diagonal? Let’s develop a routine for plotting a line between any
two given end points. The two end points may be expressed as (X1, Y1) and (X2,
Y2). Using the equation

y=mx+b

for each point, we may solve simultaneous equations to obtain values for m and b.
We get

= (Y2 —Y1)/(X2 — X1) and b=Y1—mXl1
The result is that for a given value of X, the corresponding value of Y is given by
Y=Y1+m(X—Xl1)
Putting this all together yields the routine of Program 9-3a.

400 M = (Y2-Y1)/(X2-X1)

410 FOR X = X1 TO X2 STEP SGN(X2-X1)
420 Y = Y1 + M*¥(X-X1)

430 GOSUB 1200 : REM *#* PLOT ROUTINE
440 NEXT X

490 RETURN

Program 9-3a. Plotting a line from (X1, Y1) to (X2, Y2).

This program works well (slowly, to be sure) for most lines. But suppose we feed
this subroutine two points such as (20, 2) and (20, 191). Line 400, where we divide by
(X2 — X1), causes an error because we are trying to divide by zero. We need
another routine that avoids dividing by 0. We need another routine that avoids
dividing by (X2 — X1). Further, suppose we feed this subroutine two points such as
(10, 2) and (11, 190). We get only two plotted dots on the screen. Both flaws can be
solved by writing a second subroutine that scans Y and solves for X. Program 9-3b
does this.

500 M = (X2-X1)/(Y2-Y1)

510 FOR Y = Y1 TO Y2 STEP SGW(Y2-Y1)

520 X = X1 + M¥(Y-Y1)

530 GOSUB 1200 : REM #*¥ PLOT ROUTINE

540 NEXT Y

590 RETURN

Program 9-3b. Plotting a line from two points for (X2 — X1) =0.

146

e o

BIT-MAP GRAPHICS: HI-RES

Notice that Program 9-3a cannot plot vertical lines and Program 9-3b cannot plot
horizontal lines. If we simply select Program 9-3a (GOSUB 400) when (Y2 — Y1) is
greater than (X2 — X1) and Program 9-2b (GOSUB 500) otherwise, we will get a
reasonable number of dots on the screen. When (Y2 — Y1) = (X2 — X1) it doesn’t
matter which we select. Now we have the pieces of a program to plot any straight
line in a fixed color. We can easily prepare DATA statements to draw any figures
we care to design. Program 9-3c does the job of reading data and controlling which

plotting routine to use.

296
298
300
310
320
330
340
390

REM *# READ DATA AND PLOT THE LINE

READ X1,Y1,X2,Y2

IF X1 = -1 THEN 390

IF ABS(X2-X1) > "ABS(Y2-Y1) THEN GOSUB 400
IF ABS(X2-X1) <= ABS(Y2-Y1) THEN GOSUB 500
GOTO 300

RETURN

Program 9-3¢. Reading plotting data and controlling plotting.

The control routine is the shortest of all. We need to set up the bit-map screen,
do the plotting from data, provide a delay, and restore the screen to normal. Just

like Program 9-1. See Program 9-3d.
90 REM ** CONTROL GRAPHING FROM DATA

100
110
120
140
150
190

C =1

GOSUB 1000 : REM ¥¥* BIT-MAP SETUP

GOSUB 300 : REM ¥¥* PLOT FROM DATA

GET A$: IF LEN(A$) = 0 THEN 140

GOSUB 1100 : REM ¥** TURN OFF BIT-MAP MODE
END

Program 9-3d. Control routine for graphing from data.

Now we have a complete program in Program 9-4.

90 REM ## CONTROL GRAPHING FROM DATA

100 C

110
120
140
150
190
296
298
300
310
320
330
340
390
396
398
400
410
420

GOSUB 1000 : REM ** BIT-MAP SETUP

GOSUB 300 : REM *# PLOT FROM DATA

GET A$: IF LEN(A$) = O THEN 140

GOSUB 1100 : REM *#* 'TURN OFF BIT-MAP MODE
END

REM *# READ DATA AND PLOT THE LINE

READ X1,Y1,X2,Y2

IF X1 = -1 THEN 390

IF ABS(X2-X1) > ABS(Y2-Y1) THEN GOSUB 400
IF ABS(X2-X1) <= ABS(Y2-Y1) THEN GOSUB 500
GOTO 300

RETURN

REM ##* DRAW A NON-VERTICAL LINE
M = (Y2-Y1)/(X2-X1)

FOR X = X1 TO X2 STEP SGN(X2-X1)
Y = Y1 + M®(X-X1)

147

BASIC COMMODORE 64 BASIC

430
440
490
496
498
500
510
520
530
540
590
996
998
1000
1010
1020
1030
1040
1050
1060
1070
1090
1096
1098
1100
1110
1120
1190
1196
1198
1200
1210
1220
1230
1240
1250
1290

GOSUB 1200 : REM *#* PLOT ROUTINE
NEXT X
RETURN

REM *% DRAW A NON-HORIZONTAL LINE
M = (X2-X1)/(Y2-Y1)

FOR Y = Y1 TO Y2 STEP SGN(Y2-Y1)
X = X1 + M¥(Y-Y1)

GOSUB 1200 : REM *#* PLOT ROUTINE
NEXT Y

RETURN

REM ** BIT-MAP SCREEN SETUP

POKE 53265, PEEK(53265) OR 2°5 : REM ** BIT-MAP MODE ON
POKE 53272, PEEK(53272) OR 2°3 : REM ** SET MEMORY

FOR I9 = 8192 TO 16191 : REM **% CLEAR MEMORY

POKE I9, 0

NEXT I9

FOR I9 = 1024 TO 2023 : REM **% SET BIT-MAP COLOR
POKE I9, C

NEXT I9

RETURN

REM ** RESTORE NORMAL CHARACTER SCREEN
POKE 53265, PEEK(53265) AND (255-2"5)
POKE 53272, PEEK(53272) AND (255-2"3)

PRINT CHR$(147);

RETURN

REM ##% BIT MAP PLOTTING

TL = INT(Y/8) : REM *% FIND TEXT LINE

BL = Y AND 7 : REM *¥* FIND BYTE WITHIN TEXT LINE
CP = INT(X/8) : REM *% CHARACTER POSITION

MA = 8192 + TL%*320 + CP*8 + BL

BP = 7 - (X AND 7) : REM #* FIND THE BIT POSITION

POKE MA, PEEK(MA) OR 2"BP
RETURN

Program 9-4. Drawing a figure by using line data.

We could even use this routine to plot a border. The data for the four lines
would look like:

9000
9005
9010
9015
9900

DATA 0, 0,319, O
DATA 319, 0,319,199
DATA 319,199, 0,199
DATA 0,199, 0, O
DATA -1,0,0,0

An 8000-byte segment of the Commodore 64 memory, beginning at 8192, may be
used for direct high-resolution graphics. Each bit of every byte represents a dot on
the screen, making available a grid 320 dots wide and 200 dots high. The color is
controlled in eight-byte blocks by each byte of the regular character display screen.

Bits4to 7

set the color of an on bit and bits 0 to 3 set the color of an off bit in the Hi-

148

BIT-MAP GRAPHICS: HI-RES

Res screen. The Hi-Res screen is enabled by setting bit 5 of memory location 53256
and bit 3 of memory location53272 both on. Turning them both off and clearing the
character screen with CHR$(147) restores things to normal. We have developed
subroutines to make the job easier. Program 9-1d sets up and clears the Hi-Res
screen. Program 9-1a plots a dot at the point (X, Y). Program 9-3c reads data for the
end points of a line and controls drawing the line. Program 9-le restores the
conventional character screen.

Problems for Section 9-1o,

1. Modify the border-plotting subroutine of Program 9-2 so that it may also be
used to plot a border at any distance from the edge of the screen by setting
the value of a variable DI before calling it.

8. Modify the border-plotting subroutine of Program 9-2 so that it will draw a
box anywhere on the screen, given the (X, Y) coordinates of the four
corners.

3. Supply data for Program 9-4 to draw a box using the midpoints of the four
edges of the screen as the four corners.

4. Supply data for Program 9-2 to draw a tic-tac-toe board.

9-2...A Graphics Example: A Lighthouse

Just for fun, let’s draw a lighthouse. We should do the drawing on graph paper so
that we can easily read the X, Y coordinates for each end of each straight line in the
drawing. See Figure 9-3.

154,501 166.50)
Line2 Line3
Line1
130,100 ' (50,100) ‘ 1701001 ' 11101001

Figure 9-3. Drawing of a lighthouse on-graph paper.

149

BASIC COMMODORE 84 BASIC

The first three lines are numbered as examples in Figure 9-3. Line 1 is represented
by DATA 30, 100, 110, 100. Line 2 is represented by DATA 50, 100, 54, 50. And line 3
is represented by DATA 70, 100, 66, 50. In a similar fashion we obtain the rest of the
DATA statements shown in Program 9-5a. When we have so much data in a
program like this, it is a good idea to insert REM statements to separate it into
sensible groups.

996 :

998 REM #* THE TOWER
9000 DATA 30,100,110, 100
9005 DATA 50,100, 54, 50
9010 DATA 70,100, 66, 50
9018 REM ** TOP OF TOWER
9020 DATA 50, 50, 70, 50
9025 DATA 50, 50, 50, 45
9030 DATA 70, 50, 70, 45
9035 DATA 50, 45, 70, 45
9040 DATA 55, 45, 56, 40
9045 DATA 65, 45, 64, 40
9050 DATA 56, 40, 64, 40
9055 DATA 58, 40, 58, 35
9060 DATA 62, 40, 62, 35
9065 DATA 58, 35, 62, 35
9078 REM ** THE DOOR
9080 DATA 60,100, 60, 92
9085 DATA 60, 92, 64, 92
9090 DATA 64, 92, 64,100
9095 DATA 63, 96, 63, 96
9118 REM ** THE WINDOW
9120 DATA 56, 70, 62, 70
9125 DATA 56, 67, 62, 67
9130 DATA 56, 64, 62, 64
9135 DATA 56, 70, 56, 64
9140 DATA 59, 70, 59, 64
9145 DATA 62, 70, 62, 64
9900 DATA -1, 0, 0, O

Program 9-5a. Data for drawing a lighthouse.

All we have to do is supply the data of Program 9-5a for Program 9-4 to draw our
lighthouse. _

As long as we have gone this far with the lighthouse, what with a door and a
window, we really ought to have a blinking light, don’t you think? One of the nice
things about working with subroutines is that we can easily add new elements to our
programs. We can go into the main routine of Program 9-4 and insert a subroutine
call to a light blinking subroutine at line 600. Now, in order for the light to blink on,
we can call our subroutine at 1200, but for it to blink off, we need a statement to turn
off the bit that GOSUB 1200 turns on. We could write a whole new subroutine, or
we could use the fact that the value of MA and BP are all we need, and they are
available from when we turned the light on. See Program 9-5b.

596 :
598 REM ##% BLINKING LIGHTHOUSE LIGHT

600 X = 59 : Y = 37
610 FOR I2 = 1 TO 150

180

BIT-MAP GRAPHICS: HI-RES

Figure 94. Execution of Program 9-4 with data from Program 9-5a.

620 GOSUB 1200 : REM ** PLOT

625 FOR I9=1T0600 : NEXT I9 : REM ¥** DELAY
630 POKE MA, PEEK(MA) AND (225-2"P)

635 FOR I9=1T0200 : NEXT I9 : REM *¥* DELAY
640 NEXT I2

690 RETURN

Program 9-5b. Blinking light for the lighthouse.

This is hard to show with a figure in a book. You will have to type this onein to see it
work. Be sure to add a line

130 GOSUB 600 : REM #*¥* THE BLINKING LIGHT

to Program 9-4 when you do this.

There is always room for improvement. The program we have put together can
draw only one lighthouse of one size at one spot on the screen. We might convert the
data so that every point is calculated in terms of a single starting point. That way we
will be able to move the lighthouse to any point that keeps the entire figure on the
screen. Our border drawing subroutine could be used to frame our picture. Or you
might prefer to plot the border from data. We could determine the data for many
figures and save it in data files on disk. Then we will have a whole library of figures
to use for later graphics applications. The possibilities are truly unlimited.

You might want to work with figures on the screen and incorporate more than
two colors by including color data with the line data. This will require partitioning
your drawings to allow for the fact that only two colors are available in any 8-by-8
bit block.

181

BASIC COMMODORE 84 BASIC

Problems forSection®-8.................ciiiinnnn.

The possibilities for drawing figures on the screen are literally unlimited. We can
only begin to make some suggestions leading you into problems of interest. Let
your imagination lead you into exciting graphics demonstrations.

1. Adjust the DATA statements in the lighthouse drawing program so that each
set of data is calculated in terms of a fixed starting point. Using (X0, Y0) as
(30, 100), the first three DATA lines will be

9000 DATA 0, 0, 80, O
9005 DATA 20, 0, 24,-50
9010 DATA 40, 0, 36,-50

Now the control routine can select a variety of starting points and draw the
lighthouse anywhere on the screen with just one plotting subroutine.

8. Supply data to draw a sailboat on the screen by using Program 9-4.

8. Supply data to draw a simple TV set on the screen by using Program 9-4.

9-3...Bit-Map Graphs from Formulas

Figures that can be described by using a formula are easy to graph. We simply use a
FOR loop to scan one variable and use the formula to calculate the other. If the
formula is given in terms of X and Y then we have our points to plot (provided we
are not attempting to plot a vertical line). If not, then we convert to X and Y. There
are many many examples from mathematics.

.. .Cartesian Coordinates

Let’s develop a method for adjusting X and Y values in the conventional Cartesian
coordinate system for plotting on the Commodore 64 screen. We would like to
move the (0, 0) point nearer the center of the screen and alter the orientation for Y
values so that they increase upwards instead of down. Given the 320-by-200
Commodore 64 bit-map screen, the point (160, 100) is as close to the center as we
can get. So, that corresponds to the point (0, 0) in a Cartesian system. The X
conversion is easy: we simply want to move each plotted point to the right on the
screen. The Y conversion requires that we turn the graph “upside down.” So the
point:

(X1, Y1)
in the conventional Cartesian coordinate system becomes
(160 + X1, 100 — Y1)

on the Commodore 64 screen.
Plotting points that fit a formula is straightforward enough. We replace the sub-

183

BIT-MAP GRAPHICS: HI-RES

routine that reads data with one that determines values of X and Y by using the
formula. For our first graphs we might use only functions. This is a good application
for a DEFined function. Our subroutine will scan all possible values for X and
determine if the Y value is on the screen. With (0, 0) at (160, 100) on the Commodore
64 screen, the value of X will range from —160 to 159. We must assure that the Y
value is restricted in the range from —100 to 99. If Y is in range, then the routine
should do the plotting. If not, then the routine should simply try the next X value.
Parabolas are nice, so let’s draw a graph of

y=0.1x> — 3x — 57

It would also be nice to have the axes displayed. Since we are not going to use
the logic of the point-to-point graphing we did earlier, we will use a separate
plotting routine for this. See Program 9-6.

100 C = 1

110 GOSUB 1000 : REM #*%# BIT MAP SETUP

120 GOSUB 200 : REM *# PLOT AXES

120 GOSUB 300 : REM *# PLOT A FUNCTION

130 GET A§ : IF LEN(A$) = 0 THEN 130

140 GOSUB’ 1100 : REM ## RESTORE CHARACTER SCREEN

190 END

196 :

198 REM ** PLOT AXES

200 Y = 100

210 FOR X = 0 TO 319 : GOSUB 1200 : NEXT X

220 X = 160

230 FOR Y = 0 TO 199 : GOSUB 1200 : NEXT Y

290 RETURN

296 :

298 REM *#* DEFINE THE FUNCTION

300 DEF FNA(X) = .1%#X"2 - 3% - 57

310 GOSUB 600 : REM ¥¥* DO THE PLOT

390 RETURN

596 :

598 REM ## SCAN THE SCREEN FOR FNA(X)

600 FOR X1 = =160 TO 159

610 Y1 = FNA(X1)

620 X = 160 + X1 : Y = 100 - Y1

630 IF Y < 0 OR Y > 199 THEN 650

640 GOSUB 1200

650 NEXT X1

690 RETURN

996 :

998 REM ## BIT-MAP SCREEN SETUP

1000 POKE 53265, PEEK(53265) OR 275 REM #%* BIT-MAP MODE ON
1010 POKE 53272, PEEK(53272) OR 273 REM %% SET MEMORY
1020 FOR I9 = 8192 TO 16191 : REM %% CLEAR MEMORY
1030 POKE I9, O

1040 NEXT I9

1050 FOR I9 = 1024 TO 2023 : REM %% SET BIT MAP COLOR
1060 POKE 19, C

1070 NEXT I9

1090 RETURN

oo o0

183

BASIC COMMODORE 64 BASIC

1196 :

1198 REM ** BIT MAP PLOTTING

1200 TL = INT(Y/8) : REM #% FIND TEXT LINE

1210 BL = Y AND 7 : REM *#® FINE BYTE WITHIN TEXT LINE
1220 CP = INT(X/8) : REM *¥* CHARACTER POSITION

1230 MA = 8192 + TL¥*320 + CP*8 4+ BL

1240 BP = 7 - (X AND 7) : REM ** FIND THE BIT POSITION

1250 POKE MA, PEEK(MA) OR 2"BP
1290 RETURN

Program 9-6. Plotting a function in bit map.

We could easily change this program to place the axes anywhere on the screen.

Figure 9-5. Execution of Program 9-6.

.. .Polar Graphs :

Polar equations often produce interesting graphs. One of the reasons we don’t draw
many polar graphs is that they take too much tedious calculation involving
trigonometric functions. We can easily produce the graphs without the tedium by
using computer graphics and letting BASIC perform the calculations. While the
slow plotting of BASIC may be disappointing for many purposes, the effect is very
well suited to polar graphing. We can see the sequence in which points are drawn.

We may use

R=1-2 cos (G)

as a sample equation. Using sines and cosines we obtain the X and Y coordinates as
follows:

184

BIT-MAP GRAPHICS: HI-RES

X =R cos (G) and Y =R sin (G)

where G is the central angle in radians. To obtain a full graph the central angle must
sweep through a full 360 degrees or 2. That is about 6.29. We can get about 60
points by using STEP .1 in a FOR...NEXT loop. Since the point (0, 0) is in the
corner of the Commodore 64 Hi-Res screen we need to adjust the starting point, just
as we did with the parabola All points (X1, Y1) will become (160 + X1, 100 — Y1)
on the screen.

It would be nice to display a polar axis right on the screen with the graph.
We can easily plot a line beginning at the point (0, 0) and extending to the right edge
of the Commodore screen. Placing the polar axis on the screen will clearly locate the
graph for us.

Once we have a working program, it will be a simple matter to plug in other
equations. In this way we can look at dozens of graphs in the time it would take to
draw a single graph by hand. Itis interesting to watch the figures as they are formed
on the screen. Drawing a polar graph by hand, like typing a 100-page paper on a
portable typewriter, is one of those things everybody ought to do once in a lifetime.

Our program divides nicely into three packages: the control routine, the polar
axis plotting routine, and the graph plotting routine. Let'’s work on them in that
order.

In the control routine we establish the Hi-Res screen in the usual manner, by
setting a value of C and calling the subroutine with GOSUB 1000. Next, we define
the X and Y axes and call a polar axis plotting subroutine. Polar graphs plotted true
size are usually very small. So we should provide a scaling factor to produce a larger
graph. We define the radial scale in RS. In the actual plotting subroutine we will be
arranging for the central angle to range through a full rotation of 2zr. But we might
like to control the step size in the control routine. Thus we set the value of SP here. '
Finally, we call the plotting subroutine. When it is all over, we freeze the Hi-Res
screen. Any input from the keyboard allows the program to restore the normal
character screen. And that’s all there is to it. See Program 9-7a.

100 C = 6 : GOSUB 1000 : REM ** PREPARE HI-RES SCREEN
110 YO = 100 : X0 = 160 : REM ** PLACE THE POINT (0,0)
120 GOSUB 300 REM #* PLOT A POLAR AXIS

130 RS = 25 : ST = .1 REM ## SET SCALE AND STEP
140 GOSUB 200 REM *# PLOT THE GRAPH

150 GET A$: IF LEN(A$) 0 THEN 150

160 GOSUB 1100 : REM *#¥ RESTORE CHARACTER SCREEN

190 END

Program 9-7a. Control routine for polar graphing.

SO §) ee o oo

The easy section is the polar axis plotting routine. All we do is draw a line from
the point (X0, Y0) to the right edge of the screen, as in Program 9-7b.

396 :
398 REM #* PLOT POLAR AXIS
400 Y = YO

410 FOR X = X0 TO 319
420 GOSUB 1200 : REM ## PLOT A POINT

188

BASIC COMMODORE 64 BASIC

430 NEXT X
490 RETURN

Program 9-7b. Drawing a polar axis.

Now let’s look at the actual plotting subroutine. We need to provide for the
angle to sweep a full rotation. This is done witha FOR. . .NEXT loop ranging from
0 to 6.29. The number of points we want plotted may well depend on the size of the
graph. We may want more points for larger graphs. That is why we let the calling
routine establish the step size SP. A large step size will not give enough points of the
graph, while too small a step size will take too long to plot. We can then experiment
with each new equation until we obtain a satisfactory graph. See Program 9-7c.

196 :

198 REM *% PLOT POLAR GRAPH
200 FOR G = 0 TO 6.29 STEP ST

-=>210 R1 = 1 - 2 ¥ COS(G)
-->220 R9 = RS # R1 .
230 X1 = R9 * COS(G) : Y1 = R9 * SIN(G)
-=>2U40 X=X0 + X1 : Y=Y0 - Y1 : GOSUB 1200
250 NEXT G
290 RETURN

Program 9-7c. Polar graph plotting subroutine.

In Program 9-7c, the polar equation is defined in line 210, the scaling factor is

implemented in line 220, and the Cartesian X and Y values are calculated in line 240.

It will be a simple matter to change the polar equation by changing line 210. We

must be aware that other polar equations may contain points that are off the screen.

We can test for out-of-range values and skip the plotting for those points. Further,

we must be alert for equations that may cause BASIC to attempt to divide by zero.
Program 9-8 consists of five subroutines and one control routine.

100 C = 6 : GOSUB 1000 : REM ** PREPARE HI-RES SCREEN
110 YO = 100 : X0 = 160 : REM ** PLACE THE POINT (0,0)
120 GOSUB 300 REM *% PLOT A POLAR AXIS

130 RS = 25 : ST = .1 : REM #% SET SCALE AND STEP

140 GOSUB 200 : REM ** PLOT THE GRAPH

150 GET A$: IF LEN(A$) = O THEN 150

160 GOSUB 1100 : REM ##% RESTORE CHARACTER SCREEN
190 END

196 :

198 ﬁEM *% PLOT POLAR GRAPH
200 FOR G = 0 TO 6.29 STEP ST

-=>210 R1. = 1 - 2 * COS(G)
-=>220 R9 = RS * R1
230 X1 = R9 * COS(G) : Y1 = R9 * SIN(G)
-->240 X=X0 + X1 : Y=YO - Y1 : GOSUB 1200
250 NEXT G
290 RETURN
396 :
398 REM #* PLOT POLAR AXIS
400 Y = YO

410 FOR X = X0 TO 319
420 GOSUB 1200 : REM ** PLOT A POINT
430 NEXT X

186

BIT-MAP GRAPHICS: HI-RES

490 RETURN

996 :

998 REM *#* BIT-MAP SCREEN SETUP

1000
1010
1020
1030
1040
1050
-->1060
1070
1090
1096
1098
1100
1110
1120
1190
1196
1198
1200
1210
1220
1230
1240
1250
1290

POKE 53265, PEEK(53265) OR 2°5
POKE 53272, PEEK(53272) OR 273

FOR I9 = 8192 TO 16191
POKE 19, 0

NEXT I9

FOR I9 = 1024 TO 2023
POKE I9, C

NEXT 19

RETURN

REM #% BIT-MAP MODE ON
REM #* SET MEMORY
REM ** CLEAR MEMORY

Y

: REM **% SET BIT-MAP COLOR

REM #* RESTORE NORMAL CHARACTER SCREEN

POKE 53265, PEEK(53265) AND
POKE 53272, PEEK(53272) AND
PRINT CHR$(147);

RETURN

REM *#* BIT MAP PLOTTING

TL = INT(Y/8) : REM %%
BL = Y AND 7 : REM ¥*¥
CP = INT(X/8) : REM %%
MA = 8192 + TL¥320 + CP*8 +
BP = 7 - (X AND 7) : REM *¥

POKE MA, PEEK(MA) OR 2"BP
RETURN

(255-2"5)
(255-2"3)

FIND TEXT LINE

FIND BYTE WITHIN TEXT LINE
CHARACTER POSITION

BL

FIND THE BIT POSITION

Program 9-8. Complete polar graphing program.

See Figure 9-6 for a trial run.

Figure 9-6. Execution of Program 9-8.

187

BASIC COMMODORE 64 BASIC

Problems forSection®9-3............................

1. Write a program to plot a circle with our polar equation plotting program,
using the polar equation

R=1
8. There are lots of interesting polar graphs. Graph any of the following:

a. R=1+2 cos (G) — 3 sin (G)*
.b.R =3 +sin (3G)

¢. R =2+ sin (2G)

d. R =sin (G) + cos (G)

8. Many polar equations produce nice-looking graphs but will cause our polar
plotting program to fail. Some points will lie off the graphics screen. Some
values of G will cause division by zero. We can easily test whether a point
is on the screen between lines 230 and 240 of Program 9-7c. If a point is off
the screen, don’t plot it. If the formula we enter at line 210 has an indicated
division then we can put in a test between lines 200 and 210. If the current
value of G would cause such a zero division, don’t even execute line 210.
Adding these features will enable you to draw graphs for any of the
following;

a. Rcos (G)=1

b.R=1+R cos (G)

¢. R =tan (G)

a. R = 2G (make the scale 1 and make G range from —50 to 50)
6. R = 2/G (scale 25 and G from —10 to 10)

%
PROGRAMMER’S CORNER 9

Memory Use for Graphics.........................
. ..Memory Allocation

As programs grow in size it may become important to be aware of where more
things are in memory. Normally, BASIC programs begin at address 2049. This value
is stored in two bytes at addresses 43 and 44. To confirm this information, we can
type in the following line:

PRINT PEEK(43) + 256*PEEK(44)

If we are using the Hi-Res screen, our program must not expand past 8191. This
leaves 6143, or just under 6K for our programs. It is a simple matter to move our
BASIC program area by changing memory locations 43 and 44. (In practice, we will
usually leave memory location 43 set to 1.)

