
Basic
APPLE
BASIC JAMES S. COAN

author of Basic BASIC

HAYDEN

Basic
APPLE
BASIC

Basic
APPLE
BASIC

JAMES S. COAN

H A Y D E N B O O K C O M P A N Y , I N C .
Rochelle Park, N e w Jersey

Library of Congress Cataloging in Publication Data

Coan, James S.
Basic Apple BASIC.

Bibliography: p.
Includes index.
1. Apple II (Computer) — Programming. 2. Basic

(Computer program language) I. Title.
QA76.8. A662C6 1982 001.64'24 82-11737
ISBN 0-8104-5626-5

Apple is a trademark of Apple Computer Co., Inc., and is not affiliated with
Hayden Book Co., Inc.

Copyright © 1982 by HAYDEN BOOK COMPANY, INC. All rights reserved.
No part of this book may be reprinted, or reproduced, or utilized in any
form or by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying and recording, or in any infor­
mation storage and retrieval system, without permission in writing from
the Publisher.

Printed in the United States of America

4 5 6 7 8 9 PRINTING
8 3 8 4 8 5 8 6 8 7 8 8 8 9 9 0 YEAR

The Apple II and the Apple II Plus are very popular among the mic­
rocomputers available today. With an Apple and a conventional TV set we
have a powerful, genuine computing machine. I f the TV is a color set,
then we have the world of low- and high-resolution color graphics at our
fingertips. Add a printer, and we can get written results for distribution
and filing. Add to this one or more disk drives, and the result is a machine
capable of handling important business record-keeping functions. An
Apple can be used to perform all the computing for a small business.
Apples are found scattered throughout various departments even in very
large companies that also require tremendous mainframe computers for
massive computing functions. Small, low-cost microcomputers may be
used to free individuals and departments within these large companies
from dependence upon computer-department timetables and budgets.

The range of programs on the market is tremendous. Pure passive
entertainment, games and simulations offering user interaction through
the keyboard and joysticks, income tax preparation, receivables, pay­
ables, general ledger, extensive financial planning, and word processing
are just a few of the current applications—and don't think that the main­
frames aren't used for some games and pure entertainment.

One of the exciting developments with the advent of the affordable
microcomputer is that ordinary citizens may create their own programs.
The Apple offers two versions of the popular easy-to-learn BASIC lan­
guage. Apple Integer BASIC is available for tasks that do not require
calculations outside the range of - 3 2 7 6 7 to 32767. For decimal calcula­
tions and very convenient high-resolution graphics, Applesoft BASIC is
the correct choice.

Regrettably, computer programming has acquired a mystique it
doesn't deserve. Of course, professional programmers are highly skilled
people. Racing-car drivers are also highly skilled people. That doesn't
seem to present a barrier to learning to drive a car for the average person.
And learning to drive a car doesn't suggest that one aspires to be a
racing-car driver. Anybody who can manage a checking account can write
a computer program. Many important and useful programs are written

without any more mathematics than addition, subtraction, multiplica­
tion, and division. If your problem can be solved on the computer and you
understand it well enough to solve it using pencil and paper, then you can
probably write a computer program to solve it, too. While much of pro­
gramming is mathematically oriented, an effort has been made to include
topics and develop programming ideas that do not require advanced
mathematics.

This book is suitable for use as a textbook in schools and colleges.
However, it is equally appropriate for use by the individual who wishes to
learn programming in BASIC on an Apple.

The approach in this book is to begin with short complete programs
and then carefully and gently build them into larger programs that solve
larger problems. Over 80 distinct programs are presented as examples.
Each new capability or organization of capabilities is presented to create a
desired effect in a program. Generally, details are introduced in the con­
text of the new effect on a program. Even though some of the topic head­
ings appear to be oriented toward the BASIC language, each feature oc­
curs at a point where it fits to solve a problem. Having those topic head­
ings will help the reader using this book as a reference after learning to
program.

Programming has developed tremendously since the "early days."
This book takes advantage of many of the good programming practices we
have learned in that time. We always divide the program into small man­
ageable segments. Most segments will fit on a single Apple text screen.
The longer programs consist of a control routine at the beginning that
handles all program management using subroutines.

Chapter 1 gets us started entering data and getting results out of the
computer. Chapter 2 introduces some ideas for planning a program. Low-
resolution graphics are presented in Chapter 3, and Chapter 4 contains a
potpourri of BASIC features and programming techniques. Chapter 5
presents strings, and Chapter 6 covers numeric and string arrays. Chapter
7 is a collection of miscellaneous applications. Sequential and random-
access files are the topics of Chapter 8. The final chapter of the book
presents high-resolution graphics using Applesoft.

Each chapter is followed by a Programmer's Corner, which highlights
special features or advanced programming ideas. Programmer's Corner 1
discusses immediate-mode execution. The special screen editing on an
Apple is covered in Programmer's Corner 2. Programmer's Corner 3 tells
how to obtain full-screen graphics, while 4 explains how to read the
keyboard without using an INPUT statement. Programmer's Corner 5
reveals the character sets used by both BASICs, and 6 presents integer
variables in Applesoft. A menu program is the topic of Programmer's
Corner 7, and some advanced features for file handling are presented in
Programmer's Corner 8. The final Programmer's Corner is an example of
a shape table.

Appendix A outlines the procedure for gaining access to both B ASICs.
Loading and saving programs are discussed in Appendix B . Some com­
monly used PEEKs, POKEs, and CALLs are listed in Appendix C , and
Appendix D is an index of the programs in this book. Solution programs
for the even-numbered problems appear in Appendix E. A Bibliography of
books and magazines follows Appendix E .

JAMES S. COAN
New Hope, Pa.

To the Reader

Learning to program a computer can be a very exhilarating experi­
ence. The thrill of seeing your first complicated idea implemented in a
program is wonderful. You will be well advised to look upon the computer
as something to be mastered, not as some impersonal monster that is out
to do you in. Everything that the computer does is explainable and pre­
dictable. You should take care to evaluate the results that the computer
produces. Do not blindly accept computer results as faultless. That is not
to say that the computer is going to make many mistakes. In fact, under
normal conditions, the computer will execute your instructions exactly.
Mistakes in the results of a program execution are usually caused by
errors in the instructions written by the programmer. Once in a great (and
I mean great) while, the problem will be a "bad" memory chip or a dirty
edge connector. Don't count on it. This is absolutely the remotest possible
cause of faulty program behavior; it almost never happens. Strongly resist
the temptation to blame anything other than your programming for incor­
rect or unexpected results.

Learning to program a computer is not so complicated. You will prob­
ably find that an iterative process works best. Read some of this book. Try
some things on the computer. Then reread the book. Again try some
things on the computer. There are certain things that you cannot possibly
know without being told and some things that make sense only based on
what is known so far. You will find that reading the text will help with
writing the next program and that writing and executing a program will
help with reading the text.

I hope that you will be stimulated by your work in programming to
bring to the computer your new and exciting problems to be solved. Above
all, to be successful you will have to be an active participant. Actually
write programs, execute them, and then try to see how what you have
learned fits into the picture of the BASIC language and programming in
general.

Experiment; write programs to solve problems of interest to you. You
can't do any physical damage to the computer by typing the wrong thing at
the keyboard. Don't be afraid to try anything.

GOOD LUCK!

Contents

C h a p t e r 1

I n t r o d u c t i o n t o BASIC o n a n Apple
C o m p u t e r 1

1-1.1... Getting Started in Applesoft 2
...SUMMARY 5

1-1.8.. .Getting Started in Apple Integer BASIC 6
1-8 .. .Printing Messages 7
1-3.1.. .Doing Calculations in Applesoft 9
1-3.8.. .Doing Calculations in Integer BASIC 11
1-4 .. .Numeric Variables 12
1-8 .. .The INPUT Statement 14

...GOTO 16
1-6.1.. .READ.. .DATA in Applesoft 17

...SUMMARY 18
Problems for Chapter 1 19

PROGRAMMER'S CORNER 1

Immediate Execution 20
.. .Stepping through a Program 22

C h a p t e r 2

W r i t i n g a P r o g r a m 3 3

8-1.. .Planning Your Program 23
.. .Counting on the Computer 24
...IF...THEN 25
.. .REM: What's It All About 25

...SUMMARY 31
Problems for Section 2-1 31

2-2 . . . Random Events 32
.. .A RaNDom Exploration 35
...INT (N) 35
.. .IF.. .THEN Revisited 36
...SUMMARY 36

Problems for Section 2-2 36
2-3. . .A Better Way to Count (FOR and NEXT) 37

.. .BASIC Loops 37

...SUMMARY 38
Problems for Section 2-3 39

PROGRAMMER'S CORNER Z
Screen Editing 39

.. .Arrow Keys 40

.. .Cursor Controls A, B, C, and D 41

.. .Cursor Control in ROM Applesoft 42

.. .POKEing for Easy Editing 42

C h a p t e r 3

Apple G r a p h i c s (L o - R e s) a n d M u c h M o r e 4 3

.. .A Graphic Example 43
3-1 . . .Apple Graphics Keywords 44

.. .The Graphics Screen 44

.. .Apple Colors 45

.. .Plotting Points (Blocks) 45

.. .Drawing Lines 46

.. .Drawing a Die 46

...SUMMARY 47
Problems for Section 3-1 47

3-2. . .Divide and Conquer (Subroutines) 48
... GOSUB and RETURN 48
.. .Make It Handle the General Case 50
.. .Another Visit with IF. . .THEN 52

Problems for Section 3-2 53
3-3 . . .BASIC Multiple Features 53

.. .GOSUBs Revisited 53

...Nested GOSUBs 54

.. .GOTO Revisited 55

.. .Multiple Statements 55

.. .Multiple Statements and IF. . .THEN 56

More Lo-Res Graphics 57
...What Color is This? 57
.. .Full-Screen Graphics with POKE 57

C h a p t e r 4

M i s c e l l a n e o u s F e a t u r e s a n d T e c h n i q u e s . . . 5 9

.. .Introduction 59

.. .Prompted INPUT 60
4-1.1...Applesoft Numeric Functions ABS, SGN, RND, SQR,

and INT 61
.. .Rounding Decimal Results 64
... Compound Interest 65
.. .Programmer-Defined Functions (DEF FN) 67
...SUMMARY 69

Problems for Section 4-1.1 69
4-1.a...Integer BASIC Numeric Functions and Techniques 69

.. .Integer BASIC Numeric Functions 69

.. .Factors in Integer BASIC: A Technique 70

...SUMMARY 71
Problems for Section 4-1.2 72
4-2.1.. .More Applesoft Goodies 72

...HOME 72

...FRE 72

... SPEED = 73

...CTRL-S 73

.. .FLASH, INVERSE, and NORMAL 73

...SPC and TAB 73

.. .HTAB and VTAB 73

...POS 74

...PDL 74

...GET 75
4-2.2.. .Integer BASIC Goodies 75

.. .MOD 75

...PDL 75

.. .FLASH, INVERSE, and NORMAL 75

. . .CALL-936 75

...TAB and VTAB 76
4-3.. .Other Applesoft Functions 76
4-4.. .Logical Operators in BASIC 76

.. .AND, OR, and NOT 76

C h a p t e r 5

C h a r a c t e r S t r i n g s a n d S t r i n g F u n c t i o n s 7 9

8-1.1.. .Applesoft Strings 79
...SUMMARY 84

Problems for Section 5-1.1 84
8-1.8...Integer BASIC Strings 84

.. .Double Subscript 85

.. .Single Subscript 86

.. .The LEN () Function 87

.. .String Comparison 87

.. .Concatenation 89

...ASC() 90

.. .What You Can't Do Directly in Integer BASIC (And How
to Do I t) 90

...SUMMARY 91
Problems for Section 5-1.2 91
8-2.1.. .String Functions in Applesoft 92

...ASC 93

...CHR$ 93

...LEFT$ 94

.. .RIGHTS 94

...MID$ 94

...LEN 94

...STRS 94

. ..VAL 94

...SUMMARY 97
Problems for Section 5-2.1 97

PROGRAMMER'S CORNER 5
BASIC Character Sets 98

.. .Applesoft Character Set 98

.. .Integer BASIC Character Set 98

Controlling the Keyboard 77
.. .Read the Keyboard with PEEK (-16384) 78

C h a p t e r 6

A r r a y s 1 0 3

6-1.1. . .Applesoft Numeric Arrays (One Dimension) 104
...DIM 107
...SUMMARY 107

Problems for Section 6-1.1 108
6-1.8. . . Integer BASIC Arrays 108

.. .Warning: Arrays Not Cleared in Integer BASIC 108
Problems for Section 6-1.2 108

6-8. . .Applesoft Numeric Arrays (Multiple Dimension) 109
...Zero Subscripts I l l
.. .More Than Two Subscripts I l l
...SUMMARY I l l

Problems for Section 6-2 I l l
6-3.. .Applesoft String Arrays 112

...Geography 116

...SUMMARY 122
Problems for Section 6-3 123

PROGRAMMER'S CORNER 6
Integer Variables in Applesoft 123

...Warning 124

.. .A Word about Zero Subscripts and Space 124

C h a p t e r 7

U s i n g W h a t W e K n o w : M i s c e l l a n e o u s
A p p l i c a t i o n s 1 2 5

7-1.. .Looking at Integers One Digit at a Time 125
.. .Using MOD in Integer BASIC 125
.. .Using Successive Division in Applesoft 126
.. .Using STR$ in Applesoft 127
...SUMMARY 128

Problems for Section 7-1 128
7-8. . .Number Bases 129

.. .Decimal to Binary 130

.. .Using MOD in Integer BASIC 131

.. .Using Applesoft 132

.. .Binary to Hexadecimal 133

.. .Hexadecimal to Decimal 134

...SUMMARY 135
Problems for Section 7-2 136
7-3.. .Miscellaneous Problems for Computer Solution 136

.. .Problems of General Interest 136

.. .Math-Oriented Problems 138

PROGRAMMER'S CORNER 7
Writing a Program Menu 141

.. .Introduction 141

.. .Developing the Menu Routine 142

C h a p t e r 8

T h e D i s k 1 4 5

8-1...What Is DOS? 145
8-«...What Is a File? 146
8-3.. .Sequential Files: An Introduction 147

.. .OPEN, WRITE, READ, and CLOSE 147
Problems for Section 8-3 154
8-4...More on Sequential Files 154
8-8.. .Random-Access Files 156

...SUMMARY 167
Problems for Section 8-5 168

PROGRAMMER'S CORNER 8
Options in DOS Commands 168

.. .Protecting a File 169

.. .APPEND and POSITION 169

...Byte 169

.. .MON and NOMON 169

C h a p t e r 9

H i - R e s G r a p h i c s 1 7 1

9-1.. .Introduction to Hi-Res Graphics in Applesoft 171
...The Hi-Res Graphics Screen 171

...Hi-Res Colors 172

...Plotting Dots 173

...Lines in Hi-Res 173

...SUMMARY 180
Problems for Section 9-1 180
0-2.. .Hi-Res Graphs from Formulas in Applesoft 181

.. .Cartesian Coordinates 181

.. .Polar Graphs 182
Problems for Section 9-2 185

PROGRAMMER'S CORNER 9
Shapes 187

A p p e n d i x A

I n t h e B e g i n n i n g 1 9 5

A-l.. .Setting Up the Machine 195
A-2.. .From BASIC to BASIC 195

.. .ROM Card Applesoft 196

A p p e n d i x B

S a v i n g a n d R e t r i e v i n g P r o g r a m s 1 9 7

B-l...Tape 197
.. .Saving on Tape 197
.. .Retrieving Programs from Tape (LOAD) 198

B-2...Disk 198
.. .INITializing a Disk 198
.. .Saving on Disk 199
...Warning 199

A p p e n d i x G

C A L L s , P E E K S , a n d P O K E S 2 0 0

C-l... CALLS 200
C-2.. .PEEKS and POKEs 201

...PEEKS 201

...POKEs 202

A p p e n d i x D

I n d e x o f P r o g r a m s i n T e x t 8 0 4

A p p e n d i x E

S o l u t i o n P r o g r a m s f o r E v e n - N u m b e r e d
P r o b l e m s 2 0 8

B i b l i o g r a p h y 2 3 2

I n d e x 2 3 3

Chapter 1

Introduction to
BASIC on an

Apple Computer
A program is a set of instructions that causes the computer to perform in a
predictable way. The process of writing those instructions for the com­
puter is called programming. We can write programs to do an amazing
variety of things. The Apple can do a wide range of arithmetic operations.
It can be programmed to play music on its built-in speaker or to draw
graphs, in color no less. Paddles or joysticks can be used to provide a
continuous range of responses by moving a lever or rotating a dial. We can
even write programs to respond to a light pen drawing on a TV screen.
There are many ways in which this computer is being used to help stu­
dents learn subject matter unrelated to computers. This same computer
can be used to keep track of all kinds of data necessary in the operation of
a small business.

Every instruction used in programs has its own precise definition, and
the total collection of these instructions is called a computer language.
Each instruction of the language has a form associated with it. This form
is called the instruction syntax. The syntax of each instruction that we
enter into the computer must be one of those which the computer "recog­
nizes." For example, the computer will reject the instruction QUIT,
whereas it will find END perfectly acceptable and will indeed end upon
encountering the END instruction. Even though QUIT and END have
similar meanings in English, the computer won't behave that way. Words
that make up the language are called keywords. END is a BASIC keyword.

The Apple is capable of working with several languages. The two lan­
guages presented in this book are Applesoft and Apple Integer BASIC.
Both languages resemble the BASIC that was developed at Dartmouth

College by John G. Kemeny and Thomas E. Kurtz. BASIC is designed so
that people ranging from the rank amateur to the advanced engineer can
quickly and easily write programs pertinent to problems of their own
interest.

As the name implies, Apple Integer BASIC is limited to integer arith­
metic in the range from - 3 2 7 6 7 to 32767 and does not provide for work­
ing with decimal values easily. Applesoft, on the other hand, provides up
to nine decimal digits in arithmetic calculations. There are other differ­
ences, which we will discuss as they come up. In this book, when we refer
to BASIC, the discussion applies to both Apple BASICs. The terms
"Applesoft" and "Integer BASIC" will be used to designate features lim­
ited to one or the other Apple language. Both languages incorporate fea­
tures that enable us to easily use the special features of the Apple com­
puter.

Appendix A discusses the various options for obtaining access to
Applesoft and Apple Integer BASIC.

1 - 1 . 1 . . . G e t t i n g S t a r t e d i n A p p l e s o f t

There are a number of things that we need to know, all at once, to get
going. After this initial burst of information, we can introduce things in
smaller doses. So, here we go!

]NEW

]100 PRINT "HERE IS AN EXAMPLE"

]110 PRINT "OF A PROGRAM IN"

]120 PRINT "APPLESOFT."

]

Program 1-1. Our first Applesoft program.

There you have it: our first program in Applesoft. Of course, each line
we type must be followed by pressing the RETURN key. Every time we
typed the RETURN key the Apple responded with the right square
bracket. The right square bracket (]) is the Apple's signal to us that
we are working with Applesoft. This is called the Applesoft prompt.
The first thing that we did was to prepare the Apple for a new program
with the instruction NEW. NEW erases any BASIC program in the
Apple's memory. Naturally, you should never type NEW unless you
really mean it. The old program is not recoverable. Appendix B deals
with the subject of saving programs for future use.

2 ...

Our program consists of three statements. Each statement is labeled
with a line number. An Applesoft line number may be any integer from 0
to 63999. After the second], we typed:

100 PRINT "HERE IS AN EXAMPLE"

and pressed the RETURN key. The Apple responded by showing a blank
line and then another right bracket. We then typed the next two lines in
the same manner. Each of these three statements is an example of the
PRINT statement. When the program is RUN, each PRINT statement is
an instruction to the computer that something is to be printed out to the
screen of the TV monitor and/or on the paper in a printer.

]RUN
HERE IS AN EXAMPLE
OF A PROGRAM IN
APPLESOFT.

]

Figure 1-1. Execution of Program 1-1.

Next, we typed RUN and pressed the RETURN key. In this case, as
with the NEW instruction, we did not give a line number to the instruc­
tion. The presence of a line-number label means that the current line is to
be stored for later use by the computer. The absence of a line-number
label means that the computer will immediately process whatever is on
the line as an instruction. The RUN instruction causes the computer to
process the instructions of the program stored in the computer's memory.
That is what is meant by "running a program." The RUN instruction may
also be followed by a line number that names a line in the program where
the run should begin. For example, to get our little program to display
"APPLESOFT", simply enter RUN 120.

The result of processing the instructions of the program stored in the
computer's memory is that the three PRINT statements cause whatever
is enclosed within quotes to be printed on the monitor.

When the Apple runs out of instructions in the stored program, it
simply displays the] prompt and politely waits for us to tell it what to do
next. If we now type RUN again, the Apple will display the same three-
line message on the monitor.

Note the difference between the letter "oh" and the digit zero. The
Apple uses an oval with a slash through it for the digit zero and an open
oval for the letter "oh." You might just type " o h " zeros, and eights so
that you can study them on the monitor. You will find the zero key be­
tween " 9 " and " :" in the top row of keys, while the "oh" is in the second
row from the top between the " I " and "P" keys.

The following is a way to change the displayed message:

]110 PRINT "OF A PROGRAM"

]115 PRINT "WRITTEN IN"

]

Figure 1-2. Changing Program 1-1.

We have changed line 110 by retyping it. We have inserted a new line,
numbered 115. By choosing a line number between two existing line
numbers, we have told the computer that we want line 115 to be pro­
cessed after line 110 and before line 120. It is a good idea to allow intervals
in your line numbering. The computer will always arrange the lines of the
program in increasing order. Now, if we tell the computer to follow the
instructions of the new program, we get:

]RUN
HERE IS AN EXAMPLE
OF A PROGRAM
WRITTEN IN
APPLESOFT.

]

Figure 1-3. Execution of the modified Program 1-1.

We call the process of carrying out the instructions of program state­
ments execution. Thus, when we type RUN, we are telling the computer
to "execute" the program.

At this point, we have a program that we have created in two distinct
steps. We first entered three lines, and some time later we entered two
lines. One of those two lines replaced a line of the earlier program, and the
other added a new instruction line. The resulting program contains four
lines.

It is now desirable to look at the program in its entirety by using the
LIST instruction.

]LIST

100 PRINT "HERE IS AN EXAMPLE"
110 PRINT "OF A PROGRAM"
115 PRINT "WRITTEN IN"
120 PRINT "APPLESOFT. "

]

Figure 1-4. Demonstrate LIST.

The instructions NEW, RUN, and LIST are commonly called commands
because they are used to command the computer to manipulate the pro­
gram as an entity rather than perform a program instruction.

What happens when we make typing errors? That depends upon the
error. If we type LOST instead of LIST, Applesoft will make a bell-like
sound and display the following message:

?SYNTAX ERROR

No harm has been done; merely correct the request and proceed. I f we
type

100 PRIMT A

instead of

100 PRINT A

nothing will happen until the statement is executed. At that time, execu­
tion will cease and Applesoft will emit its bell-like sound and display the
following message:

?SYNTAX ERROR IN 100

We caii look at that single statement by using an extension of the LIST
command.

LIST 100

will display only line 100 of our program, if it exists. LIST 100,200 will
display all of the lines in our program from 100 to 200, inclusive. Now
retype the line and reexecute the program. If we type

100 PRINT B

instead of

100 PRINT A

we have a different kind of error, which the computer will never find for
us. The value of B will be displayed where we expected to see the value of
A. It is important to evaluate our results for correctness.

. . . . SUMMARY
A computer language is a defined set of instructions that have specific
meaning to the computer. In BASIC on an Apple, each instruction of a

program begins with a line number. The PRINT statement is used to
display a message on the computer monitor.

The NEW command prepares BASIC for a new program, the RUN
command causes the Apple to carry out the instructions of the program
stored in its memory, and the LIST command displays the stored program
on the monitor. LIST 100 displays the line numbered 100, while LIST
100,200 displays all lines in the interval from 100 to 200 including 100
and 200.

1 - 1 . 2 . • . G e t t i n g S t a r t e d i n Apple I n t e g e r BASIC

This section is devoted to describing the differences between Applesoft
and Apple Integer BASIC as they apply to the material presented so far.
So, you should read Section 1-1.1 even if you are working only with In­
teger BASIC.

The Apple Integer BASIC prompt is the "greater than" sign (>) . It is
this symbol that reminds us that we are in Integer BASIC. Integer BASIC
does not insert a blank line between the lines that we type. Integer BASIC
requires an END statement, which signifies the end of the execution of
the program. So, a program similar to our first example above would look
like Program 1-2.

>NEW

> 1 0 0 P R I N T " H E R E I S AN E X A M P L E "
> 1 1 0 P R I N T " O F AN A P P L E "
> 1 2 0 P R I N T " I N T E G E R B A S I C "
> 1 3 0 P R I N T " P R O G R A M • "
> 1 3 0 END
>

Program 1-2. Our first Integer BASIC program.

>RUN

HERE I S AN E X A M P L E
OF AN A P P L E
I N T E G E R B A S I C
P R O G R A M •

>
Figure 1-5. Execution of Program 1-2.

The line-number range is from 0 to 32767. Integer BASIC programs
are listed slightly differently by the LIST command.

>LIST
100 PRINT "HERE IS AN EXAMPLE"
110 PRINT "OF AN APPLE"
120 PRINT "INTEGER BASIC"
130 PRINT "PROGRAM•"
140 END

>

Figure 1-6. Demonstrate LIST in Integer BASIC.

Note that the listing is indented. Integer BASIC lists programs with
the first character of each statement in the seventh column. This allows
room for five-digit line numbers.

Some of the differences are minor and have no effect on the state­
ments used to achieve a desired result. Other differences are more seri­
ous. For example, Integer BASIC programs must execute an END state­
ment to avoid the embarrassment of the following error message:

*** NO END ERR

accompanied by a bell.
What happens when we make typing errors under the influence of

Integer BASIC? I f we type LOST instead of LIST, Integer BASIC will
make a bell-like sound and display the following message:

*** SYNTAX ERR

No harm has been done; merely correct the request and proceed. I f we
type

100 PRIMT A

instead of

100 PRINT A

we will get the same gentle message. Unlike Applesoft, Integer BASIC
checks each program line for syntax at the time that we actually type it.
Thus, we cannot be taken by surprise with syntax-error messages during
program execution.

1 - 2 . . . P r i n t i n g M e s s a g e s
There were no long program statements in the last 2 sections. The
Apple monitor screen is 40 characters wide. That can be something of a

limitation. However, we will very quickly get used to it. When typing
program statements that are longer than 40 characters, just keep on typ­
ing. The Apple will take care of everything.

1100 PRINT "HERE IS AN EXAMPLE OF AN APP
LESOFT PROGRAM."

]RUN
HERE IS AN EXAMPLE OF AN APPLESOFT PROGR
AM.

] LIST

100 PRINT "HERE IS AN EXAMPLE OF
AN APPLESOFT PROGRAM."

]

Figure 1-7. Demonstrate the 40-column display screen.

The Apple will take care that no characters are lost. In the interest of
making the results of printing readable, we should plan ahead so that the
Apple doesn't break the line in an awkward place during program execu­
tion. To print the message of the above program, we might prefer the
following:

]100 PRINT " HERE IS AN EXAMPLE OF AN A
PPLESOFT"

]110 PRINT "PROGRAM."

] RUN
HERE IS AN EXAMPLE OF AN APPLESOFT

PROGRAM.
] LIST

100 PRINT " HERE IS AN EXAMPLE
OF AN APPLESOFT"

110 PRINT "PROGRAM."

]

Figure 1-8. Planning messages on the Apple screen.

Now we can easily read the message. With a little practice, printing mes­
sages will become second nature to us.

To print the same message using Integer BASIC, simply add an END
statement to the program. We might also change the wording of the mes-

sage to indicate Integer BASIC. The LISTing in Integer BASIC will break
the long line 100 in a slightly different spot, but that has no bearing on
what we type in or how we type it.

We may make messages as long or as short as we like. A program could
consist of hundreds of PRINT statements. All programs should have at
least one PRINT statement. How would we know what the program does
if it displays no message?

Everything that we do on the Apple will use uppercase letters. That is
the way Apple does it. Special programs and accessories are available to
utilize both upper- and lowercase letters. However, their use will have no
effect on our ability to learn to write programs.

1 - 3 . 1 . . .Do ing C a l c u l a t i o n s i n A p p l e s o f t
Now that we know how to display messages, we might like to have some­
thing for the messages to talk about. The Apple's ability to perform calcu­
lations is readily available to us.

100 PRINT "THE NUMBERS ARE:"
105 PRINT "234.56 AND 43901"
110 PRINT "THE SUM IS"

* 120 PRINT 234.56 + 43901
130 PRINT "THE DIFFERENCE IS"

* 140 PRINT 234.56 - 43901
150 PRINT "MULTIPLY THEM"

* 160 PRINT 234.56 * 43901
170 PRINT "NOW DIVIDE"

* 180 PRINT 234.56 / 43901

Program 1-3. Calculations in Applesoft.

Here we have a program that performs addition, subtraction, multi­
plication, and division of two numbers. As you can see in lines 120, 140,
160, and 180, Apple uses + , - , *, and / as the symbols for these arithmetic
operations. Figure 1-9 is an execution of this program.

]RUN
THE NUMBERS ARE:
234.56 AND 43901
THE SUM IS
44135.56
THE DIFFERENCE IS
-43666.44
MULTIPLY THEM
10297418.6
NOW DIVIDE
5.34293069E-03

Figure 1-9. Execution of Program 1-3.

Notice that the product displays nine digits. This is the maximum
precision in Applesoft. That is not to say that all answers are accurate to
nine digits. Sometimes the computer has to round things off. So, it is up to
you to verify the accuracy of computed results. In addition to evaluating
the accuracy of the computations that the computer carries out, you will
need to know the accuracy of the numbers that you give the computer to
work with.

For the division problem of our program, something else interesting
happens. We get 5.34293069E-03 as the answer. This is another way of
writing .00534293069, which takes 11 digits to express. Applesoft uses
scientific notation for displaying very small and very large numbers. In
Applesoft any value less than .01 or greater than 999999999.1 will be
displayed in this manner.

Applesoft limits numbers to a range of from - 1 E 3 8 to + 1E38. That
should be entirely adequate for our needs for some time to come.

The following is a little program to demonstrate a few numbers
printed in scientific notation:

100 PRINT "EXAMPLES OF SCIENTIFI
C NOTATION"

120 PRINT ".0001","= ";.0001
125 PRINT ".00058293","= ";.0005

8293
130 PRINT ".00123456789","= ";.0

0123456789
140 PRINT "1234567890","= ";1234

567890
150 PRINT "3939382827347456= ";3

939382827347456

Program 1-4. Demonstrate scientific notation.

In Program 1-4 we have used single PRINT statements to print two
items on one line. Look at line 120. There you will see that the first thing
to be printed is enclosed in quotes. Then a comma appears. A comma as
used here is an instruction to the computer to display the next character
beginning in the next field. Applesoft divides each line into three fields.
The 1st field consists of columns 1 through 16. Columns 17 through 32
make up the 2nd field, and the remaining 8 columns make up the 3rd
field. The 2nd field is used if there is something displayed in the 1st field
and column 16 is empty, while the 3rd field is used if columns 24 through
32 are vacant. The 1st field is used if we are starting a new line or if the
3rd field of the previous line is filled or unusable. The next thing we see in
line 120 of the program above is more data enclosed in quotes for printing.
Then we see a semicolon. A semicolon is used to separate items in a
PRINT statement when we want the computer to keep printing without

skipping any columns on the screen. We have used commas and semico­
lons to separate different items in a program. Symbols used in this way are
called delimiters.

Now let's look at the display produced by the above program.
]RUN
EXAMPLES OF SCIENTIFIC NOTATION
.0001 = 1E-04
.00058293 = 5.8293E-04
.00123456789 = 1.23456789E-03
1234567890 = 1.23456789E+09
393938 28 27 3474 56= 3.93938 283E+15

Figure 1-10. Execution of Program 1-4.

We will indeed get used to the 40-character screen on the Apple. How­
ever, we are not limited to 40 characters on the printed page. Therefore,
we will present most of our program listings in a wider format. I f you type
exactly what is displayed in the programs of this book, BASIC will take
care of the rest. We present here Program 1-4 reformatted without any line
breaks.

100 PRINT "EXAMPLES OF SCIENTIFIC NOTATION"
120 PRINT ".0001"/'= ";. 0001
125 PRINT ".00058293","= ";.00058293
130 PRINT ".00123456789","= ";.00123456789
140 PRINT "1234567890","= ";1234567890
150 PRINT "3939382827347456= ";3939382827347456

Program l-4a. Demonstrate program listings without line breaks.

1 - 3 . 2 . • .Do ing C a l c u l a t i o n s i n I n t e g e r BASIC

Integer BASIC has the restriction that all numbers represented within a
program must be in the range from - 3 2 7 6 7 to +32767 . If ever a number
outside this range is encountered, you will be notified by the following
message:

*** >32767 ERR

This is the message you get even if the value detected is less than - 3 2 7 6 7 .
It is worth noting that this is also the message you get for trying to divide
by 0.

It is important to realize that division can never produce decimal val­
ues. Integer BASIC simply ignores any decimal part of the result of a
division process. While this may seem like a serious limitation, we will be

developing program techniques to minimize the impact of the restriction.
We will even see how to do infinite-precision arithmetic. A surprisingly
large number of applications never require decimal values.

Program 1-5 is a simple program to demonstrate addition, subtraction,
multiplication, and division.

1 0 0 P R I N T " S O M E A P P L E I N T E G E R B A S I C C A L C U L A T I O N S "
1 1 0 P R I N T " 1 0 9 + 2 3 = " ; 1 0 9 + 2 3
1 2 0 P R I N T " 1 0 9 - 2 3 = " ; 1 0 9 - 2 3
1 3 0 P R I N T " 1 0 9 * 2 3 = " ; 1 0 9 * 2 3
1 4 0 P R I N T " 1 0 9 / 2 3 = " ; 1 0 9 / 2 3
9 9 9 END

Program 1-5. Demonstrate +, - , *, and I in Integer BASIC.

A semicolon is used to separate items in each of the PRINT statements of
this little program. A semicolon used in this way allows the next character
to be printed in the very next space on the screen without inserting any
spaces. When the 40th space is filled, the next character is printed at the
beginning of the next line.

When a comma appears as a separator in a PRINT statement, Integer
BASIC divides the 40-column display screen into 5 fields of 8 characters.
The next character displayed will go in the next available 8-character
field. That may cause the next item to be displayed on the next line.
Again, characters used to separate items on a line in a program are called
delimiters.

>RUN
SOME A P P L E I N T E G E R B A S I C C A L C U L A T I O N S
1 0 9 + 2 3 = 1 3 2
1 0 9 - 2 3 = 8 6
1 0 9 * 2 3 = 2 5 0 7
1 0 9 / 2 3 = 4

Figure 1-11. Execution of Program 1-5.

1 - 4 . . . N u m e r i c V a r i a b l e s

We can do some interesting things with what we know at this point, but
the real power of the computer begins to emerge when we can save the
results of calculations without having to recalculate.

A variable may be thought of as a pigeonhole or a mailbox in which we
may save the value of an intermediate result as a computer program goes
about solving our problem for us. We establish an hourly wage and save it

1 8 • . .

in "W1". Then we get the number of hours worked and save the value in
"N". Next, we might find the net pay by multiplying Wl by N and then
save it in "N9". Or we might want to take the average of some numbers.
Program 1-6 uses numeric variables to do just that.

100 LET S1 = 34 + 45 + 65 + 89 + 91 + 56
110 LET N1 = 6
120 LET AV = S1 / N1
130 PRINT "AVERAGE = ";AV
140 END

Program 1-6. Calculate a simple average.

If we want to calculate an average for a different set of values, we need
only retype lines 100 and 110 of this simple program.

We have used 3 variables in this program: S1, N1, and AV. We are
free to choose a wide variety of names for variables. Both Apple BASICs
allow any letter followed by digits or letters. Apple Integer BASIC allows
up to about 100 characters, while Applesoft allows up to 238 characters.
However, Applesoft uses only the first 2 characters of the variable name
to distinguish between 2 variables. Thus, in Applesoft, OLDNUMBER
and OLDSCORE will be the same variable. You should avoid names like
this in Applesoft. One method for avoiding most trouble is to limit vari­
able names to 1 letter, 2 letters, or a letter followed by a digit. While vari­
able names like WAGES, NETPAY, PAYCHECK, PAYRATE, and NET-
TAXES, are descriptive, we run the risk of naming ambiguous variables
in Applesoft. And in either language, very long variable names are going
to push program statements over onto multiple lines. Just try typing a
100-character variable name the same way twice in a row.

BASIC keywords are reserved for use by BASIC itself. When BASIC
encounters a reserved word as a variable name or as part of a variable
name it may be interpreted as an instruction instead of as a vari­
able name. It is best to steer clear of any keywords when selecting
variable names. Errors caused by incorrectly using reserved words for
variable names can be tough to find. NEW, LIST, RUN, PRINT, and END
are reserved words. In Integer BASIC we can use some of the BASIC
keywords as variable names, but it isn't worth the trouble to remember
which ones we can and can't use. Just don't use them at all.

Each of the statements 100, 110, and 120 of Program 1-6 is an exam­
ple of the assignment statement in BASIC. The effect of statement 100 is
that the Apple will calculate the sum of the 6 numbers shown there and
store it in the slot labeled " S 1 " . Line 110 causes the value 6 to be stored in
a pigeonhole labeled "N1" . Line 120 causes the computer to divide the
value found in the slot labeled " S I " by the value found in the slot labeled
"N1" and place the result in a slot labeled "AV".

]RUN
AVERAGE = 63.3333333

Figure 1-12. Execution of Program 1-6.

We note that while Applesoft gave us 63.3333333, Integer BASIC would
have produced 63.

The assignment statement in BASIC may take one of two forms.

100 LET X=15

and

100 X=15

are functionally equivalent. In practice, most programmers drop the use of
LET. However, many beginners find it helpful to include the LET
keyword while learning BASIC.

1 - 5 . . . T h e I N P U T S t a t e m e n t

BASIC includes the INPUT statement as one means of providing data for
a program to work on. When BASIC encounters an INPUT statement, it
causes the computer to wait for data to be typed at the keyboard.

When the statement
200 INPUT X

executes, it will display a question mark as the signal to us that we are to
type in a single number.

200 INPUT X,Y,Z

will also display a question mark. However, we have provided for three
values to be entered, and the computer will insist on getting three.

Suppose we enter only one. Applesoft will gently prod us by displaying
two question marks repeatedly until we have entered the proper amount
of data. Integer BASIC will simply display one question mark repeatedly
until enough data has been entered.

Suppose we enter too much data. Applesoft will quietly display the
following message:

?EXTRA IGNORED

and proceed with the rest of the program. Integer BASIC does not check
for extra values.

Suppose we just hit the RETURN key or type a letter instead of a
number. The following is Applesoft's silent treatment:

1 4 . . .

7REENTER
?5,A,2
7REENTER

By REENTER, Applesoft means reenter the entire line. The " 5 " typed in
this example is not retained. So, all three values must be entered on the
next try. In Integer BASIC it looks like the following:

*** SYNTAX ERR
RETYPE LINE
?5,A,3
*** SYNTAX ERR
RETYPE LINE

The *** SYNTAX ERR display is accompanied by a bell.
Suppose we have the following record of gasoline purchases for a

brand-new car:

GALLONS ODOMETER
19.3 230.3
12.7 456.7
17.7 709.4
11.1 895.5
13.8 1131.6

We want a program that will calculate the mileage for each tankful of
gasoline. We have been careful to fill the tank each time. Since we do not
know whether the tank was full when we got the car, we should discard
the figure for the 1st purchase. What we do know is that 12.7 gallons took
us 226.4 miles, 17.7 gallons took us 252.7 miles, etc. Program 1-7 asks the
right questions and does the miles-per-gallon calculation for us.

100 PRINT "FIRST READING";
110 INPUT Ml
195 PRINT
200 PRINT "GALS,READING";
210 INPUT GA,M2
220 MI = M2 - Ml
230 MG = MI / GA
240 PRINT MG;" MPG"
250 Ml = M2
260 GOTO 195

Program 1-7. Calculate gasoline mileage.

Note the use of the semicolon at the end of lines 100 and 200. This enables
us to compose a single line of display on the screen from several lines in a
program. Thus the question mark displayed by the INPUT statement at
line 110 will appear immediately following the G in READING from line
100, and the question mark displayed by the INPUT statement at line 210
will appear immediately following the G in READING from line 200.

It is always a good idea to display a label for an INPUT request. We
may know right now what that question mark means, but nobody else will
know, and next week we probably won't remember.

Since we want the number of miles traveled, the program must sub­
tract the previous reading from the current one. This is done in line 220.
MI is the miles traveled, GA is the number of gallons used, and MG is the
number of miles per gallon. Once the computer has calculated the num­
ber of miles traveled, the current reading becomes the previous reading
for the next item of data to be entered. This is the purpose of line 250. Line
195 is referred to as a blank PRINT. A blank PRINT will be displayed as a
blank line. We can use this to adjust the spacing for better legibility.

. . . .GOTO
We must introduce the GOTO statement at this point. The GOTO 195 you
see at line 260 is an instruction to the computer to execute the statement
numbered 195 next in sequence. In this way, we are able to control the
order in which BASIC executes the statements of a program.

]RUN
FIRST READING ?2 30.3

GALS,READING ?12. 7,456.7
17.8267717 MPG

GALS,READING ?17. 7,709.4
14.2768362 MPG

GALS,READING?11.1,89 5.5
16.7657658 MPG

GALS , READING ?13.8,1131.6
17.1086956 MPG

GALS , READING ?

BREAK IN 210
]

Figure 1-13. Execution of Program 1-7.

Clearly the value 17.8267717 shown in Figure 1-13 is more precise than
12.7, 456.7, or 230.3, but it is not more accurate. We may safely say that

we got about 17.8 miles per gallon for the 1st calculation. The results of a
calculation can never be more accurate than the data. Soon we will learn
how to round off results to any desired precision.

What did we do to deserve the message

BREAK I N 2 1 0

We can halt execution of a program by entering CTRL-C in response to an
INPUT request. Applesoft rings the bell and prints the "BREAK IN . .
message. Integer BASIC simply displays its prompt (>) . For our first pro­
gram using INPUT we have chosen to halt execution by entering
CTRL-C. This is OK for programmers, but soon we will see better ways to
exit our programs. We should not require others who will be using our pro­
grams to use CTRL-C in this way.

1 - 6 . 1 . . . R E A D . . . DATA i n A p p l e s o f t

There are numerous ways to provide programs with data. We have gotten
numbers into our programs by including them in PRINT statements, by
assigning values to variables with the assignment statement, and by pro­
gramming with the INPUT statement. Now we add READ and DATA to
the list for Applesoft.

The READ statement assigns values to variables by using a DATA
statement as the source. READ and DATA are always coordinated to solve
the problem at hand. It is not sensible to have one without the other. Let's
simply convert the INPUT-based program on gasoline mileage to an
equivalent program using READ and DATA. In this case the data will not
be entered from the keyboard during execution, so we display the gallons
and miles traveled along with the miles-per-gallon figure. The logic here is
identical to the logic of our Program 1-7.

9 0 P R I N T " G A L . M I L E S MPG • "
1 0 0 READ M l
2 0 0 READ G A , M 2
2 1 0 M I = M2 - M l
2 2 0 MG = M I / GA
2 3 0 P R I N T G A ; " " ; M I ; " " ; MG
2 4 0 M l = M2
2 5 0 GOTO 2 0 0
9 0 0 D A T A 2 3 0 . 3
9 0 2 D A T A 1 2 . 7 , 4 5 6 . 7
9 0 4 D A T A 1 7 . 7 , 7 0 9 . 4
9 0 6 D A T A 1 1 . 1 , 8 9 5 . 5
9 0 8 D A T A 1 3 . 8 , 1 1 3 1 . 6

Program 1-8. Program 1-7 with READ . . . DATA.

Note that we have arranged the DATA so that the numbers are grouped to
look like the table of values first presented. The computer doesn't care
how many or how few lines we use for DATA. The important point is that
the values in DATA statements be in the correct order. We may arrange
the DATA so that it is well organized for humans to read. Since the com­
puter will never be confused, we should take care to make things better
for us.

] R U N
G A L . M I L E S M P G .
1 2 . 7 2 2 6 . 4 1 7 . 8 2 6 7 7 1 7
1 7 . 7 2 5 2 . 7 1 4 . 2 7 6 8 3 6 2
1 1 . 1 1 8 6 . 1 1 6 . 7 6 5 7 6 5 8
1 3 . 8 2 3 6 . 1 1 7 . 1 0 8 6 9 5 6

?OUT OF D A T A ERROR I N 2 0 0

Figure 1-14. Execution of Program 1-8.

Figure 1-14. Execution of Program 1-8.
We do indeed get the expected calculation results. However, we have also
triggered an Applesoft error message. Soon, we will find a couple of ways
to handle the end-of-data condition in our programs.

. . . . SUMMARY
We have covered a lot of ground in this first chapter. Very soon, nearly
everything presented here will be second nature to you. You can make
your job easier by remembering the right things. Don't bother remember­
ing exact error messages and whether or not a bell will sound along with
the message. The Apple is well suited to keeping track of things like that.
Your job will be simply to recognize them. Know that (>) means that you
are using Integer BASIC and that (]) means that Applesoft is the current
language. It matters not that Applesoft inserts spaces in program listings
differently than Integer BASIC. You need to remember things like NEW,
LIST, RUN, PRINT, LET, END, line numbers, GOTO, INPUT, variables,
quotes, and READ . . . DATA.

Integer BASIC limits all numeric representation to the range from
32767 to - 3 2 7 6 7 , while Applesoft allows numbers in the range of - 1E38
to 1E38.

The PRINT statement in BASIC is used to display labels in quotes,
numeric values expressed literally, and values stored in variables indi­
vidually or in combination by separating items with semicolon or comma
delimiters.

Variables are used in programs to retain numeric values during pro­
gram execution. Variable names must begin with a letter and may consist
of letters and digits intermixed after the first character. Applesoft accepts

very long variable names, but distinguishes only the first two characters.
Keywords that are part of the programming language, such as LET,
PRINT, and END, are not used as variable names. They are reserved for
use by BASIC only.

Values may be assigned to variables using the BASIC assignment
statement. The use of LET in such statements is optional. Values may also
be assigned through the keyboard using INPUT statements.

Applesoft provides the companion statements READ and DATA for
storing data within the program itself. Integer BASIC does not.

Execution of an END statement halts the RUN of a program. Failure
to execute an END statement as the final statement in Integer BASIC will
trigger an error message.

We have three commands for program manipulation thus far. RUN
calls for our program to be executed. RUN 100 calls for our program to be
executed beginning at line 100. LIST displays our program or a segment
of our program on the screen. NEW clears the BASIC work area for a new
project.

We can halt a program waiting for INPUT by entering a CTRL-C.

P r o b l e m s f o r C h a p t e r 1
You should not feel that you must limit yourself to the problems offered
here. As you get some programming under your belt, you should find lots
of interesting problems to try on the computer. Learning to program is
unique in that the computer will provide you with a measure of your
success. You do not need an answer book or a teacher for that. The real joy
of learning anything comes when you begin to formulate the problems,
solve them, and verify that your solutions are correct all on your own (it
helps to have a computer).

At this point you can write programs to print messages of all kinds,
request data from the keyboard, and perform a variety of arithmetic oper­
ations.

Each problem is identified with one or more of the symbols "A", " I " ,
and "*". An "A" indicates that the problem is appropriate for an Applesoft
program. An " I " indicates that the problem is appropriate for an Integer
BASIC program. An "*" indicates that the problem may be a little harder
than the others. The "A" and " I " designations will be omitted where the
section is limited to one language.

A 1. Write a program to display the sum of 123.45, 654, 1920,
114423, and .01.

AI 2. Write a program to display the sum of five numbers to be
supplied during execution.

A 3. Write a program to print a decimal value for 2/3.

A 4. Assign 1/3 to the variable X. Display the value of X, 3*X, and
X + X + X.

A 8. Write a program to display decimal values for 1/7, 2/7, through
6/7.

A 6. Write a program to find a value for the following expression:

1/2 + 1/3
1/3 - 1/4

AI 7. Write a program to find the sum of the first 10 counting
numbers.

A 8. Write a program to find the product of the first 10 counting
numbers.

I 9. RUN Program 1-7 in Integer BASIC to get approximate val­
ues for gas mileage by multiplying both miles and gallons by
10 before entering the figures.

AI 10. Have the computer request the numerator and denominator
for two fractions to be multiplied. Print the numerator and
denominator of the product. This problem does not call for the
computer to perform division.

AI 11. Have the computer request the numerator and denominator
for two fractions to be added. Print the numerator and de­
nominator of the sum. This problem does not call for the com­
puter to perform division.

I* 13. In Integer BASIC the result of 7/2 is 3. We can determine the
remainder by multiplying 3 by 2 and subtracting from 7. I f we
multiply the remainder by 10 and divide that by 2, we will get
the lOths digit of the quotient. Write a program to do this.

PROGRAMMER'S CORNER 1

I m m e d i a t e E x e c u t i o n
We have done a variety of calculations using LET and PRINT statements
in programs. Doing things this way is called deferred execution. Most
computing is done in this way. Programs prepared for deferred execution
may be saved and used over and over again.

The features of our BASIC programs may be used in a second impor­
tant way. We may simply type BASIC instructions whenever a BASIC
prompt is displayed. Suppose we want to know the number of hours in a
year. We are not required to enter a program line number to obtain such a
simple result. Simply type

]PRINT 365*24

and press the RETURN key. Instantly BASIC will execute the instruction
to produce the desired value.

8760

]
We could even type a series of BASIC instructions without creating a

stored program. We could find the number of hours in a year as follows:

]D=365

]H = 24

]PRINT D*H
8760

Using this technique, called immediate-mode execution, each statement
is executed immediately. It turns out that in Applesoft the keyword
PRINT may be replaced with a question mark (?). This means that we
may command the computer to display a result with a single keystroke
instead of the five keystrokes required for PRINT. We may also use this in
programs. When we call upon Applesoft to LIST the statement, it will
display as PRINT

Immediate mode may be used for several purposes. BASIC may be
used as a sophisticated calculator. Detailed and complex calculations may
be done quickly and easily. Whatever we enter remains on the screen for
us to examine (up to 23 lines with spaces). Generally, calculators retain
only a single visible number on the display. The large screen provides the
opportunity to check our work. We can be more secure than with most
calculators.

Immediate execution will provide a very convenient method for find­
ing errors in deferred-execution programs. We may work through a pro­
gram displaying values of selected variables until we spot one that de­
viates from the expected value. At that point we may even set the correct
value and direct the computer to begin execution from that point with a
statement such as

GOTO 355

The combination of being able to display and set values in this way will
prove to be of tremendous importance for developing larger programs.

There are limits when using immediate execution to work through a
program. In Applesoft everything is fine as long as we do not enter a new
program statement with a line number. Doing that will result in all vari­
ables being set to zero. Integer BASIC, on the other hand, preserves the
variable values all right, but under certain conditions will produce
strange results. It is best not to add or remove lines of a program if we
expect to try to pick up execution without a RUN command.

. . . . Stepping through, a P r o g r a m
We may use CTRL-C at any time to halt execution of a program. We may
select strategic locations in our program to insert END statements. When
the program stops, we may do our thing in immediate. Then we may pick
up execution with the GOTO statement in immediate. Or we may use
CONT in Applesoft or CON in Integer BASIC. In addition, the STOP
statement may be used in Applesoft to cause a program to stop at prese­
lected points. When Applesoft encounters a STOP statement, a message
will be printed as follows:

BREAK IN 945

I f we are inserting temporary STOP statements, it is very nice to know
which one the program has just encountered.

Of course, certain BASIC statements make no sense entered directly
from the keyboard without line numbers. Statements like READ, DATA,
and INPUT are clearly intended for use in executing programs. Entering
INPUT A without a line number will evoke an error message from
BASIC. Which message we get depends on which BASIC we are using
and whether or not we have booted a disk-operating system.

Chapter 2

Writing a
Program

2 - 1 . . . P l a n n i n g Y o u r P r o g r a m

Computer programs are linear. That is, they define a single step at a time.
Many problems brought to the computer for solution are nonlinear in na­
ture. We would like to do many things in at least two dimensions. Many
computerized processes are outlined using large charts in which each
item represents a complete subsystem consisting of a whole collection of
very long computer programs. We need to develop some ideas that will
help us begin with the big ideas and systematically arrive at a completed
project whose smallest elements are computer-program statements.