188

BIT-MAP GRAPHICS: HI-RES

In programs that use the Hi-Res screen it makes sense to set the beginning of
program memory to 16385. That is the 16K boundary. Then we can use the Hi-Res
screen at will. The magic number we want to POKE at 44 comes from 16384/256.
We get 64. So we enter

POKE 44, 64
But that is not enough to make the move. We must also enter two more lines:

POKE 16384, 0
NEW

It turns out that BASIC.requires a 0 byte just before program space. Look at
memory location 2048 any time. When you have nothing important in memory
sometime, try loading that location with a nonzero value. Then type NEW or RUN.
It won’t. POKE 2048, 0 brings it back. We must also type NEW to convey the
change in memory pointers to BASIC itself. Now we have almost 24K for our
program.

.. .Program 8ize

Sometimes it is desirable to compress our programs to occupy a minimum amount
of memory. We can do this by combining statements on a single line and removing
all unnecessary spaces. A program such as

100 FOR I = 832 TO 894
120 PRINT PEEK(I);
130 NEXT I

can be compressed into the following line:
100 FORI=832T0894:PRINTPEEK(I); :NEXT

Almost everything we might do to compress programs also makes them very hard
to read. If space is the overriding concern, then we can do this. We can save space
by eliminating all REM statements, too. If you decide to compress a program, be
sure to keep a copy in a form that is easy to read and edit.

189

Chapter 10

Sprite
Graphics

A Sprite is a marvelous graphics character. We can define many Sprites and place
up to eight of them on a screen at one time. Normal Sprites are 24 dots wide and 21
dots high, measured in standard bit-map screen terms. Thus, a Sprite is three bytes
wide and 21 lines high. We can command the Commodore 64 to double the width
and/or height of any Sprite. (This can only be done once.) We can double a
dimension and restore it to normal. Any Sprite can be displayed in any of the 16
Commodore 64 colors anywhere on the screen. We can use them on the character -
screen and on the Hi-Res screen. Sprites are very fast—fast enough to produce good
animation in BASIC. The eight Sprites are identified by numbers from 0 to7. Thus,
some of the things we do to control them are accomplished by setting and unsetting
a single bit in a byte designated for this purpose. Other features are controlled by
setting a whole byte to a desired value. Sprites are priority ordered from 0 to 7, so
that Sprite 0 will pass in front of Sprite 3. The Commodore 64 can tell our program
when two Sprites are in collision.

There is a lot to control here. So we will have to learn a lot of detail to get the
first Sprite on the screen. We will select a simple Sprite and get it on the screen with
as little hassle as possible.

10-1...0ur First Sprite: A 8imple Figure

To simplify the making of our first Sprite, let’s do a solid block. We will design more
interesting figures in the next section. A Sprite is 24-by-21 dots—that is 63 bytes. If
we set every bit on in a byte, the numeric value of the byte becomes 255. So, this

160

SPRITE GRAPHICS

Sprite is defined by 63 bytes set to 255. Right now we need to give the computer the
63 bytes for this Sprite. .
In order to store our Sprite data in memory, we need to decide where to put it.
In order to do that, we need to understand more about the structure of the Sprite
system. Once the data are stored our program must “point” to them. Thisisdonein -
another memory location. Let’s begin with this.

.. .Sprite Pointers
The eight memory locations from 2040 to 2047 are set aside to point at data for
Sprites 0 to 7. (Our BASIC program begins at 2049 and BASIC uses 2048.) Weneed a
scheme so that the values X and X + 1 point to adjacent Sprites. This means that a
change of 1 in a Sprite pointer represents as close to 63 as possible. The number 64 is
much better suited to reckoning in binary than 63. Since the largest value we can
store in a single byte is 255, the largest address we can specify is 25564 or 16320.
This enables us to specify any 64-byte boundary in the first 16K of memory (16K is
16384 bytes.) A more advanced technique can be used to access memory above this
address. We need to find an area of memory that is not used for something else that
we are doing. We can use memory from 16192 to 16254 for our first Sprite.
Remember that the Hi-Res screen ends at 16191. If our program does not use Hi-
Res, then we can use memory below 16192. All of the examples in this chapter will
be on the character screen. Later, you will be able to combine figures on the Hi-Res
screen with Sprites. We have room for three Sprites from 16192 to 16383. 16383 is
the end of the first 16K of memory. Address 16192 is 64*253. Therefore, we POKE
253 into memory location 2040 to point at 16192 for the first Sprite. That is Sprite 0.

Everything else about Sprites is controlled by bits in memory from 53248 to
53294. These 47 bytes are referred to as registers. Where possible, Sprite N is
controlled by bit N. So, for example, to turn on Sprite 0, we set bit 0 in 53269 to 1
without disturbing the other bits. The other bits control the other 7 Sprites. We can
make some of this a little easier if we set some base value to 53248 at the beginning
of our programs and add a smaller number to arrive at the actual address. For
example, for 53269 we can add 21 to the base value. So, register 21 is located at
53269 in memory.

In any case, in order to set the desired bit we must first obtain the current value
using PEEK. We then set the bit we want and POKE the result. It looks like this:

100 B = 53248
110 POKE B + 21, PEEK(B + 21) OR 270

which is equivalent to
110 POKE 53269, PEEK(53269) OR 270

It seems easier to figure all of the Sprite registers from a variable set to 53248 rather
than entering the five-digit memory address in every case.

161l

BASIC COMMODORE 84 BASIC

.. .8Sprite Colors

Sprite colors are set by the values of the registers from 39 to 46, or memory
53287 to 53294. Colors here are the same as for bit-map graphics. So, to set the color
to Light Green for Sprite 5, we use a statement such as

235 POKE B + 39 + N, 13

.. .Sprite Position

Each Sprite has its own X and Y position registers. They are at0 and 1 for Sprite 0, 2
and 3 for Sprite 1, and 14 and 15 for Sprite 7. So, for Sprite 0, we set the X and Y
positions with

310 POKE B, X : REM #* X POSITION FOR SPRITE 0
320 POKE B + 1, Y : REM ** Y POSITION FOR SPRITE 0

Let’s put this all together for our first Sprite program. Program 10-1 creates a
Sprite at 16192 and places it on the screen at (100, 50).

100 PRINT CHR$(147);

200 FOR I = 16192 TO 16192 + 62
210 POKE I, 255

220 NEXT 1

230 POKE 20490, 253

250 B = 53248

260 POKE B+21, PEEK(B+21) OR 270
300 POKE B+39, 7

319 POKE B, 100

320 POKE B+1, 50

Program 10-1. Our first Sprite program.

o

REM ** STORE SPRITE DATA

REM ** POINT TO SPRITE 0

REM ** SPRITE 0 COLOR
REM ** X POSITION SPRITE 0
REM ** Y POSITION SPRITE 0

iz
.

Figure 10-1. Execution of Program 10-1.

163

REM ** TURN ON SPRITE O ONLY

SPRITE GRAPHICS

Itis a good idea to type this program in and run it. This way, you will have a feel
for what is happening. Once this program is typed in, you can easily create a second
Sprite by making Sprite 1 point to the same place as Sprite 0. The way to distinguish
between them is to assign a different color. Of course, eventually we will have
differently shaped Sprites. That is the whole idea, after all. But we are trying to
work up to that. With Program 10-1 in the computer, add the lines of Program 10-2.

240 POKE 2041, 253 REM *%* POINT TO SPRITE 1

270 POKE B+21, PEEK(B+21) OR 271 REM #*#* TURN ON SPRITE 1 ONLY
400 POKE B + 40, 5 REM *#* SPRITE 1 COLOR

410 POKE B + 2, 200 REM *% X POSITION SPRITE 1
420 POKE B + 3, 100 REM ##* Y POSITION SPRITE 1

Program 10-2. Adding a second Sprite to Program 10-1.

Figure 10-2. Execution of Program 10-2.

Now begin to experiment. Try moving things around by typing commands in
immediate mode. Type

POKE B+3, 50

What happens? The Green block moved vertically, because you changed the value of
Y. Now type
POKE B+3, O

The Green block disappeared. It has simply been plotted off the screen. We'll look
into this more a little later, but let’s bring it back with

163

BASIC COMMODORE 64 BASIC

POKE B+3, 150

All these changes are pretty easy if you use the screen editing features of BASIC.
Now, enter

POKE B, 255

This one takes the yellow block as far to the right as we can get it with a single
memory POKE. We'll soon see that we have to coordinate this with yet another
register to yield X values greater than 255.

A Sprite is a graphics figure that we control by using POKE to place information
into registers provided for this purpose in the Commodore 64. Each Sprite is 24 dots
wide and 21 dots high. For our first example, we have simply turned every dot on.
Up to eight Sprites can be on the screen at the same time. Memory from 2040 to 2047
is set aside for Sprite pointers. Sprite registers begin at 53248 as the base. The bits of
register 21 are used to turn the corresponding Sprite on and off. The color registers
are located in the range 39 to 46. Each byte sets the color for a Sprite. The X and Y
registers are paired by Sprite, 0 and 1 for Sprite 0, 2 and 3 for Sprite 1, etc.

Problems forSectionl0-1...................ccvun.

1. Modify Program 10-1 to create eight Sprites by setting all of the Sprite
pointers to point to the same Sprite data. Place all eight Sprites on the screen
in a row across the screen with each Sprite in a different color in the range of
0 to 7. Use a PRINT statement to label the colors.

8. Modify Program 10-1 to create eight Sprites by setting all of the Sprite
pointers to point to the same Sprite data. Place all eight Sprites on the screen
in a row across the screen with each Sprite in a different color in the range
8 to 15. Use a PRINT statement to label the colors.

8. Modify Program 10-1 to create eight Sprites by setting all of the Sprlte
pointers to point to the same Sprite data. Place all eight Sprites on the screen
along a diagonal.

4. Modify Program 10-1 to display a Sprite at a random location on the screen
in a color selected at random. Use a delay loop to leave it on for a few
seconds before moving it.

8. Set up the simple Sprite of this section. Move it across the screen in small
steps with a delay loop between changing positions. Experiment with
steps and the length of the delay to create smooth motion.

10-8...8pritemaking

Now that we know a little about controlling a Sprite, it is time to make one. Once we
have thought of a figure, we need to lay it out on the 24-by-21 grid. Then we have to
convert what is on the grid to numeric data that we POKE into memory. Let’s draw
a circle with a vertical line through the center. See Figure 10-3.

164

SPRITE GRAPHICS

-
N
o0 O
-
H
N =
- N
[o e Xe)]
W
N =
()]
[o4]
H
N
—_

o [N =
L3 {e)]
.

.

©CO~NOOBWN - O

e o o o
e o o o o o
® e o o o o © o o o o o o o o J|OO

e o © & o o o © ¢ oo o o o o o

-

(64}
.
.

Figure 10-3. Sprite chart for a circle with a vertical line.

Each block in a Sprite chart represents a bit in a data value that we are going to
POKE into memory. Remember in the example of Section 10-1 that we turned
every bit on by using 255 for every data value. We are going to turn on only those
bits that represent a point to be displayed in the bit map of our figure. The bytesare
laid out in 21 rows of three bytes each. Clearly, the first byte in the upper left corner
is 0, because there is no display in the first eight bits. The middle byte in the first row
does have a value. It can be represented in binary as 01111110 or

2%+ 2° + 2% + 2% + 22 + 2! which equals 126

in base ten. The next byte in the top row is just like the first byte—nothing is
displayed. So, the first three data values are 0, 126, and 0. Now to the second row.
The first byte is 00000001. That is easy; the base ten value is 1. The second byte is
00011000 or

2* + 2* which equals 24

in base ten. The third byte is 10000000, which comes out to 128. So, the data we have
so far might be entered in data statements as follows:

1000 DATA 0,126,0
1001 DATA 1,24,128

168

BASIC COMMODORE 64 BASIC

We need to carry out the same operation on the rest of the figure. The final result is
the 63 values we need for our Sprite.

This process is definitely tedious. The computer is very good at tedious things.
We certainly ought to be able to get it to help us here. We can get it to do all of the
work for us. Well, we will have to create the figures.

.. .A Simple Sprite Editor
Since Commodore 64 BASIC has such a versatile screen editor, let’s take advantage
of it here. We can easily draw our Sprite right on the screen and instruct the
computer to convert the character data into numeric data. In order to do this we
need to have the figure on the screen in a form that is easy for the computer toread.
We could just put the figure there and read it with PEEK commands. That is one
way. Here is another: create the figure in such a way that it is actually string data in
the DATA statements of a program. This way, we cansave the program on disk and
easily make changes in it as we are perfecting a figure. We can even avoid typing the
DATA statements in the first place. Look at Program 10-3a.

100 D$ = " " : REM ¥*¥* 24 SPACES
105 FOR I = 100 TO 120
-->110 PRINT I; "DATA "; CHR$(34); D$; CHR$(34)
115 NEXT I
120 END

Program 10-3a. Displaying a Sprite grid on the screen.

In line 110 we create DATA statements by placing 24 spaces in quotes. We produce
the quotes with CHR$(34). Now, we can use the cursor movers to draw our figure.
We select a convenient character on the keyboard and place it wherever we want a
point in the Sprite displayed. Of course, we will be careful not to scroll the figure off
the screen. When we have a figure we are satisfied with, we simply place the cursor
on DATA line 100 and press RETURN 21 times. The program that generated the
chart is gone and in its place we have 21 DATA statements containing our figure in
string form. Now we need a program that will analyze the string data and convert
them to numeric data appropriate for placing into memory with POKE statements.

We can convert an eight-character string into a single data byte by turning on
the bit corresponding to any character position that is occupied by the character we
selected to draw the figure on the screen and leaving the other bits off. Program
10-3b converts such a Sprite string into a data byte.

898 REM %% DATA BYTE FROM SPRITE STRING

900 MB = 0 : REM #% ZERO THE DATA BYTE

910 FOR I9 = 1 TO 8 : REM *# [,OOK AT EACH CHARACTER
-=>920 IF MID$(SP$,I9,1) <> "+" THEN 940

930 MB = MB OR '2°(8-I9) : REM ** TURN ON THIS BIT

940 NEXT I9

990 RETURN

Program 10-3b. Calculating Sprite data from a Sprite drawing.

Line 920 looks for a plus sign in the Sprite drawing.
We also need a routine to read the 24-character string data in our Sprite

168

SPRITE GRAPHICS

drawing, break it up into three eight-character pieces, and display the numeric data
for actual use. If we merely display the data then we will have to write them down
somewhere and later type up DATA statements. Let’s make the computer even
POKE the data into the correct memory locations. Later, we can write a program to
generate DATA statements. While we are at it, our program should POKE the
correct Sprite pointer. Program 10-3c will POKE Sprite data into memory from a
Sprite drawing in DATA statements on the screen.

498 REM ** SPRITE POKER

500 INPUT "SPRITE NUMBER"; SN

505 IF SN < 0 OR SN > 7 THEN 500

510 INPUT " BLOCK NUMBER"; BN

515 IF BN < 0 OR BN > 255 THEN 510

520 MA = 64%*BN : POKE(2040+SN), BN : REM ¥* POKE THE POINTER
525 FOR I = 0 TO 20 : READ A%

530 FOR X = 0 TO 2

535 SP$ = MID$(A$,X*8+1,8) : GOSUB 900

540 POKE MA, MB : MA = MA 4 1 : REM #*% POKE SPRITE DATA
545 NEXT X

550 NEXT I

590 END

Program 10-3c. POKEing Sprite data from a Sprite drawing.

Putting this all together into one program, we can create our Sprite and POKE
the corresponding data into memory. The first time we run the program it creates
the DATA statements for us to use as a Sprite drawing palette. After we actually
incorporate the DATA statements into the program by pressing RETURN 21 times,
our program will POKE the data in the right place. If this is a Sprite we will be
working on a lot, we may save the whole thing as a program on disk and retrieve it at
any time.

100 D$ = " " : REM *¥* 24 SPACES
105 FOR I = 100 TO 120

110 PRINT I; "DATA "; CHR$(34); D$; CHR$(34)

115 NEXT I

120 END

498 REM ** SPRITE POKER

500 INPUT "SPRITE NUMBER"; SN

505 IF SN < 0 OR SN > 7 THEN 500

510 INPUT "™ BLOCK NUMBER"; BN

515 IF BN < 0 OR BN > 255 THEN 510

520 MA = 64%*BN : POKE(2040+SN), BN : REM ** POKE THE POINTER
525 FOR I = 0 TO 20 : READ A$

530 FOR X = 0 TO 2

535 SP$ = MID$(A$,X*8+1,8) : GOSUB 900

540 POKE MA, MB : MA = MA + 1 : REM ¥*¥* POKE SPRITE DATA
545 NEXT X

550 NEXT I

590 END

898 REM *¥ DATA BYTE FROM SPRITE STRING

900 MB = 0 : REM *¥ ZERO THE DATA BYTE

910 FOR I9 = 1 TO 8 : REM #% [LOOK AT EACH CHARACTER

920 IF MID$(SP$,I9,1) <> "+" THEN 940

1687

BASIC COMMODORE 84 BASIC

930 MB = MB OR 2"(8-I9) : REM ** TURN ON THIS BIT
940 NEXT I9
990 RETURN

Program 10-4. Drawing Sprites and POKEing Sprite data.

We can use the Sprite data that our program POKEs into memory with any Sprite
program we may write. Sprite data stays in memory until changed, rewritten, or
replaced. If we have a very long program to write, this idea becomes important. We
can write one program to load Sprites and another to use them for drawing graphics
figures.

Now we can get back to drawing our circle with a line through it. Notice that
we could create some of the international pictographs for no right turn, no smoking,
no trucks, etc., by setting the line at an angle and then creating other Sprites for each
of the different symbols. Placing the circle Sprite in the same position as a figure
Sprite would create the whole sign. But we are getting ahead of ourselves. Running
Program 10-4 and using the cursor movers, we can draw Figure 10-4a.

RUN
100 DATA & 4 "
101 DATA " + ++ + "
102 DATA " + ++ + "
103 DATA ++ ++ ++ n
104 DATA " + ++ + "
105 DATA " + ++ + "
106 DATA " ++ ++ ++ "
107 DATA " ++ ++ ++ "
108 DATA " ++ ++ ++ "
109 DATA " ++ ++ ++ "
110 DATA " + ++ + "
111 DATA " + ++ + n
112 DATA " ++ ++ ++ "
113 DATA " + ++ + "
114 DATA " + ++ + "
115 DATA " e+t "
116 DATA " "
117 DATA " "
118 DATA " "
119 DATA " "
120 DATA " "

Figure 104a. Sprite screen drawing: circle with a vertical line.

Now we place the cursor on line 100 and press return 21 times. Run the program
again. It will ask for the Sprite number and the block number. Remember blocks
253, 254, and 255 are beyond the end of the Hi-Res screen.

.. .Creating the Illusion of Motion

There isn’t a whole lot that we can do with a circle having a line through it. But if we
create a few more circles with the line in different positions, we can place different
Sprites in slightly different locations on the screen in succession and produce the
illusion that we have a wheel rolling across the screen. The Sprite data are in
memory ready to use. Let’s do the others.

168

SPRITE GRAPHICS

100 DATA " PR O "
101 DATA " + + "
102 DATA " + + "
103 DATA * ++ ++ "
104 DATA " + 4+ "
105 DATA " + +4+ + "
106 DATA " ++ ++ ++ "
107 DATA " ++ ++ ++ "
108 DATA " ++ ++ +=+ "
109 DATA " ++ ++ ++ "
110 DATA " + ++ + "
DATA " +++ + "
DATA " ++ ++ "
DATA + + "
DATA " + + "
DATA ++++++ "
DATA " "
DATA n n
DATA " n
DATA " "
20 DATA "

Figure 10-4b. Sprite screen drawing: circle with a diagonal line.

T QU i G
P NS\ r QT G
WOV &E=WN =

100 DATA ¢ s "
101 DATA © + + "
102 DATA " + + "
103 DATA *»

104 DATA "

105 DATA " + + "
106 DATA " ++ ++ "
107 DATA " 4444+ttt ttttttttst+t+s "
108 DATA " +4++++++tt+s+ttttttt++ "
109 DATA " ++ ++ "
DATA " + + "
DATA + + "
DATA " ++ ++ "
DATA " + + "
DATA " + + "
DATA " ++++++ "
DATA " "
DATA " n
DATA " "
DATA " "
DATA " "

Figure 10-4c. Sprite screen drawing: circle with a horizontal line.

169

[P S QY
PR\ QY
~oONUNTEWN =0

-— b b
N — =
[@XVe] o]

BASIC COMMODORE 64 BASIC

- ed e e
[
O~ =W

—
[\S =Y
o\

DATA " P "
DATA + + "
DATA " + + "
DATA " ++ ++ "
DATA " +++ + "
DATA " + ++ + M
DATA " +4+ ++ ++ "
DATA " ++ ++ ++ "
DATA n + 4 +4 +4+ ”
DATA " ++ ++ ++ "
DATA " + +4 + "
DATA * + +++ "
DATA " ++ ++ n
DATA " + + "
DATA " + + "
DATA " ++++++ "
DATA " "
DATA L n
DATA " "
DATA n "
DATA " "

Figure 10-4d. Sprite screen drawing: circle with another diagonal line.

We discussed the use of 253, 254,and 255 as Sprite pointers beginning at 2040 to
point to 16192, 16256, and 16320. That provides for three Sprites. There is a segment
of memory used for the Datassette that we might use for additional Sprites. There is
room for three Sprites beginning at 832. We may use pointers 13, 14, and 15 to take
advantage of this area. Alternatively, since we are only using the character screen,
we could just begin with pointer 252 and take up some of the Hi-Res screen. Once
the Sprite data and Sprite pointer are in place, the Sprite drawing program is

completely independent. Let’s get on with our wheel-drawing program.
We need to do at least four things to display a Sprite:

1. Select a color.

&. Select a Y position.
8. Select an X position.
4. Turn it on.

Program

98 R
100
110
-=>120
130
140
150
196
198
200
210
220

10-5 is a simple program to roll the wheel horizontally across the screen.

EM ** ROLLING A WHEEL

B = 53248

FOR SP = 0 TO 3

POKE B + 39 + SP, O : REM *¥* ALL BLACK

POKE B + 2%SP + 1, 100 : REM *#* Y POSITION

NEXT SP

PRINT CHR$(147); : REM *#¥% CLEAR THE SCREEN

REM #* CONTROL THE DISPLAY

FOR X = 100 TO 255 STEP 4

FOR SP = 0 TO 3

POKE B + 2%3P, X+SP : REM ** X POSITION

170

SPRITE GRAPHICS

230 POKE B + 21, PEEK(B+21) OR 2"SP : REM ¥*¥* TURN THIS SPRITE ON

-=->240 FOR J = 1 TO 50 : NEXT J ¢ REM *¥* DELAY
250 POKE B + 21, 2°SP ¢ REM *¥ TURN OTHER SPRITES OFF
260 NEXT SP
270 NEXT X

Program 10-5. M oving four Sprites across the screen.

We can experiment with various components of this short program until we have
created an effect we really like. We can change the color in line 120. Line 240
controls the delay. We might want to change the Y position value and make the
wheel go uphill or downhill.

...X Positions Greater Than 288

Note that the value for the X position of a Sprite must be entered into a Sprite
register by using POKE. That means that the largest value can be 255. But, the
screen is 320 dots wide. A second register is used to specify that the X value indicates
the distance from 255. For example, if we want to place a Sprite at 300 for X, we
must set the X value at 300 — 256, or 44, and then turn on the corresponding bit in the
register that keeps track of which Sprites are past 255 in the horizontal position. This
is done in register 16. Thus we need a statement such as

POKE B+16, PEEK(B+16) OR 2°SP

In order to access the left side of the screen with that Sprite later on, we must turn
that bit off with something like

POKE B+16, PEEK(B+16) AND (255-2"SP)
Or we could move all Sprites to the left side of the screen with POKE B + 16, 0.

.. .SUMMARY

We have developed a system to generate Sprite data from a Sprite figure drawn as
strings in DATA statements. With Sprites loaded into memory, it is a simple matter
to write programs to control Sprites on the screen. By drawing several slightly
different Sprites in sequence in different positions, we have created the illusion of
motion.

Problems for Section 10-8

Using the techniques of this section, you are limited only by your imagination. You
can draw any figures on the screen that you have the patience to create and control.
Experiment; be adventuresome. Try your own figures. We offer here problems to
create additional programs that will serve as tools to further facilitate your Sprite
program writing.

1. Write a program to read Sprite data and POKE it into the designated
memory. Include the Sprite number and the memory block number for the
Sprite pointer. Use the following data:

171

BASIC COMMODORE 64 BASIC

999 DATA 0, 13 : REM ** SPRITE 0, DATA BLOCK 13
1000 DATA 0,126,0,1,24,128,4,24,32

1001 DATA 24,24,24,16,24,8,32,24,4

1002 DATA 96,24,6,96,24,6,96,24,6

1003 DATA 96,24,6,32,24,4,16,24,8

1004 DATA 24,24,24,4,24,32,1,24, 128

1005 DATA 0,126,0,0,0,0,0,0,0

1006 DATA 0,0,0,0,0,0,0,0,0

These are the data for the circle of this section with a vertical line. (The
next step in this program would be to work with data for several Sprites.)

8. Write a program to display DATA statements given a Sprite number.
Suggestion: produce seven lines of data and number them in such a way that
the Sprite number is part of the line number. For example, code Sprite 0 in
lines 1000 through 1006, Sprite 7 in lines 1070 through 1076. After each Sprite
DATA statement is done, move the cursor to the first new DATA statement
and press RETURN seven times. When you have all the DATA statements
you need, then you must remove the lines of the program that generated all
this in the first place. Save the resulting DATA block on disk if possible;
otherwise use tape. The resulting DATA statements will resemble those in
Problem 1 above without line 999.

8. Design Sprites for the six faces of a die. Write a program to roll a die at
random and display the corresponding face.

10-3...An Animation Example

No treatment of animation is complete without a little person moving about the
screen. Let’s have our little person climbing a set of stairs. We can create the stairs
with the SHIFT-O graphics character. That can be displayed by printing
CHR$(111).

We need at least two slightly different figures of our little person to help create
the illusion of smooth motion. Using the technique for creating figures developed in
the last section, we can produce the Sprites of Figures 10-5a and b.

RUN
100 DATA " "
101 DATA " "
102 DATA + "
103 DATA © ++ ++ "
104 DATA " "
105 DATA " + + "
106 DATA " + + "
107 DATA + + "
108 DATA " ++ o+ "
109 DATA " ++ + "
110 DATA " ++ + + "
111 DATA " "
2 DATA " + + "
3 DATA " + + "
4 DATA " + "
5 DATA " + + "
6 DATA " + "

SPRITE GRAPHICS

117 DATA
118 DATA
119 DATA
120 DATA

Figure 10-5a.

RUN
100
101
102
103
104
105
106
107
108

-
- O
o\

- e) e
- ed)) b b)
OOV EWN =

-
N —
[@}Ve]

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

Sprite screen drawing of a little person.

"
"
n

"

+++
++ + +

+

"
n
n
"

Figure 10-5b. Modified Sprite screen drawing of a little person.

Even these crude figures will fool the viewer into seeing a little person on the
screen. Sprites do not need to be completely realistic. Often they merely suggest the
figure we have in mind. Once we have entered the data for these figures into
memory, we need a program to move things around. Program 10-6 manages that

for us.

1 REM
2 REM
3 REM
4 REM
5 REM
6 REM

10 PRINT

#% 147
RLL!
** 183

%%
% q

19
1

#2154

15 PRINT :
20 PRINT "
25 FOR I9 =
30 PRINT " ;
35 FOR I9 = 1 TO 8 : PRINT CHR$(183);
40 PRINT CHR$(19)

45 FOR I = 1 TO 13

=>
=>
=>
=>
=>
=>

CLEAR SCREEN
BLACK COLOR
THICK LINE FOR FLOOR
HOME
STEP CHARACTER
LT BLUE COLOR

CHR$(147); CHR$(144);

PRINT : PRINT

1 TO 8 : PRINT CHR$(183); : NEXT I9

: PRINT :

50 PRINT TAB(24-I); CHR$(111)
55 NEXT I
98 REM ** SET SPRITES UP
100 B=53248
120 POKE B+39, O : POKE B+40,0
130 POKE B, 100

: POKE B+1,100
173

PRINT

¢ NEXT I9

BASIC COMMODORE 64 BASIC

}gg POKE B+2,100 : POKE B+3,100
198 REM ** WALK UP STAIRS

200 FOR I = 100 TO 200 STEP 8
207 POKE B+1,254-1 : POKE B+3,254-1
210 FOR J = 1 TO 140 : NEXT J
220 POKE B,I : POKE B+21,1

230 FOR J = 1 TO 140 : NEXT J
240 POKE B+2,I+4 : POKE B+21,2
290 NEXT I

296 :

298 REM ** WALK ON SECOND FLOOR
300 FOR I = 200 TO 255 STEP 3
310 FOR J = 1 TO 90

320 POKE B,I : POKE B+21,1

330 FOR J = 1 TO 90 : NEXT J
340 POKE B+2,I : POKE B+21,2
390 NEXT I

400 PRINT CHR$(154);

Program 10-6. Person climbing stairs.

We have produced all of the graphics characters by printing the CHR$ of their
numeric value for easy reading with a character printer. The values are easily
obtained by using GET A$ ina program to determine the ASC of each character we
want. Or we can find the characters we like from Appendix C. When we write a
program like this we should experiment with delay loops and step increments until
we achieve a smooth motion that conveys the image we have in mind. This program
can be fine-tuned still more. We include a figure showing stages on the screen, but
you will have to type it all in to get the true feel of the display.

Figure 10-6. Execution of Program 10-6.

174

SPRITE GRAPHICS

We have included a Spritemaking chart to summarize all of the features of
Sprite graphics in Programmer’s Corner 10. You may want to refer to it often.

PROGRAMMER’S CORNER 10

Additional Sprite Features and Techniques.......
...The Sprite Screen

The visible Sprite screen has the same dimensions as the Hi-Res screen—320-by-200
bits. It is laid out in such a way that any Sprite can be “displayed” completely off the
visible screen. This makes it possible to have a figure appear to be emerging from
the edge.

A Sprite will be fully visible if the Y value is in the range 50 to 249 and the X value
is in the range 24 to 343. If either value falls outside its range, then part or all of the
figure will be off the visible screen. The value of Y may range from 0 to 255. The
value of X may range from 0 to 255 with the corresponding Sprite bit in register 16

set to 0. With the Sprite bit in register 16 turned on, the value of X may range from 0
to 88.

.. .Sprite Expansion
Sprites can easily be displayed at double the X dimension by turning on the

corresponding Sprite bit in register 29. Register 23 controls the Y direction. Note
that we can display only normal or double. We cannot double a second time. The
Sprite is restored to normal size by turning the corresponding bit off.

450 POKE B + 29, PEEK(B+29) OR 2"SN

doubles the width of Sprite SN. The upper left corner of the Sprite does not move.
All positioning is from this point on the Sprite. Werestore Sprite SN to normal width
with '

550 POKE B + 29, PEEK(B+29) AND (255-2"3N)

We can POKE B + 29, 255 to double all Sprites, and POKE B + 29, 0 to make them
all normal.

.. .Collision Detection

Two registers are used for collision detection. Register 30 reflects collisions of
Sprites with other Sprites. Register 31 reflects collisions of Sprites with figures in the
background. Each bit that is turned on in the register means that the corresponding
Sprite is involved in a collision. So, if register 30 reads 3, then Sprites 0 and 1 are in
collision, because 3 is the combination of 1 and 2, or bit 0 and bit 1. Similarly, 9
implies that Sprites 0 and 3 are in collision. Suppose the value of register 30 is 15.
Then Sprites 0 through 3 are all involved in collisions. It is up to the programmer to
monitor the collision registers and find the collisions in pairs before the pattern
becomes too complex to sort out.

178

BASIC COMMODORE 64 BASIC

When using PEEK to read the collision registers, you should know that you
have to enter PEEK once to clear the register and a second time to read the current
condition. '

.. .Memory Allocation

One technique for working with more than eight Sprites is to have more Sprite data
in memory and then simply change the Sprite pointers in memory locations 2040 to
2047 as needed.

In Programmer’s Corner 9 we saw how to move the beginning of BASIC
program memory. In programs that use the Hi-Res screen it makes sense to set the
beginning of program memory to 16385, the 16K boundary. Then we can use the
Hi-Res screen at will and load all the Sprites we might ever need in the area from
2148 to 8190. Each Sprite uses 64 bytes. So, we could put data for 96 Sprites in there.

We found in Chapter 10 that we could enter Sprite data in one program and use
them in another. This technique saves a lot of program memory. Another method is
to use disk files to store Sprite data and read them with our Sprite programs.

.. .Spritemalker’s Table of Sprite Registers

POKE FOR SPRITE N
(base address — B3348)
Turn on the Sprite B + 21, PEEK(B+21) OR 2°'N
turn off with AND (255—2°N)
Sprite pointer 2040 + N, pointer to 64-byte boundary
requires bank info above 255 (16320)
Sprite color B + 39 + N, color
Low order of X position B+ 2°N, X
High order of X position B + 16, PEEK(B+16) OR 2°'N : B + 2°N, X—256
turn off with: PEEK(B+16) AND (255—2"N)
Y position B+2°N+1,Y
Double Sprite width B 4+ 29, PEEK(B+29) OR 2'N
restore with AND (255—2°N)
Double Sprite height B 4+ 23, PEEK(B+23) OR 2'N
restore with AND (255—2"N)
Sprite collision IF PEEK(B+30) AND 2'N =2'N this Sprite is
involved in a collision
PEEK clears this register
Background collision IF PEEK(B+31) AND 2'N = 2N this Sprite col-
lides with the background
PEEK clears this register

Table 10-1. Sprite register specifications

176

.
~ Chapter 11

L

Prograimimi
Sound an
Mugic

by Scott Banks

The Commodore 64 offers a fully programmable electronic music synthesizer. By
writing relatively simple BASIC programs, we will be able to produce songs with
three-part harmony. With equal ease we will discover how to create exciting sound
effects. This powerful capability is provided by a device known as SID, short for
Sound Interface Device.

SID appears as 29 memory locations in the range 54272 through 54300. We give
instructions to SID by using the POKE statement to place values in the first 25 of
these special locations. (The remaining four locations may be accessed with a
PEEK command to obtain the status of the SID operation and are not important for
our purposes here.) To use SID, you must be familiar with the POKE statement (see
Chapter 3), logical bit values, and the use of AND and OR (see Chapter 7).

In an effort to make programming easier and clearer, all of the examples and
exercises in this chapter will begin with the following statements:

10 S=54272
20 FOR I=0 TO 24 : POKE S+I,0 : NEXT I

Line 10 frees us from having to remember and use numbers like 54272 and
54276. By setting S equal to 54272, the start of SID’s memory range, we can refer to
any SID location by simply adding to S a value from 0 to 24. Later, we will be
careful never to change the value of S.

Line 20 is included to initialize the SID for the beginning of each program run.
We POKE a zero into each of the 25 SID locations to put the synthesizer into a
known condition before proceeding. Perhaps most important, the system is
guaranteed to be quiet at this time!

177

BASIC COMMODORE 64 BASIC

Each of the SID locations controls a specific aspect of the sound or sounds
currently being generated. We must POKE values into particular locations to begin
to produce sound. Thereafter, we may POKE other values to modify or enhance the
sound.

11-1...Frequency and Volume

In the simplest case, a musical note is composed of two essential ingredients,
frequency and volume. The frequency of a note is nothing more than its pitch. A
low-pitched note has alow frequency and a high-pitched note has a high frequency.
As far as SID is concerned, we must tell it just what frequency we desire. A number
in the range from 1 to 65535 can describe all of the frequencies that SID is able to
produce. The higher the number, the higher the frequency and of course, the higher
the pitch. To SID, a frequency number of 4291 corresponds to the piano note
middle C. Specifying a frequency of zero is allowed and produces no sound. (By
the way, the frequency numbers used by SID are not the actual hertz or cycles per
second values, but are proportional by a factor of 16.4). Table 11-1 lists musical
notes and their corresponding SID frequency values. - '

NOTE FREQ NOTE FREQ
C—0 268 C—4 4291
CH—0 284 CH—4 4547
D—0 301 D—4 4817
Dé—0 318 D#—4 5103
E—0 337 E—4 5407
F—0 358 F—4 5728
F#—0 379 Fé—4 6069
G—0 401 G—4 6430
GH—0 495 Gé—4 6812
A—0 451 A—4 7217
AK—0 477 Ab—4 7647
B—0 506 B—4 8101
Cc—1 536 C—5 8583
C#—1 568 CH—5 9094
D—1 602 D—5 9634
Dé—1 637 D#—5 10207
E—1 675 E—5 10814
F—1 716 F—5 11457
Fé—1 758 F#—5 12139
G—1 803 G—5 12860
G#—1 851 G#—5 13625
A—1 902 A—5 14435
A$—1 955 A¥—5 15294
B—1 1012 B—5 16203
C—2 1072 C—6 17167

178

PROGRAMMING SOUND AND MUSIC

NOTE FREQ NOTE FREQ
C#—2 1136 C#—6 18188
D—2 1204 D—6 19269
D#—2 1275 D#—6 20415
E—-2 1351 E—6 21629
F-2 1432 F—6 22915
F#—2 1517 F#—6 24278
G—2 1607 G—6 25721
G#—2 1703 G#—6 27251
A—2 1804 A—6 28871
A#—2 1911 A#—6 30588
B—2 2025 B—6 32407
C-3 2145 C—-7 34334
C#—3 2273 C#—7 36376
D—-3 2408 D—7 38539
D#—-3 2551 D#—7 40830
E-3 2703 E-7 43258
F-3 2864 F—7 45830
F#—3 3034 F#—7 48556
G—-3 3215 G-—-7 51443
G#—3 3406 G#—T7 54502
A3 3608 AT 57743
A#—3 3823 A#—7 61176
B—3 4050 B—7 64814

Table 11-1. Musical Notes and SID Frequencies. (C ourtesy of Commodore Electronics
Limited.)

SID is able to produce three different notes simultaneously. To do this, SID has
three independent tone sources called Voice 1, Voice 2, and Voice 3. To begin, we
need only concern ourselves with Voice 1. We choose a frequency for Voice 1 by
executing POKE statements to locations S and S+ 1. Assuming F to be a value in the
range 0 to 65535, the following statements will instruct SID to use frequency F for
Voice 1:

POKE S,(F-32768) AND 255
POKE S+1,F/256

The first POKE assigns the low-order byte of F to location S. By subtracting 32768,
we obtain a proper integer value. The low byte is isolated by using AND 255. The
second POKE isolates the high byte of F with a simple division. The POKE will
automatically trim the quotient to an integer. We must use such a technique to split
frequency values into two bytes for SID.

The volume is controlled by a number in the range0 to 15. A volume setting of 0
means no sound at all, while a volume of 15 tells SID to produce maximum sound
output. A POKE to location S+24 is used to set the volume.

179

BASIC COMMODORE 64 BASIC

10 S=54272

20 FOR I=0 TO 24 : POKE S+I,0 : NEXT I
100 POKE S+24,15

120 POKE S+6,15%16

140 POKE S+4,16+1

200 INPUT "FREQ"; F

220 IF F<0 OR F>65535 THEN 900
240 POKE S,(F-32768) AND 255
250 POKE S+1,F/256

290 GOTO 200

900 END

Program 11-1. Frequency test.

Program 11-1 is a short example designed to demonstrate how easy it really is
to choose a frequency for SID. Lines 10 and 20 are standard initialization for our
sound programs. Line 100 sets the volume to 15, the maximum. Use the manual
volume control on your TV set to adjust the sound to a comfortable level. It isn’t
necessary to understand why just yet, but lines 120 and 140 are required to make
Voice 1 available for our use. Later, we'll see just what they do. At line 200, a value is
accepted for F. The purpose of line 220 is to ensure that F is in the range 0 to 65535,
causing the program to terminate if it is not. Line 240 and 250 POKE the high and
low bytes of F, as described earlier. The program loops via line 290.

When you run this program, you are prompted for a frequency value. Enter a
legal value, such as 4291. Assuming your TV is properly adjusted, a note will sound
immediately. And if you don’t do anything else, that note will play forever! In the
meantime, the computer will prompt again for a new frequency value. As soon as
you enter another value, the new note will play instead.

Try entering the values 4291, 4817, and 5407. This will sound like do re me (C,
D, and E on the piano). By entering the full range of allowed values, you can hear
the eight-octave span of your computer’s voice. Enter 0 to obtain silence. Enter —1
(or any value out of range) to exit the program.

..SUMMARY
In this section we have met SID, the Sound Interface Device contained within your
Commodore 64 computer. SID appears as 29 memory locations, starting with
54272. We use the POKE statement to place values into the first 25 of these locations.
To make life easier, we always assign the value 54272 to the variable S, adding an
offset in the range of 0 to 24 to S for each POKE.
SID is easily able to sound a musical tone, but must be told the desired volume .

and frequency of the note. The volume may range from 0 to 15. We have learned
how to specify the frequency using a value ranging from 0 to 65535.

Problems forSectionll-1...................cc0vun...

1. Modity line 100 of Program 11-1, trying other values from 0 to 15 for the
volume. Further modify the program to prompt for a volume as well as
frequency. Add the appropriate POKE to have SID change the volume
along with the frequency.

180

o o 0

PROGRAMMING SOUND AND MUSIC

&. Write a program that employs a FOR loop to change the value of F. Make F
span the range 0 to 65535 by using various STEP increments. Each value of
F should be transmitted to SID with a POKE so you can hear theresult. Try
having F go from 65535 to 0 (use a negative STEP value). A further en-
hancement would be to insert a delay loop, so the tone remains steady for
each value of F.

8. Now try changing the volume by using a FOR loop. Choose a frequency
and let it sound continuously. Change the volume automatically by using a
POKE to location S+24.

11-2...Waveforms

In Program 11-1, the following line was included:
140 POKE S+l,16+1

The SID location S +4 is known as the control register for Voice 1. Each of the eight
bits of this register controls some aspect of Voice 1 operation. The four high-order
bits allow us to select a waveform. The four low-order bits of this register have a
purpose too. We really don’t want to concern ourselves very much with the low-
order bits at this time. It is worth noting, however, that the lowest order bit (with a
value of 1) is the gate bit and isrequired to initiate sound output. In the example line
140 above, the value 16 +1 is entered into the control register location with a POKE.
The number 16 represents one of the high-order bits and selects a waveform. We
add one to this to set the gate bit as well.

The names of the waveforms are based on their appearance on an electronic
instrument called an oscilloscope. The four waveforms available are triangle,
sawtooth, pulse, and noise. Each is selected by setting the proper bit in the register,
using values of 16, 32, 64, and 128, respectively. In the previous example, the tri-
angle waveform was selected by using the value 16. That’s a good place to start.

...The Triangle Waveform

The triangle waveform is an approximation of a sine wave. In musical terms,
however, it does contain odd harmonics (although it is not particularly rich in
them). It is pleasant and somewhat hollow sounding, rather like a flute.

...The Sawtooth Waveform

For a brighter, more brassy sound than the triangle waveform, you would select the
sawtooth wave. The sawtooth contains odd and even harmonics, both in reasonably
high proportion.

...The Pulse Waveform

The pulse waveform is really an adjustable rectangular wave. The pulse width of a
rectangular wave determines its harmonic content. For SID, the pulse width can
range from 0 to 4095. The value 2048, right in the middle of the range, will cause a

181

BASIC COMMODORE 64 BASIC

square wave to be emitted. We must use a set of two POKE statements to assign the
desired pulse width to locations S+2 and S+3, similar to the way we assigned the
frequency. For our sample programs, we will use these statements to assign the
pulse width P to SID’s Voice 1: '

POKE S+2,P AND 255
POKE S+3,P/256

In contrast to a frequency value, a pulse width value cannot exceed 32768.
Therefore we are able to use a simpler expression for the first POKE.

You will be able to generate a tone that varies from bright and hollow (a square
wave, PW = 2048) to nasal and reedy (a narrow pulse, PW = 50). Pulse width
values in the range from 0 to 2047 will sound just like those in the range 4095 to 2049.
Values less than about 50 or greater than about 4045 are generally too quiet to be
useful. Note that locations S+2 and S +3 will only affect the sound output when the
pulse waveform is selected.

...The Noise Waveform

The noise waveform is of a random nature. Although the noise waveform is
essentially unpitched, the frequency value selected does have a significant effect.
The output can be varied from a scratchy rumble to a rushing or hissy sound. Noise
waves make it possible to simulate drums that are highly percussive and have no
definite pitch. They are also useful for special effects such as explosions, missiles,
gunshots, wind, etc.

We have learned that SID is capable of a variety of waveforms. Each waveform,
because of its harmonic content, produces a unique sound. The triangle and
sawtooth waves are the basis of conventional music. The pulse waveform, in
addition to frequency control, has a variable pulse width. The noise waveform is
most useful for special effects.

To produce any sound output at all from any of the voices, a waveform must be
selected for that voice. It is strongly suggested that you select only one waveform
per voice, however. As it happens, the waveforms do not add together, as you
might expect. Furthermore, there is a possibility that the noise output will “lock up”
if it is selected along with any other waveform.

Problems forSectionl1ll-8...................cc0....

1. Modify line 140 of Program 11-1, replacing the value 16 with 32 and 128.
This will allow you to sample the sawtooth and noise waveforms, respec-
tively. Be sure to include +1 after the waveform selection value. A further
program modification would be to prompt for a waveform value in
addition to the frequency. In this way you could readily compare the
different waveforms at various frequencies.

8. Create a program that selects the pulse waveform for Voice 1. For sim-
plicity, select one frequency and use it for the duration of the program. For

183

PROGRAMMING SOUND AND MUSIC

this experiment, frequencies in the range from 500 to 4000 will probably be
most effective. Prompt for a pulse width in the same way we accepted a
frequency in Program 11-1. Remember to use two POKE statements to
place the pulse width into locations S+2 and S+3.

11-3...The Envelope Generator

In addition to a tone source, each of SID’s voices has an envelope generator. (Once
again, although we will limit ourselves to Voice 1, what we learn will apply to all of
the voices.) The job of an envelope generator is to control the volume of a musical
tone as itis played. There are a few instruments (an organ, for example), that simply
switch their tones on and off. More often, when a note is first played, it takes a little
time for the note to reach full volume. Even more significant is that most
instruments don’t end their notes immediately, but rather take a while to fade away.
We may program the envelope generator to produce realistic imitations of common
instruments as well as creating new instruments of our own.

. .Gating

In the previous section we discovered the control register for Voice 1. The low-
order bit (value 1) was termed the gate bit. It is helpful to think of the gate bit as a
piano key. We learned that the gate bit must be set to 1 to cause sound to be
produced by the tone source. This bit tells SID to begin to sound the note. It's much
like pressing a piano key. Then, should you reset this bit, the note will cease to
sound. This action, of course, is just like releasing the piano key.

We will gate the tone source for Voice 1 by controlling only the gate bit within
the Control Register. After all, we don’t want to change the waveform that we have
selected. Assuming that we have the waveform selection stored in the variable W
(having the value 16, 32, 64, or 128), the following will gate Voice 1:

POKE S+4, W+1
To release Voice 1, we would execute:
POKE S+4, W

At the time we choose to gate the tone source, we will have already set the proper
parameters (for example, frequency) for the note we wish to play. Then we would
release the note, change the frequency, and gate the next note. '

It is plain to see that the gate bit is used to turn the tone source on and off. But
gating really controls the envelope generator, and it is the envelope generator that
actually controls the voice.

.. .Attack/Decay/Sustain/Release
The envelope generator controls four parameters: attack time, decay time, sustain
level, and release time. Each of these is fully programmable by specifying a value
ranging from 0 to 15.

Attack time is defined as the time it takes for a note to reach its maximum

183

R

BASIC COMMODORE 64 BASIC

volume after it has been gated. Specifying an attack time of 0 tells SID to use the
minimum time of 0.002 seconds. The maximum attack is eight seconds and is
obtained with the value 15. The attack period begins when the gate bit is set to 1.
During the attack period, the volume of the tone source will gradually increase until
it reaches maximum.

The decay period begins as soon as the attack period ends. Using the values 0 to
15, the decay may range from a minimum of 0.006 seconds to a maximum of 24
seconds. The volume of the tone source will decrease evenly until, at the end of the
decay phase, it reaches the sustain level. _ :

The sustain level, ranging from 0 to 15, determines the volume of the tone
source during the remainder of the gating. After the decay period ends, the volume
will remain indefinitely at the sustain level—as long as the gate bit stays set.

When the gate bit is finally cleared, the release period starts. The release values
0 to 15 have the same absolute time durations as the decay values. During the release
phase, the volume of the tone source will gradually decrease until it finally reaches
zero. The voice will then remain quiet until it is once again gated.

The acronym ADSR is commonly used to represent the attack/decay/sustain/
release cycle. Each of the conventional musical instruments has its own natural
envelope. Although natural envelopes are often complicated and even change
dynamically, we can approximate many instruments by choosing the proper
ADSR.

An organ, for example, has ADSR values of 0/0/15/0. This means that, once
gated, the sound takes a minimum amount of time to build up to a full sustain level.
The sound remains at full volume until the gate bit is cleared, and then stops almost
immediately. On the other hand, the ADSR of a piano is more like 0/10/0/0. Like
the organ, the piano sound begins immediately. But, unlike an organ, the volume of '
a piano note begins to decrease just after the key is pressed. The sustain is zero
because, no matter how long you hold the key, the sound will decay tonothing. The
release value is also zero, ensuring that the sound ends as soon as the key isreleased,
even if this is before the decay period has finished.

Figure 11-1 is a graphic representation of the ADSR cycle. You can see that,
before gating, the volume is zero. The attack period begins immediately when the
gate bit is set, and is then followed by the decay. The volume remains at the
intermediate level until the gate bit is reset. Then the release interval begins, with
the volume returning to zero. The actual time values for the attack, decay, and
release periods are given in Table 11-2.

S
“—A "’I‘ D~<~—SUSTAIN R—
PERIOD

PEAK AMPLITUDE——

Figure 11-1. The ADSR cycle. (Courtesy of Commodore Electronics Limited.)

184

e o 0

PROGRAMMING SOUND AND MUSIC

VALUE ATTACK RATE DECAY/RELEASE RATE

(Time/Cycle) (Time/Cycle)
0 2 ms 6 ms
1 8 ms 24 ms
2 16 ms 48 ms
3 24 ms 72 ms
4 38 ms 114 ms
5 56 ms 168 ms
6 68 ms 204 ms
7 80 ms 240 ms
8 100 ms 300 ms
9 250 ms 750 ms
10 500 ms 15s
11 800 ms 24 s
12 17 s 3s
13 3s 9s
14 5s 15 s
15 8s 24 s

Table 11-2. ADSR Timing Values. (Courtesy of Commodore Electronics Limited.)

...Playing a Song with SID

It's time to see how the various things we've learned about SID fit together.
Program 11-2 does just that. Before we go into the analysis of how this program
works, you might want to enter and run it.

10 S=54272

20 FOR I=0 TO 24 : POKE S+I,0 : NEXT I
100 POKE S+5, 0%16 +10

110 POKE S+6, 0%16 + 0

120 W=16

180 POKE S+24,15

200 READ F,D : IF F=0 THEN 900
210 POKE S,(F-32768) AND 255
220 POKE S+1,F/256

300 POKE S+i,W+1

320 FOR I=1 TO D¥50 : NEXT I
360 POKE S+U,W

390 GOTO 200

900 END

9000 DATA 4291,4

9010 DATA 4817,2

9020 DATA 5407,4

9030 DATA 4817,4

9040 DATA 5407,2

9050 DATA 5728,4

9060 DATA 5407,2

9070 DATA 4817,

9080 DATA 4291,4

188

BASIC COMMODORE 64 BASIC

9090 DATA 4817,2
9100 DATA 5407, 4
9110 DATA 4817,2
9120 DATA 4291,6
9130 DATA 5407,4
9140 DATA 4817,8
9999 DATA 0,0

Program 11-2. Playing a melody.

Program 11-2 plays the melody of a simple song. The melody and rhythm are
stored in DATA statements. The data are read and transmitted by POKE
statements to the SID locations that control Voice 1. Although the program was
originally intended to sound like a piano, you can easily change the waveform and
ADSR parameters. The DATA statements, of course, may be replaced to play any
song you wish. Let’s see how it works . . .

The first two lines of the program, 10 and 20, are our standard SID initialization.
The attack and decay periods are determined by line 100. To sound like a piano, we
have chosen an attack of 0 and a decay of 10. Rather than simply POKE the value 10
into location S+5, we chose to clearly demonstrate that the high nibble is 0 and the
low nibble is 10. Also, should you decide to alter line 100 to provide other values, it
will be very easy to edit. Line 110 sets the sustain level and decay interval in a similar
way. Both values are set to 0 for the piano sound.