Good programming requires a plan. The planning should be com­
pleted before any program statements are written down. You should write
out the entire program on paper before you sit down to type it into the
computer. Major changes in program organization are easy to deal with
before the program has been typed into the computer, because there is
less inertia to overcome. Once a program has been typed into the com­
puter, part of the problem becomes how to make the desired change while
preserving as much as possible of what exists. While the program is still
written out in longhand, such changes are much easier. Certainly, we can
easily write a program to add 2 numbers without much fuss. The plan
can be in our head and we can "write down" the program statements
directly at the computer keyboard. But try writing a system to launch a
satellite or a system to do payroll—or even a program to find all prime
integers from 1000 to 2000. Good planning requires a complete under-

standing of the problem. What is known? What is the question? What will
be the form of the solution? How do I get from the known information to
the solution?

. . . . Counting on t h e Computer
Let's start with something simple. Let's develop a plan for getting the
computer to count. This is a good first problem, since it is something we
are familiar with. A thorough understanding of the problem at hand is
essential for writing computer programs. It is highly unlikely that we can
write a program to solve a problem we do not understand.

We usually count by starting with the number 1 and repeatedly adding
1 to get the next counting number in sequence. That is easy! There are
only two ingredients here: beginning and adding 1 repeatedly.

We can begin with a statement such as

110 CI = 1

But how do we add 1? The following is a way:

120 C2 = CI + 1
125 CI = C2

In mathematics, the equals sign (=) usually asserts that two expressions
have the same value. However, assignment statements in BASIC use the
equals sign for a special purpose. The equals sign is used to assign the
result of a calculation on the right to a variable named on the left. This
allows us to combine statements 120 and 125 above into the single state­
ment

120 CI = CI + 1

The variable CI contains one value prior to execution of this statement
and another value following execution of this statement. The prior value
is replaced by the new value. A variable may not store two values simul­
taneously. Even though pigeonholes and mailboxes may hold more than
one item, variables cannot.

Now we need to tell the computer to repeat the work of line 120 over
and over again. We resist any possible urge to include a statement 130 CI
= CI + 1, etc. To count to 100 this way would require more than 100
statements. Computers are supposed to save work, not make things hard­
er. The way to repeat the action of line 120 over and over again is to
include the following line:

130 GOTO 120

This will put the computer into a loop. Now we have three lines that
would indeed cause the Apple to count, beginning with 1.

110 CI = 1
120 CI = CI + 1
130 GOTO 120

Program 2-1. First counting program.

However, we have overlooked an important ingredient. We will never
know which number the computer is up to at any particular time, except
when it gets to 32767 in Integer BASIC, or something above 1E38 in
Applesoft. What we need here is to display each number as the computer
gets to it. Therefore, we will insert a PRINT statement between lines 110
and 120. In order for this statement to be executed every time the com­
puter adds 1, the GOTO at line 130 must be changed. The loop must
include the PRINT statement as shown in Program 2-2.

110 CI = 1
* 115 PRINT CI

120 CI = CI + 1
* 130 GOTO 115

Program 2-2. Counting with display.

Several comments and one warning are in order here. Program 2-2 has
no natural termination. If you execute this program, it will run for a very
long time. You will have to type CTRL-C, hit the R E S E T button, pull the
plug, or wait for BASIC to overflow. In order to make this a useful count­
ing program, we need to replace the unconditional statement 130 GOTO
115 with one that can make a decision. This brings us to the IF . . .
THEN statement.

. . . . I P . . . T H E N
Our counting program would be more useful if we just had a way for it to
terminate when some predetermined number has been reached. BASIC
has the ability to alter the order in which statements are executed depend­
ing on the outcome of a decision. This is called a conditional transfer.
Suppose we want the computer to count to 7 and quit. In this case, we
want to GOTO 115 on the condition that CI is less than or equal to 7. That
is easy in BASIC:

130 IF CI <= 7 THEN GOTO 115

Line 130 will do the job for us. Here "less than or equal to" is symbolized
with (< =). The (<) symbol represents "less than" and the (=) symbol
represents "equals."

. . . . REM: What 's I t All About?
While all of our programs are clear to us at the time that we write them, it
is difficult to come back to an old program and recall all of the clear

thoughts that we had way back when. BASIC offers the REM statement so
that we may include REMarks as part of the program. The computer will
ignore all REM statements during program execution, but it will list them
along with the others in response to the LIST command. Not only will
those REM statements remind us about our own old programs, but they
will be invaluable to others reading our programs. No program should be
considered complete without REM statements. Some programmers con­
sider REM statements so vital to the program-development process that
they write them first. Not a bad idea!

REM statements should describe the action of the program or of a
segment of a program. REMarks like "LOAD Y WITH 17" actually detract
from the readability of a program, whereas "INITIALIZE LOW TEM­
PERATURE CUTOFF" describes the function of part of a program. Our
REM statement should note that the program will count from 1 to 7. And
now we have a counting program to type into the APPLE and RUN.

100 REM * COUNTING FROM 1 TO 7
110 CI = 1
115 PRINT CI
120 CI = CI + 1
130 IF CI < = 7 THEN GOTO 115
999 END

Program 2-3. Counting from 1 to 7.

For some reason, Applesoft likes to insert two spaces between the " < " and
the " = " when it lists the program.

]RUN
1
2
3
4
5
6
7

]

Figure 2-1. Execution of Program 2-3.

When using IF . . . THEN, there are six options available as follows:

< less than
< = less than or equal to
= equal to
< > not equal to

> greater than
> = greater than or equal to

These symbols are called relational operators. Any BASIC expression may
appear on either side of a relational operator.

Counting is a process that pervades computer programming. We do it
all the time. How many players? How many problems? Count the number
of scores so that we may compute the average for this lab test. Count the
number of lab tests so that we may compute the average for this lab run of
this test. The examples go on endlessly. We might be interested in count­
ing only the odd numbers. How would we change our counting program
above to do that? That is easy—just change line 120 to read:

120 CI = CI + 2

Now don't forget to change the REM to reflect the new function of the
program.

100 REM * ODD INTEGERS FROM 1 TO 7

Misleading REMs are terrible. The extra time spent getting the REMs
right will pay off in the end. Suppose we have a problem that requires
even integers. In this case, line 110 should set the value of CI to start at 2
or whatever we require as the 1st even integer. Again, note that the REM
should reflect the function of the program.

Our little program has four important components.

1. We initialize the counting variable.
2. Some action is programmed. In our example, we display the cur­

rent value of the counter.
3. The counter is incremented.
4. We test the value of the counter to determine whether or not to loop

back and repeat the programmed action.

Most counting routines are used for some higher purpose than merely
displaying the current value of the counter. Suppose we have a relative
who has promised to give us 5 times our age in dollars on each of our
first 21 birthdays. We might like to know the total number of dollars we
will have received upon reaching 21 . This problem can be solved with the
logic of our little counting program. Here the programmed action consists
of adding 5 times CI for each year. We will use the variable Dl for this.
We initialize Dl to zero. We test for 21 rather than 7. When the IF test
fails, the program should print the value of Dl with an appropriate label.
The following is such a program.

50 REM TOTAL $5 EACH YEAR
ON EACH BIRTHDAY

* 100 Dl = 0
110 CI = 1

* 120 Dl = Dl + 5 * CI
140 CI = CI + 1
150 IF CI < = 21 THEN GOTO 120
160 PRINT "$";D1;" AFTER 21 YEARS"
999 END

Program 2-4. Birthday dollars.

Look at line 100. It turns out that BASIC automatically sets the values of
all variables to zero when we type the RUN command. So, for our little
problem, Dl would be initialized to zero for us. However, it is good pro­
gramming practice to include an assignment statement anyway. Having
that statement in the program makes the meaning of line 120 less mys­
terious. When programs are LISTed the line break for REM statements
sometimes makes the message hard to read. You may make them more
readable by using several statements with the breaks where you want
them, or after you list the program you may find that you can insert spaces
so that the breaks come between words. This is something that we will get
used to with a little practice.

]RUN
$1155 AFTER 21 YEARS

Figure 2-2. Execution of Program 2-4.

You are the inspector in a packaging plant. Quality control requires
that for any lot to be accepted, the average weight for 5 packages selected
at random must be at least 180g. You want to write a program that asks
the right questions and accepts or rejects the lot. For this problem we
have the 4 components listed above. In this case, the programmed action
is a little more complex. We print a label for the INPUT request, request
INPUT, and add the entered weight to a variable designated for keeping
track of the total weight for the 5 packages. This can be done with the
statement

235 Tl = Tl + WT

where T l is the running total weight and WT is the weight of this package.
Before we have entered any package weights, the value of T l must
be 0. When the value of the counter has passed 5, we will calculate the
average in AV. I f the value of AV is less than the required 180 then we
want a reject message. Otherwise, we want an accept message. Program
2-5 does it all.

2 8 • • •

100 REM CHECK AVERAGE PACKAGE
WEIGHT FOR 130 GRAM MINIMUM

* 200 Tl = 0
210 CI = 1
220 PRINT "WT ";C1;
230 INPUT WT
235 Tl = Tl + WT
240 CI = CI + 1
250 IF CI < = 5 THEN GOTO 220
260 AV = Tl / 5

* 270 IF AV < 180 THEN GOTO 290
275 PRINT "ACCEPT THIS LOT"

* 280 GOTO 295
290 PRINT "REJECT THIS LOT"
295 END

Program 2-5. Package-weight monitor.

We have included a REM statement describing the purpose of the pro­
gram. Look at line 200. Note again that we have initialized a variable to
zero even though we could let BASIC do it for us. Later, if we want to
include this routine as part of a more complex program, the value of Tl
will be reset to 0 every time this program segment is exercised. Failure
to include such a statement would cause the value of Tl to grow ever
larger as more and more lots are sampled. Thus the program would er­
roneously accept every sample after the first. (Doubtless, the computer
would be blamed for this obvious programmer error.) Note that we have
selected CI for counting, Tl for totaling, WT for the package weight, and
AV for the average. Selecting variable names carefully will make the
meaning of each program statement clearer. Don't use A9 for weight or
TF for counting. While TO might have been nice for the total, that 2-
letter word is reserved. If we had used TO as a variable in line 200,
Applesoft would have reported a ? SYNTAX ERROR. Soon we will dis­
cover what TO is reserved for. Line 270 determines which message will
be displayed according to the average weight. Line 280 assures that we
get exactly one message. Let's run the program.

]RUN
WT 17182
WT 27190
WT 37180
WT 47179
WT 57177
ACCEPT THIS LOT

]

Figure 2-3. Execution of Program 2-5.

To check another lot, simply run the program again.
If this is all that the program does, it might be more practical to use a

hand-held calculator. In practice, there are many more factors to consider
in the above problem. While it may be illegal for packages to be under­
weight, it is unprofitable to sell overweight packages. So, in addition to
checking for minimum average, our program ought to check for any pack­
age over a certain weight, say 185. Furthermore, there may be a legal
minimum weight, say 178.

The program can also easily be modified to process several batches of
data. Simply change

280 GOTO 295

to
280 GOTO 200

and replace

295 END

with

295 GOTO 200.

Now, how do we terminate execution of the program? We may enter
a value of 0 to indicate that there are no more batches to process. Then
the statement

232 IF WT = 0 THEN GOTO 999

may be used to divert program execution to statement 999 for a weight of
0. We had better include the statement

999 END

to avoid the following error message:

7UNDEF'D STATEMENT ERROR IN 232

in Applesoft, or the message

*** BAD BRANCH ERR
STOPPED AT 232

in Integer BASIC. Special data values used as signals to control the action
of a program are sometimes called dummy data. These changes are left as
exercises.

While we could use CTRL-C in response to an INPUT request, it is not
desirable to depend on this method. CTRL-C is more for programmers to
use during program development. Our programs should provide for more
orderly control. We often want further computing after the last INPUT

item. CTRL-C terminates the program, but the use of a special data value
allows us to direct the program to continue processing.

. . . . S U M M A R Y
Know your problem well before coding your solution program. Have a
plan. It is easier to make major changes on paper than it is to make major
changes in a program that has already been typed into the computer.

The IF . . . THEN statement may be used to determine the next
statement to be executed while the program is running.

Use REMarks freely, but properly. Don't state the obvious. State the
purpose of a statement or group of statements. It is vital that REMs be
accurate. Make sure that your program documentation keeps up with any
changes in your program at all times. It is very frustrating to sort through
program code that does not agree with the documentation. This can be
worse than no documentation at all. However, don't use that comment as
an excuse to omit REMs.

Artificial values (dummy data) may be used as data to control what
statements will be executed next.

P r o b l e m s f o r S e c t i o n 2 - 1
At this point, we know enough about BASIC to program solutions to a
wide variety of problems. We could find the sum of the counting numbers
from 1 to 100, or from A to B as long as we don't exceed 32767 in Integer
BASIC or 1E38 in Applesoft. We could find sums of even integers or odd
integers or those divisible by 5, etc. We could do something as simple as
having the Apple display "I LIKE BASIC" some specified number of
times. Use your imagination. You needn't limit yourself to the problems
listed here. I f you have an Apple to yourself, then you can answer all of
those "I wonder what would happen if . . ." questions with, "I'll try it."
The computer never raises its voice or remembers our "dumb" questions;
it just beeps and tells us what is wrong.

AI 1. In the birthday problem (Program 2-4), have the computer
print the amount received for this birthday and the total so
far for each birthday.

A 8. In the package-inspection problem (Program 2-5), make the
changes necessary to repeat processing for many batches of
data in a single execution. Insert at least one blank PRINT
statement so that the batches are separated on the screen.

AI 3. Rewrite the package-inspection program (Program 2-5) to
test for a minimum package weight of 178 g and a maximum
package weight of 183. Have the program report the reason
for rejecting a lot and repeat for another batch.

A 4. Four test scores were 100, 86, 71, and 92. What was the
average?

A 8. Write a program to count the number of odd integers from 5 to
1191 inclusive.

A 6. Write a program to find the number of and the sum of all
integers greater than 1000 and less than 2213 that are divisi­
ble by 11. (Start with 1001.)

A 7. Three pairs of numbers follow in which the 1st is the base
and the 2nd is the altitude of a triangle: 10,210 12.5,8;
289,114. Write a program to print the area for each triangle.
Use dummy data.

A 8. A person is paid $.01 the 1st day, $.02 the 2nd day, $.04 the
3rd day, and so on, doubling each day on the job for 30 days.
Write a program to calculate the wages for the 30th day and
the total for the 30 days.

A 9. Write a program to print the integers from 1 to 15, paired
with their reciprocals.

A 10. A customer put in an order for 4 books that retail at $10.95
and carry a 25% discount, 3 records at $4.98 with a 15%
discount, and 1 record player for $59.95 on which there is
no discount. In addition, there is a 2% discount allowed on
the total order for prompt payment. Write a program to com­
pute the amount of the order.

AI* 11. In the song "The Twelve Days of Christmas," gifts are bes­
towed upon the singer in the following pattern: the 1st day
she received a partridge in a pear tree; the 2nd day 2
turtledoves and a partridge in a pear tree; the 3rd day 3
French hens, 2 turtledoves, and a partridge in a pear tree.
This continues for 12 days. On the 12th day she received 12 +
11 + . . . + 2 + 1 gifts. How many gifts did she receive
altogether? Another way to ask this question is to ask: I f she
had to return 1 gift each day after the 1st, on what day would
she return the last gift?

AI* 13. For Problem 11, have the computer print the number of gifts
on each of the 12 days and the total up to that day.

A 13. George took tests in 2 courses. For the 1st course the scores
were 83, 91, 97, 100, and 89. For the 2nd course the scores
were 65, 72, 81 , and 92. Write a program that will compute
both test averages. You will need 2 dummy-data values. One
value will signal the end of this set of scores, and the other
will signal the end of this execution of the program.

2 - 2 . . . R a n d o m E v e n t s
How do they get the computer to flip coins, deal cards, or roll dice? These
things are really very easy to simulate. All we need is the ability to gener-

ate numbers at random. BASIC includes exactly what we need for this.
RND(X) produces a random number. RND is a little "black box" in
BASIC that brings forth a number at random each time it is mentioned.
Applesoft provides decimal numbers in the range 0 to .999999999; In­
teger BASIC provides integers. The number enclosed in the parentheses is
called the argument and is very important.

Here are the rules for Applesoft:

RND(I) I > 0 Yields a different random value for each successive
access.

RND(I) 1 = 0 Produces the last random number used.
RND(I) I < 0 Produces the same value each time the same value of

I is used.

If we want the same sequence every time a program is run, then we
must use a negative value for I for the first access and a positive number
for all succeeding accesses. Then, to change the random sequence, simply
use a different negative number or any positive number for the first ac­
cess. The ability to repeat a random sequence is useful for program
testing.

Here are the rules for Integer BASIC:

RND(I) I > 0 Yields an integer at random in the range 0 to 1 -1 .
RND(I) 1 = 0 Produces the *** > 3 2 7 6 7 ERR error message. Avoid

this value.
RND(I) I < 0 Produces an integer at random in the range 0 to 1 + 1 .

Thus all nonzero values will be negative.

Let's look at an Applesoft program to print 10 random numbers.

100 REM * GENERATE A FEW RANDOM NUMBERS
200 I = 1
230 PRINT RND(1)
240 1 = 1 + 1
250 IF I < = 1 0 THEN GOTO 230
9999 END

Program 2-6. Generate ten random numbers.

We have built a little counting routine that enables us to print RND(l) 10
times. Here is a sample RUN of our program.

]RUN
•936928502
.620447973
.98411756
.228080195
.0444301156
.929139704
.228214184
.954965809
.641032259
.946861798

Figure 2-4. Execution of Program 2-6.

Now we will adapt this new ability to flip a coin. Let's flip it 39 times
to just fill 1 line of the screen without moving to the next line. There are 3
parts to this problem. We need to count to 39, generate a random flip, and
print an H or a T depending. We know all about counting. We can decide
whether to print an H or a T if we know how to tell which came up. All
that remains is to organize how to distinguish heads from tails. We want
half of each. So if we designate all of the random numbers from 0 to
.499999999 as heads and all of the numbers from .5 to .999999999 as
tails, the problem is solved in Applesoft. We merely test RND(l) in an IF
. . . THEN statement. If we get less than .5, then branch to a statement
that displays an H; otherwise udrop through" to a statement that displays
a T. Following the PRINT "T" ; statement, we must be sure to put in a
GOTO statement to divert execution around the PRINT "H"; statement.
Here is a program to do just that.

198 REM * FLIP A COIN 39 TIMES
200 FL = 1
230 IF RND (1) < .5 THEN GOTO 270
250 PRINT "T";
260 GOTO 280
270 PRINT "H";
280 FL = FL + 1
290 IF FL < = 39 THEN GOTO 230
999 END

Program 2-7. Flip a coin 39 times.

]RUN
THHHTTHTHTTHHTTHTHHHTHTTTHTHHHHTTTTHTHT
]

Figure 2-5. Execution of Program 2-7.

There you have it.
Using Integer BASIC, we simply replace statement 230 with
230 IF RND(2) < 1 THEN GOTO 270

We have accomplished what we set out to do. However, we really want to
know as much about BASIC as possible. So, let's probe further.

. . . . A RaNDom E x p l o r a t i o n
The random-number generator may be bent to our needs in many ways.
We have chosen to select 2 equal halves by forming a boundary at .5. This
works fine for flipping a coin, but suppose we want to roll a die. Now there
are 5 boundaries. We get numbers like .166666667 and .833333333.
There is a much better way. If we multiply all numbers in the range of 0 to
1 (including 0 and excluding 1) by 6 then we get results in the range from
0 to 6 (including 0 and excluding 6). Then we could successively test to
see if the result is less than 1, then less than 2, through 6, to get a value for
the face of a die. This will certainly work, but it is not recommended.
Once again Applesoft comes to the rescue. This time it is INT(N) that
makes life simple.

. . . . I N T (N)
INT(N) is special for developing an integer value that is the greatest
integer less than or equal to the argument. Thus, INT(3 .9876919)=3,
INT(4)=4, and I N T (- 9 . 8) = - 1 0 . So, if we simply generate random num­
bers in the range from 0 to 5.99999999, then we can apply INT(N) to get
integers in the range from 0 to 5. We merely add 1 to the values 0 to 5 to
get values in the range 1 to 6. This is, of course, exactly what we want for
rolling dice. Bingo—another problem solved. Let's look at Program 2-8 to
roll a die 10 times.

198 REM * ROLL A DIE TEN TIMES
200 1 = 1
210 VI = RND (1) * 6 + 1
220 PRINT VI, INT (VI)
230 1 = 1 + 1

* 240 IF I < = 1 0 THEN GOTO 210

Program 2-8. Roll a die ten times.

]RUN
2.28763901 2
4.31886087 4
2.39532511 2
6.4051106 6
3.13972997 3
1.87393362 1
6.51299232 6
1.10674357 1
4.19665986 4
5.15195719 5

]

Figure 2-6. Execution of Program 2-8.

To accomplish the same result in Integer BASIC, simply use RND(6) + 1
in place of RND (1) * 6 + 1 .

I F . . . T H E N Rev i s i t ed
IF . . . THEN is used so frequently in BASIC to transfer program control
that an abbreviated form exists.

240 IF I < = 1 0 THEN 210

may be used in place of line 240 in our die-rolling program above. Using
this new form of the IF . . . THEN statement, our coin flipping of Pro­
gram 2-7 may be rewritten as follows:

198 REM * FLIP A COIN 39 TIMES
200 FL = 1

* 230 IF RND (1) < .5 THEN 270
250 PRINT "T" ;
260 GOTO 280
270 PRINT "H";
280 FL = FL + 1

* 290 IF FL < = 39 THEN 230
999 END

Program 2-9. Program 2-7 showing shortened IF . . . THEN.

Lines 230 and 290 in Program 2-9 use the shortened form of IF . . .
THEN.

. . . . SUMMARY
RND(X) provides a source of random numbers. In Applesoft, we get
numbers in the range 0 to .999999999. RND(X) in Integer BASIC returns
an integer from 0 to X - 1 for positive values of X and from X + 1 to 0 for
negative values of X.

INT(X) in Applesoft returns the greatest integer not greater than X.
IF . . . THEN has an abbreviated form, which we may use for condi­

tional transfer. 100 IF X < 5 THEN 230 will transfer control to line 230 if
X < 5 is true.

P r o b l e m s f o r S e c t i o n 2 - 2
AI 1. Modify the coin-flipping program (Program 2-9) to repeat the 39

flips 5 times.
AI 8. Modify the coin-flipping program (Program 2-9) to count the

number of times tails comes up in 39 flips.
AI 3. Write a program to flip a coin 1000 times. Count the number of

tails. You might choose not to display Hs and Ts.

AI 4. Write a program to roll 2 dice 10 times.
AI 8. Write a program to provide math drill problems in addition.

Request limits and the number of problems using INPUT. Dis­
play the number of right answers at the end.

2 - 3 . . . A B e t t e r W a y t o C o u n t (F O R a n d N E X T)

Having written numerous counting loops, we imagine that there is some
more compact method for doing this. After all, just about everything we
do seems to involve counting of some sort.

. . . . BASIC Loops
FOR and NEXT in BASIC automate the control functions of a program
loop. Thus our earlier program to count from 1 to 7 becomes Program
2-10.

100 REM * COUNTING WITH FOR...NEXT
* 110 FOR CI = 1 TO 7

115 PRINT CI
* 130 NEXT CI

999 END

Program 2-10. Program 2-3 using FOR . . . NEXT.

Statement 110 automatically establishes the limits on CI as 1 and 7.
Statement 130 automatically adds 1 to the value of CI and tests to deter­
mine if CI is less than or equal to 7. The value of CI will be 8 when
execution reaches line 999 of this program. Look again at line 110. Now
we know why TO is a BASIC keyword and must not be used in a variable
name. If you want to save the last used value of the loop variable, then
you need a statement such as 120 C2 = CI in this program. It is important
to note that the statements between FOR and NEXT will always be exe­
cuted at least once. I f we program the statement FOR X = 4 TO 1, then
the loop will be executed for X = 4. The NEXT statement will add 1 to 4,
getting 5, and then find that X is greater than 1, and execution will "drop
through," behaving in exactly the same way as our "hand-built" loops. To
count from A to B by 2s, simply code FOR CI = A TO B STEP 2. We may
STEP by - 3 or even N. Applesoft allows decimal values, while Integer
BASIC is, of course, limited to integers.

The FOR and NEXT statements provide several important benefits.
FOR and NEXT loops execute faster than the identical hand-built variety.
Their use reduces the number of ideas that we have to store in our heads
as we write our programs. Those simple BASIC keywords embody the
more complex controls actually used to construct the loop itself without
requiring us to think about the detail each time that we use them, thus

freeing our mental processes for solving the specific problem at hand. The
ability to make a small number of program statements represent complex
solutions greatly simplifies the writing of correct computer programs.

Now we can think about some of the counting loops we have looked at
before. Consider the birthday-dollars program (Program 2-4): in the origi­
nal program, we had a line 110 CI = 1. That line happened to be the
opening statement of a counting loop, but that statement could set the
value of CI to 1 for zillions of reasons. On the other hand, the statement

110 FOR CI = 1 TO 21
is crystal clear. It can mean only one thing: we are going to do something
21 times. In exactly the same manner, NEXT CI conveys much more
information to the person reading the program than

150 IF CI < = 21 THEN GOTO 120.

FOR and NEXT are designed to go together. Don't try to initialize a
loop with

100 CI = 1

and later close it with

200 NEXT CI

Luckily, you will get the following message from Applesoft:

7NEXT WITHOUT FOR ERROR IN 200

and from Integer BASIC you will get

*** BAD NEXT ERR
STOPPED AT 200

Occasionally, you will be sure you have a loop to repeat something several
times. But, alas, it only happens once, and the computer sends no error
messages. While the computer requires that a NEXT statement be pre­
ceded by a FOR statement, it does not necessarily report that a FOR
statement was not followed by a NEXT statement. Now you know.

. . . . SUMMARY
FOR and NEXT are paired up to control program loops in BASIC. For A =
B TO C STEP D opens a loop by assigning the value of B to A. Each
iteration of the loop is accomplished by adding the value of D to the value
of A. When the value of A "goes past" the value of C, the loop is done.
NEXT A causes the next iteration of the loop that was opened with the
FOR A . . . statement. I f STEP is omitted, the step value is assumed to
be 1.

P r o b l e m s f o r S e c t i o n 2 - 3
For each of the problems here, use FOR and NEXT where appropriate.

AI 1. Modify the package-inspection program (Program 2-5) to use
FOR and NEXT.

AI 2. Write a program to count the number of odd integers from 5 to
1191 inclusive.

A 3. Write a program to find the number of and the sum of all
integers greater than 1000 and less than 2213 that are divisi­
ble by 11. (Start with 1001.)

A 4. A person is paid $.01 the first day, $.02 the second day, $.04
the third day, and so on, the amount doubling each day on the
job for 30 days. Write a program to calculate the wages for the
30th day and the total for the 30 days.

A 8. Write a program to print the integers from 1 to 15, paired with
their reciprocals.

AI 6. Do the 'Twelve Days of Christmas" problem using FOR and
NEXT.

AI 7. For Problem 6, have the computer print the number of gifts on
each of the 12 days and the total up to that day.

AI 8. Modify the coin-flipping program (Program 2-9) to repeat the
39 flips 5 times.

AI 9. Modify the coin-flipping program (Program 2-9) to count the
number of times tails comes up in 39 flips.

AI 10. Write a program to flip a coin 1000 times. Count the number
of tails. You might choose not to display Hs and Ts.

AI 11. Write a program to roll 2 dice 10 times.
AI 12. Write a program to provide math drill problems in addition.

Request limits and the number of problems using INPUT.
Display the number of right answers at the end.

A* 13. Examine the following program:

100 FOR I = 1 TO 1.3 STEP .1
110 PRINT I
120 NEXT I

What values do you think it will display? Run it. Do you get what you
expect? Write a program to display the four values you expected.

PROGRAMMER'S CORNER 2
S c r e e n E d i t i n g
We have been making changes in program lines by simply retyping the
entire line. If the line we wish to change is a long one and we merely want

to change a character or two, retyping the whole line may be counter­
productive because we may just end up making another typing error.
Applesoft and Integer BASIC include a set of commands that allow us to
move the cursor around the screen to change what is displayed there.
Whatever appears on the screen is stored in memory. In fact, program
lines that appear on the screen are stored in two places. One place is
invisible to us. That is where BASIC keeps the entire program. When we
type a line of a program, BASIC incorporates it into any existing program
already stored in that invisible part of memory. The visible line on the
screen is stored in the visible part of memory used for text display and for
low-resolution (Lo-Res) graphics.

The best possible way to learn about these screen editing features for
the Apple is to sit down with the computer and experiment. Try every­
thing described here. Soon you will be doing all of this automatically.

. . . . A r r o w K e y s
The two keys at the very right of the second row of keys from the bottom
are marked with arrows. They can be used to save us a lot of typing effort.
The left arrow key has the ability to erase a character from invisible mem­
ory while it appears on the display screen. The right arrow key has the
ability to read a character from the display screen so that it may become
part of the line that we are typing. Each time we press the left arrow key,
one character is removed from the line. Every time we press the right
arrow key, a character is read in from the display screen. Thus, if we have
begun typing the line

100 PRINT "THIS IS A PRONT STAT

and we spot that we have misspelled PRINT we may immediately press
the left arrow key eight times until the cursor is blinking directly on top of
the incorrect letter O. Next, we type the letter I and press the right arrow
key seven times until the cursor is again at the end of the line. Following
this, we may finish the line as though we had never made a mistake. It is
important to realize that we must retrace with the right arrow any charac­
ters removed with the left arrow. The line will be entered up to the cursor
only. This technique may be used on any line that we are typing up to the
time we press the RETURN key.

Every time the right arrow key is pressed a character is read in from
the display screen. This is true even at the right end of the screen. The
cursor will disappear from the right and appear suddenly at the left of the
screen on the next line down. If we next press the left arrow, the cursor
will disappear from the left of the screen and appear suddenly at the right
of the screen up one line. I f we press the left arrow when the cursor is at
the left of the screen, we cannot pass over the BASIC prompt. The cursor
will simply move down one line in the same horizontal position. Pressing
one of the arrow keys and then pressing the REPT key will make the cursor

move repeatedly until the REPT key is released. All of this will be clear
after a little experimentation.

Now suppose we have a slightly different situation. We have begun to
type a line as follows:

100 PRINT "THISS IS THE BEGINNING

and we notice that we have the double " S " . We can press the left arrow
key and the REPT key until the cursor is blinking over the " S " we want to
eliminate. Next strike the ESC key and then the "A" key. After this, press
the right arrow key and the REPT key until the cursor is in position to add
the closing quote. Add the closing quote and press the RETURN key. The
double-S problem will be solved. The ESC A sequence is one of a set of
controls that enable us to move the cursor around the screen without
reading characters in or erasing them. The characters passed over in this
way are ignored.

. . . . Cursor Controls A, B , C, and D
Two things happen when we press one of the arrow keys. The cursor
moves one character position on the screen and one character is either
"read in" or "read out." When we strike the ESC key and then strike the
"A" key, only one thing happens. The cursor moves one character posi­
tion. Nothing is read in or out. In the double-S example, we used this to
move the cursor over the position occupied by a character which we
wanted to eliminate. Striking ESC followed by B, C, or D results in the
cursor moving left, down, or up respectively. In each case, only the cursor
is moved. No characters are read in or out.

ESC A right
ESC B left
ESC C down
ESC D up
Table 2-1. A, B, C, and D cursor movers.

To move the cursor two positions to the right it is necessary to strike ESC
then A and ESC then A again. Thus, two keystrokes are required for each
position we wish to move the cursor.

These cursor movers make it possible to make changes in an existing
program line without having to retype the whole line. Suppose we want
line 300 to become line 350. We just get line 300 on the screen with LIST
300. Then move the cursor to the beginning of the line with a sequence of
cursor movers. Strike the right arrow once. Strike the "5" key to replace
the first zero in 300. And press the right arrow key and the REPT key until
the cursor traces out the remainder of the line. Strike the RETURN key,
remove line 300 by typing 300 RETURN, and the job is done.

The cursor movers ESC A, ESC B, ESC C, and ESC D are available in
both BASICS.

. . . . Cursor Control i n ROM Applesoft
ROM Applesoft includes a more convenient set of cursor controls in I, J ,
M, and K. To move the cursor, simply strike the ESC key followed by any
number of keystrokes from the I, J , M, and K to move the cursor into
position. I is up, J is left, M is down, and K is right. These cursor movers
may be used in conjunction with the REPT key to locate the cursor
quickly to a desired position.

ESC followed by:

I up
J left
M down
K right
Table 2-2. Cursor movers in ROM Applesoft.

With a little practice, you will be using these ESC sequences routinely
to edit your program lines and commands.

. . . . POKEing for E a s y E d i t i n g
Once we have tried to edit a line such as the following:

100 PRINT "THIS IS THE TIME TO T
HIMK ABOUT AN EASIER WAY TO
EDIT"

we begin to wonder if there isn't some easy way to avoid skipping over the
spaces inserted by Applesoft during the LISTing. We can use POKE to
change the width of the display screen. The memory address for this is 33.
Thus POKE 33,W sets the width. The value of W may be from 1 to 40. It
turns out that i f the width is 33 or less, those bothersome spaces in the
program listing are eliminated. Simply type

POKE 33,33

and LIST again. This is what it looks like:

100 PRINT "THIS IS THE TIME TO T
HINK ABOUT AN EASIER WAY TO EDIT"

Now there are no crazy spaces to keep track of and skip over. Of course we
need to set the width back with

POKE 33,40

For more about POKE see Appendix C.

Chapter 3

Apple Graphics
(Lo-Res)

and Much More

. . . . A Graphic E x a m p l e
It is one thing to program a computer to simulate the roll of a die and
display a numeric result. It is another to program a computer to display a
realistic picture of the die. One of the nice features of the Apple is its
ability to produce color graphics. Let's use it. This will be surprisingly
easy to do. Assume for the moment that we can assign colors, plot small
blocks, and draw lines. Meanwhile, let's concentrate on the nature of a
picture of one face of a die.

Think of drawing the six possible faces of a die on ordinary graph
paper. This can be done nicely, if we use a rectangle five blocks wide and
seven blocks high. We come up with the following sketch:

Figure 3-1. The six dice.

Now the computer problem separates into two parts. First, we need the
die background. And second, we need six different configurations for the
dots in some contrasting color. Let's see what solutions the Apple provides
for these two problems.

There are six statements associated with graphics that we should know
about before attempting to write a program. So, here we go.

. . . . The Graphics S c r e e n
The statement

100 GR

prepares the Apple for graphics work. When this statement is executed,
the screen is divided into 2 parts. The top part is now organized into 40
columns and 40 rows. Thus, we have 1600 blocks at our disposal. The
remainder of the screen is reserved for 4 lines of regular text display.

3 - 1 . . .Apple G r a p h i c s K e y w o r d s

Figure 3-2. The graphics-screen layout.

4 4 ...

This is called mixed graphics and text. Each block is identified by its
column and row. The block in the upper left corner is labeled 0,0. The
block in the lower right corner is labeled 39,39. Columns are numbered
from 0 to 39 from left to right, and rows are numbered from 0 to 39 from
top to bottom. This is not the same as the conventional rectangular coor­
dinate system widely used in mathematics, but this difference presents no
great obstacle. The screen is not exactly square, so we call the plotted
points blocks rather than squares. The Apple may be restored to the con­
ventional text-oriented screen with the TEXT statement as follows:

190 TEXT

. . . . Apple Colors
Even if we are working with a noncolor monitor, we will have to pay
attention to color. We will need to use at least white and black. There are
16 colors, numbered from 0 to 15 as follows:

0 Black
1 Magenta
2 Dark blue
3 Purple
4 Dark green
5 Grey
6 Medium blue
7 Light blue

8 Brown
9 Orange
10 Grey
11 Pink
12 Green
13 Yellow
14 Aqua
15 White

Figure 3-3. Lo-Res Apple colors.

When the GR statement is executed, the Apple is set to black. We can
change this to white with:

110 C0L0R= 15

The COLOR= statement may used to establish any of the 16 colors listed
above. Of course we may use a statement like COLOR= CI to assign the
desired color. Nothing visible happens when a COLOR= statement is
executed, just as nothing visible happens when a conventional assign­
ment statement is executed. All plotting will appear in the most recently
assigned color.

. . . . Plott ing Po int s (B l o c k s)
Appropriately enough, we plot with the PLOT statement. The statement

500 PLOT 2,3
will plot a block near the upper left corner of the graphics screen in the
color that is active when line 500 is executed. Of course, we may use
PLOT X,Y so that values may be calculated to establish a position before

executing the PLOT statement. Even
PLOT X + 3 * Y , 2 * Y - 1

may be coded. It's that simple.

. . . . Drawing L i n e s
We could plot blocks next to each other with several PLOT statements to
draw lines. However, BASIC includes special statements to draw hori­
zontal and vertical lines for us.

600 HLIN 0,39 AT 0

will draw a horizontal line 40 blocks long at the very top of the screen.

700 VLIN A,B AT C

will draw a vertical line running from A to B in column C. We must assure
that the values of A, B , and C remain within the 0 to 39 range to avoid
peculiar results or even having our program terminate with an error
message.

This is an area in which we can learn a great deal using immediate
mode. We can issue the GR command and then set a color with COLOR=.
Then it is a simple matter to PLOT points and draw lines directly from the
keyboard. We can very quickly acquire a feel for the structure of the
graphics screen and full-color Lo-Res graphics.

VLIN is very convenient for drawing bar graphs. We can incorporate
some labeling in the four-line text screen at the bottom to make nicely
readable charts.

. . . . Drawing a Die
The 5 BASIC keywords GR, COLOR=, PLOT, HLIN, and VLIN are all
we need to do wondrous things with the graphics screen. We can now
plan how to apply them to draw a die. Let's first draw the " 1 " face of a
white die. We need to turn on graphics, set COLOR= to white, draw 5
vertical lines 7 blocks high, set COLOR= to black, and PLOT a block in
the middle of the 5-by-7 rectangle. I f we include the TEXT statement in
our program, the graphics screen will disappear immediately after the
program has run. So, let's omit that statement for the moment. Program
3-1 draws a " 1 " near the upper left corner of the screen:

98 REM THE " 1 " FACE ON A DIE
100 GR
110 COLOR= 15
120 FOR I = 1 TO 5
130 VLIN 1,7 AT I
150 NEXT I
160 COLOR= 0
170 PLOT 3,4
180 END
Program 3-1. Draw the "1" face of a die.

Figure 3-4. Execution of Program 3-1.

That is pretty nice. How do we get a "3"? Simply add the following 2
statements and run the new program:

1 6 5 PLOT 2 , 2
1 7 5 PLOT 4 , 6

After we have had a chance to study the graphics screen, we can type
TEXT to clear it. TEXT may be used with a line number in a program. Or
TEXT, like NEW, LIST, and RUN, may be used without a line number
as a command. The 7 positions on the face of a die where a dot may
appear are: 2,2; 2,4; 2,6; 3,4; 4,2; 4,4; and 4,6. By properly selecting from
among these 7, we may draw any of the 6 faces.

. . . . SUMMARY*
With 6 BASIC keywords, we control the Lo-Res graphics screen on an
Apple. GR prepares the screen for us. We get an array of blocks laid out
in 40 rows and 40 columns. In addition we retain a 4-line text screen at
the bottom. We may set one of 16 colors in the range 0 to 15 with the
COLOR= statement. We may plot points with the PLOT statement. Lines
are easy to draw with the HLIN and VLIN statements. The rows and
columns are numbered from 0 to 39 beginning in the upper left corner of
the screen. Finally, we may erase the graphics screen and recover full use
of the text screen with the TEXT statement.

P r o b l e m s f o r S e c t i o n 3 - 1
AI 1. Write a program to display a die showing the " 6 " face in the

upper right corner of the screen.

AI 2. Write a program to display a pair of dice, one showing a " 1 " and
the other showing a " 3 " .

AI 3. Write a program to request a number from 1 to 6 and display the
appropriate die (try using colors if you have a color monitor).

AI 4. Write a program to draw a bar graph picturing the following
dollar sales in thousands for a 9-week period:

Week Sales
1 30
2 27
3 26
4 31
5 26
6 30
7 38
8 36
9 34

3 - 2 . . .D iv ide a n d C o n q u e r (S u b r o u t i n e s)

Once we have written the code to display a die of a particular color having
a particular face value in a particular place, it is hard to be inspired to
write new code to display that same die in another location or another
color. And it is even less exciting to consider displaying five dice this way.
When we find ourselves writing routine after routine, each of which is
only a slight variation of the one just finished, programming becomes
tedious. The more experience we gain in programming, the more oppor­
tunity we will have to utilize what we have already done. Often a current
problem is only a slight variation of an old, already solved one.

If we want to display a green die and then a pink die in the same
location, the only thing that changes is the color. Clearly, it is a nuisance
to duplicate the code that does the actual graphing. We can easily isolate
that code and direct the computer to execute it at will using GOSUB and
RETURN.

. . . . GOSUB and R E T U R N
GOSUB 1000 causes the computer to execute line 1000 next regardless of
the next statement numerically in sequence. However, GOSUB 1000 dif­
fers from GOTO 1000 in that GOSUB remembers its place in the program.
When a RETURN statement is encountered, execution resumes following
the most recent GOSUB. The program statements that begin with the line
number following the keyword GOSUB and ending with a RETURN
statement are grouped and referred to as a subroutine. Thus GOSUB
means "GO do the SUBroutine."

For our green-die-followed-by-pink-die problem we need to have the
program pause between the two displays. Otherwise, things will happen
so quickly that we will not see the first die. This pause can be accom­
plished with a time-waster FOR . . . NEXT loop that does nothing else.
The problem is solved in seven easy steps as follows:

1. Enable graphics mode.
8. Set green color.
3. Display the die.
4. Waste some time.
8. Set pink color.
6. Display the die.
7. End.

Putting off for the moment writing the actual die-display subroutine,
let's look at a program to display our green and pink dice. See Program
3-2a.

9 8 REM * CONTROL D I E D I S P L A Y
1 0 0 GR
1 1 0 C O L O R = 1 2

* 1 2 0 GOSUB 1 0 0 0
* 1 5 2 FOR X = 1 TO 1 5 0 0
* 1 5 4 N E X T X

1 6 0 C O L O R = 1 1
* 1 7 0 GOSUB 1 0 0 0

1 9 0 END

Program 3-2a. The control segment of a die-drawing program.

We have been able to embody a group of statements in the single state­
ment

1 2 0 GOSUB 1 0 0 0

Again, we have a method for organizing our thoughts more easily by con­
centrating many computing steps in a single statement. We can think of

GOSUB 1 0 0 0

as "display a die" without having to think about the actual BASIC state­
ments required to do the display. Look at 152 and 154. Those 2 lines
make up a delay loop. For a longer delay, use a value larger than 1500.
Without a delay, we would not even see the 1st die because it would be so
quickly replaced with the 2nd die.

And finally, the display routine is very easy. We may simply select
those statements from our earlier die-drawing program and use appropri­
ate line numbers. We may concentrate on the display without having to
think about other parts of the program. We know that the 1st line should

be numbered 1000 and that the last statement should be RETURN. See
Program 3-2b.

998 REM * DISPLAY A " 1 " DIE
1000 FOR I = 1 TO 5
1010 VLIN 1,7 AT I
1020 NEXT I
1030 COLOR= 0
1040 PLOT 3,4
1050 RETURN
Program 3-2b. Subroutine to display a "1" die.

Programs 3-2a and 3-2b together make up a complete program to display
the "1" die in two different colors with a brief delay in between.

It is important to realize the impact of the END statement at 190 in
Program 3-2a upon the subroutine beginning at line 1000. It is improper to
execute a RETURN statement without a matching GOSUB. If we fail to
obey this rule, Applesoft will deliver the following:

7RETURN WITHOUT GOSUB ERROR IN 1050

whereas Integer BASIC complains in the following way:

*** BAD RETURN ERR
STOPPED AT 1050

190 END assures that the routine at line 1000 is not executed an extra
time.

Soon we will see that it is useful to separate the pieces of the program
even further by using another subroutine to display the dots on the die.
This will enable us to set a color for the dots easily and to plot any of the six
possible faces.

. . . . M a k e I t Handle t h e G e n e r a l Case
Wouldn't it be nice to be able to display a die anywhere on the screen?
With the idea of subroutines well in hand, this new twist is easy. All we
need is to "send" to our subroutine values that specify where a corner of
the die is to be. We have already utilized this idea. We "sent" different
color codes to the same subroutine at line 1000 in Program 3-2. Using X
and Y as the horizontal and vertical position of the upper left corner of the
die, we get the following subroutine to display the "1" anywhere on the
screen.

998 REM DISPLAY A " 1 " DIE
1000 FOR 19 = 0 TO 4
1010 VLIN Y,Y + 6 AT X + 19
1020 NEXT 19
1030 COLOR= 0
1040 PLOT X + 2, Y + 3
1050 RETURN
Program 3-3. Drawing a "I" anywhere on the screen.

However, we must assure that the values of X and Y place the entire die
within the 40-by-40 graphics screen. That means that X may range from 0
to 35 and Y is limited to values from 0 to 33 for our 5-by-7 die face.

Now the final piece of the puzzle will fit into place as soon as we write
6 subroutines—1 for each of the 6 possible faces of a die. Numbering the
first lines 1100, 1200, to 1600 will help to identify the purpose of each
subroutine. Thus:

1098 REM PLOT ONE
1100 PLOT X + 2,Y + 3
1110 RETURN
1198 REM PLOT TWO
1200 PLOT X + 1,Y + 1
1210 PLOT X + 3,Y + 5
1220 RETURN

1598 REM PLOT SIX
1600 PLOT X + 1,Y + 1
1610 PLOT X + 1,Y + 3
1620 PLOT X + 1,Y + 5
1630 PLOT X + 3,Y + 1
1640 PLOT X + 3,Y + 3
1650 PLOT X + 3,Y + 5
1660 RETURN

Now we may remove lines 1030 and 1040 from our die-display sub­
routine. The display separates nicely into showing the background and
plotting the spots. These 2 functions are now done with distinct subrou­
tines. GOSUB 1000 displays the background. GOSUB 1100 through
GOSUB 1600 may be used to display 1 through 6 spots on the die. We can
set the colors independently. Once a die has been drawn on the screen, we
can set the color to 0 and call upon the background display routine to erase
the die, spots and all.

It is clear that once we have a number, such as R, that tells us how
many dots to plot on a die, we need a way to branch to the appropriate
subroutine. Thus, we wish to execute just one of the following state­
ments:

GOSUB 1100
GOSUB 1200
GOSUB 1300
GOSUB 1400
GOSUB 1500
GOSUB 1600

We could do that with the following logic:

9 1 0 I F R < > 1 T H E N 9 2 0
9 1 2 GOSUB 1 1 0 0
9 1 4 GOTO 9 9 0

9 5 0 I F R < > 5 T H E N 9 6 0
9 5 2 GOSUB 1 5 0 0
9 5 4 GOTO 9 9 0
9 6 0 I F R < > 6 T H E N 9 9 0
9 6 2 GOSUB 1 6 0 0
9 6 4 GOTO 9 9 0
9 9 0 RETURN

However, all that typing is cumbersome, and it requires 18 statements to
perform a very simple decision. Our goal is always to simplify things. We
could eliminate the 6 GOTO 990 statements, which are not essential.
That would leave us with 12 statements, but we still have a choppy struc­
ture that is unnecessarily long and difficult to read (for humans—the
computer doesn't care).

. . . . A n o t h e r V i s i t w i t h I F . . . T H E N
We can use a new feature of IF . . . THEN to simplify the decision as to
which of the 6 die-display subroutines to execute. This new feature
makes it possible to achieve the same result with 6 simple BASIC pro­
gram lines.

Any BASIC statement may follow THEN in an IF . . . THEN state­
ment. We may execute just one of the die-display subroutines with the
following code:

9 1 0 I F R = 1 THEN GOSUB 1 1 0 0
9 2 0 I F R = 2 THEN GOSUB 1 2 0 0
9 3 0 I F R = 3 T H E N GOSUB 1 3 0 0
9 4 0 I F R = 4 THEN GOSUB 1 4 0 0
9 5 0 I F R = 5 T H E N GOSUB 1 5 0 0
9 6 0 I F R = 6 T H E N GOSUB 1 6 0 0

Not only is this shorter to type, but it is much clearer to read. For any
value of R in the range 1 to 6, just 1 of the IF . . . THEN tests comes out
true. The other 5 come out false. Thus, the computer executes all 6 IF
tests no matter what. But the computer is very fast, and the 5 false results
will not delay execution noticeably for our present problem. Combining
this feature with random numbers, we can program a wide variety of
events.

P r o b l e m s f o r S e c t i o n 3 - 2
AI 1. Write a program to display a die face showing a " 6 " in the upper

right corner of the graphics screen.
AI 2. Write a program to display a random die face in the upper left

corner of the screen.
AI 3. Display a random die face, leave it for a few seconds, and then

erase it.
AI 4. Display two dice at random next to each other in the lower left

corner.
AI 8. Write a program to display a blinking die. Let it blink 10 times,

then leave the display on the screen.
AI 6. Display a few dice at random in random locations on the screen

to simulate physically rolling the dice. Then display a pair of
dice at random and leave them on the screen.

3 - 3 . . .BASIC M u l t i p l e F e a t u r e s

. . . . GOSUB Rev i s i t ed
At first we saw how we might use 18 statements to implement branching
to 1 of 6 die-display subroutines. We reduced this to 6 easier-to-read lines
using an extended feature of IF . . . THEN to execute any statement if
the tested expression is true. Now we reduce this even further with a new
feature of the GOSUB statement.

In Applesoft, we can accomplish the decision of the 6 IF statements
with the multiple GOSUB capability.

9 1 0 ON R GOSUB 1 1 0 0 , 1 2 0 0 , 1 3 0 0 , 1 4 0 0 , 1 5 0 0 , 1 6 0 0

Should the value of R be less than 1 or greater than 6, the statement 910
will be ignored. However, values less than 0 or greater than 255 will be
rewarded with Applesoft's

7 I L L E G A L Q U A N T I T Y ERROR I N L I N E 9 1 0

message.
In Integer BASIC, an alternative form of GOSUB is available.

8 9 2 REM * S E L E C T SPOT P L O T T I N G S U B R O U T I N E
8 9 4 REM R = 1 , 2 , . . . , 6 Y I E L D S
8 9 6 REM 1 1 0 0 , 1 2 0 0 , . . . , 1 6 0 0
8 9 8 REM D I S P L A Y 1 , 2 , . . . , 6
9 1 0 GOSUB 1 0 0 * R + 1 0 0 0

Integer BASIC allows variables and expressions as line-number refer­
ences in GOTO, GOSUB, and IF . . . THEN statements. Therefore we

may construct a formula that produces the desired line number for any
value of some variable. Along with this powerful and interesting feature,
we issue an impassioned plea. Be careful how you use it! Plan the struc­
ture of your program with special diligence. Be sure to document clearly
the logic of your formula. Changes in your original plan can introduce
errors in logic that are very difficult to find. The line number 100*R+1000
must exist for all values of R generated during program execution or you
will get the message

* * * BAD BRANCH ERR
S T O P P E D A T 9 1 0

Now even the relatively simple six-statement logic used to branch to
the proper spot-plotting subroutine has been reduced to a single state­
ment. Lest we get the idea that all programs can be reduced by at least one
statement (and therefore eliminated entirely), be assured that there is a
limit to the features available in BASIC or any other computer language.
Computers are finite and therefore limits do exist. Computers and com­
puter languages are amazing, but they cannot perform magic.

. . . . N e s t e d GOSUBs
We put subroutines to good use in the die drawing of the last section. It is
worth noting that some plot statements were repeated. A three is just a
one superimposed on a two. Thus:

1 3 0 0 P L O T X + 1 , Y + 1
1 3 1 0 P L O T X + 2 , Y + 3
1 3 2 0 P L O T X + 3 , Y + 5
1 3 3 0 RETURN

becomes:

1 3 0 0 GOSUB 1 2 0 0
1 3 1 0 GOSUB 1 1 0 0
1 3 2 0 R E T U R N

Four is two with two extra spots and can be plotted as follows:

1 4 0 0 GOSUB 1 2 0 0
1 4 1 0 P L O T X + 3 , Y + 1
1 4 2 0 P L O T X + 1 , Y + 5
1 4 3 0 R E T U R N

Similarly, five is one superimposed on four, and six is a four with two
extra spots.

We have "called" one subroutine from within another one. This is just
fine and often very useful. Subroutines within subroutines are called
"nested subroutines." We may nest subroutines up to 25 deep without
incurring the wrath of Applesoft. Integer BASIC complains at 16.