Line 120 assigns the desired waveform value to W. The triangle waveform,
value 16, has been selected. The volume level is set to maximum at line 180 by
putting the value 15 into location S+24. This concludes the one-time setup of
Voice 1.

Line 200 begins the main loop. The READ statement picks up two values from
the next DATA statement. The variables F and D are assigned to the frequency and
the duration of the note about to be played, respectively. The frequency value F is
entered into the proper locations by the POKE statements in lines 210 and 220. This
technique, detailed previously, allows the DATA statements to contain F values in
the range of 1 to 65535. The last DATA statement should contain an F value of 0,to
terminate the program. Line 200 detects this condition and transfers control to the
END at 900.

With the frequency now properly set, it is time to gate Voice 1. Line 300 enters
the value W +1 into the control register. This selects the waveform W and sets the
gate bit. Now the ADSR cycle begins and the voice plays. However, we only want it
to play for a specified duration, D. So, the FOR loop at line 320 delays for the
duration of the note. It is a do-nothing loop, designed just to wait a while. It waits for
a time period that is proportional to the value of D. The timing parameters are
chosen so that D may represent the number of sixteenth-note counts required. For
example, a whole note would have a D value of 16, a half note would be eight, a
quarter note would be four, an eighth note would be two, and a sixteenth note
would be one.

When the wait loop is done, the note must be released. This is accomplished by
resetting the gate bit. However, we don’t want to change the selected waveform. So
we POKE the value W into the control register, but without adding one. Now the

186

PROGRAMMING SOUND AND MUSIC

decay phase begins, with the volume falling off at a rate determined by the decay
setting. Line 390 returns control to line 200, which will read the F and D values for
the next note to be played. This loop will continue on and on, playing one note after
another, until the last DATA statement is reached.

Let’s also take a look at the DATA statements, which begin at line 9000. Each
DATA line represents one note to be played. The frequency values are selected
from Table 11-1. This particular song only requires four notes, C, D, E, and F. The
values 4291, 4817, 5407, and 5728 were chosen from the table. The first value
corresponds to middle C on a piano. As explained above, the duration values supply
the information necessary to reproduce the rhythm of the song. The last DATA
statement, line 9999, contains two 0 values, allowing the program to end in an
orderly way.

In this section we have learned about SID’s mechanism for gating and envelope
generation. Gating is the process by which the volume of a tone source is controlled.
The envelope generator is supplied with four parameters; attack, decay, sustain,
and release. Also known as ADSR, these values control the rise and fall of a musical
note as it is played.

We have introduced a program capable of playing a melody. The program is
flexible enough to be easily modified to play any desired tune. The waveform and
ADSR parameters may be changed quickly also.

Problems for Section 11-3.............. ..o,

1. Supply Program 11-2 with new DATA statements. You can convert the
melody of your favorite song, especially if you have the sheet music. Or, if
you have access to a piano or other instrument, perhaps you can doitby ear.
Another idea is to try random values, not necessarily from Table 11-1, to
create a computer music effect.

8. Modify lines 100 and 110 of Program 11-2, experimenting with different
ADSR cycles. Use 0/0/15/0 to simulate an organ. Try some of your own.
Then modify line 120 to assign other waveforms to W. (If you try the pulse
waveform, don’t forget to set a pulse width with two POKE statements.)

11-4...The Three Voices

As we know, SID has three independent voices (tone sources). Voices 2 and 3
function in an identical manner to Voice 1. For each voice you must choose a
waveform, frequency, ADSR, and (if the pulse waveform is selected) a pulse
width. The voices sound simultaneously, allowing you to create three-part harmony
or complex melodies.

Voice 1 uses seven SID locations, S through S+6. Voice 2 uses the next seven,
S+7 through S+13. The following seven locations, S+14 through S+20, are
dedicated to Voice 3. The registers for Voices 2 and 3 are mapped in the same order
as for Voice 1. You can add seven to any Voice 1 location to find the equivalent
Voice 2 location. Add 14, and you convert from Voicel to Voice3. For example, the

187

BASIC COMMODORE 64 BASIC

control register for Voice 1 is S+4. Therefore, the control register for Voice 2 is
S+11, while for Voice 3 it is S+18.

...8SID Locations
Table 11-3 is a chart of all 29 SID locations. It shows each of the locations along with
its offset. The offset is the value you add to S; it can range from 0 to 28. This table
allows you to visualize the bit functions of the registers. The first 21 locations are
divided into three groups of seven, corresponding to the three voices. We have
learned how to use these SID registers.

BIT VALUHS
188 64 38 18 8 4] 1
REG #» REG NAME REG TYPE
D, D, D, D, D, D, D, D, Voice 1
0 Fs Fa Fs Fs F. F. F, Fy FREQ LO WRITE-ONLY
1 Fis Fis Fix Fi; Fn Fio Fy Fy FREQ HI WRITE-ONLY
2 PW, PW, PW, PW, PW, PW, PW, PW, PW LO WRITE-ONLY
3 — — - — PWy, PW,, PW, PW, PW HI WRITE-ONLY
RING
NOISE UL 41 AA TEST MOD SYNC GATE CONTROL REG WRITE-ONLY
ATK; ATK: ATK, ATKo DCY; DCY. DCY, DCY, ATTACK/DECAY WRITE-ONLY
6 STN; STN, STN, STNo RLS; RLS, RLS, RLS, SUSTAIN/RELEASE WRITE-ONLY
Voice 8
7 F, Fe Fs F. F F. F, Fo FREQ LO WRITE-ONLY
8 Fis Fu Fis Fi2 Fu Fio *Fg Fy FREQ HI WRITE-ONLY
9 PW, PW, PW; PW, PW, PW, PW, PW, PW LO WRITE-ONLY
10 — — — — PW,, PW,, PW, PW, PW HI WRITE-ONLY
RING
11 NOISE AN A4 AA TEST MOD SYNC CGATE CONTROL REG WRITE-ONLY

12 ATK; ATK, ATK, A']:Ko DCY; DCY: DCY, DCYo ATTACK/DECAY WRITE-ONLY
13 STN; STN: STN, STN, RLS; RLS, RLS, RLS. SUSTAIN/RELEASE ~ WRITE-ONLY

Voice 3
14 F, Fe Fs F. Fs F. F, Fo FREQ LO WRITE-ONLY
15 Fis Fu Fis Fi Fy Fio Fy Fy FREQ HI WRITE-ONLY
16 PW, PW, PW; PW, PW, PW, PW, PW, PWLO WRITE-ONLY
17 — — — — PW,, PWy PW, PW;y PW HI WRITE-ONLY
RING
18 NOISE UL .4 AA TEST MOD SYNC GATE CONTROL REG WRITE-ONLY

19 ATK, ATK: ATK, ATK, DCY; DCY. DCY, DCY, ATTACK/DECAY WRITE-ONLY
20 STN, STN: STN, STN, RLS; RLS, RLS, RLS, SUSTAIN/RELEASE ~ WRITE-ONLY

Filter
21 — — — — — FC, FC, FC, FC LO ' WRITE-ONLY
22 FCio FC, FCy FC, FC, FC;s FC, FC, FC HI WRITE-ONLY
23 RES, RES; RES, RES, FILTEX FILT3 FILT2 FILT1| RES/FILT WRITE-ONLY
24 3 OFF HP BP LP VOL, VOL, VOL, VOL, MODE/VOL WRITE-ONLY
Misc
25 PX; PX¢ PX; PX, PX, PX; PX, PXo POT X READ-ONLY
26 PY, PY, PY; PY, PY, PY, PY, PY, POT Y READ-ONLY
27 [o7) 0Os Os O, O, 0. 0, Oo 0OSC:/RANDOM READ-ONLY
28 E; E¢ Es Es E; E; E, Eo ENV, READ-ONLY

Table 11-3. SID Locations. (Courtesy of Commodore Electronics Limited.)

188

PROGRAMMING SOUND AND MUSIC

Locations S+21 through S+24 control the filter circuit. These four registers
allow further modification of all three tone sources. We already know that location
S-4924 controls the volume, but our map reveals that this register has additional
functions in the bits of the high nibble. We will examine the filter in the next section.

Finally, SID locations S+25 through S+28 are read-only registers, and are
accessed with the PEEK() function. These locations, as well as certain bits of
locations we have already covered, allow experienced programmers access to even
more SID features.

...Playing the Voices Together

Our next goal is to coordinate the three voices, allowing us to achieve three-part
harmony. The design of a multiple-voice program is more complicated because of
the need to maintain the same timing (rhythm) for each voice. For example, Voice 1
may sound a half note (eight counts) while Voice 2 may be required to
simultaneously sound two quarter notes (four counts each). And who knows what
Voice 3 may be called upon to do!

Previously, Program 11-2 played a melody directly from notes that were
encoded into DATA statements. But for three voices, this approach is extremely
difficult. It becomes a confusion of which voice or voices must be gated on, which
voice(s) must be gated off, and which voice(s) must change pitch. One way to ease
this dilemma is to build a separate set of DATA statements for each voice. Then the
computer can construct an array containing all of the SID instructions in their
proper timing relationship.

Program 11-3 may be used to play any song in three-part harmony. The DATA
statements at the end appear in three groups, one for each voice. In addition, an
improved encoding scheme is used that allows you to read a song directly from
sheet music. Enter and run this program and then we’ll see how it works.

10 S=54272 _

20 FOR I=S TO S+24 : POKE I,0 : NEXT I
40 DIM HF%(2,200), LF%(2,200)

50 DIM WC%(2,200), MF(13)

100 PRINT "STANDBY..."

200 GOSUB 4000

220 GOSUB 2000

400 GOSUB 1000

420 Z$="" : INPUT "PLAY IT AGAIN"; Z$
440 IF LEFT$(Z$,1) = "Y" THEN 400

900 END

1000 REM ¥¥* PLAY TUNE

1020 FOR I=1 TO S+14 STEP 7
1030 POKE I+5,0%16+0

1040 POKE I+6,15%16+0

1090 NEXT I

1100 POKE S+24,15

1200 FOR I=1 TO CT

1220 POKE S, LF%(0,I)
1230 POKE S+ 1,HF%(0,I)
1240 POKE S+ 7,LF%(1,I)

189

BASIC COMMODORE 64 BASIC

1250 POKE S+ 8,HF%(1,I)

1260 POKE S+14,LF%(2,1)

1270 POKE S+15,HF%(2,1)

1280 POKE S; 4,WC%(0,I)

1282 POKE S;11,WC%(1,I)

1284 POKE S;18,WC%(2,I)

1400 FOR J=1 TO 50 : NEXT

1490 NEXT I

1800 POKE S+24,0

1990 RETURN

2000 REM ** LOAD ARRAYS FROM DATA
2020 FOR V=0 TO 2 : CT = 0

2040 PRINT "LOADING VOICE"; V+1
2100 READ D$: IF D$ = "*" THEN 2900
2110 B = 7-VAL(LEFT$(D$,1))

2200 F = ASC(MID$(D$,2,1))

2400 Z$ = MID$(D$,3,3) : H=0

2410 IF ASC(Z$) >= 48 THEN 2500
2420 H=1

2430 IF LEFT$(Z$,1) = "=" THEN H=-1
2440 z$ = MID$(Z$,2,2)

2500 IF F > 71 THEN F=0 : GOTO 2600
2510 F=F=67 : IF F < 0 THEN F=F+7

2520 F = 2*%F + 1 : IF F > 5 THEN F=F-1
2530 F = MF(F+H) / 2"B
2600 D = VAL(Z$)

2800 FOR I=1 TO D : CT = CT+1

2810 WC%(V,CT)=17-(1 AND I=D AND D<>1)
2820 LF%(V,CT) (F-32768) AND 255
2830 HF%(V,CT) F/256

2840 NEXT I

2890 GOTO 2100

2900 NEXT V

2980 PRINT "LOADING COMPLETE" : PRINT
2990 RETURN

4000 REM *#* SETUP MASTER FREQ ARRAY
4020 FOR I=0 TO 13 : READ MF(I) : NEXT I
4100 DATA 32407

4110 DATA 34334, 36376, 38539, 40830
4120 DATA 43258, 45830, 48556, 51443
4130 DATA 54502, 57743, 61176, 6u481L
4140 DATA 68668

4190 RETURN

6000 REM #* DATA FOR VOICE 1
6010 DATA ORS,U4BY4,4EL :

6020 DATA OR2,4G+2,U4F+2,4E2

6022 DATA 4F+2,U4D+2,4E2, 4F +2
6030 DATA OR2,4F+2,4E2, 4D+2

6032 DATA 4E2,U4C+2,4D+2,4E2

6040 DATA OR2,4E2,U4D+6,U4D+2,U4C+6
6052 DATA OR2,3B6,4C+2,4D4

6060 DATA 4C+2,3B2,4C+2,4D2

6062 DATA 4E2,4D2,4C+2,3B2

190

e o 0

PROGRAMMING SOUND AND MUSIC

6070 DATA U4C+8,4C+8

6990 DATA *

7000 REM *¥ DATA FOR VOICE 2
7010 DATA ORS,4G+l,l4A2,U4B2
7020 DATA 5C+8,4B4,3B2,3B2
7030 DATA 4B8,u4Al,3A2,3A2
7040 DATA 4A6,4B2,U4G+6,4A2
7050 DATA 4F+2,4E2,4F+U

7052 DATA UF+2,4A2,4G+2,U4F+2
7060 DATA UE+2,4D+2,UE+2,U4F+2
7062 DATA U4G+2,U4F+2,4E+2,4D+2
7070 DATA 4E+16

7990 DATA *

8000 REM ** DATA FOR VOICE 3
8010 DATA OR8,3E2,3E2,3F+2,3G+2
8020 DATA 3A16

8030 DATA 3G+16

8040 DATA 3F+8,3E8

8050 DATA 3D4,3D2,3C+2,3D4,2BY4
8060 DATA 3C+12,2G+U

8070 DATA 3C+8,3C+8

8990 DATA *

Program 11-3. Three-part harmony.

Lines 10 through 900 of Program 11-3 are the control section. Our standard SID
initialization takes place in lines 10 and 20. The DIM statements at lines 40 and 50
define the data storage arrays we will use. The arrays HF%(), LF%(), and WC%()
are each two-dimensional, with the first subscript representing the voice (the values
0, 1, and 2 stand for Voices 1, 2, and 3), and the second subscript representing the
beat count. The arrays HF%() and LF%() contain the low-order and high-order
bytes of the current frequency of the voice. The array WC%() contains the
waveform control byte. The MF() array holds the master frequency values from
which the frequencies of all the possible notes are obtained.

The 4000 routine is called to initialize the master frequency array. Then, a
GOSUB 2000 loads the data values into the working arrays. It is the subroutine at
1000 that actually plays the song. Lines 420 and 440 allow the song to be replayed
immediately, as the data remain in the arrays. Line 900 terminates the program
when no more play is requested.

The 1000 subroutine plays the song from the HF%(), LF%(), and WC%()
arrays. Lines 1020 through 1090 set up the ADSR envelopes. All three voices are set
to imitate an electronic organ. The volume is turned to full at line 1100. The main
play loop appears from lines 1200 to 1490. The variable CT contains the number of
beat counts in the entire song. Each value of I represents one beat. The variable I is
used to index the arrays to assign the high and low frequency bytes from LF%() and
HF%(), and the control register bytes from WC%(). After the parameters for all
three voices are entered with POKE statements, line 1400 delays to allow the tones
to sound for one beat time. Line 1800 turns off the volume at the end of play, and
line 1990 returns to the caller.

191

o o o

BASIC COMMODORE 64 BASIC

The DATA statements are loaded into the working arrays by the subroutine at
line 2000. Voice 1 isloaded from its own set of DATA statements. Then Voices2 and
3 are loaded, in order, from theirs. It takes a significant amount of time for all three
voices to be loaded, but this approach allows the play subroutine (line 1000) to
produce three properly synchronized voices.

The precise internal workings of the 2000 subroutine are left as an exercise for
the reader. Only conventional programming techniques are employed, without
relation to the SID. However, some discussion of the note encoding scheme is
required, as well as the data array formats. '

Look at the data for Voice 1, beginning at line 6000. Each note is expressed by a
sequence of letters and numbers. These are all of the same format: a number, a
letter, and a number, for example, 3C8. Here, the first number represents the octave
band, 0 to 7 (SID is capable of an eight-octave musical range). The letter in the
middle represents the musical note: C, D, E, F, G, A, or B. The letter R may also be
used to denote a rest, causing that voice to be silent. The final number, called the
duration, is the number of beats to hold the note. Values in the range of 1 to 16 allow
us to specify sixteenth notes through whole notes, as in Program 11-2. Duration
values greater than 16 may be used to produce even longer notes.

As a matter of convention, the zero octave band is used for rest notes, such as
OR8. Also, we may make any note sharp () or flat (p) by appending either + or —,
respectively, to the letter. For instance, an F-sharp quarter note in the third octave
band would be described as 3F + 4. Even notation such as E# and Cp (really the
E-sharp and C-flat) can be processed. The lowest possible note is 0C— and the
highest is 7B. The DATA statements for Voice 1 end with a single asterisk®. Voices2
and 3 use the same format for their data at lines 7000 and 8000. It is important that
the voices match up with one another and that the total number of beats be
equal for each voice.

The number of array elements required for a note depends on its duration. A
half note, for example, has a duration value of eight. Therefore, it would require
eight elements each of LF%(), HF%(), and WC%(). For these eight elements, the
frequency values would all be the same (it is the same note). But, the WC%() values
would cause the voice to be gated on for the first WC%() element, remain gated for
elements 2 to 7, and release the gate bit for the final element. The DIM statements
allow for a maximum of 200 beat counts, which provides room for 12 measures of

4/4 time music. The DIM statements may be increased for longer songs.

Problems for S8ection 11-4

1. Write a program that plays a simple melody, using Program 11-2 as a
starting point. Have the melody play through Voice 1. But have Voices 2 and
3 also play. To create a choir effect, don’t use the same frequency values for
the second two voices. Assuming that F is the frequency of Voice 1, play
Voice 2 at 1.01°F and play Voice 3 at 1.02°F. Try other multipliers as well.

8. Modify Program 11-3 to vary the waveforms selected for the voices. Try
changing the delay loop at line 1400 to alter the tempo.

193

PROGRAMMING SOUND AND MUSIC

8. Create your own set of DATA statements for Program 11-3. Producing
three-part harmony will require you (or a helper) to have some musical
knowledge. This is easiest if you can read sheet music prepared for a piano.
Generally, it makes sense to assign Voice 1 to the melody or vocal part. Use
Voice 2 to build harmony. Voice 3 can be used to help complete chord struc-
tures or to provide a bass line. Don’t be afraid to spread the voices over the
various octave bands.

11-8...The Filter Section

SID has a programmable filter that allows frequencies in a certain range to be
excluded from the sound output. All of the tone source waveforms produce
harmonic frequencies in addition to the fundamental frequency that determines
their pitch. The filter makes it possible to further shape the waveform by tailoring
the harmonic content. Therefore, a wider variety of sounds are possible and natural
instrument sounds can become more realistic.

The four locations S +21 through S +24 control the filter. Although the filter has
a 12-bit cutoff register, it will be entirely sufficient for us to deal only with the high-
order byte. We will ignore location S +21. The location S +22 will be used to set the
filter’s cutoff frequency. This byte may range from 0 (the lowest cutoff frequency)
to 255 (the highest). Let’s see how the cutoff frequency changes the sound.

The low-order nibble of location S+ 24 controls the volume. As we have seen, a
value in the range 0 to 15 will dictate the overall sound level of all the voices. To
activate the filter, we must also set one of the high-order bits of S +24. Referring to
Table 11-3, we see that the bit values 16, 32, and 64 correspond to LP, BP, and
HP. These are the three basic modes of the filter, and stand for low-pass, band-pass,
and high-pass. When the filter is in low-pass mode, frequencies below the cutoff are
passed, but higher frequencies are reduced. The higher the frequency, the more it is
reduced. The high-pass mode does just the opposite. The high frequencies are
undisturbed, but low frequency components are reduced in level. The band-pass
mode allows frequencies near the cutoff to pass, while attenuating those above and
below the cutoff. We select the filter's mode by setting the appropriate bitin S +24.
Normally only one of the three mode bits is set. However, LP and BP may both be
set, creating a notch effect. This reduces only those frequencies near the cutoff.

Location S+23 provides further control of the filter. The lowest three bits of
this register determine which voices are affected by the filter section. Setting the
value of bit 1 causes the output of Voice 1 to be routed through the filter, rather than
going directly to the sound output. The bit values 2 and 4 apply to Voices 2 and 3,
respectively. If all three bits are zero, the filter has no effect.

The upper nibble of location S+23 controls the resonance of the filter. This

- parameter may vary from0 to 15. Higher values of resonance cause a peaking effect
near the cutoff frequency. You may use the resonance feature to create a sharper
sound by emphasizing the filter’s effect.

193

BASIC COMMODORE 64 BASIC

... Using the Filter
Program 11-4 demonstrates the action of the filter. Enter this program to hear how
it uses the filter to modify the tone of Voice 1.

Lines 10 and 20 should be quite familiar by now. At line 100 we assign a con-
stant value to the high-order frequency register for Voice 1. For the duration of the
program, the frequency of the tone source will not change. Line 110 sets the sustain
level of the ADSR envelope to maximum, allowing us to produce a continuous tone.
The sawtooth waveform for Voice 1 is selected at line 120; the tone sourceis gated.
We chose the sawtooth because it is rich in harmonics. Line 130 instructs the filter to
process the output of Voice 1. The volume is set to maximum and the low-pass filter
mode is selected at line 140.

At this point, Voice 1 is producing a constant tone. The filter’s cutoff frequency
is zero (S+22 was cleared by line 20), so there is practically no output. Remember
that a low-pass filter removes frequencies above the cutoff, and right now the
cutoff is zero. Line 200 executes and begins a FOR loop, causing C to go from 0 to
255. The variable C represents the filter’s cutoff frequency. Sure enough, we POKE
the value of C into the cutoff register at line 210. Line 220 is a delay loop, allowing us
time to hear each step as the cutoff frequency changes. The effect s that, as the loop
progresses, more and more of the high-frequency components of the tone source
can be heard. Line 300 turns off the volume at the end of the program.

10 S=54272
20 FOR I=0 TO 24 : POKE S+I,0 : NEXT I
100 POKE S+1,25

110 POKE S+6,15%16

120 POKE S+4,32+1

130 POKE S+23,1

140 POKE S+21,16+15

200 FOR C = 0 TO 255

210 POKE S+22,C

220 FOR J=1 TO 10 : NEXT J
240 NEXT C

300 POKE S+21,0

Program 11-4. Filter demonstration.

The filter can be used to help produce sound effects, as Program 11-5 illus-
trates. Try running this example. You will hear a jet plane approach take-off
velocity and leave the runway. This program uses the noise waveform to generate
the rushing sound of the jet engines. The filter cutoff frequency is swept from low to
high, causing the initial low-pitched rumble to build to a mighty roar.

10 S=54272

20 FOR I=0 TO 24 : POKE S+I,0 : NEXT I
100 POKE S+1,100

110 POKE S+6,15%16 + 13

120 POKE S+4,128+1

130 POKE S+23,1

140 POKE S+2k,16+15

200 FOR C = 0 TO 255

210 POKE S+22,C

194

PROGRAMMING SOUND AND MUSIC

220 FOR J=1 TO 10 : NEXT J
240 NEXT C
300 POKE S+4,128

Program 11-5.] et aircraft departure.

Program 11-5 was derived from Program 11-4 above. Only four lines are
different—100, 110, 120, and 300. A higher frequency is selected at line 100. Line 110
provides the ADSR with a release period of nine seconds. This gives the jet the
appearance of fading into the sky at the end. The noise waveform is activated and
gated at line 120. Rather than abruptly turn off the volume at line 300 as above, this
program simply turns off the gate bit at the end. This way, the ADSR envelope does
the work of letting the volume fade off gradually.

...SUMMARY

The SID programmable filter allows you to easily remove unwanted harmonics
from the tone sources. The filter mode—low-pass, high-pass, band-pass, or notch—
is selected according to the effect desired. The filter’s cutoff frequency and
resonance are determined by simple POKE statements. Any or all of the three
voices may optionally be processed by the filter, as required. One of the main uses
of the filter is in achieving realistic sound effects.

|

PROGRAMMER’'S CORNER 11
Synchronization and Ring Modulation............

There are two additional bits in the control register of each voice that allow further
modification of the harmonic content of the tone source. The principal use of both
features is in the creation of special sound effects. Bit value 2, when added to the
control register data value, enables the synchronization feature. Ring modulation is
effected by adding bit value 4.

If either of these options is activated for Voice 1, then Voice 3 will have an
effect upon the first voice. Only the frequency value of Voice3 is important; it need
not be gated or have any waveform selected. The frequency of Voice 3 must be
nonzero, however. Should these special bit values be selected for Voices2 or3, then
they will be affected by Voice 1 or 2, respectively. Synchronizing one voice with
another has the effect of drastically altering the harmonic structure of the
waveform.

Ring modulation creates nonharmonic overtones and is useful for bell and gong
sounds. Only the triangle waveform may be selected, along with the ring modula-
tion bit. Program 11-6 simulates a gong by using this technique.

198

o o o

BASIC COMMODORE 64 BASIC

10 S=54272 ,

20 FOR I=0 TO 24 : POKE S+I,0 : NEXT I
30 POKE S+1,50

40 POKE S+6,15%16 + 13

60 POKE S+14,2

70 POKE S+15,20

80 POKE S+24,15

90 POKE S+4,16+4+1

100 FOR J=1 TO 500 : NEXT J

110 POKE S+i,16+4

Program 11-6. Gong sound.

Line 30 assigns a frequency value to Voice 1. The ADSR envelope is set to
0/0/15/13 by line 40. Lines 60 and 70 set up the frequency for Voice 3. At line 80, the
volume is turned on. Line 90 selects the triangle waveform, ring modulation, and

gate bit for Voice 1. After the delay loop at line 100, the Voice 1 gate is released by
line 110.

...The Output Registers
Locations S+27 and S+28 change dynamically as SID produces your music and
sound effects. Location S+27 is known as the oscillator 3 output. Location S +28 is
the output of the Voice 3 envelope generator.