What have we accomplished by all of this? There are two distinct
benefits. We have made the spot-display subroutines more compact. Thus
we can get more of the program on the screen at once. Once again, we
have made the programming process more orderly through careful pack­
aging. We have also included each of the spot-plotting statements exactly
once. This reduces the possibility of error. If we have made an error, say
the central spot is misplaced, we need look for a single PLOT statement to
fix it for all die faces containing that spot. Any practice that makes pro­
grams easier to read, easier to change, or gives them better structure is to
be encouraged.

. . . . GOTO Rev i s i t ed
GOTO has the same multiple line-number branching capability as
GOSUB. Thus the single Applesoft statement:

1 0 0 ON N l GOTO 3 1 0 , 3 2 0 , 3 3 0 , 3 4 0 , 3 5 0 , 3 6 0 , 3 7 0

replaces seven IF . . . THEN statements. And the single Integer BASIC
statement:

1 0 0 GOTO 1 0 * N l + 3 0 0

replaces a number of statements represented by the maximum value for
Nl . The same restrictions apply to the legitimate range for GOTO as for
GOSUB.

Suppose we have a situation in which we want to execute 1000, if
Nl = 3; 1100, if Nl = 6; and 1200, if N l = l l . Do not be tempted to use the
multiple GOTO or GOSUB capability of BASIC. In such a situation, it is
much clearer to code three IF . . . THEN statements. Having 11 line
numbers, only 3 of which are real, is very confusing to anyone reading
your program. Don't do it! Even you won't understand it next week.

. . . . Multiple S t a t e m e n t s
The ability to place several program statements on a single numbered line
has some useful applications. Suppose we have a subroutine at 500 that
requires that we set values for A, B, and C. This will generate several sets
of lines of the following form:

1 0 0 A = 5
1 1 0 B = 9
1 2 0 C = 3
1 3 0 GOSUB 5 0 0

Where certain statements naturally belong together, it is nice to be able to

place them all on the same line. Using the colon (:) to separate state­
ments, we may use the following equivalent code:

1 0 0 A = 5 : B = 9 : C = 3 : GOSUB 5 0 0

While it may be very nice to place several statements on the same line,
there may be good reasons not to. It makes the line a little harder to edit. It
may make the program harder to read when the statement LISTs on two
or more lines. This capability should be used with caution.

Line numbers do require memory. Occasionally, a program grows to
the point where it is too big for the available memory. One method for
reducing the amount of memory a program requires is to use multiple
statements per line. In doing this to an existing program you must be
careful that you don't change the logic of the program by incorrectly com­
bining lines that are referenced by a GOTO, an IF . . . THEN, or a
GOSUB.

. . . . Multiple S t a t e m e n t s a n d I F . . . T H E N
BASIC allows multiple statements following IF . . . THEN. So a state­
ment such as

1 0 0 I F A = 5 T H E N B = 6 : C = 1 1

is perfectly legal in Integer BASIC and Applesoft. However, look out! That
statement behaves radically differently in the 2 BASICs. In Applesoft,
that statement will execute both B = 6 and C = 11 when A = 5, and
neither B = 6 nor C = 11 when A does not equal 5. However, Integer
BASIC will always execute C = 11 whether or not A = 5 and, it executes
B = 6 only on the condition that A = 5. You are hereby warned.

It may be better to write code to implement the above logic as follows:

1 0 0 I F A < > 5 T H E N 1 2 0
1 1 0 B = 6 : C = 1 1
1 2 0 r e s t o f t h e p r o g r a m

This is crystal clear and behaves in exactly the same way in both BASICs.
The fact that you know a certain feature does not mean that you

should use it frequently or even at all. It is good to have a broad collection
of capabilities available for use in the appropriate situation. It is also good
to be aware of as many features as possible so that you can understand
other people's programs. Know the language and use it well. It is a mis­
take to bend the logic of a program so that you can use some cute program
statement. Cute or tricky programs are difficult to read. Some pro­
grammers like to embed tricky logic in their programs that "nobody will
ever figure it out." That is just why you should not do it. Even you will
never figure it out later when you want to change it.

PROGRAMMER'S CORNER 3
M o r e L o - R e s G r a p h i c s

. . . . W h a t Color i s T h i s ?
With 1600 points to plot on the Lo-Res screen, how can we ever remember
what color is where? We don't have to remember; BASIC does it for us.

S C R N (X , Y)

may be used to determine the color of the block at the point X, Y. The value
returned by SCRN is in the range from 0 to 15. The values of X and Y may
be in the range from 0 to 255. However, anything outside the range from 0
to 39 is off the normal graphics screen created by the GR command.

If we use SCRN(X,Y) in TEXT mode, we still get values in the range
from 0 to 15, but these values don't correlate with colors. They correlate
with characters on the text screen. It turns out that a character on the text
screen occupies the same memory cells as 2 Lo-Res graphics blocks.
So, to find the code used for a character displayed on the text screen, we
could use a statement such as

P R I N T S C R N (X , Y) + 1 6 * S C R N (X , Y + 1)

where the value of Y is an even number.

. . . . Fu l l -Screen Graphics w i t h POKE
The normal Lo-Res graphics screen is established with the GR command.
This leaves four lines of text screen at the bottom. We may then set up the
screen to use those four text lines as eight graphics lines with

POKE - 1 6 3 0 2 , 0

When this is executed, the bottom of the screen will display some graphics
lines and some blocks at the left. These lines and blocks can be cleared
with just a few lines of code. If this is something we will be doing regu­
larly, it will make sense to write a subroutine such as Program 3-4.

3 9 9 2 REM * S E T F U L L SCREEN G R A P H I C S
AND C L E A R BOTTOM OF SCREEN TO B L
ACK

4 0 0 0 GR
4 0 1 0 POKE - 1 6 3 0 2 , 0
4 0 2 0 FOR L = 4 0 TO 4 7
4 0 3 0 H L I N 0 , 3 9 A T L
4 0 4 0 NEXT L
4 0 5 0 RETURN

Program 3-4. Subroutine to set full-sere en graphics and clear last
eight rows.

8 7
• • •

Any printing the program might do will now appear as a mosaic of colored
blocks in the bottom eight lines of graphics display. Furthermore, any­
thing we type at the keyboard in immediate or in response to an INPUT
request will also appear as a mosaic of colored blocks. So, programs that
use the full graphics screen may not use printing or request input with the
INPUT statement. To take input from the keyboard without using the
INPUT statement see Programmer's Corner 4.

Chapter 4

Miscellaneous
Features and
Techniques

. . . . I n t r o d u c t i o n
Certain calculations and other processes are required so frequently in
programming that high-level languages like BASIC supply them in nice
packages. Many of these packages are called functions. Some of them are
called operators. And some are just plain features. These tools are a tre­
mendous convenience in any computer language.

We have already used the INT function in some of our earlier pro­
grams in Chapter 2. Remember? INT(X) returns the greatest integer that
is less than or equal to X. INT(5.699) = 5 and INT(-4 .091) = - 5 . When
we are working with decimal numbers it is often useful to round off re­
sults. We will explore some other uses for INT in this chapter.

RND is a package that gives us access to random numbers in a pro­
gram. We used RND to good advantage in Chapter 2. RND may be used to
add interest and variety to games. This function is invaluable for writing
simulation programs. We can write a program to model a real-life situa­
tion. By changing various factors in a proposed solution to a business
problem, we can predict results without imposing poor judgment upon a
frustrated public. We may confine our failures to unpublicized runs of a
computer program.

These BASIC packages and numerous others will reveal themselves
as extremely useful.

It takes several BASIC statements to determine whether a number is
positive, negative, or zero:

8 9 0 REM * D E T E R M I N E + , 0 , OR -
9 0 0 I F X > 0 T H E N S = 1
9 1 0 I F X = 0 T H E N S = 0
9 2 0 I F X < 0 T H E N S = - 1
9 3 0 RETURN

Once we have written such a subroutine, we should test it. Then, every
time we need such a calculation in another program, we must type the
entire subroutine. The SGN function does the same thing:

1 3 0 S = S G N (X)

In just the same way we can determine the absolute value of a number in
BASIC with the ABS function.

1 4 0 A = A B S (X)

Not only are these functions useful in that they save us a lot of program­
ming effort and typing time; they provide some meaning to the statement in
which they appear. SGN(X) conveys the idea that we are interested in the
sign of the number, while X = T : GOSUB 900 fails to convey just why we
are invoking the subroutine at line 900 and that the result is returned in
S. We will have to read the code beginning at line 900 or put in REMs to
understand the meaning.

The number in parentheses following the function name is called the
argument of the function. This value is "passed" to the function, and the
result is returned in the entire expression.

Just as BASIC includes LET, GOSUB, END, I F . . .THEN, and FOR
. . . NEXT, it includes features such as INT, RND, SGN, and ABS as
elements of the language. This means that the necessary programming
has been done for us and incorporated into BASIC. There are many advan­
tages to this. The programming has been tested for us. The features will
generally execute much faster than if we write the same calculations in
BASIC. This is especially true for trigonometric and logarithmic func­
tions.

. . . . P r o m p t e d INPUT
Often we have been printing messages as labels for our INPUT requests.
This is always a good idea. BASIC provides a convenient way to include
the prompting message right in the INPUT statement.

In Applesoft the statement

1 0 0 I N P U T " E N T E R H E R E ? " ; T 1

will produce exactly the same results as

1 0 0 P R I N T " E N T E R H E R E " ; : I N P U T T l

Any message enclosed within quotes in an INPUT statement will be dis­
played exactly as typed. Note that when we use this option the question

mark we have come to expect with INPUT statements is not displayed. I f
we wish to have a question mark, then we must include it within quotes.
We might want some prompting symbol other than the question mark
anyhow.

In Integer BASIC the statement

1 0 0 I N P U T " E N T E R H E R E " f T l

will produce exactly the same results as

1 0 0 P R I N T " E N T E R H E R E " ; : I N P U T T l

Unlike Applesoft, Integer BASIC still displays the question mark. We
can't avoid it. Note that the delimiter is a comma in Integer BASIC,
whereas in Applesoft it is a semicolon. However, when requesting several
numeric values on the same line, we still use a comma to separate the
several values being entered during program execution.

4 - 1 . 1 . . .Applesof t N u m e r i c F u n c t i o n s
A B S , SGN, R N D , SQR, a n d I N T
For general programming, the most common functions are ABS, SGN,
RND, SQR, and INT. Functions that come with the language are some­
times called built-in functions.

As discussed earlier, ABS(X) returns the absolute value of X, and
SGN(X) returns - 1 , 0, or + 1 as the value of X is negative, zero, or posi­
tive. RND is the random-number generator. RND(X) returns random dec­
imal numbers in the range from 0 to 1 including 0 and excluding 1. If X is
negative, the number returned is the same for every occurrence of that
negative value of X. If the value of X is zero, the most recently generated
random number is returned. If the value of X is positive, a different value
is returned for each successive use of the RND function.

SQR(X) returns the square root of X. We could also code X 5 to repre­
sent "X to the one-half power," but SQR is convenient and executes
faster. Of course the value of X must not be negative. A negative argu­
ment in the SQR function will incur the wrath of Applesoft. I f we insist on
coding a statement such as

1 0 0 P R I N T S Q R (- 4)

we will be subjected to the following message:

? I L L E G A L Q U A N T I T Y ERROR I N 1 0 0

Once we gain familiarity with how these functions work, as we are
thinking about ways to solve computer problems, they will come to mind
as they are needed.

Suppose we are interested in finding factors of integers. Right away
INT should come to mind. We may program the computer to compare

INT(N/D) with N/D. If they are equal, then D divides into N without
remainder and D is a factor of N. I f INT(N/D) does not equal N/D, then D
is not a factor of N. For example:

I N T (6 9 / 5) = 1 3

while

6 9 / 5 = 1 3 . 8

Clearly 13 and 13.8 are not equal, so 5 is not a factor of 69. On the other
hand:

I N T (6 9 / 2 3) = 3

and

6 9 / 2 3 = 3

Twenty-three is a factor of 69 and so is 3.
To find the largest factor of 1946, all that we have to do is write a little

program that tries all of the values from 1945 down to 2. The first one that
is a factor is the largest factor. Display it and terminate the program.
While we are at it, we might just as well make this a somewhat general
program. Let's make our program request a value for testing. See Program
4-1.

1 0 0 I N P U T " F I N D L A R G E S T F A C T O R OF? " ; N
1 2 0 FOR D = N - 1 TO 2 S T E P - 1
1 4 0 I F N / D < > I N T (N / D) T H E N 1 8 0
1 5 0 P R I N T D : END
1 8 0 N E X T D
2 0 0 P R I N T N ; " I S P R I M E "

Program 4-1. Find largest factor.

Note line 140. I f we have a divisor that does not go without remainder,
then we perform the next test. I f not, then we have the largest factor.
Display it and quit.

] R U N
F I N D L A R G E S T F A C T O R OF? 1 9 4 6
9 7 3

Figure 4-1. Execution of Program 4-1.

There is something about this program that may not be obvious unless
we witness the execution. The computer has to think for over 10 seconds
before producing the answer for N = 1946. And it would delay for over 20
seconds for N = 1949. The smaller the first factor, the longer the delay.
Surely we could find the largest factor of 1946 faster by hand. So can the
computer.

Decimal division on a computer takes time. We could save one division
for each value of N by assigning N/D to an intermediate variable:

1 3 5 Q = N / D
1 4 0 I F Q < > I N T (Q) T H E N 1 8 0

The time saving is about 10%. While this might be worth doing, we should
also carefully examine the method we have chosen for solving this
problem.

Take the case of 1946. The largest factor is 973, and the smallest factor
is 2. We could simply test our factors beginning with 2. When we have
found the smallest factor, the largest factor may be found by division.
Thus we have gone from 973 trial values in the FOR . . . NEXT loop of
Program 4-1 to a single trial for this particular value of N. We have also
gone from 10 seconds to a small fraction of 1 second. That is an im­
provement worth working on. What if we enter 1949? This new method
will require 1947 trial values of D and just over 20 seconds to execute. So,
this method only helps for values of N that have factors. We should con­
tinue asking questions and making observations that may lead to an im­
proved method that also works for prime integers.

Let's return to the observation that the largest factor of 1946 is 973
and the smallest is 2. How are the rest of the factors paired? See Figure
4-2.

2 9 7 3
7 2 7 8
14 1 3 9
1 3 9 1 4
2 7 8 7
9 7 3 2

Figure 4-2. Factor pairs of 1946.

There are six pairs of factors. Each pair appears twice. How can we de­
termine when we have found all of the unique pairs of factors? For every
factor less than or equal to the square root of a number, the other factor
will be greater than or equal to the square root. Once we are convinced of
that, the rest is easy. We need only test divisors up to the square root.
Simply change

1 2 0 FOR D = N - 1 TO 2 S T E P - 1

to

1 2 0 FOR D = 2 TO S Q R (N)

and change

1 5 0 P R I N T D : END

to
1 5 0 P R I N T N / D : END

This change in strategy reducec the number of tests for N = 1949 from
1948 to 43. That is significant and worth incorporating into our program.
We can also use the intermediate variable Q to store N/D. Thus:

1 5 0 P R I N T N / D : END

becomes

1 5 0 P R I N T Q : END

See lines 120, 135, 140, and 150 of Program 4-2.

1 0 0 I N P U T " F I N D L A R G E S T FACTOR OF? " ; N
* 1 2 0 FOR D = 2 TO SQR (N)
* 1 3 5 Q = N / D
* 1 4 0 I F Q < > I N T (Q) T H E N 1 8 0
* 1 5 0 P R I N T Q : END

1 8 0 N E X T D
2 0 0 P R I N T N ; " I S P R I M E "

Program 4-2. Find largest factor using SQR (N).

. . . . Rounding Dec imal Resu l t s
Another use for INT comes up when we work with dollars and cents
where calculations come out in fractional cents. We would like always to
round figures off to the nearest cent for printing. Anything that is .5 cents
or more is "rounded up," and anything less than .5 cents is "rounded
down."

We can convert dollars and cents to cents by multiplying by 100. Then
if we add .5 cents, all values from .0 to .49 will become values in the range
from .5 to .99, while all values in the range from .50 to .99 will become
values in the range from 1.0 to 1.49. I f we next apply INT, all decimal
portions that were less than .5 disappear, and all values that were .5 or
more result in 1 cent being added. Then we get from cents back to
dollars and cents by dividing by 100. Thus we can round values to the
nearest cent with a statement such as

2 0 0 D l = I N T (D * 1 0 0 + . 5) / 1 0 0

Then we can easily write a little test program to verify our solution for
rounding values to the nearest cent (and incidentally for rounding any
values to the nearest hundredth). See Program 4-3.

1 0 0 REM * D E M O N S T R A T E R O U N D I N G
* 1 4 0 P R I N T " D A T A " / ' R O U N D E D V A L U E "

1 5 0 READ D
1 6 0 I F D = - 9 9 9 9 T H E N END
2 0 0 D l = I N T (D * 1 0 0 + . 5) / 1 0 0
2 1 0 P R I N T D , D l
2 2 0 GOTO 1 5 0
9 0 0 D A T A 3 . 0 9 1 2 3 , 4 . 9 4 5 6 1
9 1 0 D A T A 2 3 9 0 , - 1 . 5 1 0 2
9 2 0 D A T A . 0 0 0 9 , - 1 . 4 8 6 1
9 9 0 D A T A - 9 9 9 9

Program 4-3. Rounding to the nearest hundredth.

We have included the labeling of line 140 to give the display some mean­
ing.

] R U N
D A T A ROUNDED V A L U E
3 . 0 9 1 2 3 3 . 0 9
4 . 9 4 5 6 1 4 . 9 5
2 3 9 0 2 3 9 0
- 1 . 5 1 0 2 - 1 . 5 1
9 E - 0 4 0
- 1 . 4 8 6 1 - 1 . 4 9

Figure 4-3. Execution of Program 4-3.

Note that this also handles negative values correctly. It is always a good
idea to verify that our programs work properly for a wide variety of values.
Even though the current problem doesn't require a particular class of
values, it is desirable to test the program for them anyway. It is much
easier to put the finishing touches on a routine while we are familiar with
the problem than to return to it months later when we discover that we
really do want to handle those previously unwanted values.

. . . . Compound I n t e r e s t
Suppose we have $100 in a savings account at 5.5% compounded daily.
How much will that be at the end of 1 year? We can easily write a little
program to calculate that. There is a formula that gives compound
amounts very nicely.

A = P (1 + I) N

where

A = Amount
P = Principal
I = Interest rate per interest period

N = Number of interest periods

The raised N indicates "to the power." This is done in Program 4-4.

1 0 0 REM * C A L C U L A T E COMPOUND I N T E R E S T
2 0 0 P = 1 0 0
2 1 0 I = . 0 5 5 / 3 6 5
2 2 0 N = 3 6 5
3 0 0 A = P * (1 + I) N
3 1 0 P R I N T A

Program 4-4. Compound interest by formula.

Note that " is used as the symbol for "to the power" on the Apple. This
symbol is generated by the character "SHIFT-N" on the Apple keyboard.

] R U N
1 0 5 . 6 5 3 6 4 3

Figure 4-4. Execution of Program 4-4.

Now, since we have enough trouble buying anything with a whole cent,
let alone .3643 cents, we might as well round that value off to the nearest
cent. We can do that easily by replacing line 310 with

3 1 0 P R I N T I N T (A * 1 0 0 + . 5) / 1 0 0

This program tells us what our amount will be at the end of the year.
What the program doesn't tell us is what has happened to the buying
power of our money due to inflation. It doesn't tell us of the federal, state,
and even city income taxes we may have to pay on the interest. However,
a savings account is still better than hiding the money in a mattress.

That compound-interest formula works just fine if we are going to put
$100 in the bank and leave it there. But suppose we decide to put $20 into
the account on the 1st of each month. For simplicity, let's consider that
each month has 30 days and that the year has 360 days. Let's put $100 in
the bank on January 1 and then put $20 in on the 1st of the month each
month all year. We can handle this nicely with a FOR . . . NEXT loop
going from 1 to 12. See Program 4-5.

1 0 0 REM * ADD $ 2 0 EACH MONTH
2 0 0 P = 1 0 0
2 1 0 I = . 0 5 5 / 3 6 0
2 2 0 N = 3 0
3 0 0 FOR M = 1 TO 1 2
3 1 0 P = P + 2 0

* 3 2 0 A = P * (1 + I) * N
* 3 3 0 P = A

3 4 0 N E X T M
3 5 0 P R I N T " $ 1 0 0 P L U S $ 2 0 EACH MONTH $ " ;
3 6 0 P R I N T I N T (A * 1 0 0 + . 5) / 1 0 0

Program 4-5. Compound interest with money added each month.

Note that the amount at the end of each month becomes the principal for
the next month. See lines 320 and 330 of Program 4-5.

] R U N

$ 1 0 0 PLUS $ 2 0 EACH MONTH $ 3 5 2 . 9 4

Figure 4-5. Execution of Program 4-5.

. . . . Programmer-Def ined F u n c t i o n s (D E P F N)
Often it is convenient to define a function of our own and use it at various
places in our program. BASIC DEFined FuNctions serve this purpose. We
can set up a rounding function at the beginning of our program and then
use it wherever we need that same calculation. Our rounding function
may be defined as follows:

1 1 0 D E F F N R (X) = I N T (X * 1 0 0 + . 5) / 1 0 0

To invoke our new function we code a line such as

3 6 0 P R I N T FN R (A)

BASIC "knows" that we want the value of A in line 360 to be used wher­
ever X appears in the function definition on line 110. The Xs in line 110
simply hold places where values will be inserted whenever an "FN R" is
encountered in an expression. The value of X at the time that the
function-definition statement is executed has no effect on the outcome of
the program. The variable used in parentheses in the DEFining statement
is called a dummy variable since no calculations ever use its value. The
calculations are based on whatever replaces the dummy variable. We may
code things such as

FN R (1 2 3 4 5) FN R (1 2 * . 0 9 8) FN R (RND (4) * 1 0 0 0)

Let's rewrite Program 4-3 to demonstrate rounding with a defined func­
tion. See Program 4-6.

1 0 0 REM * D E M O N S T R A T E D E F I N E D F U N C T I O N
* 1 1 0 D E F FN R (X) = I N T (X * 1 0 0 + . 5) / 1 0 0

1 4 0 P R I N T " D A T A " , " R O U N D E D V A L U E "
1 5 0 READ D
1 5 0 I F D = - 9 9 9 9 T H E N END

* 2 1 0 P R I N T D , FN R (D)
2 2 0 GOTO 1 5 0
9 0 0 D A T A 3 . 0 9 1 2 3 , 4 . 9 4 5 6 1
9 1 0 D A T A 2 3 9 0 , - 1 . 5 1 0 2
9 2 0 D A T A . 0 0 0 9 , - 1 . 4 8 6 1
9 9 0 D A T A - 9 9 9 9

Program 4-6. Rounding to the nearest hundredth.

In Program 4-6 we have defined the rounding function in line 110 and
used it to display values rounded off to the nearest hundredth in line 210.

] R U N
D A T A ROUNDED V A L U E
3 . 0 9 1 2 3 3 . 0 9
4 . 9 4 5 6 1 4 . 9 5
2 3 9 0 2 3 9 0
- 1 . 5 1 0 2 - 1 . 5 1
9 E - 0 4 0
- 1 . 4 8 6 1 - 1 . 4 9

Figure 4-6. Execution of Program 4-6.

Defined functions provide a way for us to put together packages of calcu­
lations in a convenient form. This is an ideal way to do conversions of all
kinds. Programmer-defined functions are limited to 1 program state­
ment, but that allows us a lot of leeway. We may define up to 26 functions
in any 1 program in this way—FNA(X) through FNZ(X). Calculations
and processes that cannot be done in a single program statement are best
coded as subroutines and invoked with the GOSUB statement.

Converting from Fahrenheit to Celsius and vice versa is easy with two
defined functions:

1 0 0 D E F FN C (X) = 5 / 9 * (X - 3 2)
1 1 0 D E F FN F (X) = (9 / 5) * X + 3 2

Wherever we want Celsius from Fahrenheit, we simply code FN
C(Fahrenheit temp) and wherever we want Fahrenheit from Celsius, we
code FN F(Celsius temp). And if we want to round off the results, we
include

1 2 0 D E F FN R (X) = I N T (X * 1 0 0 + . 5) / 1 0 0

Now to display the Celsius temperature rounded off to the nearest hun­
dredth, code the following line:

2 1 0 P R I N T FN R (FN C (T))

where T is the Fahrenheit temperature. We can even define one function
in terms of another defined function. Thus

1 3 0 D E F FN T (X) = FN R (FN C (X))

will calculate the rounded value with any reference to FN T(X).
One convenient use of DEF is to define a random number in terms of

the range desired. A function to return a random number in the range 1 to
X follows:

1 0 0 D E F FN R (X) = I N T (RND (1) * X + 1)

. . . . SUMMARY
ABS, SGN, RND, SQR, and INT are commonly used built-in functions
available in Applesoft. They have good mnemonic association. We may
also build our own functions with DEF FN. These functions allow us to
define any calculation that will fit in a single program statement. More
complex packages may be created with subroutines.

P r o b l e m s f o r S e c t i o n 4 - 1 . 1
1. Write a program to find all prime factors of an integer by rewriting

the essence of Program 4-2 as a subroutine and calling it re­
peatedly. Eliminate duplicates.

2. Write a program to compare the effect of considering the banking
year to have 360 days instead of the 365 on the real calendar. Use
5.5% and 12.5% on $100000.

3. Compare daily compounding with monthly compounding for
$1000 at 5.5% and 12.5% for one year.

4. Compound interest may also be calculated without the formula
given in this section. We may simply build a loop that adds the
interest at the effective interest rate once for each period in the
time that the money is on deposit. Write a program to calculate
interest this way and compare your results with those in the pro­
grams of this section. Compare a 365-day year with a 360-day year.

8. Write a program to convert temperatures from Fahrenheit to Cel­
sius. Request Fahrenheit temperatures from the keyboard. Be
sure to have a way to stop. Zero may not be the best value for
terminating this program execution.

4 - 1 . 2 . . . I n t e g e r BASIC N u m e r i c
F u n c t i o n s a n d T e c h n i q u e s

. . . . I n t e g e r BASIC N u m e r i c F u n c t i o n s
Integer BASIC provides only SGN, ABS, and RND. We have seen all of
these before. We review them here for convenience.

SGN(X) returns - 1 if X is negative, 0 if X is zero, and + 1 if X is
positive; ABS(X) returns the absolute value of X; and RND(X) is our
source of random numbers. For RND(X), the value of X must not be zero.
For positive values of X, RND(X) produces integers in the range from 0 to
1 less than X. So, to obtain values in the range from 1 to X, simply code
RND(X) + 1. For negative values of X, we get values in the range from 0 to
1 more than X.

6 9 ...

. . . . F a c t o r s i n I n t e g e r BASIC: A Technique
Finding factors in Integer BASIC is quite straightforward. We use the fact
that arithmetic is limited to integers to do this. The result of 7/2 is 3. The
result of 3*2 is 6. Six is not equal to 7, so 2 is not a factor of 7. If C is the
result for A/B, then we determine whether C*B is equal to A. I f it is, we
have a factor. Now, to find the largest factor, all we have to do is put this
test in a loop running from 1 less than the number to 2. See Program 4-7.

1 5 0 P R I N T " F I N D I N G L A R G E S T F A C T O R "
1 6 0 P R I N T
2 0 0 I N P U T " E N T E R AN I N T E G E R " , N
2 1 0 FOR D = N - 1 TO 2 S T E P - 1

* 2 2 0 A = N / D
* 2 3 0 I F A * D O N T H E N 2 8 0

2 4 0 P R I N T D : END
2 8 0 N E X T D
2 9 0 P R I N T N ; " I S P R I M E "
3 0 0 END

Program 4-7. Finding largest factor.

We could even code line 220 and 230 as a single line:
2 3 0 I F N / D * D O N T H E N 2 8 0

Here we have developed a simple technique for handling a situation that
requires a special function in Applesoft. We will often find that the integer
limitation is not really a handicap.

>RUN

F I N D I N G L A R G E S T FACTOR

ENTER AN I N T E G E R ? 1 9 9 1

1 8 1
Figure 4-7. Execution of Program 4-7.

If we watch while the computer produces the answer 181, we will notice
that there is a considerable delay. For large prime numbers the delay will
be even greater. Thinking about factors a bit will help us find a way to cut
execution time dramatically. What are the factors of 12? That is easy: 2, 3,
4, and 6. How are they paired?

2 6
3 4
4 3
6 2

Figure 4-8. Factor pairs of 12.

Each factor pair in this example is duplicated. For a perfect square, there
would be an odd pair. For every factor greater than or equal to the square
root, the other factor is less than or equal to the square root. We can easily
find the smallest factor by going from 2 to the square root with a new FOR
statement:

2 1 0 FOR D = 2 TO N - l

To find the largest factor, simply divide. We have already done the division
in line 220 of Program 4-7. So, instead of displaying D in line 240, we
want to display A. Applesoft has a square-root function, but Integer
BASIC doesn't. Not to worry: we simply test D*D. I f D*D is greater than
N, then we have passed the square root and the search is complete. See
Program 4-8.

1 5 0 P R I N T " F I N D I N G L A R G E S T F A C T O R "
1 6 0 P R I N T
2 0 0 I N P U T " E N T E R AN I N T E G E R " , N

* 2 1 0 FOR D = 2 TO N - l
* 2 1 5 I F D * D > N THEN 2 9 0

2 2 0 A = N / D
2 3 0 I F A * D O N T H E N 2 8 0

* 2 4 0 P R I N T A : END
2 8 0 NEXT D
2 9 0 P R I N T N ; " I S P R I M E "
3 0 0 END

Program 4-8. Find largest factor without square-root function.

We have changed Program 4-7 by adding line 215 to exit the FOR . . .
NEXT loop when the square root has been passed, modifying line 210 to
cause the loop to begin with 2, and changing line 240 to display the correct
factor.

>RUN

F I N D I N G L A R G E S T FACTOR

ENTER AN I N T E G E R 7 3 2 7 5 9

1 9 2 7
Figure 4-9. Execution of Program 4-8.

Of course, we have to see these programs execute to visualize the dra­
matic improvement in speed.

. . . . SUMMARY
ABS(X) returns the absolute value of X. SGN(X) returns - 1 , 0, or + 1 as X
is negative, zero, or positive. The Integer BASIC random-number
generator RND(X) returns a random integer in the range from 0 to X - 1 for

positive values of X and in the range from 0 to X + l for X negative.
RND(0) will produce an error.

We developed a way to find factors using integer arithmetic to our
advantage. We found a simple method of terminating a search for factors
by exiting the loop when the trial denominator passed the square root by
squaring it to see if the result was greater than the original number to be
factored.

P r o b l e m s f o r S e c t i o n 4 - 1 . 2
1. Rewrite Program 4-8 as a subroutine. Use this subroutine to find

all prime factors. Eliminate duplicates.
2. Write a program to convert temperatures from Fahrenheit to Cel­

sius. Request Fahrenheit temperatures from the keyboard. Be
sure to have a way to stop.

3. Have the computer select a number at random in the range of 1 to
99. Don't display it. Offer the user the opportunity to guess the
secret number. Have the computer tell the user whether this guess
is high or low. Count the number of guesses it takes to get it right.

4 - 2 . 1 . . . M o r e A p p l e s o f t G o o d i e s

There are lots of features that we could get by without. In fact, many
versions of BASIC do not include some of the packages we will be opening
in this section. However, these features do make life interesting and often
easier.

. . . . HOME
HOME clears the display screen and places the cursor in the upper left-
hand corner. This is very nice for keeping the screen uncluttered.

.... F R E
FRE(X) is a function that returns the amount of free memory in bytes.
The value of X may be any legal Applesoft number. It is handy to use
FRE(9) or FRE(8) because the 8 and 9 are right there on the keyboard
with the left and right parentheses. A byte corresponds to a single charac­
ter in memory. It takes 2 bytes to store an integer and 5 to store a decimal
value. Applesoft keywords each require 1 byte. Arrays and strings require
several bytes in addition to the space required for the data to be stored in
them. I f we are working with arrays and we want them to be as large as
possible, this function will save a lot of trial and error. Be sure to run the
program before determining the amount of free memory. Even then we

7 2 ...

should allow 50 or 100 bytes, because the program may use more memory
during future executions with different data.

. . . . S P E E D =
The display speed may be set to any value in the range from 0 to 255.

S P E E D = 0

will set the display to the slowest possible speed. With S P E E D = 0 the
display is around 6 characters per second, while at S P E E D = 255 we get
more like 1000 characters per second—Apple's normal speed. This can be
set at will anywhere in a program or in immediate mode.

. . . . CTRL-S
When the computer is concentrating on its display it is exceedingly fast.
So fast, in fact, that we may miss what we want to see. We can slow things
down with S P E E D = , but that slows everything down. We can temporarily
halt the display by pressing CTRL-S. This is convenient for locating a
piece of a program that we want to look at with LIST and for halting an
executing program while we write down some values during program
development, but our finished programs should not rely upon this feature.

. . . . FLASH, I N V E R S E , and NORMAL
FLASH, INVERSE, and NORMAL determine the appearance of the com­
puter output on the screen. These commands do not change what we type
at the keyboard, only what the computer outputs to the screen. The com­
mands are quite mnemonic. We may use a flashing or inverse display for
emphasis.

. . . . SPC and TAB
SPC and TAB are functions that must appear in a PRINT statement.

2 3 1 P R I N T T A B (X) ; " M E S S A G E "

will display the "M" in MESSAGE in the Xth column of the current line.
The first column is labeled 1. If X equals 41 , then the rest of the display
begins in the first column of the next line on the normal screen. The TAB
function cannot move the cursor to the left on the current line.

SPC(X) in a PRINT statement causes X spaces to be displayed. I f X
takes the display past the end of the current line, SPC moves to the next
line and continues counting. The range for X is 0 to 255.

. . . . HTAB and VTAB
HTAB and VTAB are Applesoft keywords that provide absolute cursor
positioning.

1 0 0 H T A B X : V T A B Y

will place the cursor at position X,Y on the screen regardless of where it
was before the above statement is executed. The next printing begins
from this point. Y may be in the range from 1 to 24. X may be in the range
from 0 to 255, but 0 is treated as 256.

. . . . POS
The POS(X) function may be used to determine where on the line the
cursor lies. The argument of this function is a dummy and has no effect
upon the function itself. The positions on the line are counted from 0 to
39.

. . . . PDL
The Apple permits up to 4 "paddles" and 3 game "buttons." The paddles
are numbered 0 through 3. PDL(X) returns a value in the range from 0 to
255 according to the rotational position of the paddle dial. The dial con­
tains a resistor that works like a light dimmer switch. The paddles make it
possible to allow the user to control a program without using the keyboard.
Most often the paddles seem to be used for games. They could just as well
be used to respond to questions with numbered answers. We could read
the value of the paddle and display the corresponding answer number on
the screen. When the user has selected the desired answer, they notify the
program by pressing the button. We read that the button has been pressed
with PEEK.

The 3 buttons are located at memory addresses - 16287, - 16286,
and - 1 6 2 8 5 for buttons 0, 1, and 2. To determine whether button 0 has
been pressed get the value of PEEK (- 16287). I f that value is greater
than 127 then the button has been pressed since the last time that address
was PEEKed. Program 4-9 is a little routine to use paddle 0 to accept
responses in the range from 0 to 9.

9 0 REM * D E M O N S T R A T E USE OF P A D D L E AND GAME B U T T O N ZERO
1 0 0 X = P D L (0)
1 2 0 Y = X / I N T (2 5 6 / 9)
1 4 0 HOME
1 6 0 P R I N T Y
1 7 0 FOR I = 1 TO 5 0 0 : N E X T I
1 8 0 Z = P E E K (- 1 6 2 8 7)
1 9 0 I F Z < 1 2 8 T H E N 1 0 0
2 0 0 P R I N T " Y O U R ANSWER " ; Y
9 9 0 END

Program 4-9. Use paddle to enter responses 0 to 9.

Note that line 170 seems to do nothing. It is there to minimize the flicker­
ing of the display of the current value derived from the position of the

paddle dial. The higher the limit on the loop, the steadier the display, but if
we make the limit too high then the program will not respond to the
rotation of the paddle. Somewhere between 250 and 500 seems about
right.

. . . . GET
Here is a way to take input from the keyboard without getting any text
display on the screen. When we are working with full-screen graphics, this
is a way to allow the user to communicate with the program.

2 5 0 GET A $

looks for a single character from the keyboard. The program will "hang"
on this statement until a character is entered. The RETURN key need not
be pressed in this case. Any character entered prior to executing the GET
statement will be read in and used. See Programmer's Corner 4 for how to
control this.

4 - 2 . 2 . . . I n t e g e r BASIC G o o d i e s

. . . . MOD
Integer BASIC has a very nice operator. A MOD B returns the remainder
after dividing A by B. We can perform modular arithmetic easily. Or this
can be used to determine whether or not B is a factor of A. I f A MOD B
equals zero then B is a factor of A. Otherwise, it is not. You might try this
in the factoring problem we did earlier.

. . . . PDL

See the discussion for PDL in Section 4-2.1.

. . . . FLASH, I N V E R S E , and NORMAL
Integer BASIC requires a POKE at address 50 to control the mode of
screen display.

POKE 50,127 puts the Apple in FLASH mode for display generated by
computer output. Characters entered from the keyboard are displayed in
the normal mode.

POKE 50,63 puts the Apple in INVERSE mode for all display gener­
ated by computer output. Characters entered from the keyboard are dis­
played in the normal mode.

POKE 50,255 puts the Apple in NORMAL display mode for all screen
output.
. . . . C A L L - 9 3 6
CALL - 9 3 6 clears the screen and places the cursor at the upper left-hand
corner of the screen.

.... TAB and VTAB
We may place the cursor anywhere on the screen with the absolute posi­
tioners TAB and VTAB.

2 0 0 T A B 7 : V T A B 6 : P R I N T " D O N E "

will place the cursor on line 6 in the 7th column for the word "DONE" to
be printed by the PRINT statement following. The range for VTAB is 1 to
24 and the range for TAB is 1 to 255. I f the value for TAB exceeds 40, the
display is pushed onto succeeding lines as necessary.

4 - 3 . . . O t h e r A p p l e s o f t F u n c t i o n s

SIN(X), COS(X), and TAN(X) all return the trigonometric values we
would expect. The value of X must use radian measure. The inverse
function ATN(X) is also provided. ATN(X) returns radian values in the
first and fourth quadrants.

From these trig functions all the others can be derived. It is up to the
programmer to determine the correct quadrants where that is a problem.

EXP(X) and LOG(X) are also provided. EXP(X) raises e (2.71828183)
to the Xth power, and LOG(X) finds the natural log of X.

4 - 4 . . . L o g i c a l O p e r a t o r s i n BASIC

. . . . AND, OR, and NOT
Often in a program there are several conditions that may determine the
next course of action. We might want to execute a subroutine if AV>95
and S C < 7 0 . We can do this with AND.

3 0 0 I F A V > 9 5 AND SC < 7 0 T H E N GOSUB 9 0 0

will do the job. AND is one of the three logical operators in BASIC. BASIC
evaluates the expression "AV>95". I f that expression is true, BASIC sets
its value to one. I f that expression is false, BASIC sets its value to zero.
The same goes for " S C < 7 0 " . We can even assign logical values to vari­
ables:

2 9 0 L I = A V > 9 5 : L 2 = SC < 7 0
2 9 5 I F L I AND L 2 T H E N GOSUB 9 0 0

This is equivalent to the single statement 300 above. In line 290 the value
of LI is set to 1 if AV>95 is true and 0 if AV>95 is false. Similarly L2
becomes 1 or 0. And finally, in line 295, L I AND L2 becomes 1 or 0. We
can even assign LI AND L2 to another variable if that suits our purpose.

OR does just what you would expect.

7 6 . . .

4 0 0 I F L I OR L 2 THEN P R I N T " T R U E "

Line 400 prints "TRUE" if either LI or L2 is true.
NOT simply reverses the logical state of an expression.
3 5 0 I F NOT (L I OR L 2) T H E N P R I N T " T R U E "

prints "TRUE" only if LI is zero and L2 is zero. When BASIC assigns
values to logical expressions, it selects zero and one for false and true, but
other values may be used. In fact the two logical states in BASIC are zero
and not zero. Thus:

6 OR 7 = 1

6 AND 7 = 1

6 AND NOT 7 = 0

What about 7 and NOT 7? Well, 7 is "true," so NOT 7 is "false."

PROGRAMMER'S CORNER 4

C o n t r o l l i n g t h e K e y b o a r d
We have used the keyboard to interact with many of our programs in
Integer BASIC and Applesoft. We have used INPUT often to request data
from the keyboard. As long as we wait for the INPUT statement to actu­
ally execute, all is well; however, if there is a delay prior to an INPUT
request and we press a key during that delay, the INPUT statement takes
that key as the first character of our response. Thus, if we accidentally
press a key during some delay, we run the risk of entering incorrect data.
If we press the RETURN key in such a situation and the request is for
string INPUT, then the INPUT statement may process a string of zero
characters and proceed on that basis. Even expensive programs commer­
cially available produce strange results through failure to recognize this
as a potential problem.

To visualize the problem, type in Program 4-10 and run it.

9 0 C A L L - 9 3 6
1 0 0 I N P U T X
1 2 0 FOR 1 = 1 TO X : N E X T I

* 1 5 0 I N P U T X
1 6 0 I F X > 0 T H E N 1 0 0
1 7 0 P R I N T " D O N E "
1 8 0 END

Program 4-10. Demonstrate premature keyboard entry.

When Program 4-10 displays a question mark, enter 1500 and press the
RETURN key quickly twice. Then take your hands off the keyboard. That
request from BASIC to ?REENTER or RETYPE LINE is generated by
line 150. The second RETURN was read by the INPUT at line 150. Since
we entered a RETURN with no numeric value, BASIC coughs. This is
easily prevented. There is a memory location that resets the keyboard for a
new character.

We can reset the keyboard with

1 4 0 POKE - 1 6 3 6 8 , 0

Enter this new line in Program 4-10 and note the difference in behavior.
This time the INPUT statement waits for a response from the keyboard
because statement 140 knocked out the spurious extra RETURN charac­
ter entered in response to the INPUT at line 100.

GET in Applesoft can be managed in the same way. Placing a POKE
- 1 6 3 6 8 , 0 just before the GET statement will assure that no spurious data
is taken from the keyboard. On the other hand, it may be important not to
knock out a character entered during some noninteractive portion of a
program. We may in fact want to "look" at the keyboard to "see" if any key
has been pressed since some specific prior event.

. . . . R e a d t h e K e y b o a r d w i t h P E E K (1 6 3 8 4)
Memory location - 1 6 3 8 4 reads the keyboard. I f we strike a key, the code
associated with the key struck is stored at that address. If the value stored
there is greater than 127 then a key has been struck. The character is not
displayed on the text screen. In fact, INPUT reads the keyboard and dis­
plays the character and performs a lot of other testing for us. This testing
includes verifying string or numeric input and out-of-range testing. We
certainly would be ill advised to use P E E K (- 1 6 3 8 4) for all input. This is
handy for situations where we are doing full-screen graphics and want to
"look" at the keyboard to see if certain characters have been struck. The
instructions for such a program should be very clear about the commands
that may be entered in such a situation. This PEEK thing is good for only a
single character at a time. If 5 characters are entered before we do the
PEEK, only the last 1 entered will be there for us to "see." To read
multiple characters we need to put this logic in a loop to control the
number of characters to be processed.

I f we use this procedure for reading the keyboard, then we should be
certain also to clear the keyboard with POKE - 1 6 3 6 8 , 0 . The - 1 6 3 8 4
address may be read over and over again. So, the next INPUT statement
would pick up the last keystroke. POKE - 16368, 0 will prevent this
confusing condition.

Chapter 5

Character Strings
and String
Functions

Most of our work has used numbers and calculations. However, we have
printed messages and labels by enclosing them in quotation marks in
PRINT statements. The ability to handle nonnumeric data is important in
working with computers. Such data is referred to as string data. String
data may contain any of the letters, digits, and special characters available
on the computer. Thus, string data comes in character strings.

Strings may be used for a name-and-address mailing list, for instruc­
tions telling how to use a computer program, as labels to make the dis­
played results more understandable, or as part-identification labels in an
inventory-control system. We might simply use strings to make a game
program more conversational. We can ask the player's name and use it in
later displayed messages. BASIC provides a variety of features that make
the handling of string data very convenient. There are string variables,
which enable us to store and manipulate character strings. Using string
variables and string functions, we can manipulate individual characters
arid groups of characters. We can even print a string in reverse order just
for fun.

5 - 1 . 1 . . .Appleso f t S t r i n g s

Applesoft provides string variables and a host of useful string manipula­
tion functions. A string variable is distinguished from a numeric one by
using a dollar sign ($) as the last character in the variable name.

We may work with string variables in many of the ways in which we
work with numeric variables. For instance, any of the following state­
ments may appear in a program:

1 0 0 L E T A $ = " F I R S T "
1 0 0 READ A $
1 0 0 I N P U T A $
1 0 0 P R I N T A $

String variables may contain from 0 to 255 characters at a time. In
order to READ A$ we must provide a corresponding DATA statement. If
we want to include a comma in the string, then we should enclose the
string in quotation marks. Without the use of quotation marks, any
comma is interpreted as the end of the current DATA item. For example,
Program 5-1 READs string DATA and PRINTs it for us to see.

In this program we introduce a little technique in Applesoft for mak­
ing programs more readable overall. It turns out that we may get an
almost blank line by entering a line number followed by a colon. This may
be used to make a clear visual break between different parts of a program.
Beginning with this program, we will use this often. Integer BASIC does
not provide the same nicety.

1 0 0 READ A $
1 2 0 P R I N T A $
1 3 0 GOTO 1 0 0
4 9 5 :

* 5 0 0 D A T A GEORGE M . C O H E N , ABE L I N C O L N
5 1 0 D A T A J O A N OF ARC

Program 5-1. READ . . . DATA with strings.

The comma in line 500 is interpreted by Applesoft as a data separator or
delimiter. We could have provided the same data for this program by
typing as follows:

] 5 0 0 D A T A GEORGE M . C O H E N , ABE L I N C O L N ,
J O A N OF ARC

Here the screen has automatically pushed characters to the next line as
we type. When we LIST this statement, Applesoft will arrange things a
little differently.

1 L I S T 5 0 0

5 0 0 D A T A GEORGE M . C O H E N , ABE L
I N C O L N , J O A N OF ARC

For short data items we could avoid having the computer rearrange things
by placing each data item on a single line. Doing this will take up addi­
tional memory. However, we are writing very short programs that don't

require much memory. So, we won't worry about memory use until we
are writing very long programs. The most readable form follows:

1 0 0 READ A $
1 2 0 P R I N T A $
1 3 0 GOTO 1 0 0
4 9 5 :
5 0 0 D A T A GEORGE M . COHEN
5 1 0 D A T A ABE L I N C O L N
5 2 0 D A T A J O A N OF ARC

Program 5-2. Program 5-1 with reformatted DATA.

It is always worth a little effort to make programs more readable. As we
gain experience with programming, this comes automatically.

] R U N
GEORGE M . COHEN
ABE L I N C O L N
J O A N OF ARC

?OUT OF D A T A ERROR I N 1 0 0
]

Figure 5-1. Execution of Program 5-2.

That "OUT OF DATA" message is a little disturbing. Good programs
will never produce that message! In some situations, programs that end
with an error message will fail to perform as desired. We should always
provide for an orderly program termination. In this case we may simply
add an artificial string-data item to the data list. Such a data item is some­
times called dummy data. We will use this artificial data item as a signal to
the program that all of the data have been read. After line 100 and before
line 120 we compare A$ to the signal data. Using "STOP" as the terminat­
ing signal the final program looks like Program 5-3.

1 0 0 READ A $
* 1 1 0 I F A $ = " S T O P " THEN 9 0 0

1 2 0 P R I N T A $
1 3 0 GOTO 1 0 0
4 9 5 :
5 0 0 D A T A GEORGE W. COHEN
5 1 0 D A T A ABE L I N C O L N
5 2 0 D A T A J O A N OF ARC

* 5 9 9 D A T A STOP
9 0 0 END

Program 5-3. Using dummy data to terminate program execution.

Now our little demonstration program terminates in an orderly way. Of
course, the actual signal is arbitrary, just so we select some value that will
not be a real DATA item and test for that value.

Applesoft permits us to compare strings for order in much the same
way in which we compare numbers using IF . . . THEN. The sequence
used is known as ASCII (American Standard Code for Information Inter­
change). For strictly alphabetical strings, this code will alphabetize in the
conventional order. ASCII places the digits 0 through 9 ahead of the let­
ters of the alphabet. We can easily write a short program to demonstrate
order comparison.

9 5 REM * COMPARES S T R I N G S FOR ORDER
1 0 0 P R I N T
1 1 0 P R I N T " A $ " ;

* 1 2 0 I N P U T A $
1 3 0 I F A $ = " S T O P " THEN 2 4 0
1 4 0 P R I N T " B $ " ;

* 1 5 0 I N P U T B $
1 6 0 I F A $ < B $ T H E N 2 2 0
1 7 0 I F A $ = B $ T H E N 2 0 0
1 7 5 :
1 8 0 P R I N T A $; " I S G R E A T E R THAN " ; B $
1 9 0 GOTO 1 0 0
1 9 5 :
2 0 0 P R I N T A $; " I S EQUAL TO " ; B $
2 1 0 GOTO 1 0 0
2 1 5 :
2 2 0 P R I N T A $; " I S L E S S T H A N " ; B $
2 3 0 GOTO 1 0 0
2 3 5 :
2 4 0 END

Program 5-4. String comparison in Applesoft.

Lines 120 and 140 are string INPUT requests. We have the same option to
include a message in quotes right in the INPUT statement itself for
strings that we have for numeric input. Lines 110 and 120 may be re­
placed with the following single statement:

1 1 0 I N P U T " A $? " ; A $

As with prompted INPUT requesting numeric data, no question mark is
displayed. To exactly match the two statements, 110 and 120, we have
included our own question mark in quotes.

This quoted-message thing is nice, but if we have a situation where
we want to use the same INPUT statement to ask different questions, we
will still have to use a PRINT statement that displays a message stored in
a string variable.

] R U N

A $? W H A T ' S T H I S
B $? W H A T ' S T H A T
W H A T ' S T H I S I S G R E A T E R T H A N W H A T 1 S T H A T

A $? W H A T ' S T H I S
B $? W H A T , S WHAT
W H A T ' S T H I S I S L E S S T H A N W H A T ' S WHAT

A $? W H A T ' S WHAT
B $? W H A T ' S WHAT

W H A T ' S WHAT I S EQUAL TO W H A T ' S WHAT

A $? S T O P

Figure 5-2. Execution of Program 5-4.

All of the comparison operators available for numeric comparison are
available for string comparison.

We can manipulate strings in many ways. Consider the following
statement:

2 0 0 C $ = A $ + B $

This does not perform numeric addition. Instead, it assigns a new string to
the variable C$. The string variable assigned is the same string that would
be displayed by the following PRINT statement:

2 0 0 P R I N T A $; B $

We can enter a space in C$ in the following way:

2 0 0 C$ = A $ + " " + B $

This device might be used in a situation where A$ contains a person's first
name and B$ contains the last name. To assign the name last name first
we might use a statement such as

2 0 0 C $ = B $ + " , " + A $

This is called concatenation of strings. It is a very simple concept with a
fancy name. When using concatenation there must not be more than 255
characters in the final string to be formed, or we will get a message:

? S T R I N G TOO LONG ERROR I N 2 0 0

and our program will stop dead in its tracks. We get up to 255 characters
without any special provision, and there is no way to get more in a single
string variable. We can handle more characters by breaking the problem
into segments each of which requires 255 or fewer characters.

. . . . SUMMARY
Applesoft provides string variables for storing character strings in a pro­
gram. Strings may be assigned with INPUT, READ, and DATA, or the
assignment statement. The maximum number of characters in a string is
255. Strings may be compared for order in an IF . . . THEN statement.
Strings may be concatenated using a plus (" + ") sign.

P r o b l e m s f o r S e c t i o n 5 - 1 . 1
While many of these programs can be done in Integer BASIC, it is ex­
pected that you will do them in Applesoft.

1. Write a program that requests the user's name and responds with,
"HELLO THERE T O U R NAME'", using the entered name where
'YOUR NAME' appears here.

8. Enter several words in DATA statements. Write a program that
will display the data item that comes earliest in the alphabet. Be
sure to use dummy data.

3. Enter several words in DATA statements. Write a program that
will display only the word that is alphabetically last in the list.

4. Often in programs we want to ask the user questions for which
only " Y E S " and "NO" are acceptable answers. Since we might
want to do this at many points in the same program, it is useful to
write one subroutine that sets a numeric variable to " 1 " for " Y E S "
and " 0 " for "NO". Write such a subroutine.