As Voice 3 oscillates, location S+27 tracks the waveform. The following state-
ment will read this location:

X = PEEK(S+27)

If the triangle waveform is selected for Voice 3, the value read will have
smooth transitions from 0 to 255. The noise waveform will have random values.
These values will change at a rate determined by the frequency of Voice 3.
Typically, the oscillator three output value is used to modify the frequency of the
other tone sources for a vibrato effect. You may also use this value to affect the
volume for a tremolo effect.

Location S+ 28 tracks the ADSR envelope for Voice 3 and may be accessed by
a PEEK statement at any time. Again, the value from this location thay be used to
affect other SID registers that control frequency, volume, etc.

In the register at location S +24, the bit value 128 may be set. This completely
cuts off the sound output from Voice 3. Generally, when the Voice 3 output
registers are used for modulation purposes, the output is not desired.

196

Appendix A
Special Print
Characters

(How They Appear in Quote Mode)

Upper-case Mode

- ——— I PROGRAN acTIon
144 BLACK

5 g WHITE

28 RED
159 ﬂ CYAN
156 cra | H PURPLE

30 cro 8 GREEN

31 BLUE
158 B EI YELLOW
129 ﬂ ORANGE
149 BROWN
150 LIGHT RED
151 Q) GRAY 1

197

BASIC COMMODORE 64 BASIC

o
p el
m1

|

- N——— ™ PRoGRA acTIon
152 | £3 GRAY 2
153 8 | LIGHT GREEN
154 K1 LIGHT BLUE
155 GRAY 3
18 I._ﬂ REVERSE ON
147 o ' CLEAR THE
%%RI\ZJEN AND
19 = HOME
145 crsr CURSOR UP
17 CURSOR DOWN
157 Cro? I] CURSOR LEFT

29 CURSOR RIGHT

148 SHIFT INSERT

Lowercase Mode
186 @ v CHECK MARK
169 £ DIAGONAL
HASHING
127 - N DIAGONAL
HASHING
126 <3 = CHECKERBOARD

198

Appendix B

Commodore 4
creen Codes

The Commodore 64 has an upper-case character set and a lower-case character set.
We move from one to the other by pressing the @& and SHIFT keys. Characters
from only one set at a time can be displayed on the screen. Screen codes are
distinguished from ASCII codes in that screen codes are used for PEEK and POKE
with memory locations in the range 1024 to 2023 (the character screen), and ASCII
codes are used for PRINT statements and the CHR$() function.

In order for a character to be displayed on the character screen, a corresponding
location in color memory must be accessed by POKE with a color code. Character
screen memory from 1024 to 2023 is mapped onto color memory from 55296 to
56295.

We present here a chart of code values and characters in the range 0 to 127.

Values in the range 128 to 255 are correlated with the reverse display of the codes
0 to 127.

Upper-case Screen Codes

VALUB VALUB VALUE VALUE

0 0 T0 0
CHARACTER POKE CHARACTER POKB CHARACTER POKE CHARACTER POKE
@ 0 D 4 H 8 L 12
A 1 E 5 I 9 M 13
B 2 F 6 J 10 N 14
Cc 3 G 7 K 11 0] 15

BASIC COMMODORE 64 BASIC

IOAI.UE :‘oﬂu ::mm :on.um
CHARACTER POKR CHARACTER POKE . CHARACTER POKE CHARACTER POKE
P 16 & 38 < 60 g 82
Q 17 ’ 39 = 61 @ 83
R 18 (40 > 62 84
8 19) 41 ? 63 I 85
T 20 * 42 64 X 86
U 21 + 43 E 65 D 87
\ 22 , 44 66 @ 88
W 23 - 45 — 67 89
X 4 46 68 90
Y %5/ 47 S 69 [T 91
z 2 0 48 70 ; 92
[27 1 49 71 93
& 28 2 50 EI] 72 /A 94
] 29 3 51 73 ! 95
f 30 4 52 N 74 96
- 31 B 53 o 75 “ 97
32 8 54 o 76 ; 98
! 33 7 55 77 99

" 34 8 56 78 \._] 100

35 9 57 D 79 101

e
36 : 58 80 : 102

$
% 37 ; 59 81 103

200

APPENDIX B—COMMODORE 64 SCREEN CODES

VALUB

CHARACTER POKB

E 104
! 105
D 106
107
] 108
E 109
vaLUE
CHARACTER :n
@ 0
a 1
b 2
c 3
d 4
e 5
f 6
g 7
h 8
i 9
J 10
k 11
1 12
m 13

VALUB
TO
CHARACTER POKE

m DI
D 111
LT 112
'_If 113
T 114

115

Lower-case Screen Codes

VALUB
caanacrEn poxe
n 14
o 15
jo) 16
q 17
T 18
s 19
t 20
u 21
v 22
w 23
X 24
y 25
b4 26
[27

VALUB
TO
CHARACTER POKE

116

117

118

119

120

N I |l

121

VALUE
casnsoran 3oxz
& 28
] 29
t 30
- 31
e .
! 33
" 34
35
$ 36
% 37
& 38
! 39
(40
) 41

VALUE
CHARACTER :n
— 122
[123
l 124
- 125
[126
E 127
VALOB
cmanacren roxs
* 42
+ 43
, 44
- 45
46
/ 47
o 48
1 49
2 50
3 51
4 52
5 53
6 54
7 55

BASIC COMMODORE 64 BASIC

VALUE

CHARACTER POKE

0 @

—

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

VALUE

CHARACTER POKE

 © o W

KM 8 4 d 13

N

74

75

76

77

78

79

80

81
82

83

85

86

87

88

89

90

91

VALUB

CHARACTER POKE

SPACE

EB'QE =

ra T e N

302

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

VALUR

CHARACTER POKE

110

111

1] Hi=d

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

o (NN el B EHH

127

Appendix C

PRINT Codes
on the
ommodore ¢4

The character sets and certain control functions are produced by using PRINT
CHRS$(C), where C is a value from this appendix. Sometimes it is useful to
determine the code value from an entry from the keyboard. This is easily ac-
complished with GET A$ and PRINT ASC (A$). ASC will return the numeric value
associated with the character in A$. This is particularly useful for the function keys
(f1 to £8) at the right on the keyboard. _

The Commodore 64 has an upper-case and a lower-case character set.
Characters from only one at a time can be displayed. We switch from one to the
other by pressing the @and SHIFT keys. We may also specify lower-case dis-
play by using CHR$(14) in a PRINT statement. To switch to upper-case, use
CHR$(142) in a PRINT statement.

Upper-case PRINT Codes
DISPLAY DISPLAY DISPLAY DISPLAY
OR OR OR OR
AGTION CHR$() ACTION CHR$() ACTION CHR$() ACTION CHRS()
0 5 10 15
1 6 11 16
17

2 7 12

Switch to

4 Ensable EZBS9 Lower Case 14

3]
-
)

RVS
3 Disable EIB S8 13 ON 18

19

203

BASIC COMMODORE 64 BASIC

DISPLAY
OR
ACTION CHRS$()

DEL 20
21

22

24

26

27

Red
28

[2]
pe
(%]
)

29

Green 30

Blue

31

SPACE

32

$#* B —
...l

35

36

R

37

@

38

. 39

40

~

41

A

DISPLAY

OR
ACTION

DISPLAY
cHRS() ‘aorrow
42 @
43 A
44 B
45 C
46 D
47 E
48 F
49 G
50 H
51 I
52 J
53 K
54 L
55 M
56 N
57 0]
58 P
59 Q
60 R
61 S
62 T
63 U

204

CHR$()

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

85

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

APPENDIX C—PRINT CODES ON THE COMMODORE 64

e @

¥ OX A

<

43

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

129

DISPLAY
zgnou CHR$()
130
131
132
f1 133
£3 134
5 135
7 136
£2 137
f4 138
8 139
8 ‘140
Rl 141
142
143

@ 144
145
146

147
ST 148
Brown 149
Light red 150
Gray 1 151

bisrrax
ACTION cHRS$()
Gray2 152
Light green 153
Light blue 154
Gray 3 155
e 156
157
158
159
B3 .
l:l 161
g 162

163
(- 164

165
E 166

167
™
ﬂ 169
[I 170
[E 171
] 172
E 173

208

OR
ACTION

HrllH]

"ol {10 H] HIN 1 1]

cHRs()

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

"BASIC COMMODORE 64 BASIC

DISPLAY
OR
ACTION CHRS$()

0
1
2
3
4
5
6
7
Disable EXBES
Enable EBGE9
10
11
12
13
14
15
16
chsn 17
HOVNS 18
o 19
20

Lower-case PRINT Codes

DISPLAY
OR
ACTION CHRS$()

21

22

N

26
27
28
29
30
31

SPACE

32

35

36

37

38

39

40

~ . IS —
- ® * ® * 'aalga
[}
3 el

41

DISPLAY

OR
ACTION

*

+

(o] @a D

© oo =N O

U

206

CHR$()

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

DISPLAY
OR
ACTION CHR$()

? 63
@ 64
a 65
b 66
c 67
d 68
e 69
f 70
g 71
h 72
i 73
J 74
k 75
1 76
m 77
n 78
o 79
bo) 80
q 81
by 82
8 83

APPENDIX C—PRINT CODES ON THE COMMODORE 64

DISPLAY

:znon CHRS$()
t 84
u 85
v 86
w 87
x 88
y 89
z 90
[91
S 92
] 93
t 94
- 95
— 96
A 97
B 98
c 99
D 100
E 101
F 102
G 103
H 104
I 105

DIBPLAY

ACTION OHR$()
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

122

+N.<Ng<qem;uo~uozghne.

123

124

125

126

5 -

127

DISPLAY
::non oHRS()
128
Orange 129
130
131
132
1 133
3 134
8 135
7 136
02 137
f4 138
8 139
B 140
[soer [e BN
P
143
144
145
146
cun 147
INST 148
Brown 149

207

DISPLAY
::non oHRS$()
Light red 150
Gray 1 151
Gray R 152
Light green 153
Light blue 154
Gray 3 155
iy 156
157
156
159
160
[161
g 162
163
164
165
E 166
167
E 168
E 169
:I 170
u 171

BASIC COMMODORE 64 BASIC

DISPLAY
OR

ACTION cHR$()
G 172
E 173
E' 174
D 175
E 176

DISPLAY
OR
ACTION

L

]
I

CODES 192-223 ARE THE SAME AS 96-127

DIBPLAY
oR
CHR$() ACTION

o L
178 D
179 D
180 E
181 :I

cHRs$()

182

183

184

185

186

CODES 224-254 ARE THE SAME AS 160-190

CODE 255 IS THE SAME AS 126

308

CcHRS$()

187

188

189

190

191

Appendix D
The Disk

Adding a 1541 Commodore disk drive to the Commodore 64 computer creates a
powerful computer system. Now we can purchase a wide variety of applications
programs for education, business, and entertainment. We can write programs of
our own and save them to use later. These programs are easily used with simple
commands in BASIC. The disk is much faster and more versatile than tape. This
appendix contains information for maintaining programs on a disk. For informa-
tion on sequential files, see Chapter 8.

The disk drive is connected to the computer with a single cable that fits only in
the correct socket at the rear of the keyboard unit. A standard power cord is also
supplied. All connections of any computer components should be made only with

.power switches turned off. Once the connections are made, turning the disk drive
power switch on should cause the red light on the front to come on momentarily; the
green light should come on and stay on until the power switch is turned off. Only
after the power is on should you insert a disk. The disk should always be removed
before power is turned off. Failure to observe these rules could result in damage to
the data stored on the disk. .

To insert a disk, first remove it from the protective paper envelope. Then, with
the label facing up and the little notch toward the side the lights are on, gently slide
it all the way in. To do this you must slide a finger part way into the one-inch by two-
inch opening in the center. Then gently press down on the door cover. It should
slide easily past a little spring and stay down. This process very quickly becomes
automatic.

To remove a disk, press the door cover into the disk drive (toward the rear)

209

o e o

BASIC COMMODORE 84 BASIC

with a firm motion. The door will spring up and the disk will be propelled part way
out of the slot.

Always be careful when you are handling disks. Never touch the exposed parts
of the Mylar disk enclosed within the square jacket. Fingerprints, dust, and dirt are
enemies of the recording surface. Always use a soft tip marker to write on the label.
Never use a ball point pen, as this could dent the disk, causing permanent damage.

...The Directory

One way to look at a directory of files stored on a disk is to type the following:
LOAD "g",8

(We'll get to the LOAD command shortly.) Then type LIST. If your disk has a large
number of files on it you may want to press the CTRL key to hold the display on the
screen long enough to read it all. Each file name will contain a PRG, SEQ, USR, or
REL to distinguish the four types of files available on the Commodore 64. The two
file types discussed in this book are PRG and SEQ. All BASIC programs are labelled
PRG. All sequential files (see Chapter 8) are labelled SEQ. .

At the left in each entry of the directory is a number. That is the number of 256-
byte blocks required to store the file on the disk. A disk will hold 664 blocks for a
total of about 170K.

Be careful. Reading the directory in this way destroys any BASIC program in
memory at the time. Yes, the directory is read into main memory by the procedure
described above. Once you have read the directory, it is necessary to clear it out by
typing NEW or by loading a program from disk. Turning the machine off will do it,
too. '

We can also examine the directory without displacing any BASIC program in
memory. This is done by using a program supplied on the test/demo disk included
with the 1541 disk drive.

...LOAD

In order to use any program on disk, we must first load it into the computer. This
command causes a copy of a program to be transferred to memory in the
Commodore 64. It is a good idea to begin with the test/ demo disk supplied with the
1514 drive. It should contain a program called C-64 WEDGE. On some disks it may
be called DOS SUPPORT or a similar name. If one of these names isn’t present,
check the directory by entering LOAD “$”, 8 and LIST as described above. The
wedge provides some convenient commands not available in BASIC, and it doesn’t
use any of the memory normally available to a BASIC program. To use it type

LOAD "C-64 WEDGE", 8

We need to tell the Commodore 64 that we want to access the disk. The disk is
number 8 to this computer. Other values are used for other devices. 0 is the screen, 1
is the Datassette. Additional values represent other peripherals like a printer. So, we

210

APPENDIX D—THE DISK

use the number 8 in our command. That is called the device number. The first disk is
always taken to be device number 8. The Commodore 64 should reply

SEARCHING FOR C-64 WEDGE
LOADING
READY.

Next, we type RUN and the new commands are in place. All programs are used in
this way, by first loading the program and then running it. We may use an asterisk to
request the first program on the directory.

With the C-64 WEDGE in place we can easily examine the directory by
entering the command

es

We don’t even have to give the device number. The biggest benefit is that we can
examine the directory and maintain a program in memory at the same time.

Every disk must be properly formatted once to prepare it for storing programs (see
“Formatting a New Disk” below).
To save a program with the name FIRST on disk we simply type

SAVE "FIRST",8
The computer will display
SAVING FIRST

on the screen. The disk will whir for a few seconds. When it shuts off and the red
light goes out, typing @$ will reveal that indeed our program named FIRST is on
the list.

If it happens that we already have a program named FIRST, there will be no
discernable difference on the screen. However, (and this is a howeuver), the red light
on the drive will flash. Whenever the red light on the drive flashes, there’s trouble.
Press @ and RETURN. (With the WEDGE in place, @ reads disk errors.) The red
light will go out and the following message will appear on the screen:

63, FILE EXISTS, 00,00

This means just what it says. Disk errors are numbered for the Commodore 1541
drive. The error number 63 is the FILE EXISTS error. The other two numbers are
the track and sector. With track and sector, the advanced programmer can diagnose
the exact location on the disk where the difficulty lies. Track 18 has to do with the
directory. (Errors are discussed under the section entitled “DOS Commands.”)

We need a special instruction to tell the computer to replace the existing
program. It is

SAVE "@:FIRST",8
The at-sign-colon (@:) causes the replacement.

a11

BASIC COMMODORE 64 BASIC

...DOS Commands '

Certain things that we do on disk are controlled by the disk drive itself. In order to
do those things, we must create a communications link between BASIC and a
program in the disk drive called DOS (Disk Operating System). The communi-
cations link is called the command channel and is always numbered 15. In addition,
we must specify a file number in the range 1 to 127 in an OPEN statement.

OPEN 3,8,15

This OPEN statement connects file 3 to the command channel. The 8 refers to the
disk drive as before. The OPEN statement can be issued in immediate or deferred
mode. Now we can send commands to the disk drive through PRINT# statements.
We will get to the commands soon.

Following any command and at the end of a task, we must be sure to close the
file. In the case above

CLOSE 3

does it for us.

.. .Formatting a New Disk (NEW)
Before we can save programs on a disk it must be formatted. That s, a pattern must
be written on the disk so that thé computer can organize data stored on it.

We can write a program to format a disk. See Program D-1.

100 OPEN 3,8,15
110 PRINT# 3, "NEW:FIRST DISK, 00"
130 CLOSE 3

Program D-1. Formatting a disk.

The formatting command appears in quotes in line 110. The NEW command may
be abbreviated to “N.” The colon separates the command from the disk name. We
are allowed up to 16 characters for a name. The comma separates the name from a
two-character identification (ID). This ID is checked by DOS. If we improperly
change disks during an operation DOS will produce an error. (We'll also get to
errors.) _

Alternatively, the command can be included right in the OPEN statement, as in
Program D-2.

100 OPEN 3,8,15,"N:FIRST DISK, 00"
130 CLOSE 3

Program D-2. Formatting with the OPEN statement.

Following the NEW command the red light will come on and the disk will whir for
about a minute and a half. The red light will go out and the disk is ready for use.
We can format a disk by typmg the lines of either Program D-1 or D-2 in
immediate mode as well.
Onmitting the two-character ID at the end will cause DOS to simply erase all
directory entries. This is a way to reformat a disk with unwanted programs on it.
This operation will erase all programs.

212

APPENDIX D—THE DISK

...Disk Errors
If the red light ever blinks continuously, something is wrong. We have tolook at the
light—BASIC does not necessarily display an error message. Even when BASIC
does display a message, it may not reflect the real problem. The easy way to
determine what the error might be is to have the C-64 WEDGE program in place at
all times. Then we can simply press the @ symbol and the error will be displayed
for us.

Without the WEDGE program we must write a program to read the ERROR
channel. See Program D-3.

100 OPEN 3,8,15
-->110 INPUT# 3, E,E$,T,S
120 PRINT E;E$;T;S
130 CLOSE 3
Program D-3. Reading the error channel.

Errors are read through the command channel, 15. Line 110 of Program D-3 uses a

variation of the INPUT statement—it simply takes its INPUT from file 3. The value

of E is the error number. These numbers are keyed to a table of errors in the VIC

1541 user’s manual. The second value is a string with a readable error message. The

. symbols T and S stand for the disk track and sector where the error was detected. In
rare instances where a valuable disk has been damaged, advanced programmers
can use this information to bypass the error and recover lost data. Usually the error
is something simple that beginners tend to do. After a few days, we gain experience
and most errors cease to occur. ‘

Some of the silly things that cause errors are not putting a disk in the drive, not
closing the door, putting the disk in upside down, and not turning the disk drive on.
It takes a little experience to interpret the meaning of the error messages.

DRIVE NOT READY can mean several things. An unformatted disk will
produce this message. Inserting a disk part way will, too. So will putting a disk in

" upside down. They all amount to the same thing: the drive is not ready.

The best way to deal with errors is to acknowledge that there is an error and
search for the cause. It is a great temptation to be certain that we couldn’t possibly
have made a mistake. Well, we can and we do. '

...SCRATCH

Any program that we have no further use for should be erased from the disk with
the SCRATCH command. This can be done right in an OPEN statement or with
PRINT#, as with NEW. Here is a two-line program to do it:

100 OPEN 1,8,15,"S:0LD FILE"
110 CLOSE 1

The same two lines may be used in immediate mode. If we choose to do this witha
PRINT# statement, we must remember to open a file for this purpose and then
“close it.

Be sure to check the little red light or the error channel.

213

BASIC COMMODORE 84 BASIC

Occasionally we want to rename a program. This can be done without LOAD and
SAVE, by using RENAME.

100 OPEN 3,8,15,"R:NEW=OLD"
110 CLOSE 3

... INITIALIZE

It may happen that an error condition will keep us from proceeding further with
some disk operation. We can initialize the disk drive to the condition it has when
turned on with

100 OPEN 3,8,15,"I"
110 CLOSE 3

This should be a rarely used command.

...VALIDATE
After SAVE and SCRATCH have been used on a disk many times it is possible for
small areas to become inaccessible to DOS.

100 OPEN 3,8,15,"y"
110 CLOSE 3

will reorganize things on the disk to maximize the space that can be used.
If you are using the advanced technique of random files, this command must
not be issued. It will destroy data in random files.

... C-64 WEDGE Commands

We have discussed the benefits of using @$ to examine the disk directory of files.
We have also mentioned the use of @ by itself to read errors on the command
channel. Many of the commands discussed above are available in abbreviated form
with C-64 WEDGE. OPEN and CLOSE are not required for any of these
commands.

...NBW
We can format a disk easily with

8N :NAME, 00

To reformat an old disk, just omit the two-character ID.
...SCRATCH

We can erase an unwanted program with

@S:FILENAME

14

APPENDIX D—THE DISK

..RENAMBE
@R:NEWNAME=OLDNAME
renames a program for us on disk.
... INITIALIZE
The drive can be restored to its initial state at power-up with
eI
..VALIDATE

If a disk has accumulated little unusable blocks of space because of repeated use of
the SAVE and SCRATCH commands, we can recover by validating the disk with

ev

...LOAD
Even LOAD can be shortened.

/PROGRAM NAME
is equivalent to

LOAD "PROGRAM NAME", 8

...LOAD and RUN
We can load and run a BASIC program with

EAPROGRAM NAME
That is an up arrow, found next to the RESTORE key.

We have a shortened command for SAVE.

- G PROGRAM NAME

That is the left arrow key, found to the left of the digit 1 on the keyboard.

If you use the Commodore 64 day in and day out, then it is definitely worth
learning these shortened forms. It isn’t too much of a chore to learn the @
commands. And certainly it is well worthwhile to use @ to read errors and @$ to see
the directory. These two commands alone justify mstallmg C-64 WEDGE routinely
every time you turn the disk drive on.

Program
1-1.
1-2.
1-3.
14.
1-5.

1-6.
1-6a.

1-7.
1-8.
19.
1-10.
1-11.

2-1.
2-2.
2-3.
2-4.
2-5.
2-6.
2-7.
2-8.

=

‘Appendix E
Index of

PrOSramms

Description

" Our first Commodore 64 BASIC program.

Using question mark as PRINT.
Demonstration of lower-case mode.
Calculations.

Demonstration of using comma and semicolon for
spacing.

Demonstration of scientific notation.
Demonstrate program listings without line
breaks.

Calculating a simple average.

Calculating gasoline mileage.

Program 1-8 with READ...DATA.

An editing example.

Demonstration of CLR and CRSR keys in a
PRINT statement.

First counting program.

Counting with display.

Counting from 1 to 7.

Birthday dollars.

Package weight monitor.

Generating 10 random numbers.

Flip a coin 39 times.

Rolling a die ten times.

316

Page

N 130

© oo

10
12
14
18

20
23

26
27
31
31
32

APPENDIX E—INDEX OF PROGRAMS

Program
2-9.

2-10.
3-1.
3-2.
3-3a.
3-3b.
34.
3-5.
3-6.
3-7.
3-8.
39.
4-1.
4-2.
4-3.
44,
4-5.
46.
4-7.
4-8.
49.
4-10.
5-1.
5-2.
5-3.

54.
5-5.
5-6.
5-7.
5-8.
5-9.
5-10.
6-1.

6-2.

6-3.
6-4.
6-5.
6-6.

Description

Program 2-7 showing shortened IF... THEN
statement.

Program 2-3 using FOR. . .NEXT.

Draw the one face of a die.

Draw the three face of a die.

The control segment of a die-drawing program.
Subroutine to display a one face of a die.
Center a message on the screen.

Novelty backwards message.

Setting a character color in color memory.
Display a character set.

Some twinkling stars.

Calisthenics.

Finding the largest factor.

Finding the largest factor using SQR(N).
Rounding to the nearest hundredth.

Compound interest by formula.

Compound interest with money added each month.
Using DEF FN to round to the nearest hundredth.
Comparing time for I*I and 12

Comparing time for I + K and I + 342.
Demonstrate keyboard buffer.

Curing the stray character problem for keyboard input.

READ. ..DATA with strings.

Program 5-1 with reformatted DATA statements.
Using dummy data to terminate program
execution.

String comparison.

Displaying the printing characters.

Displaying the days of the week.

Formatting subroutine.

Control routine to test Program 5-7.

Using GET A$ to determine PRINT code.
Store color codes in a string variable.

Finding the average, highest, and lowest
temperatures.

Drawing five numbers at random from among
ten.

Drawing without replacement efficiently.
Finding daily average temperature.

Displaying the days of the week.

Displaying average daily temperature with day
names. ‘

217

Page

33
34
42
43
45
45
46
47
53
54

56
60
61
62
63
64
64
69
69
71
71
74
75

75
76
78
81
82
83
86
87

89
90
91
93
95

97

BASIC COMMODORE 64 BASIC

Program
6-7.
6-8a.
6-8b.
6-8c.
6-8d.
6-8e.
6-8f.
6-8g.
6-8h.
7-1.
7-2.
7-3.

7-4.
7-5.
8-1.
8-2.
8-3.

8-4a.
8-4b.
8-4c.

8-5.
8-6.
8-7.
8-8.
89.
9-1a.
9-1b.
9-lc.
9-1d.
9-le.
9-1f.

9-2.

9-3a.
9-3b.
9-3c.
9-3d.
94,

9-5a.
9-5b.
9-6.

9-7a.

Description
Total price in record store.
Control routine to play Geography.

Reading names into an array for Geography game.

Geography game instructions.

Initializing the available names array.
Beginning the Geography game.

Person response subroutine in Geography.
Computer response subroutine for Geography.
Playing a Geography game.

Accessing digits by successive division.

Using STR$ to separate numeric digits.
Converting decimal to binary by using successive
division.

Hex input/output.

Processing a menu.

Error reading subroutine for files.
Demonstration of how to read file errors.
Writing initial names to a file for Geography
game.

File reading subroutine for Geography game.
Writing names to the file in the Geography game.
Changes in the control routine to convert array
Geography to file Geography.

File-oriented Geography game.

Demonstration of commas in a PRINT# statement.

Demonstration of multiple INPUT# from a file.
Demonstration of comma in PRINT# A$, BS.
Reading file data written by Program 8-8.
Bit-map graphics plotting routine.

Setting up the Hi-Res screen.

Setting bit-map color in character screen area.
Bit-map screen setup subroutine.

Restoring the normal character screen.