5 - 1 . 8 . . . I n t e g e r BASIC S t r i n g s

A string variable is distinguished from a numeric one by using a dollar
sign ($) as the last character in the variable name.

We may work with string variables in many of the ways that we work
with numeric variables. For instance, any of the following statements
may appear in a program:

1 0 0 L E T A $ = " F I R S T "
1 0 0 I N P U T A $
1 0 0 P R I N T A $

A string may be empty. That is, it may contain no characters. The maxi­
mum number of characters is 250. It turns out that the maximum num­
ber of characters really depends on the number of characters in our vari­
able name. For a 1-character variable name we get 250. We get 1 less
character in the variable for each additional character in the variable

8 4 ...

name. By some quirk, we can DIMension string variables up to 255, but
we can never use them all. Strange things happen if we go past 250. It is a
good idea to account for this problem right in your DIMension statements.
If a string variable is to be used for more than 1 character it must be
named in a DIMension statement. For example:

1 0 0 D I M A $ (3 6) , B $ (1 2) , C $ (2 5 0) , T 1 $ (2 4 9)

will provide for 4 strings. A$ may contain up to 36 characters, B$ up to
12, C$ up to 250, and T l $ up to 249. Trying to DIMension a string for more
than 255 characters will bring forth the

* * * > 2 5 5 ERR

error message. We may want to do something as simple as asking the
player of a game to enter a name. Or we might use strings to allow the user
to enter " Y E S " or "NO" instead of entering " 1 " for " Y E S " and " 0 " for
"NO".

. . . . Double Subscr ipt
Apple Integer BASIC strings allow us to access groups of characters and
individual characters using subscripts. For example, if

A $ = " S U N M O N T U E W E D T H U F R I S A T "

then we can display "SUN" with the statement

2 0 0 P R I N T A $ (1 , 3)

Or we could PRINT A$(19,21) to display "SAT". A$(X,Y) defines all the
characters from the Xth position to the Yth position in the string. Program
5-5 displays the names of the days of the week.

8 0 REM * D I S P L A Y THE DAYS OF T H E WEEK
1 0 0 D I M A $ (2 1)
1 2 0 A $ = " S U N M O N T U E W E D T H U F R I S A T "
1 4 0 FOR K = l TO 7

* 1 5 0 J 9 = 3 * K - 2
1 6 0 P R I N T K , A $ (J 9 , J 9 + 2)
1 9 0 N E X T K
2 0 0 END

Program 5-5. Display the days of the week.

Look carefully at line 150. The idea here is to go 1, 4, 7, . . . 16, 19. Thus,
on day 7 we get 3*7 -2 , which is 19, and we display the characters in
positions 19 through 21 .

>RUN
1 SUN
2 MON
3 T U E
4 WED
5 THU
6 F R I
7 S A T

Figure 5-3. Execution of Program 5-5.

Clearly, i f A$(4,6) calls for characters 4, 5, and 6, then A$(7,7) calls
for the 7th character. And A$(J , J) calls for the Jth character. Now we
can access the characters of Integer BASIC strings individually.

. . . . Single Subscr ipt
If we leave out the second subscript, then something quite different hap­
pens. Examine Program 5-6, which displays A$(K) for various values of K
in line 130.

8 0 REM * D E M O N S T R A T E THE USE OF A
S I N G L E S U B S C R I P T I N A S T R I N G

1 0 0 D I M A $ (2 5)
* 1 1 0 I N P U T " ? n , A $

1 2 0 FOR K = l TO 2 5
* 1 3 0 P R I N T A $ (K)

1 4 0 N E X T K
1 5 0 END

Program 5-6. Single string subscript.

Note line 110. There we request a string INPUT. In Integer BASIC the
INPUT request for a string never displays a question mark; therefore, we
have used prompted INPUT to display our own question mark.

We can display from a particular character of the string to the end with
a single subscript. A$(l) calls for the entire string. A$(4) calls for the
substring beginning with the fourth character and extending to the end.
Thus, as the value of K increases by one for each step of the FOR . . .
NEXT loop we get one less character at the beginning of the string.

>RUN
? H E R E WE GO

HERE WE GO
ERE WE GO
RE WE GO
E WE GO

WE GO
WE GO

E GO
GO

GO
0
* * * S T R I N G ERR
STOPPED A T 1 3 0

Figure 5-4. Execution of Program 5-6.

Displaying A$(K) works well until we specify a value of K "off the end
of the string." In Program 5-6 above, calling for the display of A $ (l l)
when A$ contained only 10 characters caused the

* * * S T R I N G ERR

message that we see at the end of the program RUN. We can easily avoid
this by using the LEN() function to measure the number of characters in a
string.

. . . . The L E N () F u n c t i o n
LEN(A$) measures the number of characters actually stored in the string
variable A$. Even though we may have dimensioned A$ to 250, the LEN()
function will count only the number of characters that are really stored
there. So, in our little program above, instead of having the FOR . . .
NEXT loop in line 120 go from 1 to 25, we should code the following line:

1 2 0 FOR K = l TO L E N (A $)

It is never good to allow a program to terminate in an error condition. This
can cause other serious problems. Knowing the number of characters
stored in a string variable enables us to tell the program when to stop.

. . . . S tr ing Compar i son
Integer BASIC allows us to compare strings for equality in IF . . . THEN
statements. The equals sign (=) is used to test "equals." The sharp sign
(#) is used to test "not equals." Each of the following statements is valid.

1 0 0 I F A $ = B $ T H E N 1 3 5
1 0 0 I F A $ # B $ T H E N 2 4 0
1 0 0 I F A $ (2 , 4) = A $ (7 , 9) T H E N END
1 0 0 I F T $ (1 , 3) = S $ (K , K + 2) T H E N 2 0 0

Using what we know at this point, we can display the characters of a
string in alphabetical order. Suppose we enter the alphabet in a string
constant so that we may compare each letter of the alphabet with each of
the letters of some string entered from the keyboard during a program
RUN. First we will look for As, then for Bs, and so on until we have
looked for Zs. Each time we find that the current letter in the entered

string does not match the current letter of the alphabet, we skip to the
next letter in the entered string. Each time we find a match, we print the
matched character.

9 0 REM * OUR 1 S T PROGRAM TO A L P H A B E T I Z E C H A R A C T E R S OF
A S T R I N G

1 0 0 D I M A L $ (2 6) , B $ (4 0)
1 1 0 A L $ = " A B C D E F G H I J K L M N O P Q R S T U V W X Y Z "
1 2 0 P R I N T " E N T E R YOUR S T R I N G : "
1 3 0 I N P U T " ? " , B $
1 9 0 REM * WE A L P H A B E T I Z E BY U S I N G A S A M P L E A L P H A B E T
2 0 0 FOR K = l TO 2 5
2 1 0 FOR J = l TO L E N (B $)

* 2 2 0 I F A L $ (K , K) # B $ (J , J) T H E N 2 4 0
* 2 3 0 P R I N T B $ (J , J) ;

2 4 0 N E X T J
2 5 0 N E X T K
9 0 0 END

Program 5-7. Alphabetizing in Integer BASIC.

The decision to display the current character is made in line 220. The
actual display occurs in line 230. We might code lines 220 and 230 in the
following single line:

2 2 0 I F A L $ (K , K) = B $ (J , J) T H E N P R I N T B $ (J , J) ;

>RUN
ENTER YOUR S T R I N G :
? B I R T H D A Y

A B D H I R T Y

Figure 5-5. Execution of Program 5-7.

Our little program seems to have done its job. But what will happen if we
enter characters that are not letters of the alphabet? Let's try it.

>RUN
ENTER YOUR S T R I N G :
?WHAT I S G O I N G ON H E R E ?

A E E G G H H I I N N O O R S T W

Figure 5-6. Another execution of Program 5-7.

We can see that any characters not included in AL$ are simply ignored. In
many situations that is exactly what we would want.

There will be times when we will want to construct one string from
another string or other strings. For instance, we might have a situation
where the last name is stored in L$ and the first name is stored in F$ and

we want a new string, N$, to contain the entire name, first name first. It is
a simple matter to set N$ equal to F$ with

1 4 0 N $ = F $

— C o n c a t e n a t i o n
Now, how do we get a space between the names? We use a statement of
the following form.

1 5 0 N$ (L E N (N $) + l) = " "

This statement appends a space to whatever is already in N$. And in a
similar fashion we append the last name with

1 6 0 N$ (L E N (N $) + 1) = L $

The one thing to look out for is that the string N$ must be dimensioned
large enough to accommodate all of the characters in F$, L$, and the
space added in line 15(D. I f you should fail to provide for this, don't worry;
Integer BASIC will tell you about it with the

* * * STR O V F L ERR

message. Simply make sure that your strings are adequately dimensioned
for the job you intend to do. The process of adding characters to a string is
called concatenation.

Suppose we have a name in N$ as described above. That is,
N$="JOHN JONES". What would it take to write a program to create a
new string containing the name, last name first, followed by a comma, a
space, and the first name? All we have to do is find the space with a loop.
Once we have found the space, it is a simple matter to rearrange the parts
of the string in the desired order. Consider Program 5-8.

9 0 REM * REARRANGE NAME FROM F I R S T NAME F I R S T TO L A S T
NAME F I R S T

* 1 0 0 D I M N$ (3 0) , X $ (3 1)
1 1 0 P R I N T
1 2 0 P R I N T " N A M E - F I R S T NAME F I R S T "
1 3 0 I N P U T " E N T E R H E R E ? " , N $
1 3 5 I F N $ = " S T O P " T H E N 9 0 0

* 2 0 0 FOR 1 = 1 TO L E N (N $)
2 1 0 I F N$ (1 , 1) = " " T H E N 3 0 0
2 2 0 N E X T I
2 3 0 P R I N T " E N T E R A S P A C E BETWEEN N A M E S "
2 4 0 GOTO 1 1 0
2 9 0 REM

* 3 0 0 X $ = N $ (I + 1)
* 3 1 0 X $ (L E N (X $) + l) = " , "
* 3 2 0 X $ (L E N (X $) + 1) = N $ (1 , I - 1)

4 0 0 P R I N T X $
4 1 0 GOTO 1 1 0
9 0 0 END

Program 5-8. Rearranging names in Integer BASIC strings.

By dimensioning X$ to one character more than N$ we guarantee enough
space. Line 210 tests for the first space in N$. Then lines 300 through 320
rearrange the name string. See Figure 5-7.

>RUN

NAME - F I R S T NAME F I R S T
E N T E R H E R E ? J O H N J O N E S

J O N E S , J O H N

NAME - F I R S T NAME F I R S T
E N T E R H E R E ? STOP

Figure 5-7. Execution of Program 5-8.

There are a couple of things that could be done to improve our program.
Suppose there is more than one space in the entered name. The program
should reject it. Suppose someone enters last name first with a comma.
The program should reject that also. It is left as an exercise to make these
improvements.

. . . . A S C O
Every character is stored in computer memory as a number. The numbers
used by Integer BASIC are derived from the ASCII (American Standard
Code for Information Interchange) character set. The values 193 through
218 are used for the letters "A" through "Z." We may learn what internal
value Integer BASIC is using for any string character from the ASC()
function.

ASC(A$) is the value used by Integer BASIC for the first character in
the string variable A$. We can learn the value for the letter " T " by typing

> P R I N T A S C (" T ")

Apple Integer BASIC will reply with 212. The actual values won't be
important to us for most of our programs. The important concept here is
that there is an order and that it places letters alphabetically in the correct
sequence.

. . . . W h a t Y o u Can't Do D i r e c t l y I n I n t e g e r BASIC (A n d
How t o Do I t)
You can't assign to a string segment. A statement such as

2 0 0 A $ (3 , 7) = " F G H I J "

is illegal and will bring forth the

* * * S Y N T A X ERR

message. Here is the way to perform the assignment above:

1 9 0 B $ = A $ (8)
2 0 0 A $ (3) = " F G H I J "
2 1 0 A $ (8) = B $

This assumes that A$ has at least eight characters and that B$ is ade­
quately dimensioned.

You can't directly compare strings for order. The statement

2 0 0 I F A $ < B $ T H E N 3 0 0

is illegal. However, the ASC() function may be used to determine string
order. ASC(A$(K,K)) and ASC(B$(J ,J)) are in the same order as their
corresponding characters. And since ASC() really refers to the first
character, we can just as well code these as ASC(A$(K)) and ASC(B$(J)) .
Using this concept we can scan each of two strings one character at a time
until we find a point where the character in one string is greater than or
less than the character in the same position of the other string. When this
happens we know the correct order. This is left as an exercise.

. . . . SUMMARY
String variables are designated by a trailing dollar sign ($). The number of
characters a string variable may hold is up to 251 minus the length of your
variable name. Any string that is to be used for more than a single charac­
ter must be dimensioned. A$(I,J) names those characters from the Ith to
the Jth inclusive. Coding A$(I) refers to all of those characters in A$ from
I to the end. We may only assign characters to A$ or A$(I), where I may be
any valid expression. The LEN() function returns the number of charac­
ters actually stored in the expression in parentheses. We may compare
strings using either "equals" (=) or "not equal to" (=£) in an IF . . . THEN
statement. The function ASC() gives us the internal numeric code used by
Apple Integer BASIC for the first character in the expression in par­
entheses.

P r o b l e m s f o r S e c t i o n 5 - 1 . 2
1. In Program 5-8, which reverses first and last names, make the

improvements suggested. That is, check for a comma and check
for extra spaces. Also note that if the user enters only the carriage
return, the program will fail. Fix this, too.

2. We may determine ordering for two strings using the ASC() func­
tion to compare corresponding characters. Write a program to
request two strings from the keyboard and display a message
reporting whether the first is greater than, equal to, or less than
the second. It is suggested that you test for equals before entering
the loop that compares corresponding characters. Don't forget to
account for strings of different lengths.

3. Write a program that accepts names, in the form last name first
with a comma and a space between names, and displays them
first name first.

4. Sometimes it is interesting simply to rearrange the contents of a
string for display purposes. Write a program that enters the days
of the week in a single string and displays them in the following
format:

s M T W T F S

U 0 U E H R A
N N E D U I T
D D S N R D U
A A D E S A R
Y Y A S D Y D

Y D
A
Y

A
Y

A
Y

5 . Write a program that displays the days of the week in the follow­
ing format:

S M T W T F S
U 0 U E H R A

N N E D U I T
D D S N R D U

A A D E S A R
Y Y A S D Y D

Y D A A
A Y Y

Y

6. Write a program that simply requests a string and displays it in
reverse order.

* 7. In Problem 2 above we may not think to consider what happens if
the user enters " 6 " and "12" . Since " 6 " is greater than " 1 " , it
requires extra programming to place numbers in order when
stored as strings. Write a string comparison routine to handle
numbers like these correctly.

5 - 2 . 1 . . . S t r i n g F u n c t i o n s i n A p p l e s o f t
A variety of string functions is available to make using strings in
Applesoft very convenient. First, we list them all for easy reference.

ASC
CHR$
L E FT $
R I G H T $
M I D $
LEN
S T R $
V A L

.... ASC
ASC is referred to as the "ASCII" function. ASC() returns a number from
0 to 255 that is derived from the ASCII (American Standard Code for
Information Interchange) character set.

.... CHR$
CHR$(X) becomes the character whose ASCII code is X. CHR$(90) is Z,
while the character for 32 is a space. The next time you get to an Apple,
run Program 5-9.

1 0 0 FOR 1 = 0 TO 9 5
1 1 0 P R I N T C H R $ (I) ;
1 2 0 MEXT I

Program 5-9. Display characters 0 through 95.

] R U N

! " & $ % & ' () * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ?@ A B C D E F G
H I J K L M N O P Q R S T U V W X Y Z [\] ~ _

Figure 5-8. Execution of Program 5-9.

We see only 64 characters displayed even though the FOR loop calls for 96
characters. The first 32 characters are invisible and are therefore referred
to as nonprinting. Several of these are of some interest. When we actually
run Program 5-9, we will hear the Apple emit its beep. This occurs when
CHR$(7) is output. We can produce the same result with CTRL-G.
CHR$(8) corresponds to CTRL-H and is the same as the left arrow key
that we use for program editing. CHR$(21) corresponds to CTRL-U and is
the same as the right arrow key that we use for program editing. A right
square bracket (the Applesoft prompt) appears in the display of our little
program. We can get this character at the keyboard by typing SHIFT-M.
The left square bracket ([), the back slash (\) , and the underline (_)
characters cannot be obtained from the keyboard. These 3 characters
can be displayed only by printing their corresponding ASCII codes. Their
ASCII codes are 91, 92, and 95 respectively.

. . . . L E F T S
The LEFT$ function enables us to access.the leftmost characters in a
string. For example, LEFT$(A$,5) is the first 5 characters in A$. If there
happen to be fewer than 5 characters stored in the string, then this ex­
pression represents full string. LEFT$(A$,X) represents the left X charac­
ters of A$ as long as the value of X is greater than 0.

. . . . R I G H T S
The RIGHTS function is exactly analogous to the LEFTS function, but for
the right end of the string.

. . . . M I D S
To define characters within a string, use MID$. MID$(A$,X,Y) gives us
the characters beginning with position X and continuing for Y characters.
One way to describe the characters from position X and continuing
through to the end of the string is with an expression such as
MID$(A$,X). Note that this is not the same as RIGHT$(A$,X). We will
create an error condition if we allow X to equal zero.

. . . . L E N
LEN(A$) counts the number of characters actually stored in the string
variable A$. LEN(X$) may be used anywhere a numeric expression is
legal. For instance, we might code a line

1 0 0 FOR X = 1 TO L E N (Y $)

if we want to perform some task for each character contained in the string
Y$.

. . . . S T R S
The STR$ function converts a numeric value to string format. STR$(N)
converts the internal binary code used to represent the numeric value of
N into the ASCII code used for each of the digits. Let's examine the effect
of a statement such as

2 0 0 T $ = S T R $ (N)

While N stores a numeric value that we may command the computer to
use in arithmetic calculations, T$ stores the digits of the number N as
string characters. Thus T$ permits us to manipulate the digits using
string functions of Applesoft.

. . . . VAL
VAL is the reverse of the STR$ function. VAL(A$) converts the character
string of digits in A$ into the binary format used for storing numbers. If
the first character could not be part of a number, a " 0 " is returned. If the

function is successful in converting the beginning of a string, it continues
until it finds an impossible character. When this happens VAL simply
stops processing and returns the value up to that point. For example:

V A L (" 1 2 DAYS OF V A C A T I O N ")

will convert to

1 2

This function handles scientific notation just fine. The value will be con­
verted into the standard form for Applesoft. Thus:

V A L (" 1 2 3 E - 1 ")

will convert to

1 2 . 3

There they are: ASC, CHR$, LEFT$, LEN, MID$, RIGHTS, STR$,
and VAL. Now let's use some of them.

Suppose we are working on a program to prepare financial reports.
This means that we will be printing numbers that represent money in
dollars and cents (or yuan and fen or whatever). Applesoft doesn't care
what the units of our numeric values might be. As far as Applesoft is
concerned, 1 dollar and 20 cents is 1.2, but we would like to show that
as 1.20. So, our first task is to write a routine that will convert numeric
values like 1.2 to string values like 1.20. We must also deal with values
that come out to fractional cents. We must come up with a routine that
will handle 381.2961 properly. Fundamentally, we are faced with a for­
matting problem.

Let's write this as a subroutine that accepts a number in Ml and
returns a string in D$. Then we can easily write a little control routine to
test it.

One way to make sure that a number like 1.2 has a trailing 0 is to
multiply it by 100. So, 1.2 becomes 120. Of course, we must later insert
the decimal point in the proper position. Our new number represents
money in cents. Multiplying 381.2961 by 100 produces 38129.61. We
need to round this off to the nearest cent. That can be done by adding .5
and eliminating the fractional portion of the resulting number. We saw in
the last chapter that INT is made for just such a purpose. So, we may
calculate the money values in cents with a statement such as

M 9 = I N T (M l * 1 0 0 + . 5)

Notice that we have left the value of Ml unchanged. It is a good idea to
write subroutines that leave the input values intact.

Next, we can convert the number of cents from a numeric value to a
string with

X $ = S T R $ (M 9)

Now, this string has no decimal point. We know that the two right digits
represent cents and must appear to the right of a decimal point. Further,
we know that the remaining digits represent dollars and must appear to
the left of the decimal point. We may create the D$ string from these three
pieces: dollars, decimal point, and cents. A decimal point may be in­
cluded in one of two ways: enclose a decimal point in quotes or use
CHR$(46). We find the code for a decimal point by printing ASC(".") in
Applesoft. The number of digits in the dollar portion may be found using
the LEN function:

D 9 = L E N (X $) - 2

S u m m i n g u p :

D o l l a r s = L E F T $ (X $, D 9)
D e c i m a l p o i n t = C H R $ (4 6)
C e n t s = R I G H T $ (X $, 2)

and all that remains is to build the output string by concatenating these
three portions. See Program 5-10.

9 9 0 REM * FORMAT D O L L A R S AND C E N T S
1 0 0 0 M9 = I N T (M l * 1 0 0 + . 5)
1 0 1 0 X $ = S T R $ (M 9)
1 0 2 0 D9 = L E N (X $) - 2

* 1 0 3 0 D$ = L E F T $ (X $, D 9) + CHR$ (4 6) + R I G H T $ (X $, 2)
1 0 4 0 RETURN

Program 5-10. Formatting subroutine.

As mentioned earlier, we could have used " ." instead of CHR$(46) in line
1030.

Now we can write a small control program to test our subroutine. This
will require an INPUT statement to enter test values with some dummy
value to terminate and a PRINT statement to display results. See Pro­
gram 5-11.

9 0 REM * T E S T FORMATTER
1 0 0 I N P U T " T E S T V A L U E ? " ; M 1
1 1 0 I F M l = - 9 9 9 9 T H E N END
1 2 0 GOSUB 1 0 0 0
1 3 0 P R I N T M l ; " = " ; D $
1 4 0 P R I N T
1 5 0 GOTO 1 0 0

Program 5-11. Control routine to test Program 5-10.

It is a good idea to provide a special value of Ml that will allow us to exit

the program without having to enter CTRL-C or press the R E S E T key.
The value - 9 9 9 9 serves that purpose in this program.

] R U N
T E S T V A L U E ? 1 . 2
1 . 2 = 1 . 2 0

T E S T V A L U E ? - 3 8 1 . 2 9 6 1
- 3 8 1 . 2 9 6 1 = - 3 8 1 . 3 0

T E S T V A L U E ? 1 9
1 9 = 1 9 . 0 0

T E S T V A L U E ? 3 8 1 . 2 9 4 9 9
3 8 1 . 2 9 4 9 9 = 3 8 1 . 2 9

T E S T V A L U E ? - 9 9 9 9

Figure 5-9. Execution of Program 5-11.

Our program works well for the sample input values. However, con­
sider what happens if the value of Ml is less than one dollar. How could
we add a dollar sign? How could we put commas in to mark off thou­
sands? Accountants like to put negative numbers in brackets. How could
we do this? Some of these things are left as problems.

. . . . S U M M A R Y
The string functions ASC, CHR$, LEFT$, RIGHTS, MID$, LEN, STR$,
and VAL have been presented. ASC(A$) returns the numeric code for the
first character in A$, and CHR$(A) returns the character whose code is A.
LEFT$, RIGHTS, and MID$ provide access to portions of strings.
LEN(A$) returns the number of characters in A$. STR$(A) converts the
numeric value of A to the string characters required to display it, and
VAL(A$) converts the displayed characters to numeric representation.

P r o b l e m s f o r S e c t i o n 5 - 2 . 1
1. Modify Program 5-10 to handle amounts less than one dollar.
8. Modify Program 5-10 to place a $ to the left of the first digit in the

formatted result.
3. Modify Program 5-10 to insert commas to mark off thousands.
4. Correct Program 5-10 to properly display 0.00 i f the amount is

0.
8. Modify Program 5-10 to enclose negative values in angle brack­

ets. That is, - 1 . 4 3 should display as (1 .43) .
* 6. Write a program to perform the reverse conversion. The string

($1,234.51) , should convert to the numeric value - 1 2 3 4 . 5 1 .

Hint: You'll want to use a FOR . . . NEXT loop and the MID$
function to pick out all of the possible special characters.

7. Problems 1 to 5 could be worked cumulatively. The result could
be a program that performs all of the tasks described in the 5
problems. Do this.

8. Our formatter is a special case. It works only with hundredths.
Extend this program to allow the user to specify the number of
decimal places desired.

9. Given the date in yy/mm/dd form, display the date as Month dd,
19yy. That is, 82/12/31 becomes December 31, 1982. You may
want to test for bad dates like 82/04/31.

10. Write a program to display messages on the screen so that they
scroll horizontally across the screen. Use DATA to supply the
messages.

11. Project: Write a program to justify text by inserting spaces be­
tween words to fill a specified line width.

PROGRAMMER'S CORNER 5

BASIC C h a r a c t e r S e t s *

. . . . Applesoft C h a r a c t e r Set
Experiment a little with the character set used by Applesoft. Program 5-9
was written to display only the characters associated with codes 0 through
95. Change that program to display the characters from 0 to 255. You will
note that some characters are repeated more often than others. If you
have a printer that can print lowercase letters, run your program so that
the output goes to the printer.

. . . . I n t e g e r BASIC C h a r a c t e r Set
There is no CHR$ function in Integer BASIC. Let's not be deterred by that
omission. Apple uses memory-mapped video for its display. That means
that part of the computer's memory is used for display purposes. We can
easily demonstrate that. Memory from 1024 to 2047 with the exception of
64 special bytes is used for the normal text-display screen. This is the
same memory that is used for Lo-Res graphics. If we POKE values in this
range of memory, we should see something on the screen. See Appendix C
for more about POKE. If we

POKE 1 0 2 4 f 1 9 3

the letter "A" will appear in the upper left-hand corner of the screen—but

not if we are on the last line of the screen at the time. What happens then
is that the "A" appears and is scrolled off the screen so fast that we don't
see it. So move the cursor up the screen a little with the ESC-D sequence
and try again. Try POKEing zero. That is an inverse @ sign. Try the
following program:

1 0 0 FOR 1 = 0 TO 2 5 5
1 1 0 POKE 1 0 2 4 , 1
1 2 0 N E X T I
1 3 0 END

The display goes too fast to follow. Let's add

> 1 1 5 FOR J = l TO 5 0 0 : N E X T J

Now the display goes slowly enough for us to watch it. It would make a lot
of sense to display the whole character set at once. We could take out line
115 and replace line 110 with

1 1 0 POKE 1 0 2 4 + 1 , 1

And running that gives us a clue that the text-display screen is not laid out
in one contiguous sequence of bytes. The first 40 bytes are fine, the
second 40 bytes appear about one-third of the way down the screen, and
the third 40 bytes appear about two-thirds of the way down the screen.
Then the fourth 40 bytes fall into place right below the first 40. Studying
the screen a little further reveals that there are 8 characters missing be­
tween the flashing 7 on the 3rd line of the display and the @ sign on the
4th line displayed, which appears on the 2nd line of the screen. Further,
the 8 characters following the final conventional 7 in the lower right of the
screen don't appear either. This is because the screen is laid out as shown
in Figure 5-10 on the next page. For most of our work with the Apple we
will be perfectly content to let the Apple wade through figuring out
where to display things on its screen. But right now we've got a tiger
by the tail, so let's pursue the text screen a bit more.

From Figure 5-10 we can see that the text screen is laid out in 3
display segments. Each is 40 characters across and contains 8 lines.
Counting from 0, position 40 is displayed as the 1st character in line
number 8. Position 80 is displayed as the 1st character in line number 16.
And position 128 is displayed as the 1st character in line number 1. We
saw that POKEing the 8 characters from 120 to 127 produced no visible
display. That is because the Apple does not use the last 8 bytes of each
group of 128 for display at all. Those bytes are saved for machine-language
programmers. There are 8 groups of 128 bytes in the range from 1024 to
2047, so there are 8 groups of 8 or 64 bytes not used for display.

Now we can figure out what memory position corresponds to the
leftmost character in each line. Which group of 128 memory bytes we're

Figure 5-10. The text screen on an Apple:(A) The text screen. (B) Rearrange
the text screen.

on is the remainder after dividing by 8. That is Y MOD 8. Which group of
40 characters within the 128 is the integer part of Y divided by 8. In
Integer BASIC that is Y/8. Remember that the 1st memory address of the
display screen is 1024. Thus the memory address of the line numbered Y
may be found by the statement

2 0 0 M = 1 0 2 4 + (Y MOD 8) * 1 2 8 + (Y / 8) * 4 0

In fact, those parentheses are not required, but they make the statement a

little clearer for humans to read. We can easily write a little program to
demonstrate this. See Program 5-12.

* 1 0 0 C A L L - 9 3 6
1 0 2 FOR 1 = 1 TO 10
1 0 4 P R I N T
1 0 6 N E X T I
1 5 0 FOR Y = 0 TO 2 3
2 0 0 M = 1 0 2 4 + Y MOD 8 * 1 2 8 + Y / 8 * 4 0
2 2 0 POKE M , Y
2 5 0 NEXT Y
3 0 0 END

Program 5-12. Demonstrate Integer BASIC display screen.

In line 100 we use a CALL as described in Appendix C to clear the screen
and begin the display at the top. Then we have the program execute a few
blank PRINT statements. This will move the cursor out of the way when
the program terminates.

Now we can easily incorporate the necessary code to display the
character set from 0 to 255. We simply start a counter at 0 and use an IF
test to exit when we pass 255. See Program 5-13.

1 0 0 C A L L - 9 3 6
1 0 2 FOR 1 = 1 TO 1 0
1 0 4 P R I N T
1 0 6 N E X T I
1 1 0 C = 0
1 5 0 FOR Y = 0 TO 2 3
1 6 0 FOR X = 0 TO 3 9
2 0 0 M = 1 0 2 4 + Y MOD 8 * 1 2 8 + Y / 8 * 4 0 + X
2 1 0 POKE M , C
2 2 0 C = C + 1
2 3 0 I F C > 2 5 5 T H E N 3 0 0
2 4 0 NEXT X
2 5 0 N E X T Y
3 0 0 END

Program 5-13. Display Integer BASIC character set.

Here we have started with a position on the screen in terms of line
number and position within line and calculated the corresponding loca­
tion in memory for the Apple display screen. We have used a counter to
terminate execution when we have POKEd 256 characters into the dis­
play screen.

Another approach would be to start with the position on the screen
relative to the upper left-hand corner, calculate the line number and posi­
tion within line, and then calculate the corresponding memory location.

Program 5-14 displays the character set for Integer BASIC using this last
scheme.

1 0 0 C A L L - 9 3 6
1 0 2 FOR 1 = 1 TO 1 0
1 0 4 P R I N T
1 0 6 N E X T I
1 1 0 FOR C = 0 TO 2 5 5
1 2 0 X=C MOD 4 0
1 3 0 Y = C / 4 0
1 4 0 M = 1 0 2 4 + Y MOD 8 * 1 2 8 + Y / 8 * 4 0 + X
1 5 0 POKE M , C
1 6 0 N E X T C
3 0 0 END

Program 5-14. Display 0 to 255 with POKEs in Integer BASIC.

Chapter 6

Arrays

We have been using variables to store values one at a time. Such variables
are referred to as "simple" variables. We have been able to perform mar­
velous feats on the computer with simple variables. We will accomplish
even more with array variables. An array variable allows us to designate a
collection of data values with a single variable name. Now, instead of
designating the scores of the players in a five-player game with S1 , S2, S3,
S4, and S5, we may use an array variable. S(X) may be used to refer to the
score of the Xth player. S(X) is read "S sub X" . We may use the same
variable name for an array as for a simple variable. You may want to avoid
some confusion by not doing this, though. The value in parentheses is
called a subscript. Each data value in the array is called an element.
Using an array we could do the scoring for all five players with the same
little segment of our BASIC program.

Arrays are used for storing information that naturally belongs to­
gether. Tax tables, pricing structures, inventory information, and life in­
surance premiums are all appropriate for using arrays. There are many
times when an array is useful for storing information about the workings
of the program itself. We may use arrays for storing test scores, tempera­
tures, random numbers, and lists of all kinds. If we are working with
Fibonacci numbers, it may be desirable to have them all in an array.
(Remember them? They go: 1, 1, 2, 3, 5, 8, 13 . . .) Even though we might
be able to re-create a particular sequence, it is convenient to have them all
right there at the flick of a subscript.

6 - 1 . 1 . . .Appleso f t N u m e r i c A r r a y s (O n e
D i m e n s i o n)

We may immediately benefit from the array concept by simply referring to
array variables as needed. I f we want the 6th element of T to be 5, we
simply code a statement such as

2 0 0 T (5) = 5

We may readily use arrays in every way that we have been using simple
variables. We may READ, PRINT, INPUT, and write IF . . . THEN tests
using array variables. When an Applesoft program is executed, all ele­
ments of all arrays are set to zero.

In a given week we record the temperatures in Table 6-1.

Sunday 72
Monday 78
Tuesday 76
Wednesday 79
Thursday 85
Friday 85
Saturday 71
Table 6-1. Temperatures for a week.

There are any number of questions we might ask. We might want to know
the average temperature or the highest and lowest temperatures. By using
an array we can easily find the answers. Let's READ the data into ele­
ments one through seven of an array named W.

The average is easy. We just add up the seven temperatures and divide
by seven. We may use T for the total. The first value of the total is the
temperature for the first day.

We may find the highest and lowest temperatures by using two vari­
ables: H for high temp and L for low temp. Initially these may be set to the
temperature of the first day, as it is at the same time the highest and
lowest temperature.

The solutions for the three questions regarding temperatures each call
for setting initial values and then performing some operation on each of
the six days after the first—that is, Monday through Saturday. So our
program will have a section to set up all of these initial values and a
section with a loop that does some calculation for each of the three ques­
tions. See Program 6-1.

9 0 REM * E N T E R THE T E M P E R A T U R E S I N ARRAY W
1 0 0 FOR J = 1 TO 7
1 1 0 READ W (J)
1 2 0 N E X T J

1 4 5 REM * S E T UP I N I T I A L C O N D I T I O N S
1 5 0 T = W (l)
1 6 0 H = W (l) : L = W (l)
1 9 0 :
2 0 0 FOR J = 2 TO 7
2 1 0 T = T + W (J)
2 3 0 I F W (J) > H T H E N H = W (J)
2 4 0 I F W (J) < L THEN L = W (J)
2 5 0 N E X T J
2 9 0 :
3 0 0 P R I N T " A V E R A G E T E M P : " ; T / 7
3 2 0 P R I N T " H I G H E S T T E M P : " ; H
3 3 0 P R I N T " LOWEST T E M P : " ; L
8 9 0 :
9 0 0 D A T A 7 2 , 7 8 , 7 6 , 7 9 , 8 5 , 8 5 , 7 1
9 9 0 END

Program 6-1. Find average, highest, and lowest temperatures.

] R U N
AVERAGE T E M P : 78
H I G H E S T T E M P : 8 5

LOWEST T E M P : 7 1

Figure 6-1. Execution of Program 6-1.

The next question that might be asked is, "How many times did the tem­
perature increase, decrease, and remain unchanged?" We might now use
the variables I, D, and U for this. We might want to know on what days the
highest and lowest temperatures occurred. These are left as exercises.

Suppose we wish to simulate drawing numbers from a hat. We can
easily do it with random numbers, provided that we may return each
number to the hat before drawing the next one. If we must simulate
drawing without replacement, then we must have a way of keeping track
of what has been drawn. Here is an ideal application for an array. We
simply set each element of an array equal to 1 and make the value 0 when
that element has been selected. I f the selected element is one then we
know that it is available for use: use it and set it to 0. I f a selected element
is 0 then we know that it is not available for use and we must select again.
Let's look at such a program to draw 5 numbers at random from among
10. See Program 6-2.

9 0 REM * D R A W I N G F I V E NUMBERS A T RANDOM FROM AMONG T E N
9 5 :
1 0 0 FOR J = 1 TO 1 0
1 1 0 A (J) = 1
1 2 0 N E X T J
1 9 0 :
2 0 0 FOR J = 1 TO 5
2 1 0 R = I N T (RND (1) * 1 0 + 1)

2 5 0 I F A (R) = 0 T H E N 2 1 0
2 6 0 P R I N T " " ; R ;
2 7 0 A (R) = 0
2 8 0 N E X T J
2 9 0 P R I N T
3 0 0 END

Program 6-2. Drawing five numbers at random from among ten.

] R U N
2 6 1 3 8

Figure 6-2. Execution of Program 6-2.

From all appearances our program works just fine. It might be interesting
to evaluate how well it does work. One measure of quality is the number
of unusable random numbers generated. We can easily insert a counting
variable to determine this. This is left as an exercise.

Considering the problem set before us, the trial-and-error method of
the above program is not really a serious flaw in design. Drawing 5 num­
bers from among 10, or even drawing 10 from among 10, does not require
major computer resources. However, what happens when we increase the
numbers? Suppose we want to draw 100 from among 100? It is worth
investing some effort to eliminate the trial and error entirely.

Here is a plan that allows us to use every random number selected.
First initialize the elements of the array as follows:

1 0 0 FOR J = 1 TO 1 0
1 1 0 R (J) = J
1 2 0 N E X T J

This means that each element stores one of the numbers in the range 1 to
10. Next, select a random number in the range 1 to 10 and use that value
as the subscript, say S. Now display R(S), replace R(S) with R(10), and
select a random number in the range 1 to 9. Since either we are on the 1st
draw or we have replaced R(S), we will not need to determine if it has
been used. (We know it has not been used.) Since we have moved R(10)
into a lower-numbered element, we may select from among fewer ele­
ments and still include all of the remaining numbers in the next random
selection. The 2nd time through we move R(9) into the selected ele­
ment. We simply repeat the select-display-replace sequence until the de­
sired number of random draws have occurred.

We need to calculate the number of elements remaining. As the draw
number (J) goes from 1 to 5, the number of elements remaining goes from
10 to 6. Thus, we can calculate the last element with

2 1 0 L = 1 0 - J + 1

See Program 6-3.

9 0 REM * D R A W I N G RANDOM NUMBERS
W I T H O U T R E P L A C E M E N T AND W I T H

NO T R I A L AND ERROR
1 0 0 FOR J = 1 TO 10
1 1 0 R (J) = J
1 2 0 N E X T J
1 9 0 :
2 0 0 FOR J = 1 TO 5

* 2 1 0 L = 10 - J + 1
2 3 0 S = I N T (RND (1) * L + 1)

* 2 4 0 P R I N T " " ; R (S) ;
* 2 5 0 R (S) = R (L)

2 7 0 N E X T J
2 9 0 P R I N T
3 0 0 END

Program 6-3. Drawing without replacement efficiently.

Notice that the element is printed in line 240 and then replaced in line
250. L is always the number of active elements in the array. Even if we
happen to select the Lth element, this method continues to function prop­
erly. The Lth element will be assigned to itself. No harm done.

] R U N
6 2 4 8 1 0

Figure 6-3. Execution of Program 6-3.

. . . . D I M
The highest subscript we have used is 10. Whenever an array name is
introduced, Applesoft automatically sets the highest subscript value to
10. We may use the DIMension statement to set the highest subscript
ourselves. We may want to do this to set either higher or lower limits.

1 0 0 D I M L (4) , M (1 0 9) , G 3 (1 0 2 4)

This statement sets the highest subscript to 4 for array L, 109 for array M,
and 1024 for array G3.

Every Applesoft array we use allows the subscript to have a value of
0. This is true whether or not the DIMension statement is used. There­
fore, in the absence of a DIM we get 11 elements. In the sample statement
above, L consists of 5 elements, M consists of 110 elements, and G3 pro­
vides for 1025 numbers. Initially, when we have no particular need for the
0 element, we may simply ignore it.

. . . . S U M M A R Y
An array enables us to manage a number of variables using one variable
name. DIM X(N) sets aside N + l elements in an array named X. Array
elements may be utilized in Applesoft program statements wherever a

simple numeric variable may be utilized (with the exception that array
variables may not be used as the loop variable in FOR . . . NEXT). With
arrays we will often find it convenient to use FOR . . . NEXT loops to
process all elements or a block of elements.

P r o b l e m s f o r S e c t i o n 6 - 1 . 1
1. Modify the daily-temperature program (Program 6-1) to tabulate

the number of times the temperature increased, decreased, and
remained unchanged.

2. Modify the daily-temperature program (Program 6-1) to determine
on which days the highest and lowest temperatures occurred.

3. In the first program that draws numbers from a hat (Program 6-2)
insert a variable to count the number of unusable numbers gener­
ated. Run the program several times to get a range of values.

4. Do Problem 3 drawing 10 from among 10.
5 . Modify Program 6-3 to select 100 numbers from among 100.
6. Fill a 20-element array with twice the value of the subscript. Dis­

play all of the elements in order and in reverse order.
7. Fill 1 array with the values 6, 3, and 9. Fill a 2nd array with the

values 2, 8, 6, and 5. Display all possible pairs of 1 element from
each array. There are 12 pairs.

8. Fill two arrays as in Problem 7. Fill a third array with all elements
from these two arrays with no duplicates.

9. Fill a 100-element array with random numbers. Count the number
of increases, decreases, and the number of no changes. Calculate
the average.

6 - 1 . 2 . • . I n t e g e r BASIC A r r a y s
The features of Integer BASIC arrays are similar in many ways to the
features of Applesoft arrays as described in Section 6-1.1. So, you should
read that section before reading this one.

In order to use an array variable in Integer BASIC we must code a
DIMension statement before any reference to an element of the array. So:

1 0 0 D I M A (5) , B (1 7)

prepares for 5 elements in an array named A and 17 elements in a B array.
Unlike Applesoft, Integer BASIC arrays do not permit 0 subscripts.

The computer array provides the ability to store many numbers so that
we may process selected elements by knowing what subscript to use.
Often all elements will be processed by using a FOR . . . NEXT loop.

. . . . Warn ing: A r r a y s Not Cleared i n I n t e g e r BASIC
When a program is executed in Integer BASIC, the values in the array are
not set to zero as in Applesoft. The values in the array will be whatever

1 0 8 . . •

happens to be in the memory cells used by the array at the time that the
program is executed. Those values will be different from time to time
depending on what the machine has been doing just prior to running this
program. So, if we want an array to contain all zeros, then we must in­
clude a little routine that assigns zero to each element.

Integer BASIC does not provide for READ . . . DATA. We must enter
data with either a series of assignment statements or INPUT.

P r o b l e m s f o r S e c t i o n 6 - 1 . 8
All data for these Integer BASIC programs may be entered from the
keyboard.

1. Modify the daily-temperature program (Program 6-1) to tabulate
the number of times the temperature increased, decreased, and
remained unchanged.

2. Modify the daily-temperature program (Program 6-1) to determine
on which days the highest and lowest temperatures occurred.

3. In the first program that draws numbers from a hat (Program 6-2)
insert a variable to count the number of unusable numbers gener­
ated. Run the program several times to get a range of values.

4. Do Problem 3 drawing 10 from among 10.
8. Modify Program 6-3 to select 100 numbers from among 100.
6. Fill a 20-element array with twice the value of the subscript. Dis­

play all of the elements in order and in reverse order.
7. Fill 1 array with the values 6, 3, and 9. Fill a 2nd array with the

values 2, 8, 6, and 5. Display all possible pairs of 1 element from
each array. There are 12 pairs.

8. Fill two arrays as in Problem 7. Fill a third array with all elements
from these two arrays with no duplicates.

9. Fill a 100-element array with random numbers. Count the number
of increases, decreases, and the number of no changes. Calculate
the average.

6 - 2 . . .Applesof t N u m e r i c A r r a y s (M u l t i p l e
D i m e n s i o n)

We have seen that single-dimension arrays may be used to organize data in
a list. We may also use two or more subscripts to arrange data into tables of
all kinds. We might be interested in the temperature at 6:00 A.M., 12:00
noon, and 6:00 P.M. for a week. For this we need an array with two sub­
scripts. Such an array is referred to as two-dimensional. We will use one
dimension to represent the days of the week and the other to represent the
three different times of day. To do several weeks we might use a third

dimension. Let's look at a little program to find the average daily tempera­
ture using three readings a day. See Program 6-4.

9 0 REM * F I N D A V E R A G E T E M P
1 0 0 FOR DA = 1 TO 7
1 1 0 FOR RE = 1 TO 3

* 1 2 0 READ T E (D A , R E)
1 3 0 N E X T RE
1 4 0 N E X T DA
1 7 5 :
1 8 0 P R I N T " T E M P E R A T U R E "
1 9 0 P R I N T " D A Y 6 A M 1 2 N 6PM A V G "
2 0 0 FOR DA = 1 TO 7
2 0 2 P R I N T D A ; "
2 0 5 T = 0
2 1 0 FOR RE = 1 TO 3
2 2 0 T = T + T E (D A , R E)
2 3 0 P R I N T T E (D A , R E) ; " " ;
2 4 0 N E X T RE
2 5 0 P R I N T T / 3
2 6 0 N E X T DA
9 8 0 :
1 0 0 0 D A T A 7 6 , 7 9 , 7 5 , 12,17,16
1 0 2 0 D A T A 7 4 , 7 9 , 8 1 , 7 5 , 8 0 , 8 3
1 0 4 0 D A T A 8 0 , 7 7 , 7 0 , 6 8 , 6 5 , 6 5
1 0 6 0 D A T A 6 5 , 6 7 , 7 6

Program 6-4. Find daily average temperature.

1 0 0 0 D A T A 16,19,15, 12,11,16
1 0 2 0 D A T A 7 4 , 7 9 , 8 1 , 7 5 , 8 0 , 8 3
1 0 4 0 D A T A 8 0 , 7 7 , 7 0 , 6 8 , 6 5 , 6 5
1 0 6 0 D A T A 6 5 , 6 7 , 7 6
Program 6-4. Find daily average temperature.

By naming 2 subscripts in line 120 we caused Applesoft to allow auto­
matically for 11 elements in each dimension. Since we only require val­
ues of up to 7 in one dimension and 3 in the other, we would use the
statement

9 5 D I M T E (7 , 3)
It is good practice to include the DIMension statement at the beginning of
every program even if it is not required for our application. The DIMen­
sion statement reveals something about our program to the reader. Even if
we want an array DIMensioned to (10, 10), we should do so with a DIMen­
sion statement. In the absence of the DIMension statement, the reader
doesn't know that we are using an array until it appears in a statement of
the program. Even then the reader has no idea how much of the array we
are using.

] R U N
T E M P E R A T U R E

DAY 6AM 1 2 N 6PM AVG
1 7 6 7 9 7 5 7 6 . 6 6 6 6 6 6 7
2 7 2 7 7 7 6 7 5
3 7 4 7 9 8 1 7 8

4 7 5 8 0 8 3 7 9 . 3 3 3 3 3 3 4
5 8 0 7 7 7 0 7 5 . 6 6 6 6 6 6 7
6 6 8 6 5 6 5 6 6
7 65 6 7 76 6 9 . 3 3 3 3 3 3 4

Figure 6-4. Execution of Program 6-4.

. . . . Zero Subscr ipts
The zero subscript is always available. In many programming situations
the zero subscript is a great convenience. The zero term of a polynomial is
easily represented in this way. The positions reserved for the zero sub­
scripts are there whether we use them or not. For most programs the
impact of zero subscripts is minor. However, when writing large pro­
grams on a machine with little memory, it may become necessary to use
them just to get the program to fit.

. . . . More Than Two Subscr ipts
Applesoft will accommodate up to 88 subscripts. Yes, as long as most of
the dimensions are 0, we can do this. In practice we are unlikely to
require so many. If we think we need 88, we probably are taking an
inefficient approach to solving our problem. Three dimensions are often
very convenient. We should always include the DIMension statement at
the beginning of the program. For more than 3 dimensions we must
include it, since a real array 11 by 11 by 11 by 11 won't even fit in a 48K
machine. Would you believe a 71.5K machine? Not only must we provide
a DIMension, but it must call for a smaller array than that.

. . . . S U M M A R Y
We have multidimensional arrays in Applesoft. D(3,4) refers to the value
in column 4 of row 3. Since 0 subscripts are included, column 4 is actu­
ally the 5th column and row 3 is actually the 4th row. We are not required
to use 0 subscripts, but using them will conserve memory.

As with single-dimension arrays, the DIMension statement specifies
the maximum subscript in each dimension.

1 0 0 D I M X (6 , 3 , 8)

prepares for an array of 3 dimensions 7 by 4 by 9. Often we process
data in arrays with loops and nested loops. Even though Applesoft auto­
matically provides 11 elements in each dimension, we should always in­
clude the DIMension statement to help document our program.

P r o b l e m s f o r S e c t i o n 6 - 2
1. In Program 6-4, find the maximum temperature for each of the

three reading times (6:00 A.M., 12:00 noon, and 6:00 P.M.).

2. In Program 6-4, find the maximum temperature for each day.
3. In Program 6-4, find the average temperature for each of the

three reading times (6:00 A.M., 12:00 noon, and 6:00 P.M.).
4. Fill two 4-by-5 arrays with random numbers and display them.

Then fill a 3rd array with the sums of the corresponding entries
from the first 2 arrays and display the result.

* 5 . In a 10-by-l(D array enter all 1 s in the upper left to lower right
diagonal and the leftmost column, and all zeros elsewhere. Then
beginning in the 3rd row, 2nd column, enter the sum of the en­
try in the same column of the row immediately above and in the
column 1 to the left and the row immediately above, through the
10th row, 9th column. That is:

2 3 0 P (R , C) = P (R - 1 , C) + P (R - 1 , C - 1)

for the described range. Display the resulting array.

6 - 3 . . .Appleso f t S t r i n g A r r a y s
The ability to use arrays to store alphabetic data is very nice. The relation­
ship between string simple variables and string arrays is exactly analo­
gous to the relationship between numeric simple variables and numeric
arrays. Each string array consists of a collection of string elements all
referred to by the same array variable name with a subscript.

Each element of the string array has the same properties as a string
simple variable. Each element may store up to 255 characters. We may
READ, INPUT, assign, and PRINT elements of string arrays. And we
may apply all of the string functions discussed in Chapter 5: ASC, CHR$,
LEFT$, RIGHTS, MID$, LEN, STR$, and VAL. Let's see the convenience
of using string arrays for labeling. Program 6-5 READs the names of the
days of the week into an array and then displays them.

9 0 REM * R E A D AND D I S P L A Y DAYS OF THE WEEK
9 5 D I M W$ (7)
1 0 0 FOR DA = 1 TO 7
1 1 0 READ W $ (D A)
1 2 0 N E X T DA
1 9 0 :
2 0 0 FOR DA = 1 TO 7
2 1 0 P R I N T W $ (D A)
2 2 0 N E X T DA
9 9 0 :
1 0 0 0 D A T A SUNDAY
1 0 1 0 D A T A MONDAY
1 0 2 0 D A T A T U E S D A Y
1 0 3 0 D A T A WEDNESDAY
1 0 4 0 D A T A T H U R S D A Y
1 0 5 0 D A T A F R I D A Y
1 0 6 0 D A T A S A T U R D A Y

Program 6-5. Display the days of the week.

] R U N
SUNDAY
MONDAY
T U E S D A Y
WEDNESDAY
T H U R S D A Y
F R I D A Y
S A T U R D A Y

Figure 6-5. Execution of Program 6-5.

Once the string data is stored in the elements of the string array, we
may manipulate it in many ways. It may be that on a report we want the
days of the week spelled out in one place and abbreviated in another. We
can easily do this with the LEFT$ function. We can demonstrate this with
a simple change in line 210.

2 1 0 P R I N T L E F T $ (W $ (D A) , 3) ; " " ; W $ (D A)

] R U N

SUN SUNDAY
MON MONDAY
TUE T U E S D A Y
WED WEDNESDAY
THU T H U R S D A Y
F R I F R I D A Y
SAT S A T U R D A Y

Figure 6 -6 . Execution of modified Program 6 -5 .

Recall that in Program 6-4 to average the 3 temperatures taken
each day for a week we labeled the days of the week from 1 to 7. We now
have the ability to produce a more readable report. We may modify that
program to label each line with the weekday name. If we use the full day
names, then we have to deal with the fact that not all names have the
same number of letters. We can handle this by using comma spacing, but
then we are forced to place the names in a display field of 16 characters.
That seems like too much space. The longest name contains 9 letters.
The easy way out for now is to abbreviate. Let's do it this way. See Pro­
gram 6-6.

9 0 REM * F I N D AVERAGE TEMP
9 5 D I M W$ (7) , T E (7 , 3)
1 0 0 FOR DA = 1 TO 7

* 1 0 5 READ W $ (D A)
1 1 0 FOR RE = 1 TO 3
1 2 0 READ T E (D A , R E)
1 3 0 N E X T RE
1 4 0 N E X T DA
1 7 5 :
1 8 0 P R I N T " T E M P E R A T U R E "
1 9 0 P R I N T " D A Y 6AM 1 2 N 6PM A V E R A G E "

2 0 0 FOR DA = 1 TO 7
k 2 0 2 P R I N T L E F T $ (W $ (D A) , 3) ; "

2 0 5 T = 0
2 1 0 FOR RE = 1 TO 3
2 2 0 T = T + T E (D A , R E)
2 3 0 P R I N T T E (D A , R E) ; "
2 4 0 N E X T RE
2 5 0 P R I N T T / 3
2 7 0 N E X T DA
9 9 0 :
1 0 0 0 D A T A S U N D A Y , 7 6 , 7 9 , 7 5
1 0 1 0 D A T A M O N D A Y , 7 2 , 7 7 , 7 6
1 0 2 0 D A T A T U E S D A Y , 7 4 , 7 9 , 8 1
1 0 3 0 D A T A W E D N E S D A Y , 7 5 , 8 0 , 8 3
1 0 4 0 D A T A T H U R S D A Y , 8 0 , 7 7 , 7 0
1 0 5 0 D A T A F R I D A Y , 6 8 , 6 5 , 6 5
1 0 6 0 D A T A S A T U R D A Y , 6 5 , 6 7 , 7 6

Program 6-6. Display average daily temperature with day names.

Look at the DATA section. We have included the days of the week right in
with the temperature data. Doing it this way helps to clearly document
which temperatures go with which day.

] R U N
T E M P E R A T U R E

DAY 6AM 1 2 N 6PM A V E R A G E
SUN 7 6 7 9 7 5 7 6 . 6 6 6 6 6 6 7
MON 7 2 7 7 7 6 7 5
TUE 7 4 7 9 8 1 7 8
WED 7 5 8 0 8 3 7 9 . 3 3 3 3 3 3 4
THU 8 0 7 7 7 0 7 5 . 6 6 6 6 6 6 7
F R I 6 8 6 5 6 5 6 6
S A T 6 5 6 7 7 6 6 9 . 3 3 3 3 3 3 4

Figure 6-7. Execution of Program 6 - 6 .

This report is easy to read. We do not wonder whether day 1 is Sunday or
Monday. Four of the averages are displayed with 9 digits. We might
want to round those values off to the nearest 10th. If it is important to
have the day names spelled out, then we could easily change the appear­
ance of Figure 6-7 using TAB or HTAB in Program 6-6.

Suppose we have a record store and are using a computer to help
calculate sales slips for us. Each record is marked with a letter H through
P. This letter is assigned according to the price of the record. Thus, H is
the label on every $2.99 record, and I is the label on every $3.45 record.
We can easily write a program using arrays to calculate a total sale for us.

We can enter the correspondence between letters and prices into the
program by READing DATA. Two arrays will be required—one string
array for the letter codes, and one numeric array for the prices. It is a

simple matter to arrange the data so that the letter codes and the prices
are properly coordinated. Placing the data in DATA statements makes it a
simple matter to add new codes or change prices. We will use "STOP" as
the signal to stop reading data. It is always a good idea to leave a gap in
line numbers between the real data and the termination signal. See Pro­
gram 6-7.

9 0 REM * C A L C U L A T E S A L E S S L I P S
1 0 0 D I M N$ (2 6) , P (2 6)
2 0 0 FOR I = 1 TO 2 6
2 1 0 READ N$ (I) , P (I)
2 2 0 I F N $ (I) = " S T O P " T H E N 2 5 0
2 3 0 N E X T I
2 5 0 N l = I - 1
2 8 5 :
2 9 0 REM * R E Q U E S T I N P U T AND C A L C U L A T E HERE
3 0 0 P R I N T " (1 END 1 TO S T O P) "
3 1 0 T = 0 : N = 0
3 2 0 P R I N T " R E C O R D : " ;
3 3 0 I N P U T R$
3 3 5 I F R$ = " E N D " THEN 5 0 0
3 4 0 FOR J = 1 TO N l
3 5 0 I F R$ = M $ (J) T H E N 4 0 0
3 6 0 NEXT J
3 7 0 P R I N T " N O T FOUND - R E E N T E R "
3 8 0 GOTO 3 2 0
4 0 0 T = T + P (J)
4 1 0 N = N + 1
4 2 0 GOTO 3 2 0
4 9 0 :
5 0 0 ' P R I N T
5 1 0 P R I N T " R E C O R D S : " ; N
5 2 0 P R I N T " T O T A L : $ " ; T
9 0 0 END
9 9 0 :
1 0 0 0 D A T A H f 2 . 9 9 , 1 , 3 . 4 5
1 0 1 0 D A T A J , 3 . 6 9 , K , 3 . 9 9
1 0 2 0 D A T A L , 4 . 4 9 , M , 4 . 9 9
1 0 3 0 D A T A N , 5 . 9 9 , 0 , 6 . 9 9
1 0 4 0 D A T A P , 7 . 9 9
1 1 9 0 D A T A S T O P , 0

Program 6-7. Total price in record store.

Program 6-7 is set up in 4 segments. The 1st segment from 100 to 250
reads in the price data. The 2nd segment from 300 to 420 handles the
entry of figures for each sale. Lines 500 to 520 display the final results.
And the 4th segment is the DATA in lines 1000 to 1190.

]RUN
('END' TO STOP)
RECORD: ?H
RECORD: ?P
RECORD: ?P
RECORD: ?0
RECORD: ?L
RECORD: ?A
NOT FOUND - REENTER
RECORD: ? END

RECORDS: 5
TOTAL: $30.45

Figure 6-8. Execution of Program 6-7.

. . . . Geography
Let's write a program to play Geography—a simple game for two or more
players. We will write a program for a person to compete with the com­
puter. Each player says the name of a place such that the first letter is the
same as the last letter of the name chosen by the previous player. Of
course, the first name can be any place at all. If I say BOSTON, then you
might say NEW YORK. That fits the rule, because BOSTON ends with an
"N" and NEW YORK begins with an "N". The next player might think of
KANSAS. No name may be used a second time. The first person unable to
think of an appropriate name drops out.

We can easily program the computer so that it ' 'remembers" all of the
names used. The more games the computer plays, the tougher it will be to
beat.

We need a string array to hold all of the names. We can use a numeric
array to tell us if a specific name has been used. Let's set up a numeric
array AV() so that a one (1) indicates that the name in the corresponding
position of the NA$() names array is available for use and a zero (0) means
that the name has been used in this game. I f AV(5) = 1, then NA$(5) may
be used. We can enter a few names into the NA$() array using DATA
statements. This way the computer has some names to start with. Let's
allow the computer to produce the first name.

It may sound like a big job to produce a program that performs as
described. We can easily trim the job down to size by spending a little
extra time organizing before we generate any BASIC program statements.
Think about the steps in the game. There are six easily defined segments
in our program.

1. Read the names into the NA$ array.
2. Display the instructions.
3. Initialize the AV array to all ones.
4. Have the computer begin the game.

8. Process the person response.
6. Prepare the computer response.

Each of these six jobs may be programmed as a subroutine. The advan­
tages of doing it this way are tremendous. When we first test our com­
pleted program it will be easy to spot which subroutine is not performing
properly. Once we are satisfied that our program is working well, it will be
a simple matter to determine which subroutines we need to modify or
replace to change the program so that the names are stored in a file on
disk.

Let's begin by writing the control routine that will manage the 6
subroutines listed above. In thinking about this routine we need to handle
the situation when the computer runs out of names in number 6. We can
save the computer response in a string variable and save "QUIT" when
the computer quits. This thought leads us to think about letting the person
quit at any time. Thus we select CP$ for the computer response and PE$
for the person response. Further, we may give the player the option to play
another game. We arbitrarily decide to provide for 300 names. See Pro­
gram 6-8a.

2 0 D I M N A $ (3 0 0) , A V (3 0 0)
3 0 GOSUB 8 0 0 0 : REM * R E A D NAMES A R R A Y
3 5 GOSUB 9 0 0 0 : REM * I N S T R U C T I O N S
3 7 GOSUB 4 0 0 0 : REM * I N I T I A L I Z E A V A I L A B L E NAMES A R R A Y
4 0 GOSUB 7 0 0 0 : REM * COMPUTER S T A R T S
5 0 GOSUB 6 0 0 0 : REM * PERSON RESPONDS
58 I F P E $ = " Q U I T " THEN 7 5
6 0 GOSUB 5 0 0 0 : REM * R E S P O N S E OF COMPUTER
6 5 I F CP$ < > " Q U I T " T H E N 5 0
7 5 P R I N T " D O YOU WANT ANOTHER G A M E " ;
8 0 I N P U T A $
8 5 T E X T
9 0 I F L E F T $ (A $, 1) = " N " T H E N END
1 0 0 FOR 1 9 = 1 TO 1 0 0 0 : N E X T 1 9
1 2 0 GOTO 3 5

Program 6-8a. Control routine to play Geography.

The six steps have become six subroutines at lines 8000, 9000, 4000, 7000,
6000, and 5000. The choice of line numbers is arbitrary. Now we are well
prepared to write each individual subroutine.

We read the names at 8000. The place names are entered in DATA
statements. We choose to provide the signal data "DONE". See Program
6-8b.

7 9 9 6 :
7 9 9 8 REM * R E A D NAMES
8 0 0 0 19 = 1
8 0 1 0 READ N A $ (1 9)

8 0 2 0 I F N A $ (I 9) = " D O N E " THEN 8 0 8 0
8 0 3 0 1 9 = 1 9 + 1 : GOTO 8 0 1 0

* 8 0 8 0 N 0 = 1 9 - 1
8 0 9 0 RETURN
8 0 9 6 :
8 1 0 0 D A T A NEW Y O R K , C H I C A G O , P H I L A D E L P H I A , BOSTON
8 5 9 0 D A T A " D O N E "

Program 6-8b. Read names into an array for Geography game.

Notice that line 8080 saves the number of names in the array in numeric
variable N0.

Instructions are simple enough. We can just display a little description
on the screen. Think about that. How fast do people read? We must pro­
vide a way for the fast reader to move on and allow the slow reader a
chance to finish. We can do this by asking the person to tell the program
when he or she is ready. See Program 6-8c.

8 9 9 6 :
8 9 9 8 REM * I N S T R U C T I O N S
9 0 0 0 T E X T : HOME
9 0 0 5 P R I N T " T H I S PROGRAM W I L L P L A Y A GEOGRAPHY G A M E " :

P R I N T
9 0 1 0 P R I N T " W I T H Y O U . YOU W I L L T A K E T U R N S W I T H T H E " :

P R I N T
9 0 1 5 P R I N T " C O M P U T E R . EACH OF YOU W I L L BE T R Y I N G T O " ; :

P R I N T
9 0 2 0 P R I N T " T H I N K OF NAMES OF P L A C E S SUCH T H A T T H E " :

P R I N T
9 0 2 5 P R I N T " F I R S T L E T T E R OF YOUR NAME I S THE SAME A S " ; :

P R I N T
9 0 3 0 P R I N T " T H E L A S T L E T T E R OF THE P R E V I O U S L Y U S E D " :

P R I N T
9 0 3 5 P R I N T " P L A C E N A M E . " : P R I N T

* 9 0 4 0 POKE 3 4 , 1 5
9 0 4 5 HOME : I N P U T " A R E YOU R E A D Y ? " ; A $
9 0 6 5 I F L E F T $ (A $, 1) < > " Y " T H E N 9 0 4 5
9 0 7 0 FOR 1 9 = 1 TO 1 0 0 0 : N E X T 1 9

* 9 0 8 0 T E X T : HOME
9 0 9 0 RETURN

Program 6-8c. Geography-game instructions.

The wording of instructions is somewhat subjective. Instructions should
tell the user what to expect. That POKE 34,15 at line 9040 sets the top of
the text window at line 15 so that we can freeze the instructions on the
screen. TEXT at line 9080 undoes the POKE at line 9040.

The initialization of the AV array beginning at line 4000 is very
straightforward. See Program 6-8d.

3 9 9 6 :
3 9 9 8 REM * I N I T I A L I Z E A V A I L A B L E NAMES ARRAY
4 0 0 0 FOR J 9 = 1 TO N 0
4 0 1 0 A V (J 9) = 1
4 0 2 0 N E X T J 9
4 0 9 0 RETURN

Program 6-8d. Initialize available-names array.

To start the game at line 7000 we have the computer select at random
a name from the names array. The place must be recorded as used and the
CP$ string variable is loaded with the name selected. See Program 6-8e.

6 9 9 6 :
6 9 9 8 REM * COMPUTER B E G I N THE GAME
7 0 0 0 X9 = I N T (RND (1) * N 0 + 1)
7 0 2 0 C P $ = N A $ (X 9) : A V (X 9) = 0
7 0 3 0 P R I N T " F I R S T P L A C E : " ; C P $
7 0 9 0 RETURN

Program 6-8e. Begin Geography game.

Once the computer has produced a place name, the program proceeds to
the person-response subroutine.

We agreed to have the person response stored in PE$. The person
response must pass a number of tests. It ought to have at least two charac­
ters. That is handled with the LEN() function. The first letter of the per­
son response must match the last letter of the computer place name. We
do that with the RIGHT$() and LEFT$() string functions. I f PE$ passes
these two tests then we must see if it is in the list of names stored in the
NA$() array. If PE$ is in the list, has it been used during this latest game?
If it is not in the list, then we put it in the list. See Program 6-8f.

5 9 9 6 :
5 9 9 8 REM * PERSON GO
6 0 0 0 P R I N T
6 0 1 0 I N P U T " YOUR T U R N : " ; P E $
6 0 1 2 I F P E $ = " Q U I T " THEN 6 1 9 0
6 0 1 5 I F LEN (P E $) > 1 THEN 6 0 3 0
6 0 2 0 P R I N T " N A M E TOO S H O R T " : GOTO 6 0 1 0
6 0 3 0 I F L E F T $ (P E $, 1) = R I G H T $ (C P $, 1) T H E N 6 0 4 0
6 0 3 5 P R I N T " N O M A T C H " : GOTO 6 0 1 0
6 0 4 0 FOR 1 9 = 1 TO N 0
6 0 4 5 I F P E $ = N A $ (I 9) T H E N 6 1 0 0
6 0 5 0 N E X T 1 9
6 0 5 5 I F N 0 < 3 0 0 T H E N 6 0 6 5

* 6 0 6 0 P R I N T " N O ROOM FOR MORE N A M E S " : GOTO 6 0 1 0
6 0 6 5 N 0 = N 0 + 1
6 0 7 0 N A $ (N 0) = P E $: A V (N 0) = 0

6 0 8 0 GOTO 6 1 9 0
6 0 9 6 :
6 0 9 8 REM * " F O U N D N A M E "
6 1 0 0 I F A V (I 9) = 1 THEN 6 1 5 0
6 1 1 0 P R I N T " U S E D A L R E A D Y " : GOTO 6 0 1 0
6 1 5 0 A V (I 9) = 0
6 1 9 0 RETURN

Program 6-8f. Person-response subroutine in Geography.

In the unlikely event that someone runs enough games to build the names
array up to 300 names, line 6060 of this subroutine will display a message
and request another name.

Finally, the computer-response subroutine at line 5000 completes the
program. We simply search the NA$() array for a place name that has the
proper first letter and that has not been used in this latest game. If no such
name is found, save the word "QUIT" in CP$. See Program 6-8g.

4 9 9 6 :
4 9 9 8 REM * COMPUTER RESPOND
5 0 0 0 FOR 1 9 = 1 TO N 0
5 0 1 0 I F L E F T $ (N A $ (1 9) , 1) = R I G H T $ (PE $, 1) AND A V (I 9)

= 1 T H E N 5 0 5 0
5 0 1 5 N E X T 1 9
5 0 2 0 P R I N T : P R I N T " I HAVE RUN OUT OF N A M E S "
5 0 2 5 C P $ = " Q U I T "
5 0 3 0 GOTO 5 0 9 0
5 0 5 0 C P $ = N A $ (I 9) : A V (I 9) = 0
5 0 6 0 P R I N T " I C H O O S E : " ; C P $
5 0 9 0 RETURN

Program 6-8g. Computer-response subroutine for Geography.

The program does not verify that the names are actually legitimate place
names. That is left to the honor of the player. This same program allows
the player to change the rules of the game. We could just as well do
people's names or a computer glossary. In that case, we would want to
change the instructions and the DATA. Notice that in the computer-
response subroutine at line 5000 the entire list is scanned for names.
Since every name that is added to the list during the game is by definition
not available for the remainder of this game, the program need not do this.
We could establish another variable to hold the number of names at the
beginning of the current game. We could also have the computer begin at
a random place in the NA$() array instead of beginning with the first
name every time. This change would add variety to the game.

We list the complete program here for your convenience.

2 0 D I M N A $ (3 0 0) , A V (3 0 0)
3 0 GOSUB 8 0 0 0 : REM * R E A D NAMES ARRAY
3 5 GOSUB 9 0 0 0 : REM * I N S T R U C T I O N S
3 7 GOSUB 4 0 0 0 : REM * I N I T I A L I Z E A V A I L A B L E NAMES ARRAY
4 0 GOSUB 7 0 0 0 : REM * COMPUTER S T A R T S
5 0 GOSUB 6 0 0 0 : REM * PERSON RESPONDS
5 8 I F P E $ = " Q U I T " THEN 7 5
6 0 GOSUB 5 0 0 0 : REM * R E S P O N S E OF COMPUTER
6 5 I F C P $ < > " Q U I T " T H E N 5 0
7 5 P R I N T " D O YOU WANT ANOTHER G A M E " ;
8 0 I N P U T A $
8 5 T E X T
9 0 I F L E F T $ (A $, 1) = " N " T H E N END
1 0 0 FOR 1 9 = 1 TO 1 0 0 0 : N E X T 1 9
1 2 0 GOTO 3 5
3 9 9 6 :
3 9 9 8 REM * I N I T I A L I Z E A V A I L A B L E NAMES ARRAY
4 0 0 0 FOR J 9 = 1 TO N 0
4 0 1 0 A V (J 9) = 1
4 0 2 0 N E X T J 9
4 0 9 0 RETURN
4 9 9 6 :
4 9 9 8 REM * COMPUTER RESPOND
5 0 0 0 FOR 1 9 = 1 TO N 0
5 0 1 0 I F L E F T $ (N A $ (1 9) , 1) = R I G H T $ (PE $, 1) AND A V (I 9) = 1

THEN 5 0 5 0
5 0 1 5 N E X T 1 9
5 0 2 0 P R I N T : P R I N T " I HAVE RUN OUT OF N A M E S "
5 0 2 5 C P $ = " Q U I T "
5 0 3 0 GOTO 5 0 9 0
5 0 5 0 C P $ = N A $ (I 9) : A V (I 9) = 0
5 0 6 0 P R I N T " I C H O O S E : " ; C P $
5 0 9 0 RETURN
5 9 9 6 :
5 9 9 8 REM * PERSON GO
6 0 0 0 P R I N T
6 0 1 0 I N P U T " YOUR T U R N : " ; P E $
6 0 1 2 I F P E $ = " Q U I T " THEN 6 1 9 0
6 0 1 5 I F LEN (P E $) > 1 THEN 6 0 3 0
6 0 2 0 P R I N T " N A M E TOO S H O R T " : GOTO 6 0 1 0
6 0 3 0 I F L E F T $ (P E $, 1) = R I G H T $ (C P $, 1) T H E N 6 0 4 0
6 0 3 5 P R I N T " N O M A T C H " : GOTO 6 0 1 0
6 0 4 0 FOR 1 9 = 1 TO N 0
6 0 4 5 I F P E $ = N A $ (I 9) T H E N 6 1 0 0
6 0 5 0 N E X T 1 9
6 0 5 5 I F N 0 < 3 0 0 T H E N 6 0 6 5

* 6 0 6 0 P R I N T " N O ROOM FOR MORE N A M E S " : GOTO 6 0 1 0
6 0 6 5 N0 = N 0 + 1
6 0 7 0 N A $ (N 0) = P E $: A V (N 0) = 0
6 0 8 0 GOTO 6 1 9 0
6 0 9 6 :
6 0 9 8 REM * " F O U N D N A M E "

6 1 0 0 I F A V (I 9) = 1 THEN 6 1 5 0
6 1 1 0 P R I N T " U S E D A L R E A D Y " : GOTO 6 0 1 0
6 1 5 0 A V (I 9) = 0
6 1 9 0 RETURN
6 9 9 6 :
6 9 9 8 REM * COMPUTER B E G I N THE GAME
7 0 0 0 X 9 = I N T (RND (1) * N 0 + 1)
7 0 2 0 C P $ = N A $ (X 9) : A V (X 9) = 0
7 0 3 0 P R I N T " F I R S T P L A C E : " ; C P $
7 0 9 0 RETURN
7 9 9 6 :
7 9 9 8 REM * R E A D NAMES
8 0 0 0 1 9 = 1
8 0 1 0 READ N A $ (1 9)
8 0 2 0 I F N A $ (I 9) = " D O N E " THEN 8 0 8 0
8 0 3 0 1 9 = 1 9 + 1 : GOTO 8 0 1 0

* 8 0 8 0 N 0 = 1 9 - 1
8 0 9 0 RETURN
8 0 9 6 :
3 1 0 0 D A T A NEW Y O R K , C H I C A G O , P H I L A D E L P H I A , BOSTON
8 5 9 0 D A T A " D O N E "
8 9 9 6 :
8 9 9 8 REM * I N S T R U C T I O N S
9 0 0 0 T E X T : HOME
9 0 0 5 P R I N T " T H I S PROGRAM W I L L P L A Y A GEOGRAPHY G A M E " :

P R I N T
9 0 1 0 P R I N T " W I T H Y O U . YOU W I L L T A K E T U R N S W I T H T H E " :

P R I N T
9 0 1 5 P R I N T " C O M P U T E R . EACH OF YOU W I L L BE T R Y I N G T O " ; :

P R I N T
9 0 2 0 P R I N T " T H I N K OF NAMES OF P L A C E S SUCH T H A T T H E " :

P R I N T
9 0 2 5 P R I N T " F I R S T L E T T E R OF YOUR NAME I S THE SAME A S " ; :

P R I N T
9 0 3 0 P R I N T " T H E L A S T L E T T E R OF THE P R E V I O U S L Y U S E D " :

P R I N T
9 0 3 5 P R I N T " P L A C E N A M E . " : P R I N T

* 9 0 4 0 POKE 3 4 , 1 5
9 0 4 5 HOME : I N P U T " A R E YOU R E A D Y ? " ; A $
9 0 6 5 I F L E F T $ (A $, 1) < > " Y " THEN 9 0 4 5
9 0 7 0 FOR 1 9 = 1 TO 1 0 0 0 : N E X T 1 9

* 9 0 8 0 T E X T : HOME
9 0 9 0 RETURN

Program 6-8. Play a Geography game.

. . . . S U M M A R Y
String arrays are very convenient for maintaining a collection of string
data in memory while our program is running. String arrays may be de­
clared in a DIMension statement. Zero subscripts may be used if required.

We have seen in the example programs that it is easy to coordinate
numeric values with string data by using a string array in tandem with a
numeric array. Thus, the Kth element in the numeric array contains in­
formation about the string stored in the Kth element of the string array.

P r o b l e m s f o r S e c t i o n 6 - 3
1. In Program 6-8, which plays Geography, notice that the loop be­

ginning at line 5000 scans every name in the list. None of the
names that have been added in this most recent game may be used
by the computer, because they have all been used by the human
player. Fix this so that the computer scans only those names which
it "knows" at the start of the most recent game. (Suggestion: Es­
tablish a new variable, N2, which represents the number of names
at the beginning of the current game.) Don't be tempted to change
line 6040.

2. Modify the computer-response subroutine (Program 6-8g) so that
the computer randomly selects a starting point in the names array.
Be sure that if no name is found the computer scans from the
beginning of the array to the random starting point.

3. Sometimes it is interesting simply to rearrange strings for display
purposes. Write a program that enters the days of the week in a
string array and displays them in the following format:

s M T W T F S
u 0 U E H R A
N N E D U I T
D D S N R D U
A A D E S A R
Y Y A S D Y D

Y D A A
A Y Y
Y

Y
4. Write a program to enter a collection of names in a string array.

Find the element that comes first alphabetically. Display it and its
position in the array.

PROGRAMMER'S CORNER 6

I n t e g e r V a r i a b l e s i n A p p l e s o f t
Generally we work with numeric values using conventional variables in
Applesoft. This gives us up to nine decimal digits for calculation and

display. These numbers are referred to as real numbers. While one of the
tremendous advantages of Applesoft is its real arithmetic, there may be
times when we can solve our problem with integer arithmetic. This is
especially significant when we are working with large arrays. Each of the
numbers allocated in an integer array occupies two-fifths of the memory
of each number allocated to a real array.

We set up conventional arrays by simply naming ordinary variable
names. Applesoft distinguishes real and integer variables by requiring us
to append a percent sign to indicate integer values.

1 0 0 D I M A % (1 0 0 , 1 0 0)

allocates 10201 integers in a 101-by-101 integer array. We can't even di­
mension such a real array on a 48K Apple. Simple variables may be
established for integers in the same way.

1 0 0 B % = 1 . 2 3 4

will result in storing the integer " 1 " in the integer variable B % .

. . . . W a r n i n g
Arithmetic using integer variables in Applesoft is not always the same as
in Integer BASIC.

In Integer BASIC
- 2 5 / 2 = - 1 2

However, in Applesoft
- 2 5 / 2 = - 1 3

This is because Applesoft applies INT() function to any decimal values
that we assign to integer variables. As with all things, it is important to get
the whole story.

. . . . A Word about Zero Subscr ipts and Space
If we are working on a program that requires arrays and we are having
problems fitting into the available memory, we may be able to gain some
space by using the 0 subscripts. Suppose we have a 100-by-100 array,
because we really want 10000 elements. We may simply dimension the
array with

1 0 0 D I M A % (9 9 , 9 9)

and subtract 1 from all subscript references in the program. This saves
the memory required by 201 integer values or 402 bytes.

This effect increases as the number of dimensions in the array in­
creases. Suppose we require an array to be 10 by 10 by 10. That comes to
1000 elements. I f we dimension the array 10 by 10 by 10, we provide for
11 by 11 by 11, which is 1331 elements. That would be 331 more ele­
ments than the problem requires, a 33 .1% excess.

Chapter 7

Using What
We Know:

Miscellaneous
Applications

7 - 1 . . . L o o k i n g a t I n t e g e r s One Dig i t a t a T i m e

In general, the more detailed the control we have over a number in the
computer, the more complex the problems we might expect to be able to
handle. We also will find that, as we learn more about what goes on inside
the computer, we will be able to apply more elegant solutions to problems.
It is common to store a different piece of information in each digit of a
number. It is also common to group digits in twos or threes for this pur­
pose. Part numbers, serial numbers, and course numbers are just a few
examples of this. In this section we will develop methods of breaking up
numeric values into their separate digits.

. . . . Using MOD i n I n t e g e r BASIC
One very convenient and fast method of getting at the digits of an integer
is to use the MOD operator in Integer BASIC.

N MOD 10

is always the units digit of any integer. Once we know what the units digit
is, we can "throw it away" or "peel it off" by dividing the number by 10. If
the result after division by 10 is not 0, then we must determine the next
digit. We simply repeat this 2-step process until the value of N becomes
0 (zero). It looks like Program 7-1.

1 0 0 I N P U T " A N I N T E G E R " , N
2 0 0 D=N MOD 1 0

* 2 1 0 P R I N T D ,
2 2 0 N = N / 1 0

* 2 3 0 I F N O 0 T H E N 2 0 0
2 4 0 END

Program 7-1. Pick a number apart in Integer BASIC.

>RUN
AN I N T E G E R 7 3 2 5 4 7

7 4 5 2 3

Figure 7-1. Execution of Program 7-1.

This method is clear and easy to code. You doubtless noted that the
digits came out in reverse order. At line 210, we can easily save the digits
in a five-element array. Then after line 230 we can display the digits in the
proper order. This is left as an exercise.

. . . . Us ing Success ive Divis ion i n Applesoft
Consider the number 2789. The 2 means 2000, which may be written 2 *
10 3 ; the 7 means 700, which may be written 7 * 10 2 ; the 8 means eight
10s, which may be written 8 * 10 1 ; and the 9 means 9 units, which may be
written 9 * 10°. Looking at the numbers step by step,

2789 = 2 * 10 3 + 789
789 - 7 * 10 2 + 89

8 9 - 8 * 10 1 + 9
9 - 9 * 10° + 0

This is an example of the general relationship

N = I * 10^ E + R

where I is the integer quotient found by

I - INT(N / 10^ E)

and an iterative process whereby the new N is the old R and the value of E
is decreased by 1 for each iteration. Solving for R we get

R = N - I * 1 0 ^ E

For 9-digit integers the value of E will have to begin at 8 and go to 0
STEP - 1 . Carefully study Program 7-2.

1 0 0 P R I N T " I N P U T AN I N T E G E R " ;
1 1 0 I N P U T N
1 2 0 I F N = 0 THEN END
1 3 0 FOR E = 8 TO 0 S T E P - 1

* 1 4 0 T = 10 ~ E
1 5 0 I = I N T (N / T)
1 6 0 P R I N T I ; " " ;
1 7 0 R = N - I * T
1 8 0 N = R
1 9 0 NEXT E
2 0 0 P R I N T : P R I N T
2 1 0 GOTO 1 0 0

Program 7-2. Access digits by successive division.

Note line 140. In that line we simply save the value of 10 * E. Exponenti­
ation is a slow process, and there is no need to have the computer do it
twice for each value of E.

] R U N
ENTER AN I N T E G E R ? 1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 8

ENTER AN I N T E G E R 7 9 9 9
0 0 0 0 0 0 9 9 8

ENTER AN I N T E G E R 7 0

Figure 7-2. Execution of Program 7-2.

A quick look at the display (shown in Figure 7-2) of the execution of our
seemingly simple program reveals that something is terribly wrong.

We have created a situation in which the computer is rounding things
off internally in such a way that accuracy is lost. Even 999 comes out 998.
If we insert a statement at line 175 to display the values for R, we will see
that it is always just a little low. The easiest way to fix this is to calculate
the value of R by rounding off to the nearest unit. This is left as an ex­
ercise.

. . . . Us ing STR$ i n Applesoft
A very easy method for getting at the individual digits of a number is
provided by the STR$ function in Applesoft. Once we get a number stored
as a string, we can use the LEFT$, MID$, and RIGHTS functions to pick
numbers apart as we see fit. It becomes very easy to pick out any starting
point and any number of digits. We can scan the number to look for a
decimal. We can use the LEN function to find how many characters it
takes to display the number. For demonstration purposes, let's write a
little program to display each digit of a number individually.

1 0 0 P R I N T " E N T E R A N U M B E R " ;
1 1 0 I N P U T N
1 2 0 I F N = 0 THEN END
1 3 0 A $ = S T R $ (N)
1 4 0 FOR I = 1 TO L E N (A $)
1 5 0 P R I N T M I D $ (A $, I , 1) ; "
1 6 0 N E X T I
1 7 0 P R I N T : P R I N T
1 3 0 GOTO 1 0 0

Program 7-3. Using STR$ to separate numeric digits.

] R U N

ENTER A N U M B E R 7 6 9 5 . 3 2 1 4 7
6 9 5 . 3 2 1 4 7

ENTER A N U M B E R 7 1 4 7 8 9 6 3 2 5 5 2 3 6 9 8 7 4 1
1 . 4 7 8 9 6 3 2 6 E + 1 7

ENTER A N U M B E R 7 0

Figure 7-3. Execution of Program 7-3.

Note the second number entered in Figure 7-3. Since it is represented in
exponential notation for display purposes, that is the format used by
STR$(). In the case of decimal numbers and exponential notation we will
have to construct more logic to determine the actual numeric value rep­
resented by a particular digit according to its position in the number.

. . . . SUMMARY
We have seen several methods for picking apart numbers digit by digit in a
computer. The MOD operator in Integer BASIC is convenient. In
Applesoft either successive division or the STR$() function may be used.
We discovered that we had to round off the value we got after removing
the leftmost digit each time. Using the STR$() function we can easily
access any individual digit in any order.

P r o b l e m s f o r S e c t i o n 7 - 1
I 1. Rewrite Program 7-1, using a five-element array, so that the

digits are displayed in the same order as they appear in the
number as entered. Now we might want to think about a way to
avoid having leading zeros displayed.

A Z. Rewrite line 170 of Program 7-2 so that the value in R is
rounded to the nearest unit.

A 3. Modify Program 7-2 so that leading zeros are not displayed. Be
careful that you don't eliminate all zeros!

I 4. The method of Program 7-2 can also be applied in Integer
BASIC. In this case, we will not have the rounding-off errors
that caused difficulty in Applesoft.

AI 8. Write a program to construct an integer by reversing the digits
of an entered integer. Place the result in a numeric variable and
PRINT its value.

AI 6. Find all 3-digit integers that are prime. Form new integers
by reversing the digits and see if the new number also is prime.
Print a number only if it and its reverse number are prime.
There are 43 pairs of numbers, some of which appear twice.

AI 7. Do Problem 6, but eliminate duplicates.

7 - 2 . . . N u m b e r B a s e s

The day-to-day world of business, commerce, and general communica­
tions reckons in the familiar base-10 number system. The ultimate reck­
oning of the computer is in base 2. Base 2 requires only the 2 digits "0"
(zero) and "1" (one). Computers may represent a "1" with a positive volt­
age level or a magnetized state and a "0" by a 0 voltage level or a demag­
netized state. Therefore, it is useful to be familiar with the base-2 number
system. The base-2 number system is also referred to as the binary num­
ber system. A number is a number is a number is a number. The number
does not change by virtue of being expressed in a different number sys­
tem. As we change from one base to another, we may be using different
symbols to name the same number. In the binary number system, there
are only 2 possible digits.

Addition in base 2 is very simple. Either there is a "carry" as the
result of two ones being added or there is not. Thus:

0 + 0 = 0
0 + 1 = 1
1 + 1 = 10

Multiplication is also simplified by the 2-possible-digit structure.
When multiplying by "1" the digits shift according to the position of the
"1", and when multiplying by "0" the result is "0". When multiplying by
"1" in the rightmost position, the shift is 0. When multiplying by "1" in
the 2nd position from the right, the shift is 1. I f we choose to number the
positions from right to left as 0, 1, 2, 3, . . . N, then the shift equals the
position of the "1".

1 * 101001 = 101001 (shift of 0)
10 * 101001 = 1010010 (shift of 1)

and

1 0 0 0 - 101001 = 101001000 (shift of 3)

1 2 9 . . .

Thus:
10 11011

* 10 * 101
100 11011

00000
11011

10000111

Note that in the second multiplication example there is a carry across
several positions.

One disadvantage of the binary number system is that it takes so
many digits to represent numbers. For instance, 15 base 10 is written as
1111 in binary, and 127 base 10 is written 1111111 in binary. However,
this is a disadvantage only to humans. Computers are not fazed by this. In
fact, the computer is very good at accessing individual bits and turning
them on or off 1 at a time. The number 255 base 10 is written 11111111
in binary. It requires 8 binary digits to represent the number 255. Each
binary digit is referred to as a bit. Bits are collected into groups of 8 to
form bytes. The Apple II and Apple II Plus are 8-bit machines—that is,
they use electronic circuits in sets of 8 to represent numbers and instruc­
tions in memory. Everything the computer does is stored in a byte or a
group of bytes. This is why a number of the limits for Apples are 255.

Each digit of any integer represents an integer power of the base. So
the digits in binary represent

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, etc., in base 10,

corresponding to bit positions

0, 1,2, 3, 4, 5, 6, 7, 8, 9, etc., in binary.

On Apples the largest true integer value allowed is 32767, and the
smallest is - 3 2 7 6 7 . That is 65535 numbers. Zero base 10 is 0 in binary,
but 65535 base 10 is represented by 1111111111111111 in binary nota­
tion. That is 16 binary digits. We get 16 binary digits by grouping 2 bytes
together. It takes 2 bytes to represent integers from 0 to 65535. In practice
the leftmost binary bit is used to designate whether the integer stored in
the other 15 bits is positive or negative. A " 1 " indicates negative, and a
"0" indicates positive. Thus, for 2-byte storage, we are limited to the
range of - 3 2 7 6 7 to +32767 as mentioned above.

. . . . Dec imal t o B i n a r y
Let's get started by writing a program to convert decimal to binary. If the
base-10 number we have is odd, then the first base-2 digit on the right is a
" 1 " . I f we have an even base-10 number, then the 1st base-2 digit on the
right is a "0". Now, to move the base-2 decimal point 1 to the left, we

divide our base-10 number by 2 and ignore the decimal part. We can
ignore the decimal part by simply chopping it off. This process for
eliminating the decimal part of a number is called truncation. I f the trun­
cated result is 0, then we are finished. I f the truncated result is non-0,
then we repeat the process for the next binary digit. Consider the process
for 53:

53 is odd 1
divide by 2 and truncate 26 is even 01
divide by 2 and truncate 13 is odd 101
divide by 2 and truncate 6 is even 0101
divide by 2 and truncate 3 is odd 10101
divide by 2 and truncate 1 is odd 110101
divide by 2 and truncate 0 we have finished and

53 base 10 = 110101 base 2

Now we simply need to work out a way to print the results, and a
program will be forthcoming. The method we use is to store the digits in a
16-element array as we determine them. We store the rightmost (or low-
order) digit in the 16th element, the 2nd digit in the 15th element, and
so forth until finished. Later this can easily be expanded to accommodate
larger numbers.

. . . . Us ing MOD i n I n t e g e r BASIC
How do we know if a number is odd or even? In Integer BASIC we can
evaluate the remainder mod 2. Any number mod 2 is 0 if the number is
even and 1 if the number is odd. While the odd-versus-even comparison
does not apply to other bases, the remainder mod N is the correct digit for
conversion to base N. Note that, of course, the Integer BASIC MOD func­
tion requires base-10 arguments and returns base-10 values. See Pro­
gram 7-4.

1 0 0 REM * CONVERT D E C I M A L TO B I N A R Y
1 1 0 D I M A (1 6)
1 2 0 FOR J = l TO 1 6
1 3 0 A (J) = 0
1 4 0 N E X T J
2 0 0 I N P U T " E N T E R AN I N T E G E R " , I
2 1 0 I F I < = 0 T H E N 9 9 9
2 9 6 REM
2 9 8 REM * L O A D THE ARRAY
3 0 0 FOR J = 1 6 TO 1 S T E P - 1
3 1 0 A (J) = I MOD 2
3 2 0 1 = 1 / 2
3 6 0 NEXT J
3 9 6 REM
3 9 8 REM * D I S P L A Y R E S U L T S
4 0 0 FOR J = l TO 16
4 1 0 P R I N T A (J) ; " " ;

4 2 0 NEXT J
4 5 5 P R I N T : P R I N T
4 6 0 GOTO 1 2 0
9 9 9 END

Program 7-4. Convert decimal to binary.

>RUN

ENTER AN I N T E G E R ? 1 2 7

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

ENTER AN I N T E G E R 7 3 2 5 1 2

0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
ENTER AN I N T E G E R 7 0

Figure 7-4. Execution of Program 7-4.

Note that Program 7-4 prints all of the leading zeros. We might want to
eliminate them. We could now easily display the digits in adjacent posi­
tions.

. . . . Us ing Applesoft
We will store the digits in an array as described earlier. Since Applesoft
doesn't have the MOD function, we will handle conversion to base 2 a
little differently. For any base-10 number, if division by 2 comes out even,
then the corresponding base-2 digit is 0. If division by 2 leaves a decimal
portion, then the corresponding base-2 digit is 1. This we can easily do
with 2 lines of Applesoft code:

3 1 0 I F I / 2 = I N T (I / 2) T H E N A (J) = 0
3 2 0 I F I / 2 < > I N T (I / 2) T H E N A (J) = 1

Line 310 enters a 0 in the J th element if the integer is divisible by 2 and
line 320 enters a 1 in the Jth element if the integer is not divisible by 2.
Examine Program 7-5.

1 0 0 REM * CONVERT D E C I M A L TO B I N A R Y
1 1 0 D I M A (1 6)
2 0 0 I N P U T " E N T E R AN I N T E G E R ? " ; I
2 1 0 I F I < = 0 T H E N 9 9 9
2 2 0 I F I < 6 5 5 3 6 T H E N 3 0 0
2 3 0 P R I N T " T O O L A R G E " : P R I N T : GOTO 2 0 0
2 9 6 :
2 9 8 REM * L O A D THE ARRAY
3 0 0 FOR J = 16 TO 1 S T E P - 1
3 1 0 I F I / 2 = I N T (I / 2) T H E N A (J) = 0
3 2 0 I F I / 2 < > I N T (I / 2) T H E N A (J) = 1

3 4 0 I = I N T (I / 2)
3 6 0 N E X T J
3 9 6 :
3 9 8 REM * D I S P L A Y R E S U L T S
4 0 0 FOR J = 1 TO 1 6
4 1 0 P R I N T A (J) ; "
4 2 0 N E X T J
4 5 5 P R I N T : P R I N T
4 6 0 GOTO 2 0 0
9 9 9 END

Program 7-5. Decimal to binary using successive division.

] R U N

ENTER AN I N T E G E R ? 1 2 7
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

ENTER AN I N T E G E R ? 3 2 5 1 2
0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

ENTER AN I N T E G E R ? 0

Figure 7-5. Execution of Program 7-5.

. . . . B i n a r y to H e x a d e c i m a l
The hexadecimal number system reckons in base 16 because hex uses 16
possible digits. The hex digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B , C, D, E,
and F. So 10 hex is 16 base 10, and E F hex is 14*16 + 15*1 or 239 base 10.
Whereas the place values for binary representation are 1, 2, 4, and 8, the
place values for hexadecimal representation are 1, 16, 256, and 4096.
(Note: In all numbering systems the place values are really 1, 10, 100,
and 1000, when expressed in the notation of the numbering system itself.
1, 10, 100, and 1000 in hex are written as 1, 16, 256, and 4096 in base-10
notation.) It takes 4 binary digits to form a hex digit:

1011 0001 binary
B 1 = B l hex

So, 2 hexadecimal digits may be used to represent any number stored in 1
byte, and 4 hexadecimal digits may represent 2 bytes. This is very conve­
nient for use with an 8-bit machine.

The hexadecimal numbering system offers some advantages when
working with a computer. B l is more compact and much easier to read
than 10110001. There are some parameters associated with computers
that are just plain easier to remember in hex than in base 10. Computer
memory is often blocked off in segments containing 16384 bytes each.
That is 16 times 1024 or 4000 bytes in hex. One common unit of measure
for computer memory is the K. One K is 1024 bytes. So, for a 64K ma­
chine, the four 16K segments begin at 0000H, 4000H, 8000H, and

C000H. Those numbers are much easier to remember than 0, 16384,
32768, and 49152.

. . . . H e x a d e c i m a l t o Dec imal
The conversion from decimal to hex is exactly analogous to the conversion
from decimal to binary, except that we have to work out how to get the
extra digits A through F into the picture. Since the extra-digit problem
also occurs in the hex-to-decimal conversion, this is where we start.

Let's convert 1B3A hex to decimal:
The digit A in the l 's column represents 10
The digit 3 in the 16's column represents 48
The digit B in the 256's column represents 2816
The digit 1 in the 4096's column represents 4096

1B3A hex equals 6970 base 10

To work in hex, our programs must have a way to accept hex input and
to display hex output. Obviously this cannot be done with numeric vari­
ables. We may store the 16 hex digits in a string variable. All hex input
should be checked to verify that no bogus digits have been entered. Let's
start by writing an Applesoft program that simply requests hex input,
verifies it, and displays the verified number.

1 0 0 REM * D E V E L O P HEX I N P U T / O U T P U T
1 3 0 H $ = " 0 1 2 3 4 5 6 7 8 9 A B C D E F "
1 4 0 GOSUB 4 0 0 : REM * R E Q U E S T & V E R I F Y
1 5 0 P R I N T N $
1 9 0 GOTO 1 4 0
3 9 6 :
3 9 8 REM * R E Q U E S T & C A L L V E R I F Y
4 0 0 P R I N T : I N P U T " H E X NUMBER? " ; N $
4 1 0 L = L E N (N $)
4 2 0 I F L = 0 T H E N END
4 3 0 I F L < 5 T H E N 4 4 0
4 3 2 P R I N T " T O O MANY D I G I T S "
4 3 4 GOTO 4 0 0
4 4 0 GOSUB 7 0 0
4 5 0 I F F L = 0 T H E N 4 9 0
4 6 0 P R I N T " B A D F O R M A T " : GOTO 4 0 0
4 9 0 RETURN
6 9 6 :
6 9 8 REM * V E R I F Y HEX S T R I N G
7 0 0 F L = 0 : REM * GOOD I N P U T
7 1 0 FOR J = 1 TO L
7 2 0 FOR K = 1 TO 1 6

* 7 3 0 I F M I D $ (H $, K , 1) = M I D $ (N $, J , 1) T H E N 7 6 0
7 4 0 N E X T K

7 5 0 F L = 1 : REM * BAD I N P U T
7 5 5 GOTO 7 9 0
7 6 0 N E X T J
7 9 0 RETURN

Program 7-6. Hex input/output.

] R U N

HEX NUMBER? A B C D
A B C D

HEX NUMBER? A F A F
A F A F

HEX NUMBER? H E X
BAD FORMAT

HEX NUMBER? F F
F F

HEX NUMBER?

Figure 7-6. Execution of Program 7-6.

Now, how do we get the computer to "know" that an "A" is 10 and a
" B " is 11 and so on? Since the digits are not numeric, we have this prob­
lem even for " 0 " , " 1 " , etc., as well.

This is not so tough as it might seem at first. Line 730 of Program 7-6
gives us all the information we need. The value of K there tells us which
digit in the sample string H$ matches the Jth digit of the input string. I f
K = 1 then the digit in H$ is a 0; if K = 16 then we come up with " F " . So,
subtracting 1 from K gives us the values from 0 to F corresponding to 0 to
15. Then, knowing which digit we are on tells us which "place" that digit
represents. So we know what power of 16 to use.

The digit value is K - 1. The place is L - J . So the base-10 value is

(K - 1) * 1 6 * (L - J)

We simply need a numeric variable in which to accumulate this informa­
tion. Using this information the subroutine at line 700 could easily return
the base-10 value of the hex input. Simply set a numeric variable to 0 at
about line 705 and accumulate at line 760, while moving NEXT J to
line 770. This is left as an exercise.

. . . . S U M M A R Y
We have seen that the rationale for base 2 or binary is that the digits " 0 "
and " 1 " can be represented as electrical states of one sort or another. The

hexadecimal number system is convenient because it correlates so nicely
to data as it is stored in computer memory. Whereas it takes 8 digits to
represent a byte of computer memory in binary, it requires only 2
hexadecimal digits. All conversion techniques rely upon determining the
position of a particular digit and its actual value.

P r o b l e m s f o r S e c t i o n 7 - 2
AI 1. Write a program to convert binary to hex.
I 2. Modify Program 7-4 to eliminate leading zeros and display the

result with no spaces.
A 3. Modify Program 7-5 to eliminate leading zeros and display the

result with no spaces.
A 4. Modify Program 7-6 to do the conversion as described in this

section.

7 - 3 . . . M i s c e l l a n e o u s P r o b l e m s f o r C o m p u t e r
S o l u t i o n

We offer a few interesting problems for computer application here. Do not
limit yourself to the problems suggested. You should be bringing your own
problems to the computer. Although it is important to have problem sug­
gestions in any book, you will find that a tremendous satisfaction comes
with developing your own ideas on the computer.

. . . . Prob lems of G e n e r a l I n t e r e s t
1. There is an old number puzzle about cows, pigs, and chickens that

lends itself nicely to computer solution. A farmer has exactly $100
to spend on animals. He wants to buy at least 1 cow, at least 1
pig, and at least 1 chicken. Cows are $10 each, pigs are $3 each,
and chickens are $.50 each. How many of each must he buy to
have exactly 100 animals?

At first, this looks like an easy algebra problem. One soon finds
that we have only two equations with which to solve a problem
having three unknowns. This is where the computer comes in. We
simply try all combinations of cows, pigs, and chickens until these
equations are satisfied:

10 * CO + 3 * PI + CH / 2 = 100
CO + PI + CH - 100

By observing that there must be many more chickens than either
pigs or cows we could solve this by hand using trial and error. But

we still might become frustrated with the number of calculations
required.

The key to this problem is to realize that each of the 3 numbers
we are looking for must be an integer. We could easily write a
program with 3 nested FOR . . . NEXT loops where CO goes from
1 to 10, PI goes from 1 to 33, and CH goes from 2 to 100 by 2s. I f we
do that, we will find that the program has to "think" for some time.
We can greatly speed things up by using more of the information
available to us. Clearly, if there must be at least 1 of each animal,
there cannot be 10 cows or 33 pigs or 100 chickens. There could be
no more than 9 cows, no more than 29 pigs, and no more than 98
chickens. We can derive the greatest speed improvement by using
the fact that once the number of pigs and cows to try has been
established, we can find the number of chickens from

1 0 0 - CO - P I

Next we check this number to see that it is even since the price is
$0.50. In Applesoft, we may test to see if CH divided by 2 is an
integer. In Integer BASIC, we may use the MOD function for this.
Write a program to solve this puzzle.

2. Sometimes it is fun to try to guess a number that someone else is
thinking of. It is fairly easy to program a computer to play this
simple game. Have the computer request the largest number from
the user. Then the program should compute a random number in
the range from one to the largest number. Next the program should
ask for guesses from the user. Each guess should be checked. If the
number is less than one or greater than the upper limit a message
should put the user back on the right track. I f the number is a
correct guess, the program should say so. The program should also
note whether the actual number is higher or lower than the most
recent guess.

3. There are many famous chess puzzles that are appropriate for
computer solution. A notable one is the eight-queens problem. In
how many ways can eight queens be placed on a chessboard so that
no queen attacks another?

This puzzle may be solved by using one eight-element array.
Placing a queen in a position of the array assures that no two
queens occupy the same row. A queen may be placed in the row by
entering its column number there. Now we assure that no two
queens occupy the same column by avoiding duplicate column
numbers in the eight-element array. Finally we check for diagonal
attack by noting that for two queens at positions (X,Y) and (X' ,Y ') ,
one diagonal is shared if X - X ' = Y - Y ' , while the other diagonal is
shared if X + X' = Y + Y ' . We need to have the computer test this for
each queen in every column of one row. Write a program to print

the positions of all queens for each solution. Note: Your solution
program may take a long time to produce results.

For more about the eight-queens problem see the October 1978
and February 1979 issues of Byte magazine.

4. It is always instructive to learn about the cost of homeownership.
Aside from the ongoing costs of painting, fixing the roof, real estate
taxes, and insurance, there is the ever-present mortgage interest.
Most mortgages are set up so that the monthly payment stays con­
stant. In the beginning, there is a large interest payment and a
small payment toward the principal. At the end, the interest pay­
ment is small and more goes toward the principal. The following
formula may be used to calculate the monthly payment:

where:
P is the principal
I is the monthly interest rate
N is the number of months

Write a program to request the principal, annual interest rate,
and number of years. Have the program display the monthly pay­
ment, the total amount paid, and the total interest paid.

. . . . Math-Oriented Prob lems
1. Every positive integer may be expressed as the sum of the squares

of four integers. Zero may be included as one or more of those
integers to be squared. For example:

1 = 0 2 + 0 2 + 0 2 + l 2

Write a program to find all sets of four such integers for a requested
integer. Be careful about efficiency in this one. Test your solution
with small integers before trying large ones!

2. Suppose you have to find the greatest common factor of 23902 and
15096. What would you do? The famous mathematician Euclid
would have found the remainder after dividing 23902 by 15096,
which is 8806. Then he would have found the remainder after
dividing 15096 by 8806, which is 6290. Then he would have con­
tinued this pattern as follows:

23902 = 1 * 15096 + 8806
15096 = 1 * 8806 + 6290

8806 = 1 * 6290 + 2516
6290 = 1 * 2516 + 1258
2516 = 2 * 1258 + 0

Next, Euclid would have reasoned that since the remainder of the
last division was 0, the greatest common factor must be the last
divisor, in this case 1258. This method required only 5 intera-
tions. How many would it have taken using other methods?

3. The sieve of Eratosthenes is an ingenious method for generating
prime integers. Write down all the integers from two to the desired
upper limit. Now keep the first number and cross out all multiples
of it. Now keep the next un-crossed-out number and cross out all
multiples of it. Repeat this process until there are no more num­
bers to cross out. The remaining numbers are prime.

There are two areas in this algorithm that are pitfalls for un­
necessary extra processing. First, if the first multiple in any case
has already been crossed out, then all other multiples will also
have been crossed out. Second, we only have to check for un­
crossed-out integers up to the square root of the largest number in
the original range.