Routine for displaying a border at the edge of the
screen.

Plotting a black border on a white screen.
Plotting a line from (X1,Y1) to (X2,Y2).

Plotting a line from two points for (X2 — X1) =0.
Reading plotting data and controlling plotting.
Control routine for graphing from data.

Drawing a figure by using line data.

Data for drawing a lighthouse.

Blinking light for the lighthouse.

Plotting a function in bit map.

Control routine for polar graphing.

218

Page
98
100
100
101
101
101
102
102
104
108
109

112
114
118
130
131

132
133
133

134
136
137
137
137
137
142
143
143
144
144

145
146
146
146
147
147
148
150
151
154
155

APPENDIX E—INDEX OF PROGRAMS

Program -

9-7b.
9-7c.
9-8.
10-1.
10-2.
10-3a.
10-3b.
10-3c.
10-4.
10-5.
10-6.
11-1.
11-2.
11-3.
114.
11-5.
11-6.
D-1.
D-2.
D-3.

Description
Drawing a polar axis.
Polar graph plotting subroutine.
Complete polar graphing program.
Our first Sprite program.
Adding a second Sprite to Program 10-1.
Displaying a Sprite grid on the screen.

Calculating Sprite data from a Sprite drawing.

POKEing Sprite data from a Sprite drawing.
Drawing Sprites and POKEing Sprite data.
Moving four Sprites across the screen.
Person climbing stairs.

Frequency test.

Playing a melody.

Three-part harmony.

Filter demonstration.

Jet aircraft departure.

Gong sound.

Formatting a disk.

Formatting with the OPEN statement.
Reading the error channel.

219

Page
156
156
157
162
163
166
166
167
168
171
174
180
186
191
194
195
196
212
212
213

LOT SIHL Ld3ADDOY
6LT ¢S IM
@g8T ¥ LM
18T € IM
28T ¢T 1M
6LT ST IM

and

gec OLOD

LNI¥d

LNI¥d

666 OLOD NIHL ¢ = IM JdI

NO¥

666
5113
Lé6c
S6¢
[4%4

$SENIT SNIMOTIOL HHIL YHINT xx WI¥ 2T

g 'ON wa)qoig
1 UonOag

8 xeydeyd
-a8ed [enpiAIpul 9uo st wopoq 03 doj wioly peal 8q pnoys peaids oafed-omy yoeq

SUIOIQOI] PoJoqUUINN-USAH
JO] SUTBJISOI] UOTINOS

Jd XTpusddy

NNy
X + X + X ‘Xx€ ‘X INI¥4 Q11
€/1T = X 991
P "ON wa]qoig
* AAVYdY
. Trege
60T 'TZ'T° 2’86 '€ (SYHAHWNAN IATI YIINI
N3

SY+PVY+EY+CY+TVY LNI¥d 9CT

. GY ‘PY ‘EY ‘TV ‘TV INANI Q1T
!, SYHEWAN FAIJ ¥ILNF, LINI¥d 00T

g 'ON wa)qoid
1 xe3deyo

220

T =

@€ ¥OJd AVA HOVE SIODVM FTdNnod

Ya

2SsT

SXYd

xx» W 00T

9 "ON wajqoLd

WAOS 99C8LT
SYIEWNN TTT

WS, ‘WS INIdd
#SYFEWNN,, *TD INIVd

@TZ OLOD NIHL €1ZC => 1L
IT + IC

I + WS

T+ 1ID

[}

10071

g =

JdI
ir
WS
10
WS
ir
10

NNY

gce
gie
g6t
28¢
gce
o1C
aLT
291
PST

NIATTE A€ TTHISIAIA €12Z OL 19QT

WO¥d SYIDIINI WNS ANV LNNOD

»x WY 00T

9 ‘ON wa1q01d
GZ°L8 :UDIIAVY

6 TL

98 @@T :SHIO0DS

NNy

26 ‘TL ‘98 ‘P@T VYIVA 2096

v/ (d+ D+ € + ¥) ¢, 3DVHFIAVY, INI¥d 921
a !D ‘g ‘Y ¢!,:SHI0DS , INI¥d @TT

a‘s’a‘v avay get

P 'ON wajqotq

* AQvIy

2T LM

* AQvIy

¢T / 11
€' ¢A’'N NOILOWYA ANODIS ¥AILNA
¥’'T ¢d’N NOILOVYA ISYIJd ¥IINI

NNy

TAxTA ‘u/u ‘TA+ZN + TAxIN INI¥A @91
¢d ‘TN INANI @%1

‘wd’N NOILOVVA ANODIS YWALINI, ININA @E€T
1d ‘TN ILNANI @TT

fwd’N NOILOV¥A ISYIJ YHINZ , INI¥d 90T
01 'ON wa1qoiq

* XAVay

2088C9¢
NNJ

POTx6x8BxLlx9xSxPxExTxT INI¥A P01

8 'ON wajqotqg

* XAVad
21
NNy
a/N INT¥d 921
v/1 - €/1 = d @11
€/1T + 2/T = N 901
9 'ON wajqoLq
P licts

EEEEEEEEE”

221

10

’
-

«= T6TT OL § WOJYA SYADIALNI dAO, LNI¥dd

20¢€

NI IXIN 962
T+ 1D = 1D @1¢
Z d3ls T6TT OL G = NI ¥0d @2
9@ = 10 @61
1611
OL S WO¥d SYIOIAINI AdO INNOD sy WIM @OT

3 ON EQN&Q.«&

€ Uo1Odg

€ 1

¥ 4

9 T

4 9

44 S

1 S

S °

1 S

€ S

4 9
NO¥
g@Z NIHL @T => 10 JdI g6T
I+ 10 = 1D @se
Zd ‘1d INI¥d @22
(T + 9 ¥ (T)ANI)INI = 2Zd QT2
(T'+ 9 « (T)AN¥)INI = 1Id @@C
I =10 @ST
SAIWIL NAL FIDIA OMIL SNITIOU xx WA @OT

P "ON wajqosg

STIVL

91

HLHHHHHHHHHLLLHLIHLHHHLEHHLLLHHLHELLILH

Ny

T =434 @91

g =D @sT1

AYA SIHL SLAID ¥04d TID xx WIH $0T1
YIEWNN AVA ¥0d d xx WHI 2OT

SIJAID ¥0d D xx WY Q9T

GI 'ON wa)qotq

79988 P11 $§ INNOWY

- NNy

I ¢,$ INNOWY, ININd 9@

(2g° - 1) » IL = 1L @0@€

d¥ + 0¥ + M9 = 11 062

G6°6S = d¥ @ve

(ST° - 1) = 86°L » € = D¥ @2C

(S2° - 1) » S6°01 » ¥ = M4 00T

- ¥yIa¥o

NY A0 INNOWY HHIL FLVYINDTYD xx WIN 00T

TL
™

H
"

0I ‘0N w2]qord

T°8IVLELDT $
Z1°6@L89€S §

WS = SIAOYM TVIOL o INI¥d
= SEOVYM AVA HIGE, INI¥d
9Pz OLOD NAHL @€ => ¥a JI
1+ ¥d = VYa

T x ¥M = UM

M = IM

¥M + TL = 116

WId

g =11

19° = UM

SHOYM TYLIOL
SADVM AVYAd HIGE

NNY

g1¢€
20¢€
g6c
o€ec
gce
gic
202
861
oLT
291

(panuyuoo) g “oN wa)qoLg T uonddg

¥9€ :SI SLJIID 0 ¥YILHWNN TYLOL

D {,:SI SILAID A0 WILWAN

a
(A
AYdOdl S&LJID

JIGWNAN AYA
SIJ4ID

T BIVLELDT $
T1°6@L89€ES $

NNY

TVYLIOL, INI¥d @8%
a IXUN @g€

0 + 9 =9 o¥C

€L IXIN @€T

I + T9 = 19 @cc
OL T = 41 904 @@<¢
g = 19 @61

OL T = 904 @91
g =9 @s1

ST 19 xx WIY P01
VOd A xx WIT 22T
YOd D x» WY 00T

9 'ON wajqotq

SEOVYM TVIOL
SHOVM AVA HLGE

NnA
1L ¢{,$ = SIOYM TVIOL o LNIdd @1€
M ¢, = SUOYM AVA HI@E, INIId @0¢€

¥Ya IXUN @gec
¥YM + TL = TL @¢€C
C x UM YM @gcc

g€ OL T = YA ¥0d 907

19° = TL @61
19° = ¥M @81

SAVYAd @€ ¥Od AVA HOVA
ONITHENOd YO SHAOVM HLVINOTIVO xx WIH OOT

P ‘ON wajqotq

$6S = T6TT OL S WOMd SYIDIINI 4O

NNY

«STIVL, ‘¥YL INT¥d @@€
LNI¥d S6T

T+ VL = VL 6SC

g = YL @91

$SANIT ONIMOTIOH HHL

YHILNI ANV 6-C WWIO0dd NI HJAL «»» WY QT

)

g 'ON wa)qosq
g uonoag

$92€ :SI SLAID 40 YILAWNN TYIOL

14°4% [As
28¢ 1T
gece o1
S91
gct
¥8
9s
g€
14
21

14

1

%HNMQ‘U\\DI\@O\

~

w:SI SIJ4ID 40 YIAWAN TVIOL, INIdd @@%

LNI¥d @6¢€

@9C OLOD NJIHL CT => d JdI @TE
T+ d=a e@¢

D ‘19 INI¥dA @@¢€

g1C OLOD @¥%c

gge OLOD NIHL d = 1D dI Q€T
10 + © = D g¢¢

T+ 19 19 @12

(7] 10 g@c

o

" ﬂ "
" E--
" ® o,
" ﬂon
" E "

INTdd @¥11
INI¥d @ETT
INTdd @CT1
INI¥d @TTT
INTdd 90T

uwlu AVIASIA sx» WIS 8601
fu0w INI¥d 60T
ATYHL ¥ ANV 3NO V AVTdSIA x» WIH 86

g "ON wa]qoid

1 uonRoag

g xeydey)

S d0 INO LOUTYYO0D € 10D NOX

LHOTY

LY é= €€ + ¥1

6S d¥d dINOM IVHL ‘ON
6€ é= 6C + @€

LHOTY

gy é= ¢ + 8T

LHOIY

6C é= 6T + OT

6€ d9 Q'INOM IVHL ‘ON
8€ ¢é= TT + 8¢

TP '9T SQIAVISIA SYIIWNN JO0 HONVE YHLNI

S SINVYM NOX Od SWATHOdd ANVW MOH

TTI¥d NOILIAAVY HWOS Od S, LdT

NNY

T+ YL = YL 66C

WI¥ @S¢

@LZ NIHL ¢° > (T)ANd JII @€

2091 OL T = 1Td ¥0d @@

SAWIL @@@T NIOD V dITd x» WIY 86T
g = ¥Y&L @ST

LXEAN " * “90d SNISN »» WIY 20T

0I 'ON w2]q04q
LLLIHLLLHELLIHEIHLIHHLLIHLLLLLHLLALLHLHLLH
ILHLHHIHHLILLLIHHLIHHLLLLLLHLLLHBLLLHLLL
LIHLLLIHLLHLHLHHHLLLLLLLIHIHLHLLHLLLLLE
LHHHHHHHLLIHIHLIHLLHLIHLLLHHHLHHHHLLHEHEH

LHIHILHBHLHHHHLIHLLHIHHHHLHHHHLLLHLLLLLL
NOY

aNIT 666

od IXJIAN @@E€

INI¥d 96¢

LNI¥d S6¢

Td IXUN @8¢

‘{wH, INI¥d 9.7

@g8¢ OLOD @9¢

{uba LNI¥G 95T

PLT NAHL G° > (T)AN¥ JI @€T
6€ OL T = T4 ¥0d @@C

SHIWIL G SAdITd 6€ x» WIY 861
S OL T =00 904 @51
IXAN* * *90d ONISN xx WY 00T

§ "ON wa)qosg
(panuyuoo) ¢ :o.:.oom

224

SIIVIH 40 HTJIHL

INI¥d
LNTdd
LNTdd
LNITdd
INIdd
ILNI¥d
LNI¥dd
LNI3d
LNI¥d
LNIdd
LNI¥d
LNT3d
INTYd
LNT¥d

gec
Y44
g1c
208
26T
28T
aLT
291
2ST
oY1
ge1
I AN
P11
201

xx WII 86

9 'ON wa)qosq

B , INT3d @o%11
a8 , INI¥d Q9€TT
L] B . INI¥dd P11
B, INI¥d @111
B, LNI¥dd @011

AVTIdSIA xx WIS 8601
wOuw LNI¥d 201

¥ ON wajqo.rq

B, INIdd @VET

. @ B, INI¥d @€€T

® B, INIYd gC€1
» B, INIYd @TET
B, INIYd @@€1
AYTdSIA x» WI¥ 86CT

{,d0 INO ILDIYIOD, +IL¥ ¢,lO0D NOX, INIVd
LNT¥d

¥d IXdAN

T+ 19 =19

wLHOIY, INI¥d

98% OLOD

WS ¢,d9 dTINOM LVHL ‘ON, INIdd

PSY NIHL WS = NV JI

NY LNdNI

u..".. uNZ u:+= IIN INI¥d

INI¥d

ZN + IN = WS

(0T + (1T + OT - IH) s (T)ANY)INI = ZN
(0T + (T + O1T - IH) 5 (T)ANY)INI = IN

PN OL T = ¥d ¥0d

JYFH TII¥Ad NIDJIL x» WIY,

g = L4
IH'OT INdNI

:,AIYISIA SYAIWAN A0 HONVY VIINA, LNIdd
LNT¥d

gN LNdNI

{wINVYM NOX Od SWIIEO¥d ANVW MOH, INIdd
LNT3d

«T1I¥d NOILIAAVY IWOS Od S, LdT, INIdd

21s
2es
28v
9%
osy
gcy
o1y
)7
2ot
gse
ove
gce
gce
g1¢
o0¢€
86¢

962

aLT
g9c
@sc
ace
g1c
1X4
20c

I "ON wa]qoLd

STIVL

aNd

wSTIVL, VI ILNI¥d
LNTdd

Td LX3IN

W

98¢ OLOD

14%°]
NN

666
(7]}
S62T
28¢
aLe
99¢

@991 €NSOD NIHL 9 =
@OST €NS0D NIHL G = ¥ JdI
@gg¥1T €NSOD NIHL ¥ = ¥ JI

uwSu AVIdSIA xx WIH
NINLIY

B, {(X)gY¥L INI¥d
@[, {(X)9VL INIId
B, {(X)gY¥L INI¥d
88, {(X)g9VYl INId4
B, {(X)IVl INI¥Yd
:¢.. NA&.H&WHQ * ¥ zmm
NINLAS
X)gY¥l INI¥d
X)dvl INI¥d

E-. A
(
Mxvm<a INT¥d
(

® 8,
B.-

N on en en on

M, X)dvYl INI¥d
[, X)EgYL INIdd
w€n AVTIISIA yxx WA
NINLII

B, (X)g¥l INI¥d
e B, {(X)g¥Yl INIdd
B, {(X)g¥l INIdd
B, {(X)dYI INIAdd
B, ‘(X)8YL INIVd
wCu AVTASIA xx WAI
NInLTI
X)dgYl INI¥d
X)dvl INIYd

E-- A
(
Mxvm¢a INT¥d
(

a,
A,
a, X)EYL INI¥d
B, {(X)gYl INI¥d
..H.. AYIdSIA xx WIY
NINLEIg
6I IXAN
INI¥d
TOL T =6I ¥O4
2601 NIHL @ = T JI
JosaNd IOVId xx WIY

L A S D T

86%1
gevT
vy
geEVT
gevi
21V 1
20V 1
86€T1
g6€ET
OYET
geEET
geeT
PTET
20€T
86¢CT
gect
oveT
gect
peeT
g1cT
] I A
86T1
g6T1
y1T
PETT
TN
P11t
0011
860T
2601
PEBT
2eoTt
2101
2001
866
266
296
256
ove

2091
PeST
20v1
PPET
20821
2911

€nsoo
gnsod
€0Nso0D
gnsoo
ansoo
ansoo

® B, INIdd Q€vI
B, INI¥d 0T%1
® B, INI¥d @1¥1
B, INI¥d @9o%v1

wPu AVIASIA x» WIH 86€T

NINLIY @6ET

B, INI¥d oVET1

® 8, LNI¥d 9€€T
& B, INITdd 9Z€1
B, LNI¥d 9T€1

" B, LNI¥d 9@G€T1
wEu AYTdSIA xx WIF 86CT

NNLIY 96TT

B, LNI¥d o%21
® B, LNI4d @€CT
B, LNI¥d @2C1
B, LNI¥dd @121
" 8, INI¥d 9021
-.N-. AXTIdSIA * ¥ Wada mm.ﬂ.ﬂ

NINLIE g6TT

B, INIdd @¥11
B, INIdd @€T1T
] B, INI¥d @211
B, INId4d @TTT
" B, INI4dd @911
wla AXYTIdSIA xx WIY 8601

NIHL
NIHL
NIHL
NIHL
NIHL
NIHL

aNd ge6
dI 996
dI 996
ov6
dI @€6
dI @26
dI @16

wwaunn

NN O

]

-
s
-

{0, INI¥d @12
T + (94(T)AN¥)INI = ¥ 90T

G ON ENN&Q&N
3 uopodg

WAVAX ¥ ¥90d @9@ReTS NO, INIdd 91T
ZISHYIINI ANNOJWOD HTIVAWOD, INIdd @01

g ‘ON wa1q0:d

$SENIT SNIMOTIOL HHIL ANY 3A0SY ¥

— o~~~

+ 4+ +

1

1 Uondg

p xo3dey)

(6Tx(T)ANY)INI = T Q€T
(Z€x (T)ANE) INI = X 022
(6T (T)ANI)INI = T @€T
(ZEx(T)ANY)INI = X @T1

6L IXIN @8

@16 €0S0D @L

ggeT 9nS0D @9

T + (6Tx(T)ANY)INI = T @S
T + (2€x(T)ANI)INI = X O¥
{,H, INI¥Yd @€

+ (9x(T)ANI)INI = ¥ @C

GZ OL T = 6L ¥Od @T

9D0Id JHL TIOY »x WY 8

*ON

WFTg0dd OL NOILNTOS HHL NI JdAL xx W T
9 ON wajqo.iq
NINLId 9691

m, {(X)EVl INI¥d 9491
880, {(X)gYl INTYd @€9T
@, {(X)E¥l INIdd 9291
@ e 88, {(X) gVl INI4d 9191
g, ¢(X)E¥L INIdd 0091

® 8,

«. 8,

w9u AVIASIA x» WIE 86ST

NINLIE g6ST

E-.

E-

{(X)€VL INI¥d @%ST
{(X)dVL INIdd P€ST
B, {(X)gVl INI¥d 9ZST
{(X)gYl INT¥d @1ST
{(X)g¥l INTdd @9ST

PPET dNS0O NIHL € = ¥ dI
@eCT dNSOO NAHL ¢ = ¥ JdI
@@T1T dNSOD NAHL T = ¥ dI

AVIdSId OL FId LOIATAS xx WA
andg

{8, INIdd

916 €nS09

9P91 9NS0o

6T = 1

6 =X

{8, INIdd

T + (94 (T)QNM)INI = ¥
FId ANODAS xx WX

916 €9NS0D

9991 €nSoo

61 = 1

1=2X

.0, INI¥d

T + (9«(T)AN)INI = ¥

2%
2C6
216
868
g6t
g9t
st
ove
geT
@ce
g1c
/] /KA
861
ST
g1
oET
kA
g1t
201

dId LSYId xx WI¥ 86

P 'ON wajqoiq

NNLTI 9691

" 8, INIYd 9¥91

. 8 @88, INITdd @€91

" M, INI¥d @291

. 8 @ 88, INTYd @191

" B, INI¥d @991
w9n AVIdSIA xx WIHY 86GT
NINLIT P6ST

" B, INI¥d @¥ST
.8 @B, INITdd 9€GT

" & B, INI¥d @ZS1

w 8 &8, INIdd 16T

" M, INI¥Yd 96ST
wGn AVTIASIA xx WIS 86%1
NINITE P6¥ T

" B, INIdd ovvT

237

aam

" AVAI¥d AVASYNHILAYASIN
A¥dsanl AVANOW AVYANAS, = $M 00T

g 'ON wa]qorg

g uonoag
NINLIY G601
g19T OLOD @80T

«3SVda1d ‘,N, 90 ,X,, LNIdd @LOT
26Q9T NIHL G- < NV JTI @901

g = NVY NJIHL uNy = W¢ dI @S@T
g = NV NUHL wON, = SV JdI @¥8T
T = NV NJIHL wkae = 8Y JI g€0T
1 = N¥Y NIHL ,S3IX,, = $Y JI 9Z0T

SV INANI @101
G- = NV @@01
JOSSTO0Ud ON-SHX xx WIJ 866

P ‘ON wa]qoiq
LAGVHATY ST LSHITIVE FHL

LIGVHITVY
NCISIAYTIL
IIWYD
JaLSY
IDJodd
:SQMOM FHL
NNY

dNd JHL VIVd 666

LIGVHATY ‘NOISIAITIL VYIVA 916
YIAWYD ‘¥ILSY ‘dAD¥0ID YIVA 906
dNd @68

$d ¢, 3SI ISAITIVI HHL, INI¥d @TIC
" INI¥d 99T

@CT OLOD @91

d - 6¥ = IV @LZ
gp6 9NS0D @Ot

G9€ = ¥a @sz

d - 6¥ = Y @¥¢

gg6 €NS0D PET

@9 = Yd @

GG =¥ @912

P0090T = d 80T

GOE {(LZ)9VYL ‘@9€‘ INI¥d @ET
INI¥d @21

LAVIX ¥ ¥0d 9099gT$ NO, INIdd 91T
JILSTIAINI ANNOJWOD HYVAWOD, INI¥d 901

P ON waqord
$G°CT LV SINID ¥ HSOT AINOM IM

LyeEY "TTEET TT6€°CTIEET 36°CT
G8CY9°€59¢ ¥0€9 €696 3G° S
g9t 29¢

dVIX ¥ J0Jd @OgegT1S NO
LSAIFTINI ANNOAWOD HIYAWOD
NNy

w3G°CT I¥ SINID § dSOT 4TINOM IM, INIdd Q1€

INIYd @@€
TV {(62)9v¥l ‘Y ‘,%G°CTT, INI¥d Q9T
d - G9€_(S9€/GZT +1)xd = TV @52

d - 99€.(099€/GCT +1)xd = ¥ @¥T

IV (GZ)Ev¥l ‘V ‘,%6°G . INI¥d Q€T
d - 69€.(69€/65@ +1)xd = TY QT

d - P9€.(P9€/SSP +T)xd = ¥ Q1C
9000e¢T = d 962

GO9f {(LZ)EVL *@9€’ INI¥d @E€T
INI¥d @CT

(panuiu02) g "ON WajqoLd T UoROdg

dNT NAHL ,dOILS, = $W JdI @22

ININd @T¢
SW ¢,ONI¥LS ISIL YIAINI, INANI 00Z

ILNI¥d @21

w9S *VECT- SAWODIL <9S°¥ETTS>, INI¥A QTT
wINTYA DTYIWAN OL ONIYLS LYIANOD, LNIVNd 90T

9 ‘ON wajqoLq

00°0 = @
g INTVYA LSIL
NO¥

w00°0, = $d NIHL @ = TW JI @¥0T
SINIT ONIMOTIOH UHL JYISNI xx WA 8

9 ‘ON wajqosq
6666~ ZIANTVA ISHL

P0°61$ = 61
6T (ANTVA ISEL
NNY

$a + u$u = $Q @SOT

(z’3q)

$AIW = $d NEHL » » = (1°$Q)$1J9T AT gVOT
!SINIT ONIMOTIOL HHL LYASNI xx WY 8

p 'ON waqoid

T IX3AN 092

INI¥d @52

d IXIN gve

wow (T'd’'$M)$SAIN ¢, , INI¥4 Q€2
T+ T + 65 = d 922

9 OL @ = d ¥04 @1¢

8 OL @ = 1 ¥0d @09

]
.