This algorithm can easily be implemented in an array. First,
enter the integers from two to the upper limit into the array ele­
ments two through the upper limit. Next, use FOR . . . NEXT to
access the multiple positions in the array. Set the contents of any
element to be crossed out to zero. Finally, PRINT all subscript
positions for which the element is not zero.

4. A perfect number is an integer the sum of whose proper factors is
the integer itself. The proper factors of 15 are 1, 3, and 5. The sum
of the factors of 15 is 9. Therefore 15 is not a perfect number. The
proper factors of 6 are 1, 2, and 3. The sum of the proper factors of
6 is 6. Thus 6 is called a perfect number. Write a program to find
the first 4 perfect numbers. Since the 5th perfect number is
33,550,336, and there is a significant amount of execution asso­
ciated with determining "perfectness," we would be unwise to test
each integer up to that one! Even the first 4 will take some time to
find in BASIC. It turns out that there don't seem to be any odd
perfect numbers, so let's test only even numbers.

8. Euclid was an active mathematician! He concluded that all possi­
ble even perfect numbers are of the form

N = 2 (E - 1) * F

where

F = 2 E - 1

and F is an odd prime.
Using Euclid's algorithm, write a program to calculate perfect

numbers. Try a range of 2 to 15 for E.
6. Pythagorean triples are sets of 3 integers that can be the sides of a

right triangle. Thus, the sum of the squares of the 2 smaller inte-

gers equals the square of the largest one. The first Pythagorean
triple is 3, 4, 5. Write a program to generate Pythagorean triples.

7. The number TT has fascinated mathematicians for many centuries.
Values for TT may be calculated in a variety of ways. The following
sequence is known to approach the value of TT:

4(1 - 1/3 + 1/5 - 1/7 + 1/9 - 1/11 . . .)

Write a program to evaluate this sequence for several large num­
bers of terms.

8. There are many sequences that approach TT as the number of terms
increases. The following is another one:

Write a program for this sequence. If you also did Problem 6,
which sequence converges faster?

9. One method for approximating the value of TT derives from the fact
that the area of a circle is known to equal T T R 2 . A circle having a
radius of 1 has an area of TT. Thus, i f we inscribe a circle in a square
having a side of 2 and examine one quarter of the figure, we have a
quarter circle inscribed in a square with side of 1.

The area of the square is 1 and the area of the quarter circle is TT/4.
I f we have some way of measuring the area of the quarter circle,
then we simply multiply that number by 4 to get an approximation
of TT.

If we generate random values between 0 and 1 for X and Y, we
will always get a point in the square. Sometimes we will get a point
in the circle. The ratio of the number of times the point falls in the
circle to the number of points selected is proportional to the areas
of the quarter circle and the square. If we get 80 points in the circle
out of 100 points selected, then the approximation of TT we come up

with is 4 * (80/100) or 3.2. Write 'a program to calculate TT in this
way for 100, 500, 1000, and 5000 random points. Assume that if a
point lands on the circle then it counts as part of the circle.

You might experiment to see whether or not excluding points
that fall on the circle has an impact on how fast the value you get
approaches the known value of TT (TT = 3 .1415926536 . . .) .

PROGRAMMER'S CORNER 7

W r i t i n g a P r o g r a m M e n u

. . . . I n t r o d u c t i o n
It is common practice where programs are run on a fast video display to
present the user with a list of options. Usually the options are numbered
and the user simply enters the number of the preferred option followed by
a carriage return.

A sample menu might look like Figure 7-7.

1) P L A Y T I C TAC TOE

2) SUPER L O - R E S DEMO

3) Q U I T

Figure 7-7. Sample menu.

Note option 3. This is very important. By providing this option right in the
menu we give the user proper control of the program. Many of the pro­
grams for sale in computer stores and by mail order are "menu-driven"—
that is, they have a menu. The quality of menus is not consistent. One of
the most common problems is the failure to include an option to terminate
the program. We have to press CTRL-C or RESET to do that. Sometimes
we even have to shut the machine off and back on again to run other
programs. In some cases this is done to make it difficult for the user to
make unauthorized copies of a program.

Another common affliction is that entering something not in the list of
choices produces a messy display. In some cases the menu even begins to
disappear from the screen if we enter several out-of-range choices. With
some programs, pressing an extra key before the menu even appears on
the screen produces surprising results. We will endeavor to write a menu
program that avoids all of these problems.

. . . . Developing t h e Menu Rout ine
Each of the options in the menu may be a subroutine in a single program
or each may be a separate program. That doesn't matter much. What we
are about here is to develop a good menu-processing routine.

First of all, any graphics should be cleared out with the TEXT state­
ment. Next, the text screen should be cleared with HOME or CALL - 9 3 6 .

Next, we should give some thought to how we take the choices from
the keyboard. We may use an INPUT request or we can use
P E E K (- 1 6 3 8 4) to process the keystrokes directly. In Applesoft we can
use GET.

INPUT is quick and easy to code. However, if we code
9 4 0 I N P U T X

and the user enters anything other than a numeric value, BASIC takes
over, displaying error messages and rerequesting data. This results in a
messy screen and may cause the menu to scroll out of sight. We could use

9 4 0 I N P U T X $

and then convert the response to a numeric with the VAL function in
Applesoft. This nicely handles the situation where the user fails to enter a
numeric response. In any program where we may expect the user to know
enough to press the RETURN key this is a good method to use.

P E E K (- 1 6 3 8 4) gives us the ultimate in control. We can request
a character from the keyboard and not worry about whether or not the
user knows enough to press the RETURN key. Programming with
P E E K (- 1 6 3 8 4) will require a little more effort to write the BASIC rou­
tine. This seems worth doing. Once we have written a menu routine that
works, we may plan future programs that can use it. All we have to
change will be the names of the options and the control routine. Program
7-7 does it all.

9 0 D I M A $ (1 0)
9 8 REM * T E S T THE MENU S U B R O U T I N E S
1 0 0 GOSUB 9 4 0 0
1 1 0 GOSUB 9 0 0 0
1 2 0 I F S = N 0 T H E N END
1 3 0 P R I N T " Y O U CHOSE - " ; A $ (S)
1 4 0 FOR I = 1 TO 1 2 0 0 : N E X T I
1 5 0 GOTO 1 1 0
8 9 9 4 :
8 9 9 6 REM * "DO THE M E N U "
8 9 9 8 REM * R E T U R N S E L E C T I O N I N S
9 0 0 0 T E X T : C A L L - 9 3 6
9 0 0 2 V T A B 1 : H T A B 18 : P R I N T " M E N U " .
9 0 0 4 V T A B 3
9 0 0 6 FOR I = 1 TO N 0
9 0 0 8 P R I N T I ; ") " ; A $ (I) : P R I N T
9 0 1 0 N E X T I

9 0 2 0 P R I N T " Y O U R C H O I C E : " ;
9 0 2 2 POKE - 1 6 3 6 8 , 0
9 0 2 4 CH = PEEK (- 1 6 3 8 4)
9 0 2 6 I F CH < 1 2 8 T H E N 9 0 2 4
9 0 2 8 POKE - 1 6 3 6 8 , 0
9 0 3 0 CH = CH - 1 2 8 : P R I N T CHR$ (C H) ;
9 0 3 2 S = V A L (CHR$ (C H))
9 0 3 4 I F S > = 1 AND S < = N 0 T H E N 9 0 8 8
9 0 3 6 HTAB 19 : P R I N T " N O T O F F E R E D "
9 0 3 8 FOR I = 1 TO 1 2 0 0 : N E X T I
9 0 4 0 GOTO 9 0 0 0
9 0 8 3 P R I N T
9 0 9 0 RETURN
9 3 9 4 :
9 3 9 6 REM * R E A D MENU O P T I O N S
9 3 9 8 REM * NUMBER OF O P T I O N S I N N 0
9 4 0 0 READ N 0
9 4 0 5 I F N 0 < 1 0 T H E N 9 4 1 0
9 4 0 7 P R I N T " T O O MANY O P T I O N S " : STOP
9 4 1 0 FOR I = 1 TO N 0
9 4 2 0 READ A $ (I)
9 4 3 0 N E X T I
9 4 9 0 RETURN
9 4 9 6 :
9 5 0 0 D A T A 9
9 5 1 0 D A T A P L A Y T I C TAC TOE
9 5 1 5 D A T A SUPER L O W - R E S DEMO
9 5 2 0 D A T A SWELL SOUNDS
9 5 2 5 D A T A G O L F E X T R A
9 5 3 0 D A T A C O M P L I C A T E D A R I T H M E T I C
9 5 3 5 D A T A N E X T O P T I O N
9 5 4 0 D A T A ANOTHER ONE
9 5 4 5 D A T A T H I S I S THE L A S T O P T I O N
9 5 5 5 D A T A Q U I T

Program 7-7. Process a menu.

We have set up this menu program so that the options are entered in
data statements. Lines 9000 to 9090 take care of displaying the menu and
accepting a response from the keyboard. Note that line 9022 clears the
keyboard before line 9024 reads it. In this way, no stray characters will be
read in before the user is ready. Once an acceptable character has been
found according to line 9026, we again clear the keyboard so the character
found there is not read again later on in the program. Note in line 9030
that we subtract 128 from the code used for the character coming in from
the keyboard. This is very important so that internal code matches a code
expected by the VAL function. Remember that VAL returns 0 for any
character other than the digits 0 through 9. It is usual to work with inter­
nal codes in the range of 0 to 127. We have even arranged to display the
message "NOT OFFERED" on the same line as the question.

We might want more than 9 options. One method for handling this is
to break the selections into 2 categories so that each category has 9 or
fewer options. This is not a bad idea anyway. Simply include an earlier
question that tells the program which category to offer. This structure can
be extended to provide various "levels" of menu where some selections
bring forth another menu offering another selection. Finally a selection
takes the user into the process or program desired.

If you simply must have more than 9 options, then you might try using
hex digits to get up to 15 options, or use the alphabet. Alternatively, it is
very easy to use INPUT with a string variable and VAL to get any number
of options. This is fine as long as it is permitted to expect the user to press
the RETURN key.

Chapter 8

The Disk

8 - 1 . . . W h a t I s DOS?

DOS stands for "Disk-Operating System." The disk is contained in the
little square envelope that we insert into the disk drive. The disk drive is
the machinery required to read and write the disk itself. It is DOS that
allows us to save programs on a disk. This single capability often justifies
the purchase of a disk drive. With a disk system we may save many pro­
grams on one disk and retrieve them later using program names. Using
DOS, we may request that the computer display the name of each pro­
gram on a given disk for us. This is a tremendous improvement over using
cassette tapes for saving programs. The disk is about 20 times as fast and
much more reliable.

Furthermore, we can also easily use a disk to store data. The ability to
store data on a disk turns our computer into a powerful data processing
system. We may now use an Apple to handle a name-and-address list of
hundreds or even thousands of names. We may enter statistical data with
one program and use one or more other programs to perform a variety of
analytic processes. It will not be necessary to enter the data separately for
each program.

Data stored on a disk is referred to as a data file. Apple calls these files
text files. Actually programs stored on disk are files also, but programs are
recognized by BASIC as special.

DOS is really an extension to BASIC. There is a collection of BASIC
keywords that enable us to utilize the disk. When we start up an Apple

with a disk this collection of disk-oriented keywords is incorporated into
whichever BASIC we are using. We can even switch BASICs, and the
DOS keywords remain for us to use. The command INT switches to In­
teger BASIC while FP switches to "Floating Point" or Applesoft BASIC.
All this assumes that your Apple is appropriately equipped with the lan­
guage you request. We can request FP even though we are already in
Applesoft. Either of the commands wipes out any program currently in
memory. So, be careful.

We can request a display of the contents of a disk with the DOS
keyword CATALOG. The computer will respond by turning on the disk
drive and displaying the name of each program and file as found on the
directory. The disk directory is maintained by DOS. Along with each pro­
gram name there is an " I " , an "A", a " B " , or a " T " (for Integer, Applesoft,
Binary, or Text). A binary program is one that will execute on the Apple
without the use of either BASIC. An entry labeled ' T E X T " is a data file,
which is the subject of this chapter. In addition, an asterisk may appear to
indicate that a file has been LOCKed. A LOCKed file cannot be written to
or deleted from the disk. When the display screen is filled DOS will wait
until any character is typed at the keyboard before displaying an addi­
tional screen full. When the last entry has been displayed we will see
either a (>) or a (]) indicating that BASIC is ready for the next command.

To save a program with the name " F I R S T " on disk we simply type
"SAVE FIRST" . The disk will whirr for a few seconds. When it shuts off
and the light goes out, typing "CATALOG" will reveal that indeed our
program named "FIRST" is on the list. If it happens that we already have
a program named "FIRST" , it will be replaced by the new program. There
is no way to retrieve the original version from this disk.

Once a program has been saved on a disk, two commands are avail­
able to us for using it. "LOAD FIRST" will transfer the program from the
disk to the Apple memory. To execute the program we may next type
"RUN". Or we might want to execute the program directly with the
command "RUN FIRST".

I f a program is no longer useful to us, it may be eliminated with the
command "DELETE FIRST". It is best to assume that a deleted program
cannot be recovered.

There is also a set of BASIC keywords that we may use to manipulate
data on a disk. These may be used in programs to create files, write data,
read data, and delete files. What these keywords do and how to use them
are the primary content of this chapter.

8 - 2 . . . W h a t I s a F i l e ?

A file is simply some area of the disk where we may save data. As stated
earlier, we may save programs on disk, too. When we save a program on

disk, DOS does everything for us. When we save data in a data file, it is up
to us to do the organization of data.

One of the aspects about data files that encourages mystery is that
they are invisible. Well, so are programs during execution. We have found
that we could do fantastic things with programs even though we could see
nothing going on until the final printed result. We will now expand our
capabilities tremendously by using programs to create and access data
files. We can LIST a program, but we are going to have to write programs
to "LIST" any data file we create.

Data may be organized in a sequential format or arranged for random
access. Some commands and techniques are the same for both sequential
and random-access files. The most important thing to remember is that all
control communications between any program and any file is done
through the BASIC PRINT statement. That bears repeating: All control
communications between any program and any file is done through the
BASIC PRINT statement. The next important thing you must realize is
that all file-control commands must be preceded by the character
CTRL-D. Don't forget this. I f we omit the CTRL-D character, then we
simply see the contents of the PRINT statement displayed on the screen.
All file-control commands must be preceded by the character CTRL-D. We
will see in the next three sections exactly how to work with sequential and
random-access files.

8 - 3 . . . S e q u e n t i a l F i l e s : A n I n t r o d u c t i o n

Sequential files are easy to set up and use. We simply do everything
beginning at the beginning. If we want to place 15 items in the file, then
we simply write them in order from item 1 to 15. I f we later wish to read
the 14th item, then we read them all in order beginning with item 1 and
stop when we get to item 14. Structurally, data in sequential data files is
just like data in DATA statements of a program.

. . . . OPEN, W R I T E , READ, and CLOSE
OPEN, WRITE, READ, and CLOSE are the four control commands re­
quired to perform any useful work with data files. Each must also name
the file to be accessed. Each must be preceded by CTRL-D in a PRINT
statement. Program 8-1 shows what it looks like.

9 0 D$ = C H R $ (4)
1 0 0 P R I N T D $; " O P E N T E S T F I L E "
1 1 0 P R I N T D $; " W R I T E T E S T F I L E "

Program 8-1. File-access routine.

Normally CTRL-D is invisible. Therefore it is very important to design our
programs to make the "hidden" character come to our attention. In

Applesoft we can use a line like 90 above to achieve this. In Integer
BASIC we should further document what we are doing:

9 0 D $ = " " : REM * C T R L - D

These precautions will save much confusion. Line 100 in Program 8-1
contains the OPEN command. OPEN provides the communications link
between our program and the file. I f there is no file named "TEST F I L E "
when line 100 is executed, then DOS will create it. This is done automat­
ically for us.

Once a file is OPENed, we must tell DOS whether we wish to WRITE
or READ. The actual writing and reading is done with PRINT and INPUT
statements respectively. See Program 8-2.

9 0 D$ = CHR$ (4)
1 0 0 P R I N T D $; " O P E N T E S T F I L E "
1 1 0 P R I N T D $; " W R I T E T E S T F I L E "
1 2 0 P R I N T " F I R S T N A M E "

Program 8-2. WRITE to a file.

In Program 8-2 line 90 makes the required CTRL-D visible. Line 100
prepares the communications linkage between the program and the file
for us, and line 110 sets up the file so that we may write data into it. Once
the file is prepared for writing, the PRINT statement at line 120 will cause
the characters of the string in quotes to be written to the file. Let's
RUN it:

] R U N

• <== the cursor stays here
Figure 8-1. Demonstrate faulty file access in Program 8-2.

An unexpected thing happens in Figure 8-1. Instead of displaying a
bracket prompt (] or >) , the cursor simply sits at the left position blinking
away. That is because this program really contains an error. We have left
an important part of file management to chance. We have done this here
for you once so that you won't make this mistake numerous times before
finding out what mysterious thing is destroying your files. Just as impor­
tant as OPENing files is CLOSEing them. This program should contain
the statement

1 3 0 P R I N T D $; " C L O S E T E S T F I L E "

This statement does all of the management associated with disconnecting
our program from the file. If this is not done, we will encounter strange
situations. It is not at all difficult to arrange things so that BASIC writes
error messages out to the file! Our little demonstration program shows
how to use the PRINT statement to write to a file. It is a simple matter

now to write a program that reads our one item from file T E S T FILE. We
use INPUT to read data from a data file. See Program 8-3.

9 0 D$ = CHR$ (4)
1 0 0 P R I N T D $; " O P E N T E S T F I L E "
1 1 0 P R I N T D $; " R E A D T E S T F I L E "
1 2 0 I N P U T A $
1 3 0 P R I N T A $

1 4 0 P R I N T D $; " C L O S E T E S T F I L E "

Program 8-3. READ data from a file.

Note that we want the printing at line 130 of Program 8-3 to go to the
display screen. In order to do that we have a PRINT statement in a pro­
gram that has an open file. But that is allowed here, because the file is
opened for reading, not writing. However, i f we have any file open for
writing, then all printed results will go to that file. Even a message in a
prompted INPUT statement will be written to a file open for writing.

We can make our programs more flexible by naming files using a
string variable. Thus, our little demonstration program to read T E S T
FILE might be changed to look like Program 8-4.

3 0 F $ = " T E S T F I L E "
9 0 D$ = CHR$ (4)
1 0 0 P R I N T D $; " O P E N " ; F $
1 1 0 P R I N T D $; " R E A D " ; F $
1 2 0 I N P U T A $
1 3 0 P R I N T A $
1 4 0 P R I N T D $; " C L O S E " ; F $

Program 8-4. Demonstrate file name in a string variable.

By changing just line 80 we can easily use this program to read one string
from any file named in F$.

Of course, we generally will store more than one string in a file. We
may store hundreds of names in a file. Let's think about the logistics of
building a file with a large number of names in it. I f the file is truly to be
very large, we have to consider that it may not fit on a single disk. As a
practical matter, we will not be concerned with this for some time in our
programming career. Writing the names into a file is no problem—we
simply write a program that writes entry after entry. When we wish to
read the data from the file the question comes up, "How many items are
there?" We could use the ONERR GOTO statement and simply read until
the file is OUT OF DATA, but there might be other sources of error in our
program. It is much better to write the number of items in the file itself.
We can simply make the first item in the file be the number of items to
follow.

Remember the program we wrote to play Geography in Chapter 6? We
wrote that program using subroutines so that it would be easy to convert
to store the names in a disk file. This way, we can arrange to have the
computer "remember" place names from one day to another. Let's first
write a little program to store the four beginning names. See Program 8-5.

1 0 REM * I N I T I A L I Z E THE P L A C E S
F I L E FOR THE GAME OF GEOGRAP
HY - WE ARE E N T E R I N G THE FOU
R L A R G E S T C I T I E S I N THE U . S
. A .

8 0 F $ = " P L A C E S "
9 0 N 0 = 4
1 0 0 D$ = C H R $ (4)
1 1 0 P R I N T D $; " O P E N " ; F $
1 2 0 P R I N T D $; " W R I T E " ; F $
1 3 0 P R I N T N 0
1 4 0 P R I N T "NEW Y O R K "
1 5 0 P R I N T " C H I C A G O "
1 6 0 P R I N T " L O S A N G E L E S "
1 7 0 P R I N T " P H I L A D E L P H I A "
1 8 0 P R I N T D $; " C L O S E " ; F $

Program 8 -5 . Write names to a file for Geography game.

When we run this program, we will have a file containing five items. The
first item will be a " 4 " and the next four items will be four city names. It is
important to note that the number we wrote to the file will be converted to
the characters of the number, just like STR$. Thus, if N0 = 25, then there
will be a " 2 " and a " 5 " in the file. However, we may retrieve the value
with INPUT NO, just the same. Or in some special situation we might
want to retrieve that number in a string variable. As the number repre­
senting how many names goes from one to two digits, the space required
to store it in the file goes from one character to two. So when we rewrite
the entire file, each of the place names will be located one character
position further along in the file. We can program solutions to many prob­
lems without even realizing this. However, as we seek more elegant solu­
tions, information of this kind will be important to have.

Let's now convert the Geography game from Chapter 6 to store
names in a file. We simply need to replace the READ . . . DATA concept
with a subroutine that reads the place names from the file into the array
and provide a subroutine that writes out all of the names to the file at the
end of this series of games.

The array version reads the names from DATA in a subroutine at line
8000. So we may simply replace that subroutine with a new one that
reads the names from a file. See Program 8-6a.

7 9 9 6 :
7 9 9 8 REM * R E A D NAMES F I L E
8 0 0 0 P R I N T D $; " O P E N " ; F $
8 0 0 5 P R I N T D $; " R E A D " ; F $
8 0 1 0 I N P U T N 0
8 0 3 0 FOR 1 9 = 1 TO N 0
8 0 4 0 I N P U T N A $ (1 9)
3 0 5 0 N E X T 1 9
8 0 6 0 P R I N T D $; " C L O S E " ; F $
8 0 9 0 RETURN

Program 8-6a. File-reading subroutine for Geography game.

Since there was no cleanup at the end of the array Geography game
our new routine to write the names to the file at the end will be a new
subroutine. Let's put it at 8500. Then the two file subroutines will be near
each other in the final program. See Program 8-6b.

8 4 9 6 :
8 4 9 8 REM * U P D A T E NAMES F I L E
8 5 0 0 P R I N T D $; " O P E N " ; F $
8 5 1 0 P R I N T D $; " W R I T E " ; F $
8 5 2 0 P R I N T N 0
8 5 3 0 FOR 1 9 = 1 TO N 0
8 5 3 5 P R I N T N A $ (1 9)
8 5 4 0 N E X T 1 9
8 5 8 0 P R I N T D $; " C L O S E " ; F $
8 5 9 0 RETURN

Program 8-6b. Write names to the file in the Geography game.

We can easily incorporate these two subroutines into the array Geog­
raphy program. Next, we must provide the ever-necessary CTRL-D, as­
sign the file name in F$, and modify the end-of-game logic to execute the
subroutine at 8500 if the game just finished will be the last. All of this is
provided by the five lines of Program 8-6c.

5 D$ = CHR$ (4)
1 0 F $ = " P L A C E S "
9 0 I F L E F T $ (A $, l) = " N " T H E N 1 4 0
1 4 0 GOSUB 8 5 0 0 : REM * R E W R I T E T H E NAMES F I L E
1 9 0 END

Program 8-6c. Changes in the control routine to convert array Geography to
file Geography.

We present the complete program here for your convenience. See Program
8-6 on the next three pages.

* 5 D$ = C H R $ (4)
* 1 0 F $ = " P L A C E S "

2 0 D I M N A $ (3 0 0) , A V (3 0 0)
3 0 GOSUB 8 0 0 0 : REM * R E A D NAMES ARRAY
3 5 GOSUB 9 0 0 0 : REM * I N S T R U C T I O N S
3 7 GOSUB 4 0 0 0 : REM * I N I T I A L I Z E A V A I L A B L E NAMES ARRAY
4 0 GOSUB 7 0 0 0 : REM * COMPUTER S T A R T S
5 0 GOSUB 6 0 0 0 : REM * PERSON RESPONDS
5 8 I F P E $ = " Q U I T " THEN 7 5
6 0 GOSUB 5 0 0 0 : REM * R E S P O N S E OF COMPUTER
6 5 I F C P $ < > " Q U I T " T H E N 5 0
7 5 P R I N T " D O YOU WANT ANOTHER G A M E " ;
8 0 I N P U T A$
8 5 T E X T

* 9 0 I F L E F T $ (A $, l) = " N " T H E N 1 4 0
1 0 0 FOR 1 9 = 1 TO 1 0 0 0 : N E X T 1 9
1 2 0 GOTO 3 5

* 1 4 0 GOSUB 8 5 0 0 : REM * R E W R I T E THE NAMES F I L E
* 1 9 0 END

3 9 9 6 :
3 9 9 8 REM * I N I T I A L I Z E A V A I L A B L E NAMES ARRAY
4 0 0 0 FOR J 9 = 1 TO N 0
4 0 1 0 A V (J 9) = 1
4 0 2 0 N E X T J 9
4 0 9 0 RETURN
4 9 9 6 :
4 9 9 8 REM * COMPUTER RESPOND
5 0 0 0 FOR 1 9 = 1 TO N 0
5 0 1 0 I F L E F T $ (N A $ (1 9) ,1) = R I G H T $ (P E $, 1) AND A V (I 9) = 1

T H E N 5 0 5 0
5 0 1 5 N E X T 1 9
5 0 2 0 P R I N T : P R I N T " I HAVE RUN OUT OF N A M E S "
5 0 2 5 C P $ = " Q U I T "
5 0 3 0 GOTO 5 0 9 0
5 0 5 0 C P $ = N A $ (I 9) : A V (I 9) = 0
5 0 6 0 P R I N T " I C H O O S E : " ; C P $
5 0 9 0 RETURN
5 9 9 6 :
5 9 9 8 REM * PERSON GO
6 0 0 0 P R I N T
6 0 1 0 I N P U T " YOUR T U R N : " ; P E $
6 0 1 2 I F P E $ = " Q U I T : l THEN 6 1 9 0
6 0 1 5 I F L E N (P S $) > 1 THEN 6 0 3 0
6 0 2 0 P R I N T " N A M E TOO S H O R T " : GOTO 6 0 1 0
6 0 3 0 I F L E F T $ (P E $, 1) = R I G H T $ (C P $, 1) T H E N 6 0 4 0
6 0 3 5 P R I N T " N O M A T C H " : GOTO 6 0 1 0
6 0 4 0 FOR 1 9 = 1 TO N 0
6 0 4 5 I F P E $ = N A $ (I 9) T H E N 6 1 0 0
6 0 5 0 N E X T 1 9
6 0 5 5 I F N0 < 3 0 0 T H E N 6 0 6 5
6 0 6 0 P R I N T " N O ROOM FOR MORE N A M E S " : GOTO 6 0 1 0
6 0 6 5 N0 = N 0 + 1
6 0 7 0 N A $ (N 0) = P E $: A V (N 0) = 0

6 0 8 0 GOTO 6 1 9 0
6 0 9 6 :
6 0 9 8 REM * " F O U N D N A M E "
6 1 0 0 I F A V (I 9) = 1 THEN 6 1 5 0
6 1 1 0 P R I N T " U S E D A L R E A D Y " : GOTO 6 0 1 0
6 1 5 0 A V (I 9) = 0
6 1 9 0 RETURN
6 9 9 6 :
6 9 9 8 REM * COMPUTER B E G I N THE GAME
7 0 0 0 HOME
7 0 1 0 X9 = I N T (RND (1) * N 0 + 1)
7 0 2 0 C P $ = N A $ (X 9) : A V (X 9) = 0
7 0 3 0 P R I N T " F I R S T P L A C E : " ; C P $
7 0 9 0 RETURN

* 7 9 9 6 :
* 7 9 9 8 REM * R E A D NAMES F I L E
* 8 0 0 0 P R I N T D $; " O P E N " ; F $
* 8 0 0 5 P R I N T D $; " R E A D " ; F $
* 8 0 1 0 I N P U T N 0
* 8 0 3 0 FOR 1 9 = 1 TO N 0
* 8 0 4 0 I N P U T N A $ (1 9)
* 8 0 5 0 N E X T 1 9
* 8 0 6 0 P R I N T D $; " C L O S E " ; F $
* 8 0 9 0 RETURN
* 8 4 9 6 :
* 8 4 9 8 REM * U P D A T E NAMES F I L E
* 8 5 0 0 P R I N T D $; " O P E N " ; F $
* 8 5 1 0 P R I N T D $; " W R I T E " ; F $
* 8 5 2 0 P R I N T N 0
* 8 5 3 0 FOR 1 9 = 1 TO N 0
* 8 5 3 5 P R I N T N A $ (1 9)
* 8 5 4 0 N E X T 1 9
* 8 5 8 0 P R I N T D $; " C L O S E " ; F $
* 8 5 9 0 RETURN

8 9 9 6 :
8 9 9 8 REM * I N S T R U C T I O N S
9 0 0 0 T E X T : HOME
9 0 0 5 P R I N T " T H I S PROGRAM W I L L P L A Y A GEOGRAPHY G A M E " :

P R I N T
9 0 1 0 P R I N T " W I T H Y O U . YOU W I L L T A K E T U R N S W I T H T H E " :

P R I N T
9 0 1 5 P R I N T " C O M P U T E R . EACH OF YOU W I L L BE T R Y I N G T O " ;

P R I N T
9 0 2 0 P R I N T " T H I N K OF NAMES OF P L A C E S SUCH T H A T T H E " :

P R I N T
9 0 2 5 P R I N T " F I R S T L E T T E R OF YOUR NAME I S THE SAME A S " ,

P R I N T
9 0 3 0 P R I N T " T H E L A S T L E T T E R OF THE P R E V I O U S L Y U S E D " :

P R I N T
9 0 3 5 P R I N T " P L A C E N A M E . " : P R I N T
9 0 4 0 POKE 3 4 , 1 5
9 0 4 5 HOME : I N P U T " A R E YOU R E A D Y ? " ; A $
9 0 6 5 I F L E F T $ (A $, 1) < > " Y " T H E N 9 0 4 5

9 0 7 0 FOR 1 9 = 1 TO 1 0 0 0 : N E X T 1 9
9 0 8 0 T E X T : HOME
9 0 9 0 RETURN

Program 8-6. File-oriented Geography game.

Once again we have reaped tremendous benefits from good program
organization and extensive use of subroutines. By segmenting the array
Geography program we made it a relatively simple exercise to make the
conversion to operate with a data file. We replaced one subroutine, added
a subroutine, and made minor changes in the control routine. By making
minor changes in a well-structured program we have made major
changes in that program's behavior. It is important to realize that we have
isolated all possible sources of error to small areas of the resulting pro­
gram. I f the first program had been badly put together, we would have
found ourselves tinkering in numerous places to create the new program.
The tinkered program would have contained far more potential error
sources.

P r o b l e m s f o r S e c t i o n 8 - 3
1. Write a program that lists the place names in the Geography game

file.
2. Try as people will, somebody will misspell a name in a game of

Geography. Write a program that enables us to edit place names.
3. Write a program that will enable you to eliminate a place name

from the Geography names file.
4. The Geography-game logic for the computer response scans the

names array from item 1 every time. Modify the game so that the
scan begins at some random point. Don't forget to come around to
the beginning of the list after checking the last name.

8. The scan for the computer's turn in Geography covers the entire
names array. That unnecessarily includes the names that have
been added during the current game. Modify the program so that
the scan for the computer's turn covers only those place names
which came from the names file at the beginning of the current
game.

8 - 4 . . . M o r e o n S e q u e n t i a l F i l e s

Let's explore sequential-files behavior in a little more detail. It is impor­
tant to be familiar with the use of commas and carriage returns in sequen­
tial files. Generally, the carriage-return character is used to separate data
items in sequential files. This character is automatically sent to the file by
a PRINT statement with no trailing semicolon or comma. Suppose we

include the following statement to print data into a file:
1 4 0 P R I N T " T H I S , A F T E R A L L I S THE M A I N P O I N T . "

Some special things happen (or we wouldn't be doing this). The comma in
the quoted string will be written into the file. If we go to read this with an
INPUT statement in Applesoft, we will have to use a statement such as

1 4 0 I N P U T A $, B $

We cannot read that data with two separate INPUT statements. INPUT
statements used to read data from a file behave in the same manner as
they behave reading data from the keyboard. On the other hand, in Integer
BASIC, not only do we have to be sure that any string variables are di­
mensioned to accommodate enough characters, but we must read the
string above containing a comma with a single string.

Contrast this with what happens when we use the following state­
ment to write to a sequential file:

1 4 0 P R I N T " O N E " , " T W O "

Even though the comma will separate the items in the display on our
screen, it will be ignored in a file. The above statement will produce the
same results as

1 4 0 P R I N T " O N E T W O "

or

1 4 0 P R I N T " O N E " ; " T W O "

It should be clear that the reading of data from a sequential file must be
carefully coordinated with the writing.

For most purposes, it is best to PRINT data items into the file one at a
time. Let DOS provide the carriage return.

If you cannot avoid placing a comma in a file, then you can fool the
system by enclosing the data item within quotes. This can be done in
Applesoft with a statement such as

1 4 0 P R I N T Q $; " A , B , AND C " ; Q $

where you have set Q$ = CHR$(34) earlier in the program. However, the
quotes are sent to the file, and you will have to worry about that later
when you READ the data.

Have you tried to print a quote in Integer BASIC? Does the above
discussion give you an idea? It should. Just write a little program in
Applesoft that creates a file with a quote in it. Then read that quote in an
Integer BASIC program. If you don't have Applesoft, there is still a way to
get a quote into a file. Whenever a file is open, all output that otherwise
goes to the screen goes to the open file. So, executing a LIST command
with a file opened for writing will create a text file containing our pro-

gram. I f we make the program something simple like
1 P R I N T

We know that the 13th and 14th characters are quotes. This means that
we can write a little program that will place quotes in a data file. See
Program 8-7.

1 P R I N T
1 0 D $ = " " : REM * C T R L - D
2 0 P R I N T D $; " O P E N Q U O T E "
3 0 P R I N T D $; " W R I T E Q U O T E "
4 0 L I S T 1 , 1
5 0 P R I N T D $; " C L O S E Q U O T E "
6 0 END

Program 8-7. Listing a program to a file.

We can then READ that string into a string variable, confident that the
quotes will be in the string. Then a statement such as

Q $ = A $ (1 3 , 1 3)

will provide us with a string that contains only a quote. Next we create a
file and WRITE only Q$. Now we have a file that contains only a quote for
future use in other programs.

The same procedure may be used to save a program as a data file. If we
first change the screen width with POKE 33,33 then the extra spaces
inserted by the LIST command will be eliminated. Once a program has
been saved in this way it may be retrieved with a brand-new special
command.

EXEC f i l e n a m e

EXEC file name will command BASIC to read the file from disk just
as though it were being typed from the keyboard and embed the program
statements into any program already in memory. This makes it possible to
save numerous subroutines on disk and use them in many programs
without the need to retype them for each new use. We may even save an
Integer BASIC program and EXEC it into Applesoft. Of course only those
statements which will work in Applesoft will be useful. We can change
programs from Applesoft to Integer BASIC in the same manner.

8 - 5 . . . R a n d o m - A c c e s s F i l e s
Since entries in a file may vary in length they may occupy varying
amounts of space. Therefore there is no way of predicting just where the
5th or the 50th entry might begin. So, for sequential files we must always
read from the beginning of the file. When we write to such a file, the safest
way is to write or rewrite the entire file. As the file becomes larger and
larger this all takes more and more time.

All that changes with random-access files. This new file structure
makes it possible to read the 25th entry, make changes, and rewrite it to
the file without any risk of damaging any of the other entries. This is done
by allocating a fixed amount of space for each entry. This means that in
many applications there is some unused space in the file.

We use random-access files for all kinds of record keeping. The ability
to access any data entry at will is ideal for applications where we will not
be processing every entry every time we access the file. Contrast this with
the Geography game, in which we clearly processed every entry in the file
with every use of the program. Random-access files are used for name-
and-address mailing lists, every conceivable financial accounting func­
tion, and stock-portfolio management. Recipes, home-management data,
and magazine-article reference material are all appropriate for random-
access files.

In many applications several files are linked together to form a system
of files. An order entry might "point" off to a mailing-list file and an inven­
tory file.

With sequential files the fundamental unit of storage is the character
or byte. With random-access files the fundamental unit of storage is the
record. A record is simply a collection of bytes. If 20 bytes are enough for
the entries we plan to store, then we may organize our file into records
that contain just 20 bytes. The record size is entirely up to us. We decide
record size according to our application. It is important to study each
application thoroughly and plan effectively how we will organize files to
manage the data required. It is devastating to lay out a file structure with
records holding 3 strings in 40 bytes only to find out after 3 long programs
have been written that we should have 4 strings in 48 bytes.

Often a group of programs will be used to handle a file or system of
files—one program to enter and delete entries, another to edit entries, and
perhaps a third to print a nicely formatted report to display all of the data
in the file.

The OPEN, READ, and WRITE statements used for random-access
files are simply extensions of the corresponding statements for sequential
access. OPEN carries an " L " value to set the length of each record in
bytes. READ and WRITE carry an "R" value that specifies which record
in the file to access. We'll examine these more closely later.

Let's develop a computerized name-and-address list. This is a com­
mon need for business and personal use. The idea here is to store all the
names and addresses in a disk file. Then we may extract those we need for
any particular situation. Names may be classified by a code. We might set
up a personal family mailing-list file using H, W, or C to designate friends
of husband, wife, or children. A business might use B and S for billing and
shipping addresses.

In business it is common practice to arrange these names alphabeti­
cally or by zip code or by business volume. In order to achieve this we

would not rearrange the names file itself, but instead we would create a
file that contains just a list of the records in the desired order. We might
maintain several such lists of record numbers. Then we can easily write a
program that will read a list of record numbers to print the corresponding
name-and-address data from the data file in the desired order.

Let's organize a program to build the mailing-list data file. There are a
number of major tasks involved. One part of the program needs to request
all of the necessary data from the keyboard. Another will write the entry
into the file. Another will have to determine where the new entry belongs.

We will have to organize the entry itself. We must decide what infor­
mation belongs in an entry and how many characters to allow for each
item and then calculate the necessary record size. Our program must
include code to manage all these things. We need a routine that will write
the entry in the data file. Probably the most important part of writing the
program is deciding how to organize entries within the file.

When we sit down to enter the first name and address we know that
the file is empty. After that we have no idea how many names are in the
file. Therefore we have no idea where the next entry should go in the file.
We could keep track of how many names there are on a piece of paper. Then
we might just as well keep the names on paper too. The whole idea is to let
the computer do the work. We need to develop a plan for keeping track of
where things are. One scheme is to assign each entry its record number as
an identification number and include that number as part of the data
entry. The first name in the system is number 1, the second is number 2,
etc. Now we can have the next number to be assigned saved in the file
itself. A good place to do this is in record 0. Lucky for us the record count
begins at 0. So, a file with no names in it should have a 1 stored in
record 0. We can easily write a little initialization program to do this.

Then after each new name is entered the program adds 1 to that value
in record 0. Next, we should be thinking about how we delete a name
from a file even though we are preparing to write the program to place
new entries in the file.

Deleting names from a mailing list can be handled in one of several
ways. We could replace the name with the word "DELETED". Or we
could develop a concept that provides that the most recently deleted entry
record becomes immediately available for use by the next new entry. We
can make deleted records available for new entries by setting up an
available-space catalog within the file itself. To do this we include as an
item of data, with the name and address, the record number itself. Then
when an entry is deleted we store the number of the last deleted record in
the deleted record and then store the number of the currently deleted
record in record 0 along with the number of the next highest record in the
file. This will leave a trail of deleted record numbers beginning with the
number stored in record 0. Now we have two numbers stored in record 0:

the next record at the end of the file and the most recently deleted record.
When we start up a new file, the most recently deleted record will be 0.

This scheme provides a method for determining whether an entry has
been deleted or not. Read the record. If the identification number equals
the record number, then it is real data. If not, then the entry has been
deleted, and the number is the record number of the previously deleted
record. As an example of a file with some deleted records see Figure 8-2.

9 {on the end}, 8 {last deleted entry}

1 1 JONES JOHN . . . |

| 2 | 2 SMITH WILLIAM . . . |

| 3 | 3 HAYES MARY . . . |

| 4 | 6 {deleted entry} . . . |

| 5 | 5 BRADSHAW ELEANORE . . . |

| 6 | 0 {deleted entry (first one)} . . . |

| 7 | 7 HOUGH HUGH . . . |

| 8 | 4 {deleted entry} . . . |

| 9 | {never used} |

Figure 8-2. Layout of used and deleted records.

Let's trace the available-space catalog in Figure 8-2. The 2nd number in
record 0 is 8. Look at record 8. There we find a 4. Look at record 4. There
we find a 6. Look at record 6. There we find a 0. Thus the deleted records
are 8, 4, and 6. When we use record 6 for a new entry, the program should
place a 0 in record 0 where the 8 is now.

The entry program will have to look at the 2 record numbers stored
in record 0 and decide whether to place the new entry at the end of the file
or on a record from which a name has been deleted. That is easy. I f the
deleted record number is 0 the new name goes on the end. Otherwise use
the deleted record.

It is important to observe in all this that even though we are designing
the program to enter data, it is necessary to think through the deleting

process thoroughly. We must design the whole system before actually
coding any part of it.

We have entering and deleting pretty well under control. Now how
about changing an entry? As long as each name has an identification
number we can easily read the corresponding record and display each
item as it appears, giving ourselves the opportunity to make changes in
each case. We will need periodically to print up a list of the names with the
IDs. It should be relatively easy to write a program to scan the file from
beginning to end, displaying the data in each undeleted record. That pro­
gram can easily select various categories according to the code stored in
the code item.

We seem to have thought through four functions of our mailing-list
system: new, delete, change, and display. We have mentioned the need to
initialize the data file once to prepare it for entering data. Let's do that
first. See Program 8-8.

9 0 REM * I N I T I A L I Z E M A I L I N G L I S T F I L E
9 5 D $ = C H R $ (4)
1 0 0 P R I N T D $; " O P E N F I R S T F I L E "
1 1 0 P R I N T D $; " W R I T E F I R S T F I L E "
1 2 0 P R I N T 1
1 2 2 P R I N T 0

1 3 0 P R I N T D $; " C L O S E F I R S T F I L E "

Program 8-8. Initialize mailing-list file.

Once this program has been run we may count on record 0 containing a 1
and a 0. Of course, we must assure that this program is never run again.
The job of reconstructing such a file is better left to other people.

Let's now design the layout for a data record. See Table 8-1.

DATA ITEM LABEL
MAXIMUM

OF CHARACTERS
Identification # ID # 4 + 1
Code CODE 5 + 1
Last name LAST 20 + 1
First name F R S T 20 + 1
Address ADDR 30 + 1
City CITY 1 6 + 1
State STAT 2 + 1
Zip ZIP 5 + 1
Telephone PHON 1 7 + 1

119 + 9 = 128
119 + 9 = 128

Table 8-1. Record layout for mailing list file..
In Table 8-1 we have allowed 1 character for a carriage return at the

end of each item in the entry. Note the large value for telephone. That

allows for the area code, an X, and a 4-digit extension. The total comes
to 128 characters.

If we are careful about listing all of the above considerations we will
have the structure of the control routine for our name-and-address-entry
program. Once we have the control routine we may concentrate on a
single subroutine at a time. See the list of functions in Figure 8-3.

1. Read data labels.
2. Read available space parameters.
3. Display next available ID and request data.
4. Terminate on null LAST name.
8. Prepare available space.
6. Write new entry.
7. Write available space info back to record zero.
8. Do it again.

Figure 8-3. List of functions for name-and-address-entry program.

Six of eight tasks listed in Figure 8-3 are appropriate for subroutines.
Some of those subroutines will also be used by the other programs that we
will be writing for our name-and-address system. For number four to
terminate on null LAST name we need to provide a way for the data-
requesting routine to send back a signal to quit. Number eight will simply
direct the program to repeat the functions again beginning with number
three.

We may arbitrarily select line numbers for the subroutines and for the
control routine itself, and we will have our program substantially com­
pleted. See Program 8-9a.

2 0 0 GOSUB 1 0 0 0 : REM * R E A D D A T A L A B E L S
2 1 0 GOSUB 9 0 0 : REM * R E A D A V A I L A B L E S P A C E P A R A M E T E R S
2 2 0 GOSUB 8 0 0 : REM * D I S P L A Y N E X T A V A I L A B L E I D AND

R E Q U E S T D A T A
2 3 0 I F E l = 1 THEN END : REM * T E R M I N A T E ON N U L L

L A S T NAME
2 4 0 GOSUB 7 0 0 : REM * P R E P A R E A V A I L A B L E SPACE
2 5 0 GOSUB 6 0 0 : REM * W R I T E NEW ENTRY
2 6 0 GOSUB 5 0 0 : REM * W R I T E A V A I L A B L E SPACE I N F O BACK

TO RECORD ZERO
2 7 0 GOTO 2 2 0 : REM * DO I T A G A I N

Program 8-9a. Control routine for mailing-list program.

We have six subroutines and two control statements in our main routine
of Program 8-9a. Line 230 requires that the value of E l be set to 1 if the
operator desires to exit and set to any other value for any entry that is to be
placed in the file. Line 270 simply uses a GOTO to repeat the request for
another new entry. We will now write the subroutines one at a time.

We read the data labels at 1000. I f we give some more thought to how
to design the routine to take data from the keyboard, we should be able to
come up with a creative scheme. We could surely ask the eight questions
in eight statements using INPUT with prompt. For each of the eight
inputs we could have a statement that checks to see if the entry is too
long. Any changes in the file design will require changing that routine.
Wouldn't it be a good idea to put the prompt labels and the maximum field
sizes in DATA and read them into two arrays? Then major changes in the
program can be made with simple changes in the DATA statements. Our
DATA statements will come directly from the labels and character limits
in Table 8-1. We can read the DATA into arrays with a FOR . . . NEXT
loop. See Program 8-9b.

9 9 8 REM * R E A D D A T A L A B E L S AND L I M I T S
1 0 0 0 READ N 0
1 0 1 0 FOR X 9 = 1 TO N 0
1 0 2 0 READ L A $ (X 9) , L E (X 9)
1 0 3 0 N E X T X 9
1 0 9 0 RETURN
1 9 9 6 :
1 9 9 8 REM * D A T A L A B E L & L I M I T S
2 0 0 0 D A T A 9
2 0 0 5 D A T A I D # , 4
2 0 1 0 D A T A C O D E , 5
2 0 1 5 D A T A L A S T , 2 0
2 0 2 0 D A T A F R S T , 2 0
2 0 2 5 D A T A A D D R , 3 0
2 0 3 0 D A T A C I T Y , 1 6
2 0 3 5 D A T A S T A T , 2
2 0 4 0 D A T A " Z I P " , 5
2 0 4 5 D A T A P H O N , 1 7

Program 8-9b. Read the data labels for mailing-list program.

In Program 8-9b NO is the number of data items in an entry. The labels
are stored in the LA$ array, and the maximum numbers of characters are
stored in the LE array. The completed program should include an appro­
priate dimension statement.

The subroutine to read the available-space parameters is very simple.
It just reverses the action of the initialization program. We need to select
variables for the two available-space values. See Program 8-9c.

8 9 8 REM * R E A D A V A I L A B L E SPACE
9 0 0 P R I N T D $; " O P E N " ; F $
9 1 0 P R I N T D $; " R E A D " ; F $
9 2 0 I N P U T NS
9 3 0 I N P U T DS
9 4 0 P R I N T D $; " C L O S E " ; F $
9 9 0 RETURN

Program 8-9c. Read available space in mailing-list program.

In Program 8-9c we have chosen to carry the new space in the variable NS
and the deleted-space value in DS. We must note here that the com­
pleted program must save CTRL-D in the variable D$.

Now it is time to display the next available ID and request data. We
said we would do this at 800. Since we have planned carefully, this will be
very straightforward. The first job here is to determine the next actual
available space. We choose to first make it new space. Then if there is any
deleted space we reassign DS to the ID. We handle the label display and
the data request with a FOR . . . NEXT loop. See Program 8-9d.

7 9 8 REM * P R O C E S S D A T A E N T R Y FROM K E Y B O A R D
8 0 0 I D = NS : I F DS < > 0 T H E N I D = DS
8 0 3 P R I N T
8 0 5 P R I N T L A $ (1) ; " : " ; I D
8 1 0 D A $ (1) = S T R $ (I D)
8 1 5 FOR 1 9 = 2 TO N 0
8 2 0 P R I N T L A $ (1 9) ; " ?
8 2 5 I N P U T D A $ (1 9)

* 8 3 0 I F 1 9 = 3 THEN I F L E N (DA$ (3)) = 0 THEN E l = 1 :
GOTO 8 9 0

8 3 5 I F L E N (D A $ (I 9)) < = L E (I 9) T H E N 8 4 5
8 4 0 P R I N T " T O O L O N G " : P R I N T " : " ; : GOTO 8 2 5
8 4 5 NEXT 1 9
8 5 0 E l = 0
3 9 0 RETURN

Program 8-9d. Handle keyboard data entry for mailing-list program.

Note that in line 830 we set E l to 1 if the response to the request for LAST
name is of zero length. This will be the length if the program user simply
presses the RETURN key without any preceding characters. We must
include the DA$() array in the DIMension statement in the completed
program.

Next we must prepare available space. What we do here depends on
whether we are going to replace a deleted entry or write a new record. I f
we are going to use a new record we simply add one to the new-space
variable and RETURN. If we are going to write this data to a previously
deleted record then we must retrieve the record number that was written
there when the deletion occurred. That number is essential for accurately
maintaining the available-space catalog. Remember this from Figure 8-2?

Now we must pay attention to the size of the data entry as it relates to
the file itself. When we OPEN a random-access file we must tell BASIC
the record size. This is done in the OPEN statement with the " , L " option.
The statement

1 0 0 P R I N T D $; " O P E N F I R S T F I L E f L 1 2 8 "

will perform the OPEN function and set the record length to 128 bytes as
desired. We may place the record length in a numeric variable and the file
name in a string variable and use a statement such as the following:

2 0 0 P R I N T D $; " O P E N " ; F $; " , L " ; L 0

The use of READ and WRITE with random-access files requires an
"R" value to specify the record to read from or write to.

P R I N T D $; " W R I T E " ; F $; " , R " ; R 1

will prepare the file F$ so that the next PRINT statement goes to record
R l .

6 9 8 REM * I F T H I S ENTRY R E P L A C E S D E L E T E D D A T A MAKE
P R E P A R A T I O N S

7 0 0 I F DS = 0 T H E N 7 6 0
* 7 1 0 P R I N T D $; " O P E N " ; F $; " , L " ; L 0
* 7 2 0 P R I N T D $; " R E A D " ; F $; " , R " ; D S

7 3 0 I N P U T DS
7 4 0 P R I N T D $; " C L O S E " ; F $
7 5 0 GOTO 7 9 0
7 6 0 NS = N S + 1
7 9 0 RETURN

Program 8-9e. Prepare available space for mailing-list program.

We have used the " , L " and " ,R" options in lines 710 and 720 of Program
8-9e. Note that in this subroutine either new space changes or deleted
space changes but never both.

Once the available-space situation is taken care of we may actually
write the entry to the file. This is a very short subroutine with no particu­
lar complications.

5 9 8 REM * W R I T E ENTRY
6 0 0 P R I N T D $; " O P E N " ; F $; " , L " ; L 0
6 1 0 P R I N T D $; " W R I T E " ; F $; " , R " ; I D
6 2 0 FOR 1 9 = 1 TO N 0
6 3 0 P R I N T D A $ (1 9)
6 4 0 N E X T 1 9
6 5 0 P R I N T D $; " C L O S E " ; F $
6 9 0 RETURN

Program 8-9f. Write data entry in the mailing-list program.

And last but by no means least we must provide the subroutine that
writes the available-space parameters to record 0. This is exactly like the
initialization program except that we must write NS and DS. See Pro­
gram 8-9g.

4 9 8 REM * W R I T E A V A I L A B L E SPACE D A T A
5 0 0 P R I N T D $; " O P E N " ; F $
5 1 0 P R I N T D $; " W R I T E " ; F $
5 2 0 P R I N T NS
5 2 5 P R I N T DS
5 3 0 P R I N T D $; " C L O S E " ; F $
5 9 0 RETURN

Program 8-9g. Write available-space parameters in mailing-list program.

Finally, in order for all of this to happen we must include CTRL-D in
D$, 128 in LfD, the file name in F$, and the appropriate dimensioning
statement.