$V = $3 NAHI $3 > $V JI

$Y INTY¥d

g@z NIHL ,ANT HHL, = $V 4T
$Y avay

w2222, = Wﬂ

w $SQYOM dHL, LNIdd

2ST
oV
2ET
2cT
21T
281

g "'ON wajqosg

T uornoeg
g xeydeyd
Pl A AR AR LO9BE"CTTEET %6°CT
Ze%T9 €699 9¥LT9° €696 %6°6G
G9¢ 29¢€

dVIX ¥ 904 99peeTs NO
ISTIIINI ANNOJWOD TAVAWOD

NInLIg

X IXJAN

6Y = 6d

(Va/001/9)x6d + 6d = 6Y

¥Ya OL T = X ¥0d

d = 6d

LSTYALNI FLVINDTIVO xx WIYH

IV {(gz)avd ‘Y ‘,%S5°CT, INI¥d

d - 6Y = TV
@96 d9NS0D
G99t = Yda

d - 6Y =Y
@06 €NSsS0D
G9¢ = Yd
g1 = ¥
PoeeeT = d

IV {(G2)E¥d VY ’,%S°S . INI¥d

NnY

266
ove
2€6
2c6
@16
006
686
g6t
oLE
2ot
2s€e
ove
gee
gce
21¢
[7]1%
géec

SYT

Ta4a

LSNI

dWOH

q€Id

LHOTY ¥osund

LJdT JOosund

NMOa ¥0sund

df ¥osind
Ny

ANOA VIVA @601

TId ‘ISNI ‘EWOH ‘¥ID VIVd @9z@T
LHOIY ¥OSdND ‘IJdT ¥YOSIND VYiIVd PIgT
NMOQ ¥0S¥ND ‘dn ¥0S¥Nd VYiIvVd @e9T

P0T OLOD @ST

($Y)DOSY INI¥A @b1

gET NAHL 9 = ($SY)NIT 4I

2 8V 199 @€

8T ((S$T)NAT-ZT)EVL ININA @21
dNd NIHL ,3dNOd, = $T1 JdI 91T

$T avay @g1

g 'ON wajqosg
€ Uono9ag

INOd YIVA 966

YIVd 686

"
w "SILNIWIIVIS VIV JHL ONIONVHD X€, VIVA 906
w JOVSSIW FHL IONVHO XTISVH NVD 3M, YIVA $@6
w “HOVSSIW ONITIO¥DS dATdWYS ¥ SI SIHL, YIVA ZTP6

o YILVAd 9096
@1C 010D ge6c
61 IXAN @92

6X IXIAN : @98 OL T = 6X ¥Od @ST

isd

{uDw INI¥A @¥2

dOLS ¢ONIYLS ISHL VAINA
86 ° 96— SAWODAL <86 °96$>

<86 °9G8> ¢ONIVLS ISEL VAINI
YALOWVIVHD TYOIATII

ONIY¥LS LSHL ¢ONIYLS LSHL YALNI

9SG *¥E€CT- SHWODIY <9G°"HETTS>
dNTYA DIVHWAN OL OSNIVLS IIFTANOD
NNY

NINLAS @6T1

($6R)TIYA = 6 QLZT

S6W + ,-, = $6W NIHL , <, = (T'$W)SIHOIY 4TI 921
61 IXAN @921

(T'6I'SH)SAIN + $6W = $6W SSCT

P6ZT OLOD @SzT

T =49 ¢ HALOVIVHD TVYDITII, INI¥d SHZT

6L IXAN P¥CT

GSZT NAHL (T'6L'STS)SAINW = (T'6I'SH)SAINW AT S€TT
(STS)NET OL T = 6L ¥Od PETT

60 ILXAN SZT1

@9CT NIHL (T‘6L'S$SS)SAIW = (T‘6I ‘SW)SAIW AT @ZZT
($S) NIT OL T = 6L ¥0d SITT

(SW) NIT OL T = 6I ¥0d Q1CT

g =49 : wn = WOE SPC1

..-mmhmm¢MN.—”&: = W.Hmw : ..AVW.. = Ww 2oCT
SYILOVIVHD TVIDAdS ANIJ xx WIY 86TT

99T OlLOS @9t

INI¥d @S¢

6W ¢, SFWODIL , ‘SW INI¥d g¥e

@0C NEHL T = 3 JdI G€T

@PZT 9NS0D gee

(panuyuoo) @ "ON wa)qo.Lg g uonodag

230

g1c

:C-9 WYdDodd

1a
HA

121€9 SI INIVA LSIHODIH
NN¥

dOlS VYIVd 666
‘1Z1€9 YIvYA @26
PPT ‘68 ‘6°¥S— VYIVA Q16

1€ ‘26T- ‘@1 ‘6 ‘€ YIVd @06

AH ¢,SI dnNIVA ILSIHOIH, INI¥d 00T

P11 0OLOD @%T

X = AH NIHL AH < X JdI @€1

(SY)IVA = X 921

g@7 NHHL ,dOXS, = SY JI : $VY avdyd @11
8€HT- = AH 90T

9 'ON wa)qotq

% ‘0O

«SMYYA QISOANN, ‘NN INI¥d S6C

OLOD : T + NN = NN NIHL ¢ = (¥)V JI @ST

Ol

T OL T = £ ¥0d 99T

g = NN @81
SHONVHD ONIMOTIOA UHL HMVW xx WIY @T

¥ 'ON Wwajqotq

‘{WA¥d NO,, T ¢, 3dWAL ISIMOT ., INI¥d @E€E
{4Avd NO,, ‘H ¢,:dW3L ILSIHOIH, INIdd @C€
£="1a : (£L)M =T NIHL T > (LM II 99T
L =HQ : (L)M =H NZIHL H < (£)M dI @€

T="10 2 T = HA @LT
:SHEONVHD ONIMOTIOA HFHL IIVW x» WIY OT

G 'ON wa]1qo+q
1 uond9g

9 Je3deyn

(161 'SY)SAIN + (6€°$H)SIHOIY = $€ Q€T
($¥) NIT OL T = 6I ¥0d @2C

aNd NIHL ,3NOC, = $VY dI : SV AVdd g1¢
$9 avdd 99T

8I "ON wa1q04d
@ (ANTVA ISIAL

0600 = 60°

60° dINIVA LSIEL

919°CPT = 18°CT01

19°20T 2ANTVYA ISAL

NNy

NINIId P60 T

(1d ‘$X) $IHOTIY + ,°w + (60°$X)$LIAT = $a @8IT
1d - ($X)NIT = 64 GLOT

$X 4+ (($X)NAT - T + Td’S$L)SIHDIY = $X @901
«00000000000000, = SI PSOT

gLOT NAHL Td < ($X)NIT 4T @91

@ZPT OXOD : (T'$X)SAIW = $X @EBT

gyeT NIHL , o <> (T’'$X)$1J4aT dI @21

A (6W)$¥IS = $X PIPT

(6 + Td_ BT » TW)INI = 6W 9P0T

SAOVId JO YIGWAN ANV OL IVWIOJ: xx WIY 866
: 966

99T OLOD PST
INIdd o%1

{TW INI¥d @E€T
ggeT 9NSOS @Z1
NI NAHL @ = TW JI @11

W ¢,I0TVA ISEL, LNANI 90T

SHAOVTId JO YIGWNN FHL SI Td s WII L6
€ = 11d S6

0I 'ON wa]1qo4q

%Q fh =a

231

NINLIEd
Ya IXUN
dd ILXUN

(MW'VA)3L = (¥’'VA)IL NIHL (F°'VA)dL < (I 'VA)AL 4T

€ OL T = 34 ¥0d

L OL T = ¥Yd ¥0d

Va4 IXUN

(1'¥a)dL = (¥‘va)ar

L OL T = ¥Yd ¥od

TYHH SHINLVIIdWIL WANIXYW ONIJ xx WIT

9L'L9'G9 VYIYA
‘@L'LL'@8 YINYA
‘18'6L ‘¥L YIvYA
‘GL’'6L 9L YINA

ang

INI¥d

Ya IXIN

(v’'va)as ¢, . ‘¥4 INI¥d4
L OL T = ¥ad ¥od

WdWIL XV¥d, INIdd
JHOWIXYW ,, INI¥d

$9/59 ‘89
€8'@P8°SL
oL'LL'TL

29@Z d9nsoo

Y4 IXHIN

qd IXEN

(3§ 'va) 3L avay
€ OL T = 39 ¥04d

S60¢C
260¢C
280¢C
2L0T
999
2s0¢
gecec
210¢
200T
8661
9661
29901
2ve1
2201
2001
286
206
gec
gce
g1¢e
20T
28T
oLT
a9t
2sT
vt
geT
/I A
211

INOL T = £ J0od 911
TN AV 90T
(GE)EV'(ST)CZV'(ST)IVY WIA Se

SAVYYVY OML 40 HLISOdWOD AVTIASIA x» WAH @6

(44

(44

{(LYT)SYHD INTH¥d 91
0I ‘'ON wajqosgq
2T ¥ 9 8 @1 CI %I 91 81 @2
¥Z 92 8T @€ TE ¥E 9¢ 8f @Y
YIAQYO FASYFAATS NI AVIdSId

oy 8t 9¢ ¥vE <CE @€ 8T 9T I

gec 8T 9T %1 CI @1 8 9 ¥ T
ddq¥0 NI XVIdSId
NY
aNd 266
L IX3IN g€e

{(L)Y INI¥d @2Z€

I- d34S T OL @ = £ ¥Od PT€
wd3080 ISYIAEI NI AVIdSId, INI¥d @@€
: 96¢C

INI¥d : INI¥d @%¢

L IX3IN gec

{(r)Y ININd @2C

gZ OL T = L ¥Od @1¢

w330J0 NI ANVIdSIdA, LINI¥d @92
: 9T

L ILX3IN g%1

"LxT = (L)Y PET

g OL 1T = L 904 @T1

(92T)Y WIA @11

$(LPT)SYHD INI¥d 00T

8 'ON wa]qosg
(panuiuoo) 1 uonoag

4 IX3N O IXEN

(0o‘d)zd + (D'A)TY (0o‘'¥)s
GOLTI=DD¥Y0od : # OL T = ¥ ¥0d
FYAH SWNS YHAINT xx WIT
LNTdd

¥ ILXIN

LNIdd

O IXJIN

{(D’¥)TY¥ INI¥d

S OL 1 O ¥od

¥ oL T d ¥0d

WAV dANODES o« LNI¥d

o

INIdd
¥ IXAN

INIdd

O IXIN

£(D'¥)T¥ INI¥A

G oL I =20 ¥od

¥ oL T =¥ ¥0od

JAVENY IS¥Id » INI¥d

. ¥ IXIN : O IXAN

(18T + 86€ » (T)ANM)INI = (D’¥)TN
GOLT=D24dY0od : ¥ OL T =¥ ¥0d
9 IXIN : O IXIN

(18T + 86€ » (T)ANJ)INI = (D’¥)T¥
GOoL T=0o¥90d : ¥ OL 1T = ¥ ¥od

265
gES
@cs
20S
86%
267
oLY
29v
osvy
ovy
oEY
XA
o1y
20V
96¢€
oLE
g9¢
2s€
ove
gee
pgce
g1e
20¢€
26¢
/A X4
@gce
2ec
/A |
gC1
201

(s‘¥)S’(s'%)2a’(S’'¥)Td WIA S6
SUAGWNN WOANVY HIIM SAVY¥V ONITIII xx WIE 06

P ‘ON wajqoirq

9L
89
28

L
9
S

L OL T = YA ¥0d 90T
(¥'L)3L WIA S6
AVd HOVE ¥0d dWAL WAWIXVW ONIJ xx WIA €6

G ‘ON wajqosq

7 UONO9g

¢ 8 T 6 € 9
SAVYYY FLISOdWOD FHL

NNy

s ‘o ‘g8 ‘Tz 'V YIVA Q16
6 ‘€ ‘9 '€ YIVA @06
aNd o@s8

£ IX3IN PEV

{(L)EV INI¥A QTH

€L OL T = L ¥0d @1%

«CAVYYY TIISOAWOD HHI, INI¥d @0%
£ IXAN S9€

M IXIN @9o€

G9E OLOD SGE

(r)eY = (EL)EY @SE

T + €0 = €L G¥%E

M IXIN o€

Go¢ NIHI (rL)T¥ = (M)EVY JII SEE
€0 OL T = M ¥0d PEE

ZN oL T = L ¥0d GC€

£ IXEN STE
(£)TIY = (L)EY QOTE

L = €L SOF

IN OL T = [¥0d @€
£ IXIN @€T

(r)gY avad @zT

ZN OL T = L dod §1C
ZN avEy 90T

£ IXAN @€T

(£)TVY avay @zl

N

@ CYHEDULNI NV ¥
TTEVS9LB6 68L9SY
68L9SVECT CUEDELNI NV A
NaINLIY
I IX3IN

(T-1I).01+Q + T¥ = AY
((T'I'$X)SAIN)TVA = @

($X)NFT OL T = I ¥od
g = @4
(Z2’(NN)$JLS)SAIN = $X

JYFH HSYUATY xx WIY

29T OLOD

ILNITdd

T ‘ON INI¥Nd

@geT dnsod

N = ON

g@T NIHL N <> (N)INI JI
aNd N3IHL T > N JdI
{GIEDALNI NV ¥dINA, LNANI

JLNJE

€CT
dLNI
NNY

2601
gso1
2v0e1
geEDT
2Co1
2101
0001
866
266
gLT
291
gsT
v T
2T
get
21T
20T

YIEWAN ¥ J0 SIIDIAd HHL ISYHIATY x» WIA @6

P ‘ON wa)qo:g

(S° + IsI - N)INI = ¥
$ONIMOTTIOE HHI H

BLT
LIM

T-L WYED0dd d0 @LT HEOVIdHY xx WIS GT

G 'ON wajqorq

1 uo

noag

4 xeydeyn

$SIENIT ONIMOTIOA HHL YAINI NIHL xx WY O

STPS ANV ‘@T@gS ’‘@0@S SINIT FNOWHY ILSUIJd xx WIH ¥

¢

NOILOJETIS WOONVY HJYOW dOd
ANILAOYENS ISNOASTI YALNAWOD NI SHONVHD xx WII T

G 'ON wa)qoiq

¢ uonoag
969 €6S S¥vy €1€ @99
YL €8V GSES TEL T99
v@9 88L e6¥C ¥99 ¥19
8TL 809 €@¥y L¥S B8EE

SHOS
9Tvy ¥€€ Tec BIT 1LC
69t 6%€ @61 6Tt €9¢
C6E gov TeT 16T 8IY
Lev @vZ @€T1T LO9T ¢ccT
AVI¥Y aNODIS
YLT 6ST PST €@C e6LE
LLE VET S¥E ¢COv 86¢€
¢Iz 86T 8IT ¢€LE 96T
TZZ 89t ELT @8 9TC
AVIEV LS¥Id

Nn¥

¥ IXIN @99

LNI¥d @S9

O ILXEN @¥%9

$(0‘¥)s INTI¥d @£9

S OL T =D ¥0d @29

¥ OL T =¥ 904 9719

«SWAS o LNI¥d 08099

(panwuo9) p "ON wa)qoLd g uorddg

234

(2! (N)$YIS)$AIN = $X 9001

SYAH ISYEATY sy WAN 866

_ : 966

aNg 966

61 IXIN @T¥

‘(6I)¥S INI¥d BTV

SS OL T = 6I ¥0od @OV

SITNSTY FHL AVIASIA - ANOA xx WIA 86€
: 96¢€

X IXIN @8€

X IXAN @LE

N = (SS)VS p€€

1 + SS = SS @Z¢€

61 IXAN POE

gLE NIHL (6I)VS = T JI @6T

SS OL T = 6I ¥Od @8T

gze NEHL ¢ = SS dI @LT

7 IXAN QET

gL NIHL Z/39 = (2Z/39)INI dI @2¢
gLz NIHL T8 < Z4Z JdI @12

Z dAls H¥ OL € = Z ¥Od @@T
$CIWTEd ISYIATY ST xs WAM 86T
: 961

PoeT €NSO0D GLT

Z IXIN @91

gLE NIHL Z/N = (Z/N)INI dT1 @GT
gLT NEHL N < ZxZ dI o%T

Z dilS N OL € = % ¥0d @ET

X+ X=N @21

Z d3lS 66 OL T = X ¥0d @TT

goz dELS 9P6 OL PPT = X ¥od P@T
g = SS L6

(E¥)¥S WIA S6
SHALYDITANA FAIYNIWITE - JITWAN yx WIE 16
HWI¥d ¥ J0 SIIDIA FHI ASYIAATE xx WII 06

9 'ON Wa)qoLd

61

9 :YIHIWNN NOILISOd NI

AVAI¥d = ISYId ATIVOILIEVHATIV

NOY

AVQINLYS YIVAd @201

AVAI¥d ‘AVASINHL ‘AVASINGIM VIVA 9101
A¥dsdANL ‘AVANOW ‘AVANNS VYIVA 9991

¢ 966

NNLIY gee

61 IXIN @96

(61I)sEM AVIY Q16

L OL T = 61 ¥0d @06

MAIIM FHL A0 SAVA - SIWUN AVIY xx» WA 868
¢ 968

aNd 998

0od ¢, *9ILIKNN NOILISOd NI o LNI¥3d @S¢
SWS ¢, = LSYIJ ATIVOILILEVHATY, LNI¥d @¥%C
61 IXIN @€¢

od : (6I)$IM = $WS NIHI $WS > (6I)S$IAM AT ©TT
L OL T = 61 ¥0d @1¢C

T =04 ¢ (TI)$IM = $SWS 00T

: 961

9g6 9NS0d @ga1

(L)$3IM WIA S6
TWYN ISYId ATIVOILIGVHATV HHL ANIJ x» WIS 06

P ON Wajqoiq

61 IXJIN
PSPS NIAHL T = (6I)AY

(T'(61)3$ad)SIHOTIY = (T'(6I)$YN)SLITT AI

Dd OL T = 6I ¥O4
61 IXHIN
PGPS NIHL T = (6I)AVY

(1°(6I)$Ad)SIHOIY = (T'(6I)SVUN)SILIAT JI
PN OL 99 = 6I ¥O04

(T + ON » (T)AN¥)INI = 99

v16S
aNv

2108
g1as
900S
aNy

1471
(4711
200S

o~

aNdg

wxxy LI LOD NOX, INI¥d
@9Z OLOD

«TIVWS OOL, JINI¥d

g@Z OLOD

wLIWIT ¥NOX NVHI 339919 S, IVHL, INI¥d
P9 OLOD

wddHOTIH, INI¥d

@@c OLOD

wddMOT,, LNI¥d

Pgge NIHL IN > D J1I

P@PS NIHL IN = 9 JI

@Y NIHL N < 9 JI

@Sy NIHL T > 9 JdI

5 !,SSINO JNOX, INANI
LNT3d

(T + N » (I)AN¥)INI = IN

:WTIVWS OOL, INI¥d ¢ NIHL T > N 4T
N INdNI

{,39 OL N, INI¥d

«INIT NOX ATINOM IOYVI MOH, INI¥d
‘N ANV T NIIMIZE YIEGWAN V J0 MNIHL TIIM I , JININd

1T OLOD

21s
20s
29%
oSy
1%
20v
g1¢
20¢€
99¢
9sc
ove
/A X4
gece
g1c
s@ec
20¢
PST
ovT
2eT
T AN
PTT
201

{(LYT)SYHD INTYd g6

g 'ON wa)qosg
1S9I9)U] [BIOUSS) JO SWIB[qOIJ

§ uonoag

@ CYIADIALNI IAILVOIN YV VAINA

T1000Q0BTTTITITITITI

LTt~

CUHEDHILNI FATILVODIN ¥V JIAINI

00000000 1100900 T

9@C OLOD : INI¥d : ,IONVY 40 INO, INI¥d @€Z
@6C NIHL 69LC2¢€- < I ANV g > I JI @2C

666 NIHL @ =< I JdI @1¢

I ¢, ,9IDIINI FAILVOAN V ¥IINE, INANI @@¢
(91)¥Y WIQ @01

ILNIWITAWOD S,OMIL xx WIS Q@1

¥ ON wajqosg

{(Z'((L)Y)$UIS) $AIW ININd eT¥

9tV NIFHL ¢ = TL dI ¢ (0O)VY + TI = Td 90%
9T OL T = P ¥0d Z@¥%

g =Tl 00V

$SENIT ONIMOTIOA HHL W 1T

YIILNT ANV €-L WYYD0Ud VHAINT xx WII QT
G ‘ON wa]qotq

g Uonoag

626

616 LeL L8L 69L
LSL 6€EL Lzl 60L
68¢€ €8¢ €LE 6S€
€S€ LvE LEE £€1¢€
661 T6T 18T 6LT
L9T1 LST. 1sT 6v1
€1 €11 LOT 91

NNy

NINLIE g6gT

I IXIN 9501

(T-I).0T+0 + T8 = T9 PYOT

((T'I’'$X)$AIN)TVA = d @EQT

($X)NIT OL T = I ¥0d 9291

g = 34 9101

(panunuoo) g ‘o N wajqosJ 1 uondAg

ALVY LSEIEINI 1D x» WIY 860T PPPCE- SYIDILNI FAILVDIAN V JYIALNI

: 9601
aNd gg6 TTTTTITTITITITITLL
$a !,¢$ = ISTIAINI TVIOL , INI¥A @9C T- ¢YIDIINI FAILVOAN ¥V WAINI
g@EST dNs09 @< NNY
d - ($d)TVA = ¥d o¥T
4d !,4 = SINEWAYA TVIOL , INI¥d Q€T aNd 666
P@ST €NS0D @PTT gt OLOD 298
N x Aw&vg<> = ¥Yd @1¢ INT3d @ LNIdd mmm
$d !,4 = INAWAVA ATHINOW, INI¥d * INI¥d 00T o £ IXdN @gz8
@@ST 9nsod @sT (' ((L)Y)SULS)SAINW INI¥A @18
geYT €nsoO @1 @78 NAHL ¢ = TL JdI : (L)Y + 1L = Td 9¢8
PPET €NSOD EET 9T OL T = [404 v08
@oT1 €0S0D GTT 0 = 1L 008
ggIT €nSOO @11 SILTINSTI AVIdSIAd xx WIdI 86L
f(LYT)$¥HD INI¥NA @1 PoeL
@15 INIT IV SLIXI
¥ ON wajqosq NOIINDEXd NIHM INOQ SI AAV HTHI xx WA BES
r IXEN @€S
sxx LI 10D NOX g = (L)Y @2Ss
ZS ¢SSEND WNOX g8 OLOD * T = (L)Y NIHL ¢ = (L)Y II @16
T- d91S T OL 9T = L ¥0d @9PS
¥AHOTH INO daV¥ MON xx WId 86%
@S £SSIEND YNOX : 96
£ IX3IN @€Y
TAMOT g = (L)Y NIHL T = (L)V I 9TV
GG ¢SSHEND WNOX PEY OLOD ¢ 1 = (L)Y NIFHL ¢ = (L)Y JI gT¥
9T OL T = [¥04 @@V
¥IMOT SIIDIA FHIL FASYIATY x5 WIS 86€
99 ¢SSEAND WNOX : 96¢
~ £ IXIN @o€
HAHOIH (z / N)INI = N @¥¢€
Gy &SSAND VNOX T = (£)Y NFHL (2 / N)INI <> T / N JI @2€
@ = (£)Y NAHL (2 / N)ANI = ¢ / N dI @1¢
1699 OL N T- d31S T OL 91 = [¥0d @P¢€
aMIT NOX ATINOM TOAUVI MOH °N AVIYY FHI AVOT xx WA 862
ANV T NIIMIZg ¥FEWON Y J0 MNIHL TIIM I : 962

NNY (I)sd¥Y = N ge6c

237

LT

v9 ¥sc

TE 89S 91 9IPT 8 2E€WZ V¥ ¥v99% T 1
LOIJAYId SI 8TI8
1€ 9T T9 8 %21 ¥ 8%Z T 1
LOoIAYAd SI 96%
L v ¥T T 1
IL0IAdad SI 8¢
€ T 1
L10dJ¥dad SI 9
NNY
and gee
NN IXAN @z
N3 NIHI ¥ = 1D JdI @1+
T+ 10 = 1D @V
INI¥d : INI¥d @6€
61 IXAN @8€
{(6I)Vd INI¥A @L€
T4 OL T = 6I ¥OJd @9¢€
WLOTIIAd SI, ‘NN INI¥d @S€E
@cy NIHL AN <> NS JI @€
NI IXIN @€€
@Zv NEHIL NN < NS 4T @Z¢€
X + NI + 0S = S Q@I¢
2+ 1d = 1d 9@¢
X = (2 + Td)Vd g6t
NI = (T + 1d)V¥d @82
@€E NAHL (X)INI <> X dI @12
NI / ON = X @9t
(ON)¥0S OL Z = NI ¥0d @S¢
T = (1d)Vd g€2
T = 1d gzt
T = NS @g1¢
¢ d3LS L9LZE OL T = NN ¥0d @@

LT ¢(%) FLVY ISTUAINI TTVNNNVY

NINLIa

w'u + Awnmmvw.ﬁmmd = %&
Z - ($4d)NIT = X
(X)$91s = &4

(¢’'s$d)saHOIY +

(S° + @BT x ¥d)INI = X

INZWAYd IVWIOd 4y WII

NnLTd

(T -X)/ (X% II x d) = ¥4

IN . (TI + 1) = X

INZWAYd ATHINOW FLNAWOD xx WIH

, NIy

TN NI SINIWAVd J0 ¥AGWNAN HIIM LIXT xx WIH
ZT x N = IN

N ILNdNI

{,SYVEA J0 VITWAN » INI¥d
SYVAX JO YAGWAN IAD xy WAH
NINLTE

d INaNI

{u($) TTYAIDONI¥A YHINF w INI¥d

TYAIONI¥d 13D xx WIY

NEALTY

TI NI JIV¥ ATHINOW HIIM IIXH sy WHY
2T / 11 = 11

PeT / I = 11

POTT OLOD : INI¥d

+ASVATd FOVINIO¥EA, INIId

PYIT NIHL T < I dI

I INdNI

1, (%) FIVY ISTWEINI TYNNNY, INTId

Nn¥

06S1
PEST
gest
21ST
20ST
86¥T
%96VvT
o6v1
21v1
20%1
86€T1
96¢€T
g6€T
88€T
geeT
P1ET
20ET
86¢CT
96CT
g6c¢1
ARA
20T
861T
96T1T
2611
88TT
PS1T
V1T
gETT
FTAN!
/rAN)
11T
2011

(panunuos) p -oN wajqotg uonodg

Id ¢, tANIVA ALYWIXO¥dd¥, LNI¥d @ST
61 IX3N %1

((¥ + 6I) » (2 + 61I) x (6I)) / 9T + 1Id = 1d

/YAl

¥ dd1S @PST OL T = 6I ¥Od PTT

¢ = 1Id

201

FONANOES ¥ WOdd Id ANId xx WY @S
L(LYT)SYHD INI¥A @1

8 'ON wajqosq

6¢ 1c
(713 ve
s¢ gc
)4 9T
9¢ Ve
ST (A
LI ST
x4 ve
21 8
€1 [
S 14

17T ILXIN

271 IXIN

XH IXIN

XH ‘2T ‘1T INI¥d

@LT NIHL X > IX dI
28T NIHIL X < TIX d4I
XH ¥ AH = IX

@S OL T + 21 = XH ¥0d
TT » T1 + 1T » TT =X
GZ OL T + TIT =TT ¥04
GZ OL T = 1T ¥0d

geT
28T
oLT
S9T1
291
SST
os1
vt
PET
gt
201

SATAIIL NVIJOOVHIAd ANIJ xx WIA @S
{(LPT)SYHD INI¥A 0T

9 0N wajqoig

9 = 10 @11
(9S)¥d WIA 991

SYFEWAN LOTIYAd ANII x5 WII 0S
L(LPT)SUHD INI¥A 9T

¥ 'ON wa)qoig
@ CUILEWNN LS¥T4d

€1 :YOLOVA NOWWOD LSILVIUD
PEET JUIGWNAN ANODIS
1991 2¥dgWNN ISdId

@oT 0109
INT¥d

ZN ¢, :¥01OVd NOWWOD ISILVA¥DO, INI¥d
@ST OLOD

q =N

IN = IN

gz NIHL ¢ = ¥ dI

Ox ¢N- IN=1¥

(zN / IN)INI = O

ZN ¢, ¥FEWAN aNODES, INANI
aNg NEHL ¢ = IN dI

IN ¢,¥FEWOAN ISYId ., LNANI

NNd

gce
g1c
] 14
261
281
SLT
gLT
291
oST
211
ST
201

WHLI¥OOTIV S,dITONd xx WIA BS

G 'ON waqoid
SWI9[qOIJ PoIUdLIQ YIB N

oY 22990C $
oY *2299SC S
¥8°CIL $

@€ ¢SUVIX JO YILWNN

LSEYHLINI TVYLOL
SINIWAVYd TVYIOL
INIWAVd ATHLNOW

goPesS &($) TYdIONI¥d JAINA

gL'29 ‘@T1'@9 VIVA @1g6

gL'PY ‘O1'@Yv VYIvVd

S@06

0€ ‘P8 ‘@€ ‘@T YIVA @¢EY6
d¥v0od FOL-OVI-DIL xx WI¥ 8668

.