9 REM * I D = > E N T R Y I D E N T I F I C A T I O N NUMBER
1 0 REM * NS = > NEW SPACE
1 1 REM * DS = > D E L E T E D SPACE
3 0 D$ = CHR$ (4)
5 0 L 0 = 1 2 8
6 0 F $ = " F I R S T F I L E "
7 0 D I M L A $ (9) , L E (9) ,DA$ (9)

Program 8-9h. Program parameters for mailing-list program.

In Program 8-9h line 30 stores CTRL-D in D$ so that the file-access
commands in the PRINT statements are visible. It is interesting to note
that we can do a preliminary test of our program without writing to any
files by eliminating line 30. With D$ as the null string all file access will
be converted to keyboard and text-screen access. Line 50 stores the file
record length in the variable L0. This makes it very easy to change the
record size for another mailing-list application. Line 60 assigns the file
name to F$. Again, this makes it easy to change the program to work with
another name-and-address file.

9 REM * I D => E N T R Y I D E N T I F I C A T I O N NUMBER
1 0 REM * NS = > NEW SPACE
1 1 REM * DS = > D E L E T E D SPACE
3 0 D$ = CHR$ (4)
5 0 L 0 = 1 2 8
6 0 F $ = " F I R S T F I L E "
7 0 D I M L A $ (9) , L E (9) , D A $ (9)
1 9 6 :
1 9 8 REM * E N T E R NAMES AND A D D R E S S E S I N A M A I L I N G L I S T

F I L E
2 0 0 GOSUB 1 0 0 0 : REM * R E A D D A T A L A B E L S
2 1 0 GOSUB 9 0 0 : REM * R E A D A V A I L A B L E S P A C E P A R A M E T E R S
2 2 0 GOSUB 8 0 0 : REM * D I S P L A Y N E X T A V A I L A B L E I D AND

R E Q U E S T D A T A
2 3 0 I F E l = 1 THEN END : REM * T E R M I N A T E ON N U L L L A S T

NAME
2 4 0 GOSUB 7 0 0 : REM * P R E P A R E A V A I L A B L E S P A C E
2 5 0 GOSUB 6 0 0 : REM * W R I T E NEW E N T R Y
2 6 0 GOSUB 5 0 0 : REM * W R I T E A V A I L A B L E S P A C E I N F O BACK

TO RECORD ZERO
2 7 0 GOTO 2 2 0 : REM * DO I T A G A I N
4 9 6 :
4 9 8 REM * W R I T E A V A I L A B L E SPACE D A T A
5 0 0 P R I N T D $; " O P E N " ; F $
5 1 0 P R I N T D $; " W R I T E " ; F $
5 2 0 P R I N T NS
5 2 5 P R I N T DS
5 3 0 P R I N T D $; " C L O S E " ; F $
5 9 0 RETURN

5 9 6 :
5 9 8 REM * W R I T E ENTRY
6 0 0 P R I N T D $; " O P E N " ; F $; " , L " ; L 0
6 1 0 P R I N T D $; " W R I T E " ; F $; " , R " ; I D
6 2 0 FOR 1 9 = 1 TO N 0
6 3 0 P R I N T D A $ (1 9)
6 4 0 N E X T 1 9
6 5 0 P R I N T D $; " C L O S E " ; F $
6 9 0 RETURN
6 9 6 :
6 9 8 REM * I F T H I S E N T R Y R E P L A C E S D E L E T E D D A T A MAKE

P R E P A R A T I O N S
7 0 0 I F DS = 0 T H E N 7 6 0
7 1 0 P R I N T D $; " O P E N " ; F $; " , L " ; L 0
7 2 0 P R I N T D $; " R E A D " ; F $; " , R " ; D S
7 3 0 I N P U T DS
7 4 0 P R I N T D $; " C L O S E " ; F $
7 5 0 GOTO 7 9 0
7 6 0 NS = NS + 1
7 9 0 RETURN
7 9 6 :
7 9 8 REM * P R O C E S S D A T A ENTRY FROM K E Y B O A R D
8 0 0 I D = NS : I F DS < > 0 T H E N I D = DS
8 0 3 P R I N T
8 0 5 P R I N T L A $ (1) ; " : " ; I D
8 1 0 DA$ (1) = S T R $ (I D)
8 1 5 FOR 1 9 = 2 TO N 0
8 2 0 P R I N T L A $ (1 9) ; " ? " ;
8 2 5 I N P U T D A $ (1 9)
3 3 0 I F 1 9 = 3 THEN I F LEN (DA$ (3)) = 0 THEN E l = 1 : GOTO

8 9 0
8 3 5 I F L E N (D A $ (I 9)) < = L E (I 9) T H E N 8 4 5
8 4 0 P R I N T " T O O L O N G " : P R I N T " : " ; : GOTO 8 2 5
8 4 5 N E X T 1 9
8 5 0 E l = 0
8 9 0 RETURN
8 9 6 :
8 9 8 REM * R E A D A V A I L A B L E SPACE
9 0 0 P R I N T D $; " O P E N " ; F $
9 1 0 P R I N T D $; " R E A D " ; F $
9 2 0 I N P U T NS
9 3 0 I N P U T DS
9 4 0 P R I N T D $; " C L O S E " ; F $
9 9 0 RETURN
9 9 6 :
9 9 8 REM * R E A D D A T A L A B E L S AND L I M I T S
1 0 0 0 READ N 0
1 0 1 0 FOR X 9 = 1 TO N 0
1 0 2 0 READ L A $ (X 9) , L E (X 9)
1 0 3 0 N E X T X 9
1 0 9 0 RETURN
1 9 9 6 :
1 9 9 8 REM * D A T A L A B E L & L I M I T S

2 0 0 0 D A T A 9
2 0 0 5 D A T A I D # , 4
2 0 1 0 D A T A C O D E , 5
2 0 1 5 D A T A L A S T , 2 0
2 0 2 0 D A T A F R S T , 2 0
2 0 2 5 D A T A A D D R , 3 0
2 0 3 0 D A T A C I T Y , 1 6
2 0 3 5 D A T A S T A T , 2
2 0 4 0 D A T A " Z I P " , 5
2 0 4 5 D A T A P H O N , 17

Program 8-9. Entering names in a mailing-list file.

This program is intended to be a simple example of a workable
mailing-list data entry program. Using the preceding discussion and some
of the routines of this program you should be able to develop programs to
delete entries, change entries, and print mailing labels.

There are many areas in which this program can be made more flexi­
ble. We might change the design a little to place the record size in record 0
of our file along with the available-space information already there. We
might request the mailing-list file name from the program operator. We
might eliminate the DATA statements from the program by placing that
data in a companion file. The benefits of doing things this way are tre­
mendous. With all of the information about the mailing list stored in a file,
our one program can be used to process many different mailing lists. We
can handle different numbers of items in a record, we can handle different
sets of item size limits, we can handle different record sizes, and we can
handle different labels, all in the same program. We will soon find that we
have to write a program to manage the companion file that contains all of
this useful information. That is a small price to pay. When we can change
the behavior of a program by changing data in a file, we approach data­
base-management capabilities.

Programming for the delete and change functions can be handled
either by writing separate programs or by including the new subroutines
necessary right in Program 8-9. We could provide a menu that lets the
user select which function is desired.

. . . . S U M M A R Y
Once we organize files in records of a fixed size we may get at any data
entry in the file as long as we know where it is. This constitutes a tre­
mendous advantage over sequential files. We can read the 200th entry
just as quickly as we can read the first. In order to implement random-
access files we must specify the record length and the record number.

The record size is specified in an OPEN statement with the " , L " op­
tion. The statement

9 1 0 P R I N T D $; " O P E N DOOR , L 1 9 2 "

will open a file named DOOR with a record length of 192 bytes. Following
this statement we may prepare the file for reading at record 103 with the
following statement:

9 2 0 P R I N T D $; " R E A D DOOR , R 1 0 3 "

Both the " , L " and " ,R" options may be coded with the values in variables.

1 0 0 0 X I = 1 9 2 : Y l = 1 0 3 : F $ = " D O O R "
1 0 1 0 P R I N T D $; " O P E N " ; F $; " , L " ; X 1
1 0 2 0 P R I N T D $; " R E A D " ; F $; " , R " ; Y l

Lines 1000-1020 will perform in exactly the same way as lines 910 and
920 above.

P r o b l e m s f o r S e c t i o n 8 - 5
1. Incorporate a delete routine in the name-and-address-entry pro­

gram.
2. Write a program to edit data in the mailing-list file. Display each

item and ask if the user wants to make a change.
3. Write a program to display all data from the file for names having a

specified code.

PROGRAMMER'S CORNER 8

O p t i o n s i n DOS C o m m a n d s
Disk drives are connected to the Apple through a disk controller card.
Each disk controller card has room for two disk drives, which are num­
bered 1 and 2 and may be inserted into one of seven slots. These slots are
numbered 1 to 7. The OPEN statement may select the slot and drive with
the S and D options. I f you have only one disk controller and only one disk
drive then these options default to your slot and drive. If you have two
drives on one disk controller then you must use the D option to access
drive 2. I f you have more than one disk controller then to access any disk
controller other than the one currently active you must use the S option.

There is a further option that allows us to number each mini floppy
disk in the range from 1 to 254. This is to make it possible to coordinate
data and protect data from unauthorized use. Each disk may be assigned a
volume number. The assignment can only be made through the INIT
command. See Appendix B for a description of INIT.

I N I T H E L L O PROGRAM , V 7

will perform the conventional initialization process and in addition assign
the number 7 to the disk. If we use a volume number for our programs or
files then we must match the volume number of the disk. In the absence
of a " ,V" option DOS selects 254 as the volume number.

We can open a file with a statement such as
1 9 9 P R I N T D $; " O P E N NEW F I L E , S 5 , D 2 , V 7 "

The file NEW FILE will be opened in slot 5 in drive 2 on a disk numbered
7. All*further disk access will be to slot S and drive D until we change the
drive and/or slot using these options in another disk-access statement. I f
the disk in slot 5 drive 2 is jiot volume 7 then DOS reports a VOLUME
MISMATCH error. To make the file random-access, simply include the
length option in the OPEN statement. The order in which the options
appear in the OPEN statement is not significant.

. . . . P r o t e c t i n g a F i l e
We can protect our programs and files with LOCK.

1 9 9 P R I N T D $; " L O C K NEW F I L E , S 5 , D 2 , V 7 "

will prevent someone from deleting our file or from writing to it. The
UNLOCK statement is used to reverse the action of LOCK. A locked file
appears in the CATALOG with an asterisk to the left of the file name.

. . . . APPEND and POSITION
APPEND performs the OPEN function and prepares the file so that a
WRITE statement begins writing at the end of the file. This saves reading
all data just to position to the end of a sequential file.

POSITION ,Rx positions the file pointer to the xth field ahead of the
current position. This is done by counting carriage-return characters in
the file. POSITION cannot be used to skip past empty data in a random-
access file. POSITION cannot move the pointer closer to the first field in
the file. OPEN sets the file pointer at the beginning of the file.

. . . . Byte
For random-access files we may position at a particular byte of a record
with the byte option

1 9 9 P R I N T D $; " R E A D NEW F I L E , R 1 0 , B 6 "

sets up to record 10 so that the next INPUT request will read from byte
number 6. Thus this instruction will skip over bytes 0 through 5.

. . . . MON and NOMON
The MON command allows us to MONitor file activity.

2 9 9 P R I N T D $; " M O N C , 1 , 0 "

causes all Commands, Input, and Output concerning files to be displayed

on the screen. To see only the commands use

2 9 9 P R I N T D $; " M O N C "

Any display turned on by the MON command can be turned off with the
corresponding NOMONitor command.

Chapter 9

Hi-Res
Graphics

We saw in Chapter 2 and Programmer's Corner 2 that we could convert
the screen into a graphics area containing up to 1920 little blocks. We
could select from among 16 colors for each block.

High-resolution graphics on an Apple II or Apple II Plus provides
more dots and fewer colors. We can easily plot dots in a graphics area that
is 280 by 160. That gives us 44800 dots. We will also have 4 lines at the
bottom of the screen for standard text display. I f we do not require those
4 text lines, we can create a graphics screen that is 280 by 192. POKE
- 1 6 3 0 2 , 0 converts the mixed text/Hi-Res screen to full-screen Hi-Res.
That gives us 53760 dots.

9 - 1 . . . I n t r o d u c t i o n t o H i - R e s G r a p h i c s i n
A p p l e s o f t

There are just four commands for controlling the Hi-Res screen: HGR,
HCOLOR, HPLOT, and TEXT. Let's look at them all before we attempt to
write our first program.

. . . . The Hi-Res Graphics S c r e e n
The statement

1 0 0 HGR

prepares the Apple for Hi-Res graphics work. When this statement is exe-

cuted, the screen is divided into 2 parts. The top part is organized into
280 columns and 160 rows. This gives us the 44800 dots mentioned ear­
lier. The remainder of the screen is reserved for 4 lines of regular text
display. Each dot in the graphics area is identified by its column and row.
The columns are numbered from 0 to 279 going from left to right. The
rows are numbered from 0 to 159 going from top to bottom. This is not the
same as the conventional rectangular coordinate system widely used in
mathematics, but this difference presents no great obstacle. The dot in the
upper left corner is labeled (0,0). The dot in the lower right corner is
labeled (279,159). The Apple is restored to the conventional full-text
screen with the TEXT statement

2 9 0 T E X T

The Hi-Res graphics screen has a profound effect upon the memory of
the computer. In fact the Hi-Res graphics screen is a "window" into
memory itself. What we see on the video is memory. This memory is
located in the 8K from address 8192 to address 16383. (You can convince
yourself of this by using POKE to place values directly into memory in
that address range.) Right away this means that our programs must not
grow in length past address 8191. I f that happens, executing HGR will
"wipe out" the portion of our program that falls in that range. If we are
using a disk system, we must have at least 32K of memory. Otherwise,
HGR will "wipe out" DOS itself.

. . . . Hi-Res Colors
Even if we are working with a black-and-white monitor, we will have to
pay attention to color. The HGR statement presents us with an all-black
screen and does not change the plotting color, so we cannot be certain just
what the plotting color is. The HCOLOR= statement is used to select a
value in the range 0 to 7. The corresponding color names are shown in
Figure 9-1.

0 Black 1 4 Black2
1 Green 5 Orange
2 Violet 6 Blue
3 White 1 7 White2

Figure 9-1. Hi-Res color values. (Colors depend on the TV.)

The Applesoft statement

1 2 0 H C O L O R = 3

will set the Hi-Res graphics color to white 1.

. . . . Plott ing Dots
1 5 0 H P L O T X , Y

will plot a dot at (X,Y) on the high-resolution graphics screen. The color
used will be the last Hi-Res color set in an HCOLOR= statement. See
Program 9-1.

1 0 0 HGR
1 1 0 H C O L O R = 3
1 2 0 H P L O T 0 , 0
1 3 0 H P L O T 0 , 1 5 9
1 4 0 H P L O T 2 7 9 , 1 5 9
1 5 0 H P L O T 2 7 9 , 0

Program 9-1. Plot dots in the four corners.

Program 9-1 will place a white dot in each of the four corners of the
graphics screen. At least that is what we would think. It turns out that
there are some limits on what colors may be plotted where. A white dot
plotted in an odd-numbered column is really green (that is, if we select
white 1), and a white dot plotted in an even-numbered column is really
violet. For white2 an odd column produces orange, while an even col­
umn plots as blue. Don't despair; we can easily produce white dots by
plotting two dots next to each other. Now our dots will be wider, but they
will be white. So we might want to fix our program as shown in Program
9-2.

1 0 0 HGR
1 1 0 H C O L O R = 3
1 2 0 H P L O T 0 , 0 : H P L O T 1 , 0
1 3 0 H P L O T 0 , 1 5 9 : H P L O T 1 , 1 5 9
1 4 0 H P L O T 2 7 9 , 1 5 9 : H P L O T 2 7 8 , 1 5 9
1 5 0 H P L O T 2 7 9 , 0 : H P L O T 2 7 8 , 0

Program 9-2. Plot dots in the four corners (white this time).

. . . . L i n e s in Hi-Res
There is no HLIN or VLIN statement in Hi-Res graphics. Instead we have
a powerful extension of the HPLOT statement.

1 0 0 H P L O T X , Y TO X I , Y l

plots a line going from X,Y to X1,Y1. This is much more flexible than
HLIN or VLIN. HPLOT . . . TO may be used for horizontal, vertical, and
diagonal lines. We can easily extend Program 9-1 to place a border around
the graphics screen. See Program 9-3.

1 0 0 HGR
1 1 0 H C O L O R = 3
1 2 0 H P L O T 0 , 0 TO 0 , 1 5 9
1 3 0 H P L O T 0 , 1 5 9 TO 2 7 9 , 1 5 9
1 4 0 H P L O T 2 7 9 , 1 5 9 TO 2 7 9 , 0
1 5 0 H P L O T 2 7 9 , 0 TO 0 , 0

Program 9-3. HPLOTting a border on the Hi-Res screen.

It is often desirable to have a border around a graphics display. So, let's
write a subroutine to do that right now. We could write the four state­
ments 120-150 from Program 9-3 as a single line by using three colons to
create a multiple statement. However, HPLOT allows us to include mul­
tiple TOs. See Program 9-4.

5 9 8 REM * P L O T A BORDER
6 0 0 H P L O T 0 , 0 TO 0 , 1 5 9 T O 2 7 9 , 1 5 9 TO 2 7 9 , 0 TO 0 , 0
6 1 0 RETURN

Program 9-4. Subroutine to plot a border.

This border has a violet left edge and a green right edge. This is the same
problem we encountered earlier plotting dots. The left edge is an even
column (column 0), and the right edge is odd (column 279). We can fix
that by making those edges two dots wide. See line 610 of Program 9-5.

5 9 8 REM * P L O T A BORDER
6 0 0 H P L O T 0 , 0 TO 0 , 1 5 9 TO 2 7 9 , 1 5 9 TO 2 7 9 , 0 TO 0 , 0
6 1 0 H P L O T 1 , 0 TO 1 , 1 5 9 : H P L O T 2 7 8 , 0 TO 2 7 8 , 1 5 9
6 2 0 RETURN

Program 9-5. Program 9-4 with color-correction plotting.

Line 610 of Program 9-5 plots a second vertical line on the left and right
edges of the screen. When plotting dots and lines one dot wide, violet and
blue appear only in even-numbered columns, and green and orange ap­
pear only in odd-numbered columns. We eliminate all of this grief by
making our plots two dots wide. From now on we can use GOSUB 600 as
calling for a Hi-Res border in the currently active HCOLOR=. The ability
to continue plotting with multiple TOs is very useful.

So, there we have it. HGR, HCOLOR=, HPLOT, and TEXT give us
tremendous power to draw figures on the Hi-Res graphics screen. When
plotting white we must plot two horizontally adjacent dots to really get
white. We can get the other colors in the same way.

For demonstration purposes let's write a program to display the Hi-Res
colors. We need the usual HGR to prepare the graphics screen. Next, we
should label the colors. This can be done by displaying the color number
just beneath each vertical color bar. In order to do this we have to prepare

the 4-line text window. HOME clears the entire 24-line text screen in
Hi-Res graphics. But now the cursor is hidden in the upper left corner of
the text screen. Only the last 4 lines of the text screen are visible below
the upper 160 lines of the Hi-Res graphics screen. In Lo-Res mode HOME
clears only the bottom 4 lines. VTAB 21 places the cursor at the first
line of the window. Alternatively, we could set the top of the text window
with

POKE 34,20

and then code the HOME statement. We get a white border by setting
HCOLOR= to 3 and calling our border-plotting subroutine at 600. Next,
for each color, we simply calculate some attractive spacing and plot verti­
cal bars. See Program 9-6.

90 REM * DISPLAY HI-RES COLORS
100 HGR
106 :
108 REM * PREPARE TEXT WINDOW
110 HOME : VTAB 21
116 :
118 REM * WHITE BORDER
120 HCOLOR= 3 : GOSUB 6 0 0
166 :
168 REM * COLORS 0 THRU 7
170 PRINT "
180 FOR C = 0 TO 7
185 PRINT " " ; C ;
190 HCOLOR= C

* 200 B = 28 * C + 34
* 210 FOR X = 1 TO 8

220 HPLOT X + B,5 TO X + B,154
230 NEXT X
250 NEXT C
300 PRINT : PRINT : PRINT TAB(8) ;
320 PRINT "HI RES COLORS ON APPLE ";

* 330 PRINT CHR$ (93); CHR$ (91);
590 END
596 :
598 REM * PLOT A BORDER
600 HPLOT 0,0 TO 0,159 TO 279,159 TO 279,0 TO 0,0
610 HPLOT 1,0 TO 1,159 : HPLOT 278,0 TO 278,159
6 20 RETURN

Program 9-6. Display Apple Hi-Res colors.

Line 200 simply calculates a starting point for each color bar. Line 210
sets up a FOR loop to plot bars eight dots wide. Line 330 uses the CHR$
function to display the square brackets in "Apple][(II)." CHR$(93) pro­
duces], while CHR$(91) gives us [.

Figure 9-2. Execution of Program 9-6.

Now that we have the fundamentals we can work on making a draw­
ing on the screen. We can simply code a series of HPLOT statements to
draw lines and dots on the screen. Then, to add a line, we add an HPLOT
statement. To remove a line we remove an HPLOT statement. Using this
method each new drawing is a new program.

A different approach is to write a little routine that HPLOTs lines
using data stored in DATA statements. We can completely specify any line
and any HCOLOR with five numbers—one for the color and two for each
end of the line. To plot a single dot, simply make both ends of the line the
same point. This makes the plotting routine very simple indeed. Once we
perfect it, we may use it for any other drawing by simply changing the
DATA. It is easy to terminate plotting by looking for a color value of - 1 .
Program 9-7 is a very compact subroutine to plot drawings from data.

1 9 6 :
1 9 8 REM * V E C T O R P L O T T I N G R O U T I N E
2 0 0 READ C , X , Y , X 1 , Y 1
2 1 0 I F C = - 1 THEN 2 9 0
2 2 0 H C O L O R = C
2 3 0 H P L O T X , Y TO X I , Y l
2 4 0 GOTO 2 0 0
2 9 0 RETURN

Program 9-7. Plot drawings from data.

Figure 9-3. Drawing of a lighthouse on cross-section paper.

Program 9-7 is surprisingly simple. It is always very nice to come upon a
short routine that does so much. This routine assumes that the Hi-Res
graphics screen has been prepared. The real work in this drawing busi­
ness is producing the data.

Just for fun let's draw a lighthouse. We should do the drawing on
cross-section paper so that we can easily read the X,Y coordinates for each
end of each straight line in the drawing. See Figure 9-3 on page 177.
The first three lines are numbered as examples in Figure 9-3. Line 1 is
represented by the data 3,30,100,110,100. Line 2 is represented by the
data 3,50,100,54,50. Line 3 is represented by the data 3,70,100,66,50. In
a similar fashion we obtain the rest of the data shown in Program 9-8a.
When we have so much data in a program like this, it is a good idea to
insert REMs to separate the data into sensible groups.

1 0 0 HGR : POKE - 1 5 3 0 2 , 0
1 1 0 GOSUB 2 0 0
1 3 0 END
1 9 6 :
1 9 8 REM * V E C T O R P L O T T I N G R O U T I N E
2 0 0 READ C , X , Y , X 1 , Y 1
2 1 0 I F C = - 1 THEN 2 9 0
2 2 0 H C O L O R = C
2 3 0 H P L O T X , Y TO X 1 , Y 1
2 4 0 GOTO 2 0 0
2 9 0 R E T U R N
9 9 6 :
9 9 8 REM * V E C T O R D A T A
9 9 9 REM * T H E TOWER
1 0 0 0 D A T A 3 , 3 0 , 1 0 0 , 1 1 0 , 1 0 0
1 0 0 3 D A T A 3 , 5 0 , 1 0 0 , 5 4 , 5 0
1 0 1 0 D A T A 3 , 7 0 , 1 0 0 , 6 6 , 5 0
1 0 1 3 REM * T O P OF TOWER
1 0 1 5 D A T A 3 , 5 0 , 5 0 , 7 0 , 5 0
1 0 2 0 D A T A 3 , 5 0 , 5 0 , 5 0 , 4 5
1 0 2 5 D A T A 3 , 7 0 , 5 0 , 7 0 , 4 5
1 0 3 0 D A T A 3 , 5 0 , 4 5 , 7 0 , 4 5
1 0 3 5 D A T A 3 , 5 5 , 4 5 , 5 6 , 4 0
1 0 4 0 D A T A 3 , 6 5 , 4 5 , 6 4 , 4 0
1 0 4 5 D A T A 3 , 5 6 , 4 0 , 6 4 , 4 0
1 0 5 0 D A T A 3 , 5 8 , 4 0 , 5 8 , 3 5
1 0 5 5 D A T A 3 , 6 2 , 4 0 , 6 2 , 3 5
1 0 6 0 D A T A 3 , 5 8 , 3 5 , 6 2 , 3 5
1 0 6 3 REM * T H E DOOR
1 0 6 5 D A T A 3 , 6 0 , 1 0 0 , 6 0 , 9 2
1 0 7 0 D A T A 3 , 6 0 , 9 2 , 6 4 , 9 2
1 0 7 5 D A T A 3 , 6 4 , 9 2 , 6 4 , 1 0 0
1 0 7 7 D A T A 3 , 6 3 , 9 6 , 6 3 , 9 6
1 0 3 8 REM * T H E WINDOW
1 0 9 0 D A T A 3 , 5 6 , 7 0 , 6 2 , 7 0
1 0 9 5 D A T A 3 , 5 6 , 6 7 , 6 2 , 6 7

1 1 0 0 D A T A 3 , 5 6 , 6 4 , 6 2 , 6 4
1 1 0 5 D A T A 3 , 5 6 , 7 0 , 5 6 , 6 4
1 1 1 0 D A T A 3 , 5 9 , 7 0 , 5 9 , 6 4
1 1 1 5 D A T A 3 , 6 2 , 7 0 , 6 2 , 6 4
1 9 9 0 D A T A - 1 , 0 , 0 , 0 , 0

Program 9-8a. Draw a lighthouse using data and Hi-Res.

Figure 9-4. Execution of Program 9-8a.

As long as we have gone this far with the lighthouse, what with a door
and a window, we really ought to have a blinking light, don't you think?
One of the nice things about working with subroutines is that we can
easily add new things to our programs. We can go into our main routine of
Program 9-8a and insert a subroutine call to a blinking-light subroutine at
line 300. Program 9-8b lists these two subroutines.

2 9 6 :
2 9 8 REM * S E T UP B L I N K I N G
3 0 0 FOR 1 8 = 1 TO 1 5 0
3 1 0 HCOLOR= 0
3 3 0 GOSUB 4 0 0

3 4 0 H C O L O R = 3
3 5 0 GOSUB 4 0 0
3 6 0 N E X T 1 8
3 9 0 RETURN
3 9 6 :
3 9 8 REM * L I G H T HERE
4 0 0 H P L O T 5 9 , 3 7 TO 6 1 , 3 7
4 1 0 H P L O T 5 9 , 3 8 TO 6 1 , 3 8
4 2 0 FOR 1 9 = 1 TO 5 0 0 : N E X T 1 9
4 9 0 RETURN

Program 9-8b. Blinking light for lighthouse.

This is hard to show with a figure in a book. You will have to type this one
in to see it work.

There is always room for improvement. Programs 9-8a and 9-8b can
draw only one lighthouse of one size at one spot on the screen. We might
convert the data so that every point is calculated in terms of a single
starting point. That way we will be able to move the lighthouse to any
point that keeps the entire figure on the screen. Our border-drawing sub­
routine could be used to frame our picture. We could determine the data
for many figures and save it in data files on disk. Then we will have a
whole library of figures to use for later graphics applications. The pos­
sibilities are truly unlimited. We might get really spiffy and work out a
way to adjust the size of the figure according to a scale factor. This last
variation is probably best left for shape tables.

. . . . SUMMARY
Just 4 Applesoft keywords open the way to very powerful Hi-Res color
graphics. HGR gives us a screen with 280 columns and 160 rows. POKE
- 1 6 3 0 2 , 0 enables an additional 32 rows at the bottom of the screen. Col­
ors in the range from 0 to 7 are available with HCOLOR=. In order to get
white we must plot the points (X,Y) and (X + 1,Y). Violet and blue appear
only in even-numbered columns, while green and orange may be plotted
only in odd-numbered columns. HPLOT . . . TO plots single points or
line segments in any orientation. We reenable the text screen with the
TEXT statement. We have developed a routine that allows us to specify a
drawing in terms of a collection of line segments. For each segment we
need only supply the color and the endpoints.

P r o b l e m s f o r S e c t i o n 9 - 1
The possibilities for drawing figures on the screen are literally unlimited.
We can only begin to make some suggestions leading you into problems of
interest. Let your imagination lead you into exciting graphics demon­
strations.

1. Modify the border-plotting subroutine of Program 9-5 so that it
may also be used to plot a border around the full graphics screen.
Require that the calling routine set the bottom edge by setting the
variable B E to either 159 or 191.

2. Adjust the data in the lighthouse-drawing program so that each set
of data is calculated in terms of a fixed starting point. Using
(X0,Y0) as (30,100), the first three data lines will be

1 0 0 0 DATA 3 , 0 , 0 , 8 0 , 0
1 0 0 5 D ^ T A 3 , 2 0 , 0 , 2 4 , - 5 0
1 0 1 0 D A T A 3 , 4 0 , 0 , 3 6 , - 5 0

Now the control routine can select a variety of starting points and
draw the lighthouse anywhere on the screen with just one plotting sub­
routine.

9 - 2 . . . H i - R e s G r a p h s f r o m F o r m u l a s i n A p p l e s o f t

Figures that can be described using a formula are easy to graph. There are
many examples from mathematics.

. . . . C a r t e s i a n Coordinates
Let's develop a method for adjusting the X and Y values in the conven­
tional Cartesian coordinate system for plotting on the Apple screen. We
would like to move the (0,0) point nearer the center of the screen and alter
the orientation for Y values so that they are increasing up instead of down.
Suppose we specify that the point (140,80) on the Apple screen shall
represent the point (0,0) in a Cartesian system. The X conversion is easy.
We simply want to move each plotted point to the right on the screen. The
Y conversion requires that we turn the graph "upside down." So the point

(X1,Y1)

in the conventional Cartesian coordinate system becomes

(1 4 0 + X 1 , 8 0 - Y 1)

on the Apple Hi-Res screen.
It would be nice to plot the X and Y axes right on the screen. A very

simple subroutine will do this for us. Again, here we can plot the vertical
line two dots wide.

Plotting points that fit a formula is straightforward enough. For our
first graphs we might do just functions. This is a good application for a
DEFined function. We need a subroutine that scans all possible values for
X and determines if the Y value is on the screen. I f it is, then the routine
should do the plotting. I f not, then the routine should simply try the next
X value. All of this is done in Program 9-9.

9 0 REM * P L O T A F U N C T I O N
1 0 0 HGR : HOME
1 1 6 :
1 1 8 REM * W H I T E BORDER
1 2 0 H C O L O R = 3 : GOSUB 6 0 0
1 2 6 :
1 2 8 REM * P L O T AXES
1 3 0 GOSUB 7 0 0
1 4 6 :
1 4 8 REM * DRAW THE GRAPH
1 5 0 H C O L O R = 1
1 6 0 D E F FN F (X) = X
1 7 0 GOSUB 2 0 0
1 9 0 END
1 9 6 :
1 9 8 REM * P L O T A F U N C T I O N
2 0 0 FOR X I = - 1 3 8 TO 1 3 8
2 2 0 Y l = F N F (X 1)
2 3 0 X = 1 4 0 + X I
2 4 0 Y = 8 0 - Y l
2 5 0 I F Y < 3 OR Y > 1 5 6 T H E N 2 7 0
2 6 0 H P L O T X , Y : H P L O T X + 1 , Y
2 7 0 N E X T X I
2 9 0 RETURN
5 9 6 :
5 9 8 REM * P L O T A BORDER
6 0 0 H P L O T 0 , 0 TO 0 , 1 5 9 TO 2 7 9 , 1 5 9 TO 2 7 9 , 0 TO 0 , 0
6 1 0 H P L O T 1 , 0 TO 1 , 1 5 9 : H P L O T 2 7 8 , 0 TO 2 7 8 , 1 5 9
6 2 0 RETURN
6 9 6 :
6 9 8 REM * P L O T A X E S FOR G R A P H I N G
7 0 0 H P L O T 3 , 8 0 TO 2 7 6 , 8 0
7 1 0 H P L O T 1 4 0 , 3 TO 1 4 0 , 1 5 6
7 2 0 H P L O T 1 4 1 , 3 TO 1 4 1 , 1 5 6
7 9 0 RETURN

Program 9-9. Plot a function in Hi-Res.

This program is set up for the mixed text/graphics screen. We could
easily convert the subroutines at lines 600 and 700 to plot for either full or
part screen using an S0 value, which could be 191 for full screen and 159
for part screen. In addition we might want to move the axes so that the
point (0,0) is not in the exact center. This could be done by passing
(X0,Y0) to the axes-plotting subroutine as the Apple coordinates of the
(0,0) point for the Cartesian graph.

. . . . P o l a r Graphs
Polar equations often produce interesting graphs. One of the reasons we
don't draw many polar graphs is that they take too much tedious calcula­
tion involving trigonometric functions. We can easily produce the graphs

Figure 9-5. Execution of Program 9-9.

without the tedium by using Hi-Res graphics and letting Applesoft do the
calculations.

We may use

R = 1 - 2cos(G)

as a sample equation. Using sines and cosines we get the X and Y coordi­
nates as follows:

X = Rcos(G)

Y = Rsin(G)
where G is the central angle in radians. To obtain a full graph the central
angle must sweep through a full 360 degrees or 2TT. That is about 6.29. We
can get about 60 points by using STEP . 1 in a FOR . . . NEXT loop. Since
the point (0,0) is in the corner of the Apple Hi-Res screen we need to
adjust the starting point to keep the figure in view.

To make our figures as large as possible we can use POKE - 1 6 3 0 2 , 0 to
obtain full-screen graphics. In this situation there is no text display, so
after we have had a chance to examine the graph, we will need to type
TEXT "in the blind" to get back the text screen and see our program. Now
we have to think about adjusting the X and Y values on the conventional

and

Cartesian coordinate system for plotting on the Apple screen. The X con­
version is easy. We simply want to move each plotted point to the right on
the screen. The Y conversion requires that we turn the graph "upside
down." So the point

(X9,Y9)

in the conventional Cartesian coordinate system becomes

(X + X 9 , Y - Y 9)

on the Apple Hi-Res screen. Where the point (X,Y) defines the point on the
Apple screen is where we want the Cartesian point (0,0) to be located.

It would be nice to display a polar axis right on the screen with the
graph. We can easily plot a line beginning at the point (0,0) and extending
to the right edge of the Apple screen. Placing the polar axis on the screen
will clearly locate the graph for us.

Once we have a working program, it will be a simple matter to plug in
other equations. In this way we can look at dozens of graphs in the time it
would take to draw a single graph by hand. It is interesting to watch the
figures as they are formed on the screen. Drawing a polar graph by hand
(like typing a 100-page paper on a portable typewriter) is one of those
things everybody ought to do once in his or her lifetime.

Our program divides nicely into three packages: the control routine,
the polar-axis-plotting routine, and the graph-plotting routine. Let's work
on them in that order.

In the control routine we set up the full graphics screen with HGR and
POKE - 1 6 3 0 2 , 0. Setting the color is easy. Next we define the X and Y
axes and call the polar-axis-plotting subroutine. Polar graphs plotted true
size are usually very small. So we should provide a scaling factor to pro­
duce a larger graph. We define the radial scale in RS. In the actual plotting
subroutine we will be arranging for the central angle to range through a
full rotation of 2ir. But we might like to control the step size in the control
routine. Thus we set the value of ST here. Finally we call the plotting
subroutine. That is all there is to it. See Program 9-10a.

1 0 0 HGR : POKE - 1 6 3 0 2 , 0
1 1 0 H C O L O R = 3
1 2 0 X = 1 3 9 : Y = 9 5
1 3 0 GOSUB 1 0 0 0 : REM * P L O T P O L A R A X I S
1 4 0 RS = 2 5 : ST = . 1
1 5 0 GOSUB 2 0 0 : REM * P L O T THE GRAPH
1 9 0 END

Program 9-10a. Control routine for polar graphing.

In Program 9-10a line 120 sets the axes as close to the center of the screen
as possible. Line 140 sets the radial scale at 25 and the step size at .1 .

The easy one is the polar-axis-plotting routine. All we do is HPLOT a
line from the point (X,Y) to the right edge of the screen. That takes one
statement. See Program 9-10b.

9 9 6 :
9 9 8 REM * P L O T POLAR A X I S
1 0 0 0 H P L O T X , Y TO 2 7 9 , Y
1 0 3 0 RETURN

Program 9-10b. Draw a polar axis.

Now let's look at the actual plotting subroutine. We need to provide for
the angle to sweep a full rotation. This is done with a FOR . . . NEXT
loop ranging from 0 to 6.29. The number of points we want plotted may
well depend on the size of the graph. We may want more points for larger
graphs. So we let the calling routine establish the STep size. A large step
size will not give enough points on the graph, while too small a step size
will take too long to plot. We can then experiment with each new equation
until we get a nice graph. Again we may plot two points next to each other
to give uniform colors. See Program 9-10c.

1 9 6 :
1 9 8 REM * P L O T POLAR GRAPH
2 0 0 FOR G = 0 TO 6 . 2 9 S T E P ST
2 1 0 R l = 1 - 2 * COS (G)
2 2 0 R9 = RS * R l
2 3 0 X9 = R 9 * COS (G) : Y 9 = R 9 * S I N (G)
2 4 0 H P L O T X + X 9 , Y - Y 9
2 4 2 H P L O T X + X9 + 1 , Y - Y 9
2 5 0 N E X T G
2 9 0 RETURN

Program 9-10C. Polar-graph-plotting subroutine.

In Program 9-10c, the polar equation is defined in line 210, the scaling
factor is implemented in line 220, and the Cartesian X and Y values are
calculated in line 230. It will be a simple matter to change the polar
equation by changing line 210. We must be aware that other polar equa­
tions may contain points that are off the screen. We can test for out-of-
range values and skip the plotting for those points. Further, we must be
alert for equations that may cause BASIC to attempt to divide by 0. See
Figure 9-6 for a trial run of this program.

P r o b l e m s f o r S e c t i o n 9 - 2
1. We can easily plot a circle with our polar equation plotting program

using the polar equation R = 1. Do this.

Figure 9-6. Execution of Program 9-10a, b, c.

Z. There are lots of interesting polar graphs. Graph any of the follow­
ing:

a. R = 1 + 2cos(G) - 3sin(G) 2

b. R = 2 + sin(3G)
c. R = 2 + sin(2G)
d. R = sin(G) + cos(G)

3. Many polar equations produce nice graphs, but they will cause our
polar-plotting program to fail. Some points will lie off the graphics
screen. Some values of G will cause division by 0. We can easily
test whether a point is on the screen between lines 230 and 240 of
Program 9-10c. If a point is off the screen, don't plot it. I f the
formula we enter at line 210 has an indicated division then we can
put in a test between lines 200 and 210. If the current value of G
would cause such a 0 division, don't even execute line 210. Adding
these features will enable you to draw graphs for any of the fol­
lowing:

a. Rcos(G) - 1
b. R = 1 + Rcos(G)
c. R = tan(G)
d. R = 2G (make the scale 1 and make G range from - 5 0 to

50)
e. R = 2/G (scale 25 and G from - 1 0 to 10)

PROGRAMMER'S CORNER 9

S h a p e s
Hi-Res graphics with shapes is marvelous. Once we place a shape defini­
tion in Apple's memory, a special set of shape keywords makes for easy
shape plotting. DRAW lets us draw a shape, and XDRAW lets us draw a
shape in the complement of the HCOLOR used for DRAW. ROT permits
us to rotate a shape, and SCALE changes the size of shapes. Creating a
shape table seems tedious at first, but once you've done a few it gets
better.

Shapes are described with a sequence of plotting vectors. The first
task is to draw a shape on graph paper. Suppose we want to draw a boat
using shapes. First we draw the boat. See Figure 9-7(A).

There are eight kinds of arrows available. We can plot or not plot in
each of the four directions. Select a starting point in the drawing of Figure
9-7(A) and trace the boat using only arrows that move up, right, down, or
left and either plot or not plot. Since there are eight possible kinds of
arrows they may be represented in three binary bits as shown in Table 9-1.

Table 9-1. Shape vectors and their codes.

Each byte of a shape table stored in memory may store up to three vector
codes, provided the third vector code is for a nonplottiilg vector. The vec­
tor codes are entered into the byte beginning with the low-order bits.
Thus, the binary byte

01100111 01 / 100 / 111

represents the three vectors 111, 100, and 01 in that order from right to
left. Such a byte in a shape table will cause a plot and move to the left
followed by a plot and move up followed by a move to the right without
plotting. Once we have a byte such as the one above, we may convert it to
a decimal value that may be POKEd into memory. Or we may convert it to

Figure 9-7. Drawing a boat for a shape table.

a hex value and enter it into memory using the Apple monitor. Using
decimal values makes it easy to store a shape table as data statements in a
program. Shape tables are easy to edit and save in this way. Since a byte is
eight bits and a plotting vector requires three bits, the third or leftmost
plotting vector in a byte can only be a nonplotting vector; it cannot be the
vector move up because all zeros at the end of a byte will be ignored. In
fact, we could totally ignore those two bits and use each byte to store only
two vector codes. The end of a shape table is signified by a byte containing
all zeros. Let's unravel the vectors in our boat drawing in Fig. 9-7(A) to get
a sequence of decimal values for our shape table.

Now we need to know about the structure of a shape table in memory.
A shape table is segmented into two distinct parts. The beginning of a
shape table contains the indexing information required to find the actual
shape definitions. The rest of the shape table is made up of the shape
definitions. The first byte must be the number of shape tables in the range
0 to 255. The second byte is ignored. Next, each pair of bytes is how far
from the first byte of the table the corresponding shape definition begins.
This is sometimes called the offset. The offset for the first shape table goes
in the third and fourth bytes of the table. The offset for the second shape
table goes in the fifth and sixth bytes. Thus for two shape tables, the first
shape table will have an offset of six because the first six bytes are used
for indexing information. For a shape table beginning at memory address
Kl , the Nth shape-table offset must be entered in memory bytes K1+2*N
and K1 + 2*N + 1.

It is very important that the Apple "know" where the shape table
begins. The address where the table begins must be entered into memory
at locations 232 and 233 (or E8 and E9 hex). This may also be done with
POKEs. After you have some experience with shape tables and Apple
memory, you will know where in memory to store shape tables. For our
example we may use memory location 300 hex. There are 256 bytes there
that we may use for this purpose. That area of memory was left for Apple
users to locate things like shape tables and machine-language routines. If
we want to use that space for some other purpose or if our shape table is
more than 256 bytes, then we have to look elsewhere in Apple's memory.

Another place for shape tables is just before DOS. When we boot up a
disk DOS places its starting address in memory locations 115 and 116. We
can find that address with the statement

1 P R I N T P E E K (1 16) * 2 5 6 + P E E K (1 1 5)

Suppose we get 38400 and we want room for 1024 bytes. We can provide
the necessary space with

] H I M E M : 3 7 3 7 6

That is 38400 - 1024. We may include the HIMEM: statement as the 1st

Figure 9-8. Shape table for a boat.

Figure 9-8 (concluded).

statement of an Applesoft program. Next, we have to figure out the 2
byte values to place at 232 and 233. 37376/256 comes out evenly to 146,
so the low-order byte is 0 and the high-order byte is 146. There is nothing
wrong with allowing a little extra space. If that gives us numbers that are
convenient to work with, then so much the better.

Program 9-11 is set up to load our shape table at address 300 hex. The
subroutine beginning at line 900 does it all. The number 300 hex goes in
2 bytes in memory. The 3 is the high-order byte, and 0 is the low-order
byte. See the data in line 1000 of Program 9-11. This is a simple program
to draw our boat in 3 different sizes at 3 different locations on the screen.
With just a few minor changes you can make this program rock the boat
in color.

1 HOME
1 0 0 GOSUB 9 0 0 : REM * POKE SHAPE T A B L E D A T A
1 1 0 HGR
1 2 0 H C O L O R = 3 : GOSUB 6 0 0 : REM * P L O T BORDER
1 9 6 :
1 9 8 REM * P L O T SOME BOATS
2 0 0 H C 0 L 0 R = 3
2 1 0 S C A L E = 1 : R 0 T = 0
2 2 0 DRAW 1 A T 1 0 , 1 0
2 5 0 S C A L E = 2
2 6 0 DRAW 1 AT 3 0 , 3 0
3 0 0 S C A L E = 5
3 1 0 DRAW 1 AT 6 5 , 6 5
5 9 0 END
5 9 6 :
5 9 8 REM * P L O T A BORDER
6 0 0 H P L 0 T 0 , 0 TO 0 , 1 5 9 TO 2 7 9 , 1 5 9 TO 2 7 9 , 0 TO 0 , 0
6 1 0 H P L 0 T 1 , 0 TO 1 , 1 5 9 : H P L O T 2 7 8 , 0 TO 2 7 8 , 1 5 9
6 2 0 RETURN
8 9 6 :
8 9 8 REM * POKE SHAPE T A B L E
9 0 0 READ A 1 , A 2
9 0 5 POKE 2 3 2 , A 1 : POKE 2 3 3 , A 2
9 1 0 K l = A l + 2 5 6 * A 2
9 1 5 READ N l
9 2 0 POKE K 1 , N 1
9 2 5 OS = 2 * N l + 2
9 3 0 FOR 1 9 = 1 TO N l
9 3 5 1 2 = I N T (OS / 2 5 6) : I I = OS - 2 5 6 * 1 2
9 4 0 POKE K l + 2 * 1 9 , 1 1 : POKE K l + 2 * 1 9 + 1 , 1 2
9 4 5 READ P : POKE K l + O S , P
9 5 0 OS = OS + 1
9 5 5 I F P < > 0 T H E N 9 4 5
9 6 0 N E X T 1 9
9 8 0 RETURN
9 9 2 :
9 9 4 REM * B E G I N SHAPE T A B L E D A T A
9 9 6 :

9 9 8 REM * S T A R T I N G A D D R E S S
1 0 0 0 D A T A 0 , 3
1 0 9 6 :
1 0 9 8 REM * NUMBER OF SHAPE T A B L E S
1 1 0 0 D A T A 1
1 1 9 6 :
1 1 9 8 REM * F I R S T SHAPE T A B L E
1 2 0 0 D A T A 4 5 , 4 5 , 4 5 , 4 5 , 6 2 , 6 2 , 6 3 , 6 3 , 6 3 , 39 , 39 , 4 5
1 2 1 0 D A T A 3 6 , 3 6 , 3 6 , 53 , 53 , 53 , 5 3 , 53 , 6 3 , 6 3 , 7 , 0

Program 9-11. Draw a few boats with one shape.

The subroutine at line 900 may be used to POKE any collection of shape
tables in memory. It does all of the necessary offset calculations for us. All
we have to do is create the shapes. Line 220 simply draws shape number 1
with the starting point at 10,10 on the Hi-Res screen. The general form is

DRAW S AT X , Y

XDRAW 1 AT 10,10 would draw the same shape in the complementary
color. We can create a flickering effect by repeating DRAW followed by
XDRAW in a loop. We can also draw a figure and then set the HCOLOR=
to the background and draw it again. This will make the figure disappear.
If we then redraw the figure in the original color in a new location we can
create the appearance of motion. By creating a series of figures we can
produce animation.

Figure 9-9. Plotting some boats using a shape table.

Line 250 sets the scale at 2. This means that DRAW will produce a
figure on a scale of 2 to 1 compared to our original figure. ROT= may be
set in the range 0 to 63 to obtain figures rotated in 64ths of a revolution.
ROT= is limited by the scale. The number of values that produce unique
rotations is 4 times the scale value. Thus, for SCALE = 1, we may set
R O T - to 0, 16, 32, or 48.

Plotting with shapes is subject to the same odd-even column color
limitations as HPLOT. To assure that a shape is drawn in the desired
HCOLOR=, we may simply DRAW at X,Y and X+1,Y.

Shape tables are enjoyable to work with, but making up shape tables
by hand can be somewhat tedious. There are numerous programs and
items of hardware on the market to help us with this. I f you are doing a lot
of work with shapes, it would be worth your while to investigate these
products.

A p p e n d i x A

In the
Beginning

A - l . . . S e t t i n g Up t h e M a c h i n e

Many dealers will set up and check out the new computer at the time that
you purchase it. Where circumstances permit, it is a good idea to ask for a
demonstration. However, little time or great distance may dictate that the
buyer set up and check out his or her own machine. Meticulously follow
the instructions in the manual that is included with the computer. Never
plug in or unplug anything inside the Apple case unless the power is off.
Failure to observe this one rule will incur significant damage to the elec­
tronics of the Apple (or any other computer).

A - 2 . . . F r o m BASIC t o BASIC

When an Apple II is turned on, a star appears in the lower left corner. To
enter BASIC, simply type the letter B while holding down the key marked
CTRL. Then release both keys and press the key marked RETURN. The
machine responds by displaying a "greater than" symbol (>) . With the
Apple II Plus the screen will clear and "APPLE 11" will appear with the]
symbol, showing that the unit is in BASIC.

The Apple II comes with Apple Integer BASIC in ROM (Read Only
Memory). This means that this language is always ready at the flick of a
memory pointer. The CTRL-B-and-RETURN sequence causes the Apple
II to display a "greater than" symbol (>) . This signifies that you are under

the influence of Apple Integer BASIC. The Apple II Plus comes with
Applesoft in ROM. Thus Applesoft is instantly available, and the CTRL-
B-and-RETURN sequence is not needed. A right square bracket (]) indi­
cates that Applesoft is the language of the moment. The "greater than"
symbol (>) or the right square bracket (]) will serve as a constant remin­
der of which BASIC you are working with.

I f you have a disk system on an Apple II, then you may gain access to
Applesoft by issuing the DOS (Disk-Operating System) command "FP".
Never try to run Applesoft as an Apple Integer BASIC program, even
though it appears in the catalog with the " I " designation, which appar­
ently indicates that it is an Integer BASIC program.

Should you hit the R E S E T key and find yourself in the monitor pro­
gram, typing CTRL-C will reenter Applesoft, but it will not reconnect you
to DOS. The way back is to type 3D0G ("three dee zero gee").

. . . . ROM Card Applesoft
The Applesoft II Firmware Card must be plugged into slot 0 at the rear of
the computer. The power must be turned off to install this card (or any
other card). On older cards (without the Autostart ROMs), pressing
R E S E T will put you in the monitor with the STAR prompt. In this case, to
get into Applesoft, type C(D80 RETURN and then CTRL-B RETURN. To
get into Integer BASIC, type C081 RETURN and then CTRL-B RETURN.
On newer cards with Autostart ROMs, pressing R E S E T brings back the
prompt character associated with whichever BASIC you were working
with. In this case, in order to change BASICs, you need the command
CALL - 1 5 1 to get into the monitor. Once in the monitor, issue the se­
quence described above. In DOS 3.1, pressing R E S E T with the Autostart
ROMs will cause the disk drive to boot the disk. This is guaranteed to
destroy your program.

A p p e n d i x B

Saving
and Retrieving

Programs
B - l . . . T a p e

. . . . Saving on Tape
You can use a cassette tape recorder to save your programs. Make sure
that the cassette two-wire cable is plugged in so that the jack labeled OUT
on the Apple is connected to the jack labeled MIC, MICROPHONE, or
INPUT on the tape recorder. With a blank cassette in the recorder, rewind
the tape, but make sure that you don't try to record your program on the
tape leader. If you are not recording at the beginning of the tape it is a good
idea to use the tape counter and keep a written account of what is re­
corded at what reading of the tape counter. Type SAVE, then start your
recorder in RECORD mode. Finally, press the RETURN key on the Apple.
The cursor should disappear. The computer should soon beep to signal
that the beginning of the program has been sent out to the tape recorder.
The next beep should signal that the program has been recorded. The time
between beeps will be short for short programs and long for long pro­
grams. The cursor should reappear with the appropriate prompt character
at this point. If any of these things fails to happen, hit the R E S E T key
(gently, please), and try again. Let's hope that your DOS doesn't boot the
disk. It is very important to note that the Apple has no way to determine
whether or not the tape recorder is hooked up correctly or even at all. So, it
is a good idea to rewind the cassette and listen to what you think you just
recorded. Turn the volume down below 50% (so your ears don't hurt),
remove the plug labeled EAR (or whatever) and PLAY the tape. You won't

hear any Bach. What you should hear is a steady high-pitched tone for
about five or ten seconds followed by a crackling sound. I f you started
with a blank tape, that is your program. I f you are reusing an old tape,
then you cannot be certain that what you are listening to is not the old
program. After you have recorded a few programs, you will develop confi­
dence in the procedure and it will become automatic for you.