9668

VIVA FATIWUXT sx WIT T

P ON wajqosq

68T ‘QOT ‘68T1°‘6Q€ VIVA Z@E

9T ‘é6Q€ ‘OT'QT1 YIVd gg¢c

NINLIT P6¢

X IX3IN 98T

P@CT dNSOD : ¢X = X * @PTT 9NS0O : IX = X @L¢C
€X OL 1X = X ¥0d 992

X IXIN @Sc

P9ZT dNS0D : €X = X * @PCT €9NS0O : TX = X @%T
ZX OL IX = X ¥0d @¢€¢

dOLS : $W INI¥d NIHI TIX <> ¥X JI ST

dOLS : $W INI¥d NIAHL ¥X <> €X JI £2¢

dOoLS : $W INI¥d NAHL €X <> X JdI STZ

dOLS : $W INI¥d NAHL ZX <> T1X JI 912

#¥I¥ad avd, = $W s@2

PAPXEX'EXZACZXTA'TIX AVAY 00T

$SEANIT SNIMOTIOH HHI ¥AINT ANY WAY 9

P6C-9@C SIANIT SSIT T-6 WVID0Id VAINT sy WIAY G

g 'ON wajqosg
T uonoag

6 xe3deyp

61 IXUIN ¥10S
9G9S NIHL T = (6I)AY ANV

(1'(6I1)$ad)$IHOIY = (T'(6I)$V¥YN)SIITT AT

¢109s

99 OL T = 6I ¥Od Q19S
6I LXIN 9¢@S

9

NINITT @

Z d9S0ID @

61 IXAN @

(6I)SYN ‘Z #INANI @
PN OL T = 6I 904 @
ON ‘T #INdANI @

g@8 9dnNsoO : M‘S’, + 34 ‘2’‘8'Z NIAO @
HIId SAWYN AVIE xx WIY 8
t 9

NINLIT

dols

$¥ INI¥d4

968 NAHL @ > d JI

S'L’$A‘A ‘ST #INANI

TIANNVHD JOWYET AVAY xx WAY

and

ST dSOID

IIId SIWYN FHI FITIMAY x5 WHS * @@S8 €NS0D

SHWUN FDVId LIAH s WAN : @OETT €NS0D
f(LPT)SYHD INI¥A

AVHUVY SAWYN AVIY xx WAS : @@@8 9NSoO
(2@S)AY ‘' (@@S)S$YN WId

G1‘8'GT NAdO

W SADVId, = $4d

6¥8
608
908
S@8
Vo8
€08
128
0e8
66L
66L
268
2¢e8
gec8
218
208
86L
96L
g6l
2S1
eyt
201

g6

g€

x4

ST

21

g 'ON wa)qosg
€ UoTO9g
8 xeideyn

OLT6STPT € :EANTVA ILVWIXOH

aNd

ddv
NOY

oee

(panuyuoo) 8 “oN wajqoig § uonodeg

240

xx W : L + OVOT OL @Y0T = I ¥OJ QT
I IXIN gcc

GGz ‘I MIod 91T

YIVd HLIYdS FIO0LS

79 + TGT9T OL Z6T9T = I VWO @@C

$(LYT)S$¥HD INI¥NA 00T
G 'ON wajqosg

T uonoag

o1 xe3deyp

*»x WIY 3

SNOILVNOHE dALSIT JHL J40 ANV HLIM W ¢
G-6 WVYD0Ud NI @TC ANIT HOVIdHY ATdWIS x» WIS T

g "ON wajqosg
€ uonoag

2'0'Q’T- YIVA 6666

ZS'oV ‘96 ‘¥Y YIVA @GEQ6

oS ‘bP¥ ‘96787 VYIVA SZO6

9687 ‘ZS ‘97 YIVA @ZP6

TS ‘ov ‘TS ‘9T YIVd S106

gS‘pY ‘@S ‘9 YIVA @106

2S5 ‘g ‘ob‘gE YIVA S@06

9S‘ov ‘Ov‘9f YIVA 0006
IVOITIIVS FTIWIS V x» WIS 8668
: 9668

$YILVA ONIMOTIO W ¢
FHL ANV Z-6 WVYD0dd YIINT xx WII T

g 'ON wa]qosg
g Uonoag

9'0'B ‘1~ VIVA 6666
gs ‘g8 ‘@S ‘@gT YIVA S106

@S@S NIHL T = (6I)AV ANV
(T’(6I)$UN)SLIATT AI VOPOS
PN OL 99 = 6I ¥0Od TEOS

(T + 9N » (T)AN¥)INI = D99 90GS

$SANIT ONIMOTIOH HHL YIINI NIHL xx WIH O

GI9S ANY ‘@T1@S ‘@095 SINIT JFAOWIH LSYId xx WHH ¥
= t 7

NOILODATIS WOANWY TIOW JOod

ANIILNOYENS HSNOASHzY YHILNdWOD NI SHODNVHO sxx WIE T

¥ 'ON wajqoiq

NINLTY P60TT
S@PEZT OlLOD GLETT

JITINGTY - FWYN H1Y¥0ITdNnd, INIdd @LeTT
S@PZT OLOD S99T1

$X = (6I)S$VN @ogeT

60 IXIN GGOTT

@LOTT NIHL (6L)SUN = $X JI @6OCT

PN OL T = 6L ¥0d S¥@TT

- $x ¢{,d0VId MAN, INANI @¥0CT

cgpzI 0109 : ,ANNOJd ION, INI¥d SE€QTT
61 IXAN QPEOTT

ob@TT NIHL $X = (6I)SUYN JI GTOCT

GN OL T = 61 ¥0d @T@CT

(1°(6I)3$Ad)$IHOIY =

g6¢CT NIHL ,3dANOC, = $X I S1@CT
$X ¢, EWUN XId, INdANI @TOTT

INI¥d S@OTT

+SAWYN FOVId ONILIAH, INI¥d 998C1
: 96611

NINIFY P6S8
Z ISOID 98S8

6I IXAN @¥S8

(6I)$UN ‘T #INI¥d GESS

@GN OL T = 6I ¥0d @ES8

PN ‘T #INT¥d 0CSS8

WM'SY, + $4 + 4.39,.'C’'8°C NIJO 00S8
FIId SIWYN JIVAdN »» WIY 86%8

g@8 d9Nnsoo 3

241

aNE @906

@ ‘$T+S AIOA @OV

PPE OLOD P6€

96Z/d ‘€+S ®MIOd @SE

GGZ ANY d ‘T+S ®Iod @gvE

@0y NAHL S60% < d ¥0 @ > d JII @ZE
d ¢{,HILAIM IsInd, ININI @@¢

96Z/d ‘1+S MIod @S¢

66T ANV (89LZ€-d) ‘S @0od @vT
9002 = 4 99T

T+9T ‘#+S @Iod @¥1

9TxST ‘9+S MI0Od @T1

ST ‘¥2+S MIod @OT

I IXEN * @‘'I MIOd ¢ #2+S OL S = I ¥0od @2
LTS = s 91

g 'ON wa)qosg
g uonoag

P@S—- dELS @ OL S€SS9 = J ¥OJd 99T
: XYL OSTY xx WIS 6666
@ ‘vz+S @IOd @oY
d LXIN @6T
96Z/d '1+S MIOA @S¢
GST ANV (89LT€-d) ‘S MIOd @veT
90T dULS S€SS9 OL @ = J ¥Od PPT
T+9T ‘$+S MIOd @gbT
9TxST ‘9+S IMOd @TT
ST ‘y2+s MIod 991
I IXAN : @g‘I MIOd : ¥2+S OL S = I WOJd Q¢
ZLevS = s 91

g 'ON wa)qoig
T uonoag
1T xe3deyd

PEE OLOD

I IXAN : @@E OL T = I ¥od

X ‘T+€9 @od

X ‘g mIod

D ‘e6tc+d MmIod

(96Zx(T)AN¥)INI = X
(9GZx(T)ANY)INI = X

(9T« (T)ANY)INI = D

9.2 YO (Tz+9)MIAI ‘Te+9 AMoOd
8¥%2¢cs = d

@ HLI¥AS OL INIOd xy WM : €SZ ‘@gb@z DIOd
I IX3N

66z ‘I @Iod

oLE
g9€
gs€e
ove
g€e
ace
g1¢€
o0¢€
@goc
@sc
Qg€
gce
g1c

VIVA dLIY4S TJOLS

¥x WII * 29 + T6T9T OL Z6TI9T = I ¥od
S(LYT)S¥HD INTIHd

20c
20T

¥ 'ON wajqorq

wEYD 9T NODT TUD T¥D QIT NJd SNJ, INI¥d
INI¥d : INTYd

I IX3AN

GG ‘T + I + 9 MIod
Ix9T + 92 ‘I + 9 @04,
¢ di¥IS ¥T OL ¢ = I ¥od
I IX3AN

2 IE -1 ‘I + 9 MmIod

L + 6€ OL 6€ = I ¥0Od

NO SHLI¥dS TIV xx WHI : GGZ ‘TIC + 9 MIod
8¥ces = d

. I IX3AN

€6Z ‘I mMmIod

NOILISOd X xx WHI
NOILISOd X xx WII

JOT0O HLI¥dS x» WHI

21v
oo
91¢€
1 4%
(A
g1€e
1413
(4713
20¢€
29¢
gsc
vee
[4%4

SYHLNIOd JIOLS
(panuyuod) g “oN wajqoLg T uonddg

2423

(I<>@ ANV 0=I aNVY T1)-€€=(1D‘A) DM @T8T

L IXEN 32 GT OL T = L ¥0d @@%1

$€-TT WWIDO¥d O& SENIT

ONIMOTIOS HHL J40 HIOE ¥O UNO ¥YIHIIH AAVY x» WIH T

g 'ON wajqosg
§ uonoag

€ = M 92T
UNIT SIHL SNIAAVY XdL 4
‘PTT ANV @@T SENIT X¥L NOX YALAV x» WA 6TT
P+9T+ST ‘9+S IMIOd @11

P+9Tx@ ‘G+S MIOd @01

aNNOS NYDYO dOo4d

¢-TT WWYYD0dd OJ SINIT SNIMOTIOL FHL AAV xx WA g

g 0N wajqoig
€ uonoag

anNd
a IXIN

INIdd

da IX3IN

T+ YW = VKW

{,'w INI¥A NIHL 6 > dd dI
$(2T'(X)$¥LS) $AIW INIVd

(¥W)MFad = X

6 OL I = dd ¥od

{, YIVd, ‘d + NS0T + 0901 ININ¥d
9 OL ¢ = d ¥od

(NS + @gv@Z)MIAd » 9 = VKW

90T NIHL L < NS ¥0 ¢ > NS dI

NS ¢, ¥ddWNN ALI¥dS, INdNI

g6t
291
SST
2ST
SvT
vt
SET
PET
YA
2TT
STT
211
ST
201

g "ON wajqoig
g uonoag

243

Index

ABS function, 58, 59 disadvantages, 110-111
Addition, 110 conversion from decimal system,
ADSR cycle, 183-185, 186, 187, 191, 111-113
194-196 conversion to hexadecimal system, 113
AND, 70, 123-124, 140, 141 multiplication in, 110
Animation, 55, 160, 172-175 Bit
Argument, 32 defined, 111
defined, 30 gate, 181, 183, 184, 187, 195, 196
of function, 58 release, 192
Array, 66-70 Blank PRINT, 13
defined, 88 Byte, 66, 67
multidimensional numeric, 93-95 defined, 111
one-dimensional numeric, 88-92 high, 123, 124
string, 95-105 low, 123, 124
uses, 89-91

ASCII (American Standard Code for
Information Interchange)
code, 78, 80, 87, 199

function, 75, 78 Calculations, 7-9

system, 53 accuracy of, 8, 13
Assignment statement Carriage return, 128, 129

defined, 11 Character

equal sign in, 23 graphics, 39-56

variable values, 14, 15, 26 screen, 40-41, 52, 56, 160, 161, 170
At symbol (@), 128, 133, 213 set, 54
ATN function, 66 special print, 197-198

CHRS$ function, 86-87
CLOSE instruction, 129
CLR/HOME key, 19, 20

Colon
BASIC annotating program lines, 50
graph plotting, 154 separating statements, 50
keywords, 1, 66, 126 in strings, 74
abbreviations, 6 Colors
use as variable names, 10, 15 border and screen, 51, 52
packages, 57 character, 39-40, 52-53
used as calculator, 37 from CHRS, 86-87
Binary digit, 111 experiment, 42
Binary format, 80 Hi-Res, 143-144
Binary number system, 110 memory, 52, 53, 56
addition in, 110 setting, 139-140

248

BASIC COMMODORE 64 BASIC

Colors (continued)
in Sprite graphics, 160, 162
variety, 139

Comma
as delimiter, 8, 9, 15, 74
as separator, 59, 136-138
for spacing, 96, 97, 128, 129

Commands, 4, 38. See also Instructions

Commodore
datassette, 126, 170, 210
graphics keys, 39-40
integer value range, 111
Concatenation, 77, 82
CONTROL key
to control color, 39, 40
to slow display, 67

Control routine, 82-83, 99-100, 147, 155

COS function, 65
Counting programs, 23-30, 34-36
CRSR key

left and right, 17-18, 19

up and down, 18-19, 20
Cursor

blinking, 42

controls, 20

defined, 2

in editing, 17-19

functions, 74

in quote mode, 20-21

DATA
dummy, 28, 29, 75
source of variable values, 14
statement, 19
Decimal point, 12
Decimal system, 110
conversion to binary, 111-113
Decimal value, 66
DEFined function, 64-65, 153
DEL key, 16-17, 19-21
Delete instruction, 20-21
Delimiters
comma, 8, 9, 15, 74
semicolon, 8, 9, 12, 15
DIMension statement, 91-94, 104
Directory, disk, 210
Disk, 209-215
data file on, 126, 127
drive, 126, 127, 212
Commodore 1541, 127, 128
erasing, 212, 213
errors, 128, 130-131

errors in use, 130-131
formatting, 211, 212, 214
Division, decimal, 60
Dollar sign ($), 73
DOS (Disk Operating System), 126, 127,
138, 211
commands, 212
SUPPORT, 210)
Drawing, 41-43, 142-152. See also Graphics

. Editing function, 19-20

246

in graphics, 43
in string variable, 74
Editor, screen. See also Screen editing
creating subroutine code, 47
in drawing dice, 42-43
E-format, 8
Element, 88, 95
BASIC, 58
END
instruction, 1
statement, 15, 37
End-of-data condition, 14
Equal sign (=), 23
ERROR channel, 213
Errors
disk, 128, 130-131, 211, 213
checking, 133, 134, 136
DRIVE NOT READY, 213
FILE EXISTS, 211
messages, 14, 28
SYNTAX, 5,7, 10, 19, 27
typing, 4, 5
Execution
deferred, 36
defined, 4
immediate, 36-38
EXP function, 66

Factors, finding, 60, 61
File
data, 126, 127
sequential, 126, 136-138
closing, 129
defined, 127
errors in, 130-131
GET#, 129
input, 129
losing data, 131

INDEX

opening, 127-128
playing games, 131-136
print, 128
updating, 138
FOR ... NEXT loop, 44-47, 63
in counting loops, 34-35
in graphics, 155, 156
reverse order strings, 81
in sound programming, 186
time requirements, 68, 69
FRE function, 66-67
Functions
ABS, 58, 59
ASC, 78, 85
ATN, 66
BASIC, 57
Built-in, 59, 66
CHRS$, 78-79, 82, 86-87
COS, 65
DEFined, 64-65, 153
EXP, 66
FRE, 66-67
GET, 68
INT, 57, 59-64, 82
LEFTS$, 79, 96, 108
LEN, 80, 109
LOG, 66
MIDS$, 80, 81, 85, 108
POKE, 71, 123, 124, 139, 140, 144,
164-168, 171, 177-183, 186
POS, 67-68
programmer defined, 64-65
RIGHTS$, 79, 108
RND, 41, 57, 59
SGN, 58, 59
SIN, 65
SPC, 67
SQR, 59, 60-61
STR$, 80, 108-109
TAB, 67, 97
TAB(X), 46-48
TAN, 65
VAL, 80-83

Games
with files, 131-136
with string arrays, 99-104
GET A$, 85-86
GET
function, 68
statement, 71
GET# instruction, 129

GOSUB and RETURN, 44-45, 47

GOTO statement, 13, 24, 31, 37

Graphics

bit-map, 139-159
character, 20
colors, 139-140, 143-144
compressing programs, 159
determining position, 141
drawing figures, 144-152
enabling, 142-143
from formulas, 152-158
memory, 139, 140, 142, 158-159
plotting routine, 142
screen, 139, 140-142, 158, 159
screen grid, 139
Sprite, 1, 126, 142, 160-176
color, 160, 162
disk storage, 126, 176
illusion of motion, 168-171
animation, 160, 172-175

memory, 161, 162, 164-165, 176
pointers, 161, 170
position, 162-164
screen editing, 166-171
making, 164-171
screen, 175

Graphs, 152-158

Hexadecimal system
advantages, 113, 115
conversion from binary system, 113
conversion to decimal system, 114-115
Hi-Res screen, 160, 161, 170, 176. See also
Graphics, bit-map
HOME, 40

IF ... THEN statement, 24, 31
abbreviated form, 33
to determine next step, 28
and logical operators, 70
and multiple statements, 51
options, 25
with subroutines, 48-49
Information storage. See Arrays; Files;
Memory
INITIALIZE, 214, 215
INPUT
data request, 71
prompted, 58-59, 76

247

BASIC COMMODORE 64 BASIC

INPUT (continued)

statement, 11-13, 14, 15
INPUTH# instruction, 129
INST key, 18, 20, 21
INST/DEL key, 16, 18
Instructions, 100, 101

CLOSE, 129

DELete, 20-21

END, 1

GET#, 129

GOSUB, 44-45, 47, 49-50

INITIALIZE, 214, 215

INPUTH, 129

INT(N), 32, 33

LIST, 4, 5, 15, 24

LOAD, 210-211, 215

and RUN, 215

NEW, 2, 3, 5, 15, 212, 214

OPEN, 127-128, 130

PRINT#, 128

RENAME, 214, 215

RND(X), 30-31, 33

RUN, 3-5, 19, 26

SAVE, 211, 215

SCRATCH, 213, 214

VALIDATE, 214, 215

WEDGEC-64, 214-215
Integers

accessing, 108-109

in memory, 66, 67

successive division of, 107-108, 112
INT function, 57, 59

compounding interest, 62-64

finding factors, 59-60

rounding, 61-62, 82
INT(N), instruction, 32, 33

Jiffies, 68, 69

Keyboard
buffer, 68, 71, 85
control of, 71-72
Keywords. See BASIC keywords

Left arrow key, 39, 215
LEFTS$ function, 79, 96, 108

LEN function, 80, 109
LET statement, 14
optional use, 11, 15
Line numbers, 2-4, 38, 50, 97
LIST instruction, 4, 5, 15, 24
LOAD command, 210-211, 215
LOG function, 66
Logical operators
AND, 70, 123-124, 140, 141
with IF . . . THEN, 70
NOT, 70, 125 .
OR, 70, 125
Loop
BASIC, 34-35
counting, 23, 24, 34
Lower-case mode, 7, 79, 198, 201-202,
206-208

Memory

additional, 74

free, 66-67

for graphics, 139

invisible, 17

processing instructions in, 3

visible, 17
Menu, 116-118
Message,novelty, 46, 47
MIDS$ function, 80, 81, 85, 108
Multiplication, in binary system, 110
Music programming, 177-196

NEW instruction, 2, 3, 5, 15, 212, 214
NEXT statement, 34, 35
Nibbles, 123, 139, 140
NOT, 70, 125
Number bases, 110-116
binary , 110
binary to hexadecimal, 113
decimal , 110
decimal to binary, 111-113
hexadecimal to decimal,
114-115
Numbers, 58. See also Integers
negative, 113
real, 105
Numeric functions, 59-66
programmer defined, 64-65

248

INDEX

ON ...
GOSUB, 49-50
GOTO, 50
OPEN instruction, 127-128, 130
Operators, relational, 25
OR, 70, 125

PEEK statement, 53-54
Pixels, 139
POKE
function
in graphics, 139, 140, 144, 164, 165,
167-168, 171
with integers, 123, 124
in sound programming, 177-183, 186
in keyboard control, 71
statement
and colors, 51-54, 56
displaying characters, 53, 54
POS function, 67-68
PRINT
code, 85, 86, 203-208
statement, 3, 5
BASIC, 15
in counting loop, 23, 24
editing functions in, 19-20
use of question mark for, 6, 37
PRINT# instruction, 128
Program
components, 25-26
defined, 1
editing, 16-21
planning, 22-30
readability, 6, 24, 74, 75
running, 3
Programming language, 1

Question mark (?)
for errors, 11, 12
for PRINT, 6, 37
in prompted INPUT, 76
Quote mode, 19-21, 74
setting character colors, 86
special print characters, 197-198
Quotes, 3, 19, 20
to display characters, 39
to PRINT messages, 58-59, 73, 74

O

Random events, 30-33
Random number generator, 59
Random numbers, 30-33, 57, 90, 91
READ-DATA, 13-15
READ statement, 14
READY message, 2, 3, 5
Registers, 162, 164, 171, 176

in collision detection, 175-176

defined, 161
REMark statements, 24-29, 70
RENAME, 214, 215
RESTORE

key, 3, 15

statement, 14
RETURN

key, 2, 3, 11, 39

in editing, 16-19

in immediate execution, 36
REVERSE ON, 39, 40, 42
RIGHTS$ function, 79, 108
RND function, 41, 57, 59
RND(X) instruction, 30-31, 33
Rounding, 61-62, 64, 82
RUN instruction, 3-5, 19, 26
RUN/STOP key, 24

SAVE instruction, 211, 215
Scientific notation, 8-9, 80
SCRATCH, 213, 214
Screen codes, 53, 54, 56, 78, 199-202
Screen editing, 2, 16
CRSR key, 17-19
DEL key, 16-17
INST key, 18
Quote mode, 19-21
with Sprite graphics, 164, 166-171
Screen grid, 40
Screen width, 5-6, 9
Semicolon, 8, 9, 12, 15, 59
SGN function, 58, 59
SHIFT key, 6, 7, 17, 18, 20, 39
CLEAR, 40
INST key, 19
LOCK, 7
SID (Sound Interface Device), 177-196
initialization, 191
instructions, 189
locations, 188-189
registers, 196
SIN function, 65

249

BASIC COMMODORE 64 BASIC

Sound programming
envelope generator, 183-187, 191
filtering, 193-195
frequency, 178-180, 187, 191
harmonics, 181, 182, 189-191, 193, 195
note encoding, 192
playing melody, 185-187
ring modulation, 195-196
sound effects, 177, 195, 196
synchronization, 195-196
volume, 178-180
waveforms, 191
noise, 182, 195, 196
pulse, 181-182
sawtooth, 181
triangle, 181, 186, 195-196
SPC function, 67
Sprites. See also Graphics, Sprite
colors, 160
expansion, 160, 175
SQR function, 59, 60-61
Statements
assignment, 11, 14, 15, 23, 26
BASIC, 58
DATA, 19
DIMension, 91-94, 104
END, 15, 37
GET, 71
GOTO, 13, 24, 31, 37
IF .. . THEN, 24, 25, 28, 31, 33, 48-51,
70
INPUT, 11-13
LET, 11, 14, 15
Multiple, 50-51
NEXT, 34, 35
PEEK, 53-56
POKE, 51-56
PRINT, 3, 5, 6, 15, 19-24, 37
READ, 14
REM, 24-29, 70
RESTORE, 14
STOP, 37-38
STOP
key, 37
statement, 37-38
STOP-RESTORE, 13, 15, 28, 37
STR$ function, 80, 108-109
String, 67
arrays, 95-105
comparisons, 75-77
data, 73
functions, 78-84
manipulation, 77
variables, 73, 74, 80, 87, 95

Subroutines, 44-49, 65-67, 99, 100, 132,
133, 136
adding elements, 150
Subscript, 88, 91-92, 93, 94
zero, 94, 104
saving space, 106

TAB function, 67, 97

TAB(X) function, 46-48

TAN function, 65 '

TIME, 68-70

TIMES$ variable, 84-85

TO, 34

Tone sources, 179, 182-184, 186, 192, 195
control register, 181, 186-188
modification, 194
three voices, 187-192
waveforms, 193

Transfer, conditional, 24

Truncation, 111

Two’s complement form, 113, 125

Upper-case mode, 7, 79, 197-201, 203-205

VALIDATE, 214, 215
Variables
array, 88-106
assigning values, 13-14, 15
defined, 10
dummy, 1, 64
integer, 105
more than one value, 23
naming, 10, 15, 27
numeric, 10
simple, 88
string, 73, 74, 80, 95
value set at zero, 26, 27

WEDGE, C-64, 210, 211, 213
commands, 214-215
Words, reserved, 10, 27. See also BASIC
keywords

280

JAMES S. GOAl\T

Here’s the kéy £0 usqlg and énjoy vy
puter. A fast i’ea,dmg g}ﬁ.lde \to
grammmg that is sm / f‘oxfg

ie Commodore 64 mlcrocom-
c er operat;lon and BASIC fpro-
/sgﬁ home o oF 11 the CIa,ssi\oem The
t‘.* tam with short/ con;/puter' pro-

~ grams, master the commarnd%\ and wateh/as the

| desired. effect g n epr <
another capablhty

Programﬁ are‘dl
a single, /screem ‘

nlques;fre cleg

diate mode € ’ ‘g,
progra/ms aré -
A.notherB

A By
| | b
Commodyg
CHARLES |
Contg' < b A1 d recrea-
tion‘ggr /- s for
horhe financla - Ty mem-

e o o ik MR ¥5cription of
£ 4 doi’) 64 BASJIC, a

N A SymOS Ingwll programs can
\ 1 i

be easily modns

\

\ \

\\\ /"/ grilr y X
!:7‘ i = ,\
A e 7
TR
/ ‘ ,,,;\.~-</ 4/‘: T !

HAYDEN BOOK QOMPANY INC.

Hasbrouck Heights, New Jersey

ISBN 0-8104-6456-X