Once you have a program developed to the point where you will be
using it regularly, it is a good idea to make backup copies. One method for
doing this consists simply of saving the same program twice on the same
cassette. In addition to this, it makes sense to save a copy on a separate
cassette. I f your program cassette should become damaged, this second
cassette will save a lot of work. If you have kept a running written record,
the consequences of a lost program are kept to a minimum.

. . . . R e t r i e v i n g P r o g r a m s f r o m Tape (LOAD)
We record our programs so that we may later retrieve them. First make
sure that the two-wire cable is plugged in so that the jack labeled IN on
the Apple is connected to the jack labeled EAR, EARPHONE, MON, or
MONITOR on the tape recorder. Rewind the cassette to the beginning of
your program. If you kept a record of the tape counter, reading this will be
easy. Start playing the tape and type "LOAD" followed by RETURN at the
Apple keyboard. The cursor will disappear and soon a beep will be heard.
Then some time later a second beep will be heard and the cursor will
reappear. The time between beeps is short for short programs and long for
long programs. If you get "ERR" or "*** MEM FULL ERR" adjust the
volume and/or tone on your cassette recorder and try again.

B - 2 . . . D i s k

I f you have a disk system, saving programs is much easier and faster than
it is for cassette tapes.

. . . . INITia l iz ing a Disk
In order to save a program on a disk the disk must first be initialized. First
boot up the system disk that comes with the disk drive and disk controller.
Then remove it and insert a brand new blank disk. Next, type "NEW" and
write a little program that you'd like to have executed every time the disk
is booted up. Finally, prepare the disk for saving programs by typing
'"INIT PROGRAM NAME". PROGRAM NAME is a name of your choice.
The disk will whirr, and the light will stay on for a couple of minutes. Now
your new disk is ready to store programs for you. This initialization pro­
cess must be done only once for each disk since it erases anything that is
already there. After you have initialized a few disks, you won't have to
think about it until it is time to initialize a new batch of disks.

. . . . Saving on Disk
Of course you must first write the program. Next, merely place the disk on
which you want to save the program in the disk drive and type "SAVE"
followed by the name you would like to use later to retrieve it. I f you get
an error message indicating that the disk is full, then delete any partial
program that may have been saved there, get another disk, and try again.
The command to erase a program from disk is "DELETE PROGRAM
NAME". When all the activity dies down and the light on the disk drive
goes off, type "CATALOG" to verify that your program made it to the disk.

. . . . W a r n i n g
It is extremely important to realize that DOS must be booted up before
you type your program. There is no way to boot DOS without destroying
your program. Should you find yourself in the unhappy situation of want­
ing to save a long program that you have written without booting DOS,
you can still recover. Attach your cassette recorder and save your program
on tape. Then boot DOS, LOAD your program from tape, and SAVE it on
disk.

A p p e n d i x C

CALLS, PEEKS,
and POKES

0 - 1 . . . C A L L S

The statement

CALL - 8 6 8

causes the computer to execute the machine-language instructions that
begin at the memory location whose address is - 8 6 8 . Certain addresses
are provided that perform defined functions and then return to the active
BASIC program. What about that negative address? The address is really
64668, but that value is outside the integer range of Integer BASIC.
Memory has 65536 addresses from 0 to 65535. Addresses from 32768 to
64535 may also be labeled - 3 2 7 6 8 to - 1 . So we must subtract 65536
from 64668 to get a value that is within range. This particular CALL
clears the screen from the cursor to the end of the line.

Puts you in the "monitor." This provides the ability to
work directly with the 6502 processor.
Clears the display screen from the cursor to the end of
the current line.
Scrolls the text up one line on the screen.
Generates a line feed on the text screen.
Clears the screen and places the cursor in the upper
left-hand corner. This position is called the HOME po­
sition.

CALL - 1 5 1

CALL - 8 6 8

CALL - 9 1 2
CALL - 9 2 2
CALL - 9 3 6

CALL - 9 5 8 Clears the screen from the cursor to the end of the
page.

CALL - 1 9 9 4 Fills the first 20 lines of the page-1 text screen with (a
signs. If Apple is in GR mode, then the 40-by-40
graphics screen is cleared to all black.

CALL - 1 9 9 8 Fills all 24 lines of the page-1 text screen with re­
versed @ signs. In GR mode the 40-by-40 graphics
screen is cleared to black, and the 4 lines of text at
the bottom are filled with reversed @ signs. In full­
screen graphics mode, the entire 40-by-48 graphics
screen is cleared to black.

CALL 62454 Clears the Hi-Res screen to the last HCOLOR last
HPLOTted. (Not available in Integer BASIC.)

CALL 62450 Clears the Hi-Res screen to all black. (Not available in
Integer BASIC.)

C - 2 . . . P E E K S a n d P O K E s

PEEK allows us to read the data value in any byte in memory. For
example:

PRINT PEEK(50)

will probably produce the value 255. This indicates that the Apple is in
normal display mode. A 127 there indicates a flashing display, and a 63
indicates inverse mode (dark characters on a light background).

POKE allows us to write data values into any byte in RAM. ROM
BASIC is not in RAM, so we cannot write data values there. For example:

POKE 50,63

will produce the inverse display mentioned above.
There are some addresses in BASIC that produce the same effect

whether we use PEEK or POKE. PEEK is a function that produces a
numeric value in the range 0 to 255. So, in a program we need a statement
such as

935 PI = PEEK(X)

On the other hand, POKE is a BASIC statement and may stand by itself.

. . . . P E E K S
PEEK (- 1 6 3 8 4) Reads 1 character from the keyboard. I f the

value is greater than 127, then a character has been
entered. See also POKE - 1 6 3 6 8 , 0 .

PEEK (- 1 6 3 3 6) Produces a click in the Apple speaker. POKE
- 1 6 3 3 6 , 0 has the same effect.

PEEK (- 1 6 2 8 7)

PEEK (- 1 6 2 8 6)
PEEK (- 1 6 2 8 5)
PEEK (36)

PEEK (37)

Reads the game button at PDL(0). I f this value is
greater than 127 then the game button is being
pressed. The value drops below 128 when the but­
ton is released.
Reads the game button at PDL(l) .
Reads the game button at PDL(2).
Returns the horizontal position of the cursor in the
range of 0 to 39.
Returns the vertical position of the cursor in the
range of 0 to 23.

. . . . POKEs
The first 8 POKEs may be used to control the screen mode with respect to
TEXT, Hi-Res, Lo-Res, and pages 1 and 2. Page 1 of Hi-Res graphics
occupies from 8192 to 16383 of memory. Page 2 of Hi-Res occupies from
16384 to 24575. Page 1 of Lo-Res graphics uses memory from 1024 to
2047 and page 2 of Lo-Res graphics uses from 2048 to 3095. These POKEs
are often referred to as switches because they switch between 2 modes.
While some of these switches seem to be equivalent to BASIC keywords,
there are some important differences. For example, if we switch on the
Hi-Res screen with HGR, Applesoft also clears the screen to all Blackl ,
while doing this with POKE - 1 6 2 9 7 , 0 will restore the Hi-Res screen
display.

Note that the switches may arranged in 4 pairs: [-16303 and
- 1 6 3 0 4] , [-16301 and - 1 6 3 0 2] , [-16299 and - 1 6 3 0 0] , and [-16297 and
- 1 6 2 9 8] ; because each reverses the action of the other.

POKE - 1 6 3 0 4 , 0

POKE
POKE

16303,0
16302,0

POKE - 1 6 3 0 1 , 0

POKE - 16300,0

POKE

POKE

16299 ,0

16298 ,0

Places the Apple in Lo-Res graphics. This differs
from GR. GR also clears the graphics screen to all
black, but this POKE has no effect on the screen
itself or the value of COLOR=.
Sets the Apple in text mode.
Enables full-screen graphics in either Hi-Res or
Lo-Res.
Sets either graphics to mixed graphics and text.
This provides the 4 lines of text at the bottom of
the screen.
Displays page 1 of text, Lo-Res, or text, whichever
is active at the time of the POKE. This is the
normal page. We don't need this unless we have
previously displayed page 2.
Displays page 2 of text, Lo-Res, or Hi-Res,
whichever is active at the time of the POKE.
Switches from Hi-Res graphics to the correspond­
ing text page (1 or 2). However, the display on the

screen remains unchanged. This switch is needed
in the event that one goes from Hi-Res graphics in
Applesoft to Integer BASIC. Without this, GR
might produce the previous Hi-Res screen.

POKE - 1 6 2 9 7 , 0 Switches to Hi-Res graphics in the current page
number.

The next 4 POKEs may be used to define the text window. I f we are
going to change the left margin and the window width, it is important to
change the width before changing the left margin.

POKE 32,L Set the left edge of the text scroll window. L must be in
the range 0 to 39.

POKE 33,W Define the width of the text scroll window. W must be
in the range 1 to 40.

POKE 34,T Set the top line of the text scroll window. T ranges from
0 to 23.

POKE 35,B Set the bottom line of the text scroll window. B ranges
from 1 to 24.

These two POKEs are concerned with the position of the cursor.
POKE 36,H Places the cursor on the current line at the Hth charac­

ter position. The sensible range for H is 0 to 1 less than
the screen width.

POKE 37,V Places the cursor on line V in the range 0 to 23.

A p p e n d i x D

Index
of Programs

in Text

Program Description Page
1-1. Our first Applesoft program. 2
1-2. Our first Integer BASIC program. 6
1-3. Calculations in Applesoft. 9
1-4. Demonstrate scientific notation. 10
l-4a. Demonstrate program listings without line

breaks. 11
1-5. Demonstrate + , - , *, and / in Integer BASIC. 12
1-6. Calculate a simple average. 13
1-7. Calculate gasoline mileage. 15
1-8. Program 1-7 with READ . . . DATA. 17
2-1. First counting program. 25
2-2. Counting with display. 25
2-3. Counting from 1 to 7. 26
2-4. Birthday dollars. 28
2-5. Package-weight monitor. 29
2-6. Generate ten random numbers. 33
2-7. Flip a coin 39 times. 34
2-8. Roll a die ten times. 35
2-9. Program 2-7 showing shortened IF . . .

THEN. 36
2-10. Program 2-3 using FOR . . . NEXT. 37
3-1. Draw the " 1 " face of a die. 46

Program Description Page
3-2a. The control segment of a die-drawing

program. 49
3-2b. Subroutine to display a " 1 " die. 50
3-3. Drawing a " 1 " anywhere on the screen. 50
3-4. Subroutine to set full-screen graphics and

clear last eight rows. 57
4-1. Find largest factor. 62
4-2. Find largest factor using SQR(N). 64
4-3. Rounding to the nearest hundredth. 65
4-4. Compound interest by formula. 66
4-5. Compound interest with money added each

month. 66
4-6. Rounding to the nearest hundredth. 67
4-7. Finding largest factor. 70
4-8. Find largest factor without square-root

function. 71
4-9. Use paddle to enter responses 0 to 9. 74
4-10. Demonstrate premature keyboard entry. 77
5-1. READ . . . DATA with strings. 80
5-2. Program 5-1 with reformatted DATA. 81
5-3. Using dummy data to terminate program

execution. 81
5-4. String comparison in Applesoft. 82
5-5. Display the days of the week. 85
5-6. Single string subscript. 86
5-7. Alphabetizing in Integer BASIC. 88
5-8. Rearranging names in Integer BASIC

strings. 8 9 - 9 0
5-9. Display characters 0 through 95. 93
5-10. Formatting subroutine. 96
5-11. Control routine to test Program 5-10. 96
5-12. Demonstrate Integer BASIC display screen. 101
5-13. Display Integer BASIC character set. 101
5-14. Display 0 to 255 with POKEs in Integer

BASIC. 102
6-1. Find average, highest, and lowest

temperatures. 104-105
6-2. Drawing five numbers at random from

among ten. 105-106
6-3. Drawing without replacement efficiently. 107
6-4. Find daily average temperature. 110
6-5. Display the days of the week. 112
6-6. Display average daily temperature with day

names. 113-114

Program Description Page
6-7. Total price in record store. 115
6-8a. Control routine to play Geography. 117
6-8b. Read names into an array for Geography

game. 117-118
6-8c. Geography-game instructions. 118
6-8d. Initialize available-names array. 119
6-8e. Begin Geography game. 119
6-8f. Person-response subroutine in Geography. 119-120
6-8g. Computer-response subroutine for

Geography. 120
6-8. Play a Geography game. 121-122
7-1. Pick a number apart in Integer BASIC. 126
7-2. Access digits by successive division. 127
7-3. Using STR$ to separate numeric digits. 128
7-4. Convert decimal to binary. 131-132
7-5. Decimal to binary using successive division. 132-133
7-6. Hex input/output. 134-135
7-7. Process a menu. 142-143
8-1. File-access routine. 147
8-2. WRITE to a file. 148
8-3. READ data from a file. 149
8-4. Demonstrate file name in a string variable. 149
8-5. Write names to a file for Geography game. 150
8-6a. File-reading subroutine for Geography game. 151
8-6b. Write names to the file in the Geography

game. 151
8-6c. Changes in the control routine to convert

array Geography to file Geography. 151
8-6. File-oriented Geography game. 152-154
8-7. Listing a program to a file. 156
8-8. Initialize mailing-list file. 160
8-9a. Control routine for mailing-list program. 161
8-9b. Read the data labels for mailing-list program. 162
8-9c. Read available space in mailing-list program. 162
8-9d. Handle keyboard data entry for mailing-list

program. 163
8-9e. Prepare available space for mailing-list

program. 164
8-9f. Write a data entry in the mailing-list

program. 164
8-9g. Write available-space parameters in

mailing-list program. 164
8-9h. Program parameters for mailing-list

program. 165

Program Description Page
8-9. Entering names in a mailing-list file. 165-167
9-1. Plot dots in the four corners. 173
9-2. Plot dots in the four corners (white this time). 173
9-3. HPLOTting a border on the Hi-Res screen. 174
9-4. Subroutine to plot a border. 174
9-5. Program 9-4 with color-correction plotting. 174
9-6. Display Apple Hi-Res colors. 175
9-7. Plot drawings from data. 177
9-8a. Draw a lighthouse using data and Hi-Res. 178-179

Program Description Page
9-8b. Blinking light for lighthouse. 179-180
9-9. Plot a function in Hi-Res. 182
9-10a. Control routine for polar graphing. 184
9-10b. Draw a polar axis. 185
9-10c. Polar-graph-plotting subroutine. 185
9-11. Draw a few boats with one shape. 192-193

A
p
p
en

d
ix

 E

So
lu

tio
n

Pr
og

ra
m

s
fo

r
E

ve
n-

N
um

be
re

d
Pr

ob
le

m
s

E
ac

h
tw

o-
pa

ge
 s

pr
ea

d
sh

ou
ld

 b
e

re
ad

 f
ro

m
 t

op
 to

 b
ot

to
m

 a
s

on
e

in
di

vi
du

al
 p

ag
e.

Ch
ap
te
r
1

P
ro

b
le

m
 N

o.
 2

10

IN
PU

T
A,

B,
C,

D,
E

20

PR
IN

T
A

+
B
+

C
+

D
+

E

1 R
UN

71

24
.3

,6
57

,8
01

.4
5,

-9
,8

1
16

54
.7

5

P
ro

b
le

m
 N

o.
 4

10

LE
T

X
=

1
/
3

20

PR
IN

T
"

X
=

";
X

30

PR
IN

T
"

X*
3

=
";
X

*
3

40

PR
IN

T
"X

+X
+X

=

";
X

+
X

+
X

]R
UN

 X
=

.3
33

33
33

33

X*
3

=
1

X+
X+

X
=

1

15
0

T=
R*

10
/D

16

0
PR

IN
T

Q;
".
";
T

99
9

EN
D

>R
UN

EN

TE
R

IN
TE

GE
RS

TO

BE

DI

VI
DE

D
(N
,D
)

77
 ,
2

3.
5 Ch
ap
te
r
2

Se
ct

io
n 2

-1

P
ro

b
le

m
 N

o.
 2

10
0

RE
M

CH
EC

K
AV

ER
AG

E
PA

CK
AG

E
WE

IG
HT

FO

R
18
0

GR
AM

MI

NI
MU

M
20
0

Tl

=

0
21

0
CI

=

1
22

0
PR

IN
T

"W
T

" ;
C1

;
23

0
IN

PU
T

WT

23
2

IF
 W

T
=

0
TH

EN

GO
TO

99
9

P
ro

b
le

m
 N

o.
 6

10

N

=
1

/
2

+
1

/
3

20

D

=
1

/
3

-
1

/
4

30

PR
IN

T
N

/
D

]R
UN

10

P
ro

b
le

m
 N

o.
 8

10

PR
IN

T
1

*
2

*
3

*
4

*
5

*
5

*
7

*
8

*
9

*
10

1R
U

N
36
28
80
0

P
ro

b
le

m
 N

o.

10

10

PR
IN

T
"E

NT
ER

 N
UM

ER
AT

OR

AN

D
DE

NO
MI

NA
TO

R
(N
,
D)

"
20

PR
IN

T
"F
OR
 T

WO
 F

RA
CT

IO
NS

TO

BE

 M
UL

TI
PL

IE
D"

30

PR
IN

T
40

PR
IN

T
"

FI
RS

T
FR

AC
TI

ON

";

50

IN
PU

T
N1

,D
1

50

PR
IN

T
"S

EC
ON

D
FR

AC
TI

ON

";

70

IN
PU

T
N2

,D
2

80

PR
IN

T

90

PR
IN

T
"T
HE

PR

OD
UC

T:

";

N1

*
N2

;"
/"

;D
1

*
D2

1R
U

N
EN

TE
R

NU
ME

RA
TO

R
AN

D
DE

NO
MI

NA
TO

R
(N
,D
)

FO
R

TW
O

FR
AC

TI
ON

S
TO

BE

 M
UL

TI
PL

IE
D

FI
RS

T
FR

AC
TI

ON

?1
,3

SE
CO

ND

FR

AC
TI

ON

?5
,1

TH
E

PR
OD

UC
T:

5/
21

P
ro

b
le

m
 N

o.
 1

2

10
0

PR
IN

T
"E

NT
ER

IN

TE
GE

RS

TO

BE

DI

VI
DE

D
(N
 ,
D)
"

12
0

IN
PU

T
N,

D
13

0
Q=

N/
D

14
0

R=
N-

Q*
D

23
5

Tl

=

Tl

+

WT

24
0

CI

=

CI

+

1
25
0

IF
 C

I
<

=
5

TH
EN

GO
TO

22
0

26
0

AV
 =

 T
l

/
5

27
0

IF
 A

V
<

16
0

TH
EN

GO
TO

29
0

27
5

PR
IN

T
"A

CC
EP

T
TH
IS

LO
T"

28
0

GO
TO

29
5

29
0

PR
IN

T
"R

EJ
EC

T
TH
IS

LO
T"

29
5

PR
IN

T
29
7

PR
IN

T
30
0

GO
TO

20
0

99
9

EN
D

]R
UN

WT

17

17
9

WT

27

18
2

WT

37

18
1

WT

47
18
0

WT

57
17
9

AC
CE

PT

TH
IS

LO
T

WT

17
0

P
ro

b
le

m
 N

o.

4

10
0

RE
AD
 A

,B
,C

,D

11
0

PR
IN

T
"

SC
OR

ES
:

";
A;
"

";
B"

";
C;
"

";
D

12
0

PR
IN

T.
"A

VE
RA

GE
:

";
(A

 +
 B

+

C
+

D)

/

4
90
0

DA
TA

10
0,
86
,7
1,
92

]R
UN

SC

OR
ES

:
10
0

86

71

92

AV
ER

AG
E:

87
.2
5

P
ro

b
le

m
 N

o.

6

10
0

RE
M

CO
UN

T
AN

D
SU

M
IN

TE
GE

RS

FR
OM

10
01

TO

22

13
 D

IV
IS

IB
LE

BY

 E
LE

VE
N

15
0

CI

=

0
16
0

II

=

10
01

17
0

SM

=

0

P
ro

b
le

m
 N

o
.

6

(c

o
n

ti
n

u
e

d
)

21
0
C
I

=
C
I

+
1

22
0
SM

=
SM

+
I
I

28
0

I
I

=
I
I

+
11

29
0

IF

I
I

<
=

2
2
1
3

TH
EN

GO
TO
 2
10

31

0
PR

IN
T
C
I
;
"

NU
MB

ER
S"

32
0

PR
IN

T
S
M
;
"

S
U
M
"

1R
U

N
11

1
NU

MB
ER

S
17
82
66
 S
U
M

P
ro

b
le

m
 N

o
. 8

10
0

R
E
M

DO
UB

LE

WA

GE
S

EA
CH

D
A
Y

FO
R

30
 D
AY

S
15
0
DA

=
1

16
0
W
A

=
.0
1

17
0
T
l

=
0

19
8

R
E
M

20
0
T
l

=
T
l

+
W
A

21
0
W
l

=
W
A

22
0
W
A

=
W
A

*
2

23
0
DA

 =
 D

A
+
1

29
0

IF

DA

<

=
30

TH

EN

GO
TO
 2
00

30
0

PR
IN

T
"$

";

W1
;"

$
";
T1

]R
UN

$
53
68
70
9.
12

$
10

73
74

18
.2

P
ro

b
le

m
 N

o
.

1
0

10
0

R
E
M

CA
LC

UL
AT

E
TH
E

AM
OU

NT

OF

A
N

OR
DE

R
20
0
B
K

=
4

*
10
.9
5

*
(1

-
.2
5)

22
0
RC

=

3
*

4.
98

*

(1

-

.1
5)

24
0.
 R

P
=

59
.9
5

29
0
T
l

=
B
K

+
R
C

+
R
P

30
0
T

=
T
l

*
(1

-
.0
2)

40
0

PR
IN

T
"A

MO
UN

T
$
";
T

]R
UN

AM

OU
NT

$

10
3.

38
90

2

29
5

PR
IN

T
30
0

PR
IN

T
TA

;"
 T
AI

LS
"

99
9

E
N
D

]R
UN

HT

TT
TH

HT
HH

TT
TH

HH
TH

HH
TH

TT
HT

TT
HH

HH
HH

HH
HT

H
16

TA

IL
S

P
ro

b
le

m
 N

o
. 4

10
0

R
E
M

*
RO

LL
IN

G
TW

O
DI

CE

TE

N
TI

ME
S

15
0
C
I

=
1

20
0

Dl

=

IN
T

(
R
N
D

(1
)

*
6

+
1)

21
0

D2

=

IN
T

(
R
N
D

(1
)

*
6

+
1)

22
0

PR
IN

T
D
1
,
D
2

25
0
C
I

=
C
I

+
1

29
0

IF
 C

I
<

=
10

TH

EN
 2
00

]R
UN

4

2
4

5
4

2
2

5
4

5
5

5
2

5
6

6
4

6
3

3

Se
ct
io
n
2-
3

P
ro

b
le

m
 N

o
.

2

10
0

R
E
M

*
CO

UN
T
OD

D
IN

TE
GE

RS

FR

OM

5

TO
 1
19

1
19
0
C
I

=
0

20
0

FO
R

IN

=

5
TO

1
1
9
1

ST
EP
 2

21
0
C
I

=
C
I

+
1

29
0

NE
XT
 I
N

30
0

PR
IN

T
"O
DD

IN

TE
GE

RS

FR

OM

5

TO

11

91

=
";
C1

1 R
UN

OD

D
IN

TE
GE

RS

FR

OM

5

TO

1
1
9
1

=
59
4

P
ro

b
le

m
 N

o.

12

10
0

RE
M

G
FO
R

GI
FT

S
10
2

RE
M

D
FO
R

DA
Y

NU
MB

ER

10
4

RE
M

Gl

FO

R
GI

FT
S

TH
IS

 D
AY

15
0

G
=

0
16
0

D
=

1
20
0

Gl

=

0
21
0

Gl

=

Gl

+

1
22
0

G
=
G

+
Gl

23
0

IF
 G

l
=

D
TH
EN

GO
TO

30
0

24
0

GO
TO

21
0

30
0

PR
IN

T
G1

,G

30
5

D
=

D
+

1
31
0

IF
 D

<

=
1
2

TH
EN

GO
TO

20
0

40
0

PR
IN

T
"T
OT
AL

 N
UM

BE
R

OF
 G

IF
TS

IS
:

";
G

lR
UN

1

1
2

4
3

10

4
20

5
35

6
56

7
84

8
12
0

9
16
5

10

22
0

11

28
6

12

36
4

TO
TA

L
NU

MB
ER

 O
F

GI
FT

S
IS
:

36
4

Se
ct
io
n

2-
2

P
ro

b
le

m
 N

o.
 2

15
0

TA
 =

 0

19
8

RE
M
*

FL
IP

A

CO
IN

39

TI

ME
S

20
0

FL
 =

 1

23
0

IF

RN
D

(1
)

<
.5
 T

HE
N

27
0

25
0

PR
IN

T
"T
";

25
5

TA

=

TA
 +

 1

26
0

GO
TO

28
0

27
0

PR
IN

T
"H
";

28
0

FL
 =

 F
L

+
1

29
0

IF

FL

<

=
39
 T

HE
N

23
0

P
ro

b
le

m
 N

o.
 4

10
0

RE
M

*
CA

LC
UL

AT
E

WA
GE

S
FO

R
DO

UB
LI

NG

EA

CH

DA

Y
FO
R

30
 D

AY
S

18
0

WA
 =

.0
1

19
0

Tl

=

.0
1

20
0

FO
R

DA

=

2
TO

30

22
0

WA

=

WA
 *

 2

23
0

Tl

=

Tl

+

WA

29
0

NE
XT

 D
A

30
0

PR
IN

T
"$

";
WA
,"
$

";
T1

]R
UN

$
53
68
70
9.
12

$

13
73

74
18

.2

P
ro

b
le

m
 N

o.
 6

10
0

RE
M

G
FO
R

GI
FT

S
10

2
RE

M
D

FO
R

DA
Y

NU
MB

ER

10
4

RE
M

Gl

IS
 G

IF
TS

TO

DA
Y

15
0

G
=

0
16
0

FO
R

D
=

1
TO

12

19
0

Gl

=

0
20
0

FO
R

T
=

1
TO

D

22
0

Gl

=

Gl

+

T
23
0

NE
XT

 T

24
0

G
=

G
+

Gl

30
0

NE
XT

 D

40
0

PR
IN

T
"T

OT
AL

 N
UM

BE
R

OF
 G

IF
TS

IS
:

";
G

lR
UN

TO

TA
L

NU
MB

ER
 O

F
GI

FT
S

IS
:

36
4

P
ro

b
le

m
 N

o.
 8

10
0

RE
M

*
US

IN
G

FO
R.
..
NE
XT

15
0

FO
R

DO

=

1
TO

5

19
8

RE
M
*

39

FL

IP
S

5
TI

ME
S

20
0

FO
R

FL
 =

1

TO

39

23
0

IF

RN
D

(1
)

<
.5
 T

HE
N

27
0

25
0

PR
IN

T
"T
";

26
0

GO
TO

28
0

27
0

PR
IN

T
"H
";

28
0

NE
XT

FL

29

5
PR

IN
T

Se
ct
io
n
2-
3

P
ro

b
le

m
 N

o
.

8
(c

o
n

ti
n

u
e

d
)

29
6

PR
IN

T
30
0

NE
XT
 D
O

99
9

EN
D

lR
UN

TT
TT
TT
HT
TT
HH
HH
TH
HH
HT
HT
TH
TT
HH
HH
TH
HH
TH
TH
T

HH
HT
TH
HH
HT
HH
HT
TT
HT
TH
TT
HT
TH
TH
TT
TH
HH
HH
HH
T

HT
TT
TT
HT
TH
TH
TH
TT
TT
TT
TT
HH
HT
HT
HT
TH
TT
TT
HT
T

TT
TH
TT
TH
HT
TT
HT
TT
TT
TH
HT
TH
HT
TT
TT
TH
HT
HH
TH
T

HT
TH
TH
TT
HT
TH
TT
TT
TH
TT
HH
TT
HT
HT
TH
HT
TT
HT
TT
T

P
ro

b
le

m
 N

o
.

1
0

10
0

R
E
M

*
US

IN
G

FO
R.
..
NE
XT

15
0
TA

 =
 0

19
8

R
E
M

*
FL
IP

A

CO
IN

10
00

 T
IM

ES

20
0

FO
R

FL
 =

1

TO

10
00

23
0

IF

R
N
D

(1
)

<
.5

 T
HE

N
27
0

25
0

R
E
M

25
5
TA

 =
 T
A
+
1

26
0

GO
TO
 2
80

27
0

R
E
M

28
0

NE
XT
 F
L

29
5

PR
IN

T
30
0

PR
IN

T
TA

;"
 T
AI

LS
"

99
9

EN
D

lR
UN

53
4

TA
IL

S

P
ro

b
le

m
 N

o
.

1
2

20
0

PR
IN

T
"L
ET
'S

DO

SO

ME

AD

DI
TI

ON

DR

IL
L"

20
5

PR
IN

T
21

0
PR

IN
T
"H

OW
 M

AN
Y

PR
OB

LE
MS

DO
 Y

OU
 W
AN

T"
;

22
0

IN
PU

T
N
0

Ch
ap
te
r 3

Se
ct
io
n
3-
1

P
ro

b
le

m
 N

o
.

2

98

R
E
M

*
PL

OT

A
O
N
E

A
N
D

A
TH

RE
E

10
0

G
R

11
0

CO
LO

R=
 1
5

12
0

FO
R

I
=

11

TO
 1
5

13
0

VL
IN

1,
7

A
T
I

14
0

VL
IN

1,
7

AT

I

+
10

15
0

NE
XT
 I

19
0

CO
LO

R=
 0

20
0

PL
OT
 1
3,

4
30
0

PL
OT
 2
2,
2

31
0

PL
OT
 2
3,

4
32
0

PL
OT
 2
4,
6

P
ro

b
le

m
 N

o
. 4

10
0

G
R

10
5

CO
LO

R=
 1
5

11
0

FO
R

I
=

1
TO
 9

12
0

RE
AD
 A

13
0

VL
IN

39

-
A
,
3
9

A
T

3
*

I
-
1

14
0

PR
IN

T
"

";
I;

15
0

NE
XT
 I

16
0

PR
IN

T
"

WE
EK

S"

17
0

PR
IN

T
"D

OL
LA

R
SA

LE
S

IN
 T

HO
US

AN
DS

"
19
0

EN
D

30
0

DA
TA

30
,2
7,
26

30
5

DA
TA

31

,2
6,

30

31
0

DA
TA

38

,3
5,

34

Se
ct

io
n 3

-2

P
ro

b
le

m
 N

o
.

2

98

R
E
M

*
DI

SP
LA

Y
A

RA
ND

OM
 D
I
E

10
0

G
R

11
0

CO
LO

R=
 1
5

12
0
X

=
0

25
0

PR
IN

T
26
0

PR
IN

T
"E

NT
ER

RA

NG
E

OF

NU

MB
ER

S
DE

SI
RE

D"
;

27
0

IN
PU

T
LO

,H
I

29
0

RT

=
0

29
8

RE
M

*
BE

GI
N

DR
IL

L
HE

RE

30
0

FO
R

PR

=

1
TO
 N

0
31

0
Nl

=

IN
T

(
RN

D
(1
)

*
(H
I

-
LO

+

1)

+

LO
)

32
0

N2

=

IN
T

(
RN

D
(1
)

*
(H
I

-
LO

+

1)

+
LO

)
33

0
SM

=
N
l

+
N2

34
0

PR
IN

T
35

0
PR

IN
T

Nl
;"

+

";
N2
;
"
="

;
36
0

IN
PU

T
AN

40
0

IF
 A

N
=

SM

TH
EN
 4

50

41
0

PR
IN

T
"N

O,

TH
AT
 W

OU
LD

BE

 "
;S

M
42
0

GO
TO

48
0

45
0

PR
IN

T
"R

IG
HT

"
46
0

RT

=

RT
 +

 1

48
0

NE
XT

 P
R

50
0

PR
IN

T

51
0

PR
IN

T
"Y

OU

GO

T
";

RT
;"

CO

RR
EC

T
OU

T
OF

";
N0

]R
UN

LE
T'
S

DO

SO

ME

AD

DI
TI

ON
 D

RI
LL

HO
W

MA
NY

PR

OB
LE

MS

DO
 Y

OU
 W

AN
T?

5

EN
TE

R
RA

NG
E

OF
 N

UM
BE

RS
 D

ES
IR

ED
71

0,
41

28

+

11
 =

?3
8

NO
,

TH
AT
 W

OU
LD

BE

 3
9

10

+

19
 =

?2
9

RI
GH
T

18

+

22
 =

?4
0

RI
GH

T

30

+

29

=?
39

NO
,

TH
AT
 W

OU
LD

BE

 5
9

14

+

33
 =

?4
7

RI
GH

T

YO
U

GO
T

3
CO

RR
EC

T
OU

T
OF
 5

13
0

Y
=
0

14
0

GO
SU

B
10
00

15
0

CO
LO

R=
 0

20
0

R
=

IN
T

(
RN

D
(1
)

*
6

+
1)

91

0
IF

R

=
1

TH
EN

GO
SU

B
11

00

92
0

IF

R

=
2

TH
EN

GO
SU

B
12
00

93
0

IF

R

=
3

TH
EN

GO

SU
B

13
00

94
0

IF
 R

 =

4

TH
EN

GO

SU
B

14
00

95
0

IF

R

=
5

TH
EN

GO

SU
B

15
00

96
0

IF

R

=
6

TH
EN

GO

SU
B

16
00

99
0

EN
D

99
8

RE
M

*
DI

SP
LA

Y
TH

E
DI

E
BA

CK
GR

OU
ND

10
00

FO
R

19

=

0
TO
 4

10

10

VL
IN

Y,

Y
+

6
AT

X

+
19

10
20

NE
XT

 1
9

10
90

RE

TU
RN

10
98

RE
M

*
PL

OT

A

'O
NE
'

11
00

PL
OT

X

+
2,
Y

+
3

11
90

RE

TU
RN

11

98

RE
M

*
PL

OT

A

'T
WO
'

12
00

PL
OT

X

+
1,
Y

+
1

12
10

PL
OT

X

+
3,
Y

+
5

12
90

RE

TU
RN

12
98

RE
M

*
PL

OT

A

'T
HR
EE
'

13
00

PL
OT

X

+
1,
Y

+
1

13
10

PL
OT

X

+
2,
Y

+
3

13
20

PL
OT

X

+
3,
Y

+
5

13
90

RE
TU

RN

13
98

RE
M

*
PL

OT

A

'F
OU

R'

14
00

PL
OT

X

+
1,
Y

+
1

14
10

PL
OT

X

+
1,
Y

+
5

14
20

PL
OT

X

+
3,
Y

+
1

14
30

PL
OT

X

+
3,
Y

+
5

14
90

RE
TU

RN

14
98

RE
M

*
PL

OT

A

'F
IV
E'

15
00

PL
OT

X

+
1,
Y

+
1

15
10

PL
OT

X

+
1,

Y
+

5
15

20

PL
OT

X

+
3,
Y

+
1

15
30

PL
OT

X

+
3,

Y
+

5
15
40

PL
OT

X

+
2,
Y

+
3

15
90

RE

TU
RN

15
98

RE
M

*
PL

OT

A

'S
IX
'

16
00

PL
OT

X

+
1,
Y

+
1

16
10

PL
OT

X

+
1,
Y

+
3

16
20

PL
OT

X

+
1,
Y

+
5

16
30

PL
OT

X

+
3,
Y

+
1

Se
ct
io
n
3-
2

P
ro

bl
em

 N
o.

 2

(c
on

ti
n

u
ed

)

16
40

PL
OT

X

+
3,
Y

+
3

16
50

PL
OT

X

+
3,
Y

+
5

16
90

RE
TU

RN

P
ro

bl
em

 N
o.

 4

98

RE
M

*
DI

SP
LA

Y
TW

O
RA

ND
OM

 D
IC

E
IN

TH
E

LO
WE

R
LE

FT
 C

OR
NE

R
10
0

GR

10
8

RE
M

*
FI

RS
T

DI
E

11
0

CO
LO

R=
 1

5
12
0

X
=

0
12

5
Y

=
33

13
0

GO
SU

B
10
00

13
5

CO
LO

R=
 0

14
0

R
=

5
15

0
GO

SU
B

91
0

20
8

RE
M

*
SE

CO
ND

 D
IE

21

0
CO

LO
R=

 1
5

22
0

X
=

10

23
0

GO
SU

B
10
00

23
5

CO
LO

R=
 0

24
0

R
=

3
25
0

GO
SU

B
91
0

90
0

EN
D

91
0

IF
 R

 =

1

TH
EN

GO

SU
B

11
00

92
0

IF

R

=
2

TH
EN

GO

SU
B

12
00

93
0

IF

R

=
3

TH
EN

GO

SU
B

13
00

94
0

IF

R

=
4

TH
EN

GO

SU
B

14
00

95
0

IF

R

=
5

TH
EN

GO

SU
B

15
00

96
0

IF
 R

 =

6

TH
EN

GO

SU
B

16
00

99
0

RE
TU

RN

99
8

RE
M

*
DI

SP
LA

Y
TH
E

DI
E
BA

CK
GR

OU
ND

10
00

FO
R

19

=

0
TO
 4

10
10

VL
IN

Y,

Y
+

6
AT

X

+
19

10
20

NE
XT

 1
9

10
90

RE
TU

RN

10
98

RE
M

*
PL

OT

A

'O
NE
'

11
00

PL
OT

X

+
2,
Y

+
3

11
90

RE
TU

RN

11
98

RE
M

*
PL

OT

A

'T
WO
'

12
00

PL
OT

X

+
1,

Y
+
1

12
10

PL
OT

X

+
3,
Y

+
5

12
90

RE

TU
RN

33
0

CO
LO

R=
 1

5
34
0

GO
SU

B
10
00

35
0

CO
LO

R=
 0

36
0

GO
SU

B
91
0

40
0

R
=

IN
T

(
RN

D
(1
)

*
6

+
1)

41
0

X
=

15

43
0

CO
LO

R=
 1

5
44
0

GO
SU

B
10
00

45
0

CO
LO

R=
 0

46
0

GO
SU

B
91
0

90
0

EN
D

91
0

IF
 R

 =

1

TH
EN

GO
SU

B
11
00

92
0

IF
 R

 =

2

TH
EN

GO
SU

B
12
00

93
0

IF
 R

 =

3

TH
EN

GO
SU

B
13
00

94
0

IF
 R

 =

4

TH
EN

GO

SU
B

14
00

95
0

IF

R

=
5

TH
EN

GO

SU
B

15
00

96
0

IF

R

=
6

TH
EN

GO

SU
B

16
00

99
0

RE
TU

RN

99
8

RE
M

*
DI

SP
LA

Y
TH

E
DI

E
BA

CK
GR

OU
ND

10
00

FO
R

19

=

0
TO

4

10
10

VL
IN

Y,

Y
+

6
AT

X

+
19

10

20

NE
XT

19

10
90

RE
TU

RN

10
98

RE
M

*
PL

OT

A

'O
NE
'

11
00

PL
OT

X

+
2,
Y

+
3

11
90

RE

TU
RN

11
98

RE
M

*
PL

OT

A

'T
WO
'

12
00

PL

OT

X

+
1,
Y

+
1

12
10

PL
OT
 X

 +

3,
Y

+
5

12
90

RE

TU
RN

12
98

RE
M

*
PL

OT

A

'T
HR
EE
'

13
00

PL
OT

X

+
1,
Y

+
1

13
10

PL
OT

X

+
2,
Y

+
3

13
20

PL
OT

X

+
3,
Y

+
5

13
90

RE
TU

RN

13
98

RE
M

*
PL

OT

A

'F
OU

R'

14
00

PL
OT

X

+
1,
Y

+
1

14
10

PL
OT

X

+
1,
Y

+
5

14
20

PL
OT

X

+
3,
Y

+
1

14
30

PL
OT

X

+
3,

Y
+

5
14

90

RE
TU

RN

14
98

RE
M

*
PL

OT

A

'F
IV
E'

15
00

PL

OT

X

+
1,
Y

+
1

15
10

PL
OT

X

+
1,
Y

+
5

15
20

PL
OT

X

+
3,

Y
+

1
15

30

PL
OT

X

+
3,
Y

+
5

12
98

RE
M

*
PL

OT

A

'T
HR

EE
'

13
00

PL
OT

X

+
1,

Y
+
1

13
10

PL
OT

X

+
2,
Y

+
3

13
20

PL
OT

X

+
3,

Y
+

5
13

90

RE
TU

RN

13
98

RE
M

*
PL

OT

A

'F
OU

R'

14
00

PL
OT

X

+
1,

Y
+
1

14
10

PL
OT

X

+
1,
Y

+
5

14
20

PL

OT

X

+
3,

Y
+
1

14
30

PL
OT

X

+
3,

Y
+

5
14

90

RE
TU

RN

14
98

RE
M

*
PL

OT

A

'F
IV

E'

15
00

PL
OT

X

+
1,

Y
+
1

15
10

PL
OT

X

+
1,
Y

+
5

15
20

PL
OT

X

+
3,
Y

+
1

15
30

PL
OT

X

+
3,
Y

+
5

15
40

PL
OT

X

+
2,
Y

+
3

15
90

RE
TU

RN

15
98

RE
M

*
PL

OT

A

'S
IX
'

16
00

PL
OT

X

+
1,

Y
+
1

16
10

PL
OT

X

+
1,
Y

+
3

16
20

PL
OT

X

+
1,
Y

+
5

16
30

PL
OT

X

+
3,

Y
+
1

16
40

PL
OT

X

+
3,
Y

+
3

16
50

PL
OT

X

+
3,
Y

+
5

16
90

RE

TU
RN

P
ro

b
le

m
 N

o.
 6

98

RE
M

*
SI

MU
LA

TE

RO

LL
IN

G
DI

CE

10
0

GR

11
0

FO
R

D
=

1
TO

20

12
0

X
=

IN
T

(
RN

D
(1
)

*
35

)
12

5
Y

=
IN
T

(
RN

D
(1
)

*
33

)
.1
30

R

=
IN
T

(
RN

D
(1
)

*
6

+
1)

14
0

CO
LO

R=
 1
5

15
0

GO
SU

B
10
00

15
0

CO
LO

R=
 0

17
0

GO
SU

B
91
0

17
5

FO
R

T
=

1
TO

50

18
0

NE
XT

 T

19
0

GO
SU

B
10
00

20
0

NE
XT

 D

30
0

R
=

IN
T

(
RN

D
(1
)

*
6

+
1)

31

0
X

=
0

32
0

Y
=

20

15
40

PL
OT

X

+
2,
Y

+
3

15
90

RE
TU

RN

15
98

RE
M

*
PL

OT

A

'S
IX
'

16
00

PL
OT

X

+
1,

Y
+
1

16
10

PL
OT

X

+
1,
Y

+
3

16
20

PL
OT

X

+
1,
Y

+
5

16
30

PL
OT

X

+
3,

Y
+.
 1

16
40

PL
OT

X

+
3,
Y

+
3

16
50

PL
OT

X

+
3,
Y

+
5

16
90

RE
TU

RN

Ch
ap
te
r
4

Se
ct
io
n
4-
1.
1

P
ro

b
le

m
 N

o.
 2

98

RE
M

*
CO

MP
AR

E
36
0

DA
YS

WI

TH

36

5
FO

R
CO

MP
OU

ND
 I
NT

ER
ES

T
10
0

P
=

10
00
0

15
0

PR
IN

T
"
A
M
O
U
N
T
"
R
A
T
E

%"
,"

DA
YS

"
20
0

RE
AD

 D
A,

IN

21
0

IF
 D

A
=

0
TH

EN

EN
D

22
0

I
=

(I
N

/
10

0)

/
DA

25
0

A
=

P
*

(1

+

I)

~
DA

26
0

PR
IN

T
A,

IN
,D

A
29
0

GO
TO

20
0

90
0

DA
TA

36
0,
5.
5,

36

0,
12

.5

90
2

DA
TA

36
5,

5.
5,

36

5,
12

.5

99
0

DA
TA

0,
0

lR
UN

AM

OU
NT

RA
TE

%

DA
YS

10
56
5.
36
3

5.
5

36
0

11
33

1.
23

91

12
.5

36
0

10
56

5.
36

43
 5
.5

36
5

11
33

1.
24

35

12
.5

36
5

P
ro

b
le

m
 N

o.
 4

98

RE
M

*
CA

LC
UL

AT
E

IN
TE

RE
ST

IN

A

LO
OP

10
0

P
=

10
00

15
0

PR
IN

T
"A

MO
UN

T"
,"

RA
TE

%"

,"
PE

RI
OD

S"

20
0

RE
AD

 P
E,

IN

21
0

IF

PE

=

0
TH

EN

EN
D

S
ec

ti
on

 4
-1

.1

P
ro

b
le

m
 N

o.
 4

(c

o
n

tin
u

e
d

)

22
0

I
=

(I
N

/
10

0)

/
P
E

25
0

GO
SU

B
11
00

26
0

PR
IN

T
A,

IN
,P

E
29
0

GO
TO
 2
00

90
0

DA
TA

36
5,
5.
5,

36
0,
5.
5,

12

,5
.5

90
2

DA
TA

36

5,
12

.5
,

36
0,

12
.5

,
12

,1
2.

5
99
0

DA
TA

0,
0

10
98

R
E
M

*
CA

LC
UL

AT
E

IN
TE

RE
ST

HE

RE

11
00

A

=
P

11
10

FO
R

P9

=

1
TO
 P
E

11
20

A

=
A

*
(1

+
I
)

11
30

NE
XT
 P
9

11
90

RE

TU
RN

lR
UN

AM

OU
NT

RA

TE

%

PE
RI

OD
S

10
56

.5
36

24

5.
5

36
5

10
56

.5
36

18

5.
5

36
0

10
56
.4
07
86

5.
5

12

11
33

.1
24

2
12
.5

36
5

11
33

.1
23

87

12
.5

36
0

11
32

.4
16

05

12
.5

12

S
ec

ti
o

n
 4

-1
.2

P
ro

b
le

m
 N

o.
 2

10
0

PR
IN

T
"C

ON
VE

RT

FA

HR
EN

HE
IT
 T
O
CE

LS
IU

S"

12
0

PR
IN

T
13

0
PR

IN
T

"E
NT

ER

FA

HR
EN

HE
IT
 "
;

14
0

IN
PU

T
F

14
5
IF

F<

=-
50

0
TH

EN
 E
ND

15

0
C=

(F
-3

2)
*5

/9

18
0

PR
IN

T
"C

EL
SI

US

TE

MP

IS
:
";
C

19
0

GO
TO
 1
20

>R
UN

CO

NV
ER

T
FA

HR
EN

HE
IT

TO

 C
EL

SI
US

EN
TE

R
FA

HR
EN

HE
IT
 ?
32

CE

LS
IU

S
TE

MP

IS
:
0

12
0

PR
IN

T
"V

AL
UE

=
";
F1

90
0

EN
D

89
98

R
E
M

*
YE

S-
NO

PR

OC
ES

SO
R

90
00

IN

PU
T
A
N
$

90
10

IF

A
N
$

=
"Y
ES
"

TH
EN

Fl

=

1:

GO

TO

90
90

90
20

IF

A
N
$

=
"N
O"

TH

EN

Fl

=

0:

GO

TO

90
90

90
40

PR

IN
T

"'
YE

S'

O
R

'N
O'

 P
LE

AS
E"

90
4
5

PR
IN

T
90
50

GO
TO

90
00

90
90

RE

TU
RN

lR
UN

QU

ES
TI

ON
 ?
OK

'Y
ES

1
O
R

'N
O'

 P
LE

AS
E

?Y
ES

VA
LU

E
=
1

S
ec

ti
o

n
 5

-1
.2

P
ro

b
le

m
 N

o.
 2

10

CA

LL
 -
93
6

90

R
E
M

*
CO

MP
AR

E
ST

RI
NG

S
FO
R

OR
DE

R
IN

IN

TE
GE

R
BA

SI
C

95

D
I
M

F$
 (
25
0)
 ,
S$
 (
25
0)

10
0

PR
IN

T
"O

RD
ER

IN
G
TW

O
ST

RI
NG

S"

10
5

PR
IN

T
11

0
IN

PU
T

"
EN

TE
R

FI
RS

T
ST

RI
NG

?
",
F$

11
5
IF

F$

="
ST

OP
"

TH
EN
 E
ND

12
0

IN
PU

T
"E

NT
ER

SE

CO
ND

ST

RI
NG

?
",
S$

13
0
IF

F$

=S
$

TH
EN
 3
00

13
5
IF

LE

N(
F$

)=

LE

N(
S$

)
TH

EN
 2
00

14
0

IF

LE

N(
F$

)<

LE

N(
S$

)
TH

EN
 1
70

15
0
FO

R
1=

 L
EN

(S
$)

+1

TO

LE

N
(F
$)

15
5
S$

 (

LE

N
(S

$)
+l

)
=
"
"

16
0

NE
XT
 I

16
5

GO
TO
 2
00

17
0
FO

R
1=

 L
EN

(F
$)

+1

TO

 L
EN

(S
$)

17

5
F
$
(

LE
N(

F$
)+

1)
 =
 "
 "

18
0

NE
XT
 I

19
0

GO
TO
 2
00

20
0

FO
R

1 =
 1

TO

LE

N
(F
$)

21
0

IF

AS

C(
F$

(I
,I

))
>

AS
C(

S$
(I

,D
)

TH
EN
 4
00

EN
TE

R
FA

HR
EN

HE
IT

 ?
21

2
CE

LS
IU

S
TE

MP

IS
:

10
0

EN
TE

R
FA

HR
EN

HE
IT

?6
8

CE
LS

IU
S

TE
MP

IS
:

20

EN
TE

R
FA

HR
EN

HE
IT
 ?
-5
00

Ch
ap
te
r
8

Se
ct

io
n

5-
1.

1

P
ro

b
le

m
 N

o.
 2

98

RE
M
*

FI
ND

EA

RL
IE

ST

IT

EM

IN

 D
AT

A
10
0

RE
AD

 E
$

11
0

PR
IN

T
E$

15

0
RE

AD
 A

$
15

5
IF
 A

$
=

"S
TO
P"

TH

EN

30
0

16
0

PR
IN

T
A$

17
0

IF
 A

$
<

E$
 T

HE
N

E$

=

A$

18
0

GO
TO

15
0

30
0

PR
IN

T
31

0
PR

IN
T

"A
LP

HA
BE

TI
CA

LL
Y

FI
RS

T:
";

E$

89
0

EN
D

90
0

DA
TA

PE

NN
SY

LV
AN

IA
,

NE
W

JE
RS

EY

90
2

DA
TA

CA

LI
FO

RN
IA

,
TE

XA
S

90
4

DA
TA

 '
 V

IR
GI

NI
A,

 F
LO

RI
DA

99
0

DA
TA

ST
OP

lR
UN

PE

NN
SY

LV
AN

IA

NE
W

JE
RS

EY

CA
LI

FO
RN

IA

TE
XA

S
VI

RG
IN

IA

FL
OR

ID
A

AL
PH

AB
ET

IC
AL

LY

FI

RS
T:

CA

LI
FO

RN
IA

P
ro

b
le

m
 N

o.
 4

98

RE
M
*

YE
S-

NO

SU

BR
OU

TI
NE

10
0

PR
IN

T
"Q

UE
ST

IO
N

11
0

GO
SU

B
90
00

22
0

IF

AS

C(
F$

(I
,I

))
<

AS
C(

S$
(I

,D
)

TH
EN

50
0

23
0

NE
XT

 I

30
0

PR
IN

T
F$

;"

EQ

UA
LS

";
S$

31
0

GO
TO

10
5

40
0

PR
IN

T
F$

;"

IS
 G

RE
AT

ER

TH

AN

";
S$

41
0

GO
TO

10
5

50
0

PR
IN

T
F$

;"

IS

LE

SS

TH

AN

";
S$

51
0

GO
TO

10
5

>R
UN

OR
DE

RI
NG

TW

O
ST

RI
NG

S

EN
TE

R
FI

RS
T

ST
RI

NG
?

WH
AT

'S

TH

IS

EN
TE

R
SE

CO
ND

ST

RI
NG

?
WH
AT
'S

 W
HA

T

WH
AT

'S

TH
IS

IS

LE

SS

TH

AN
 W

HA
T'
S

WH
AT

EN
TE

R
FI

RS
T

ST
RI

NG
?

CO
MP

UT
ER

EN
TE

R
SE

CO
ND

ST

RI
NG

?
CA

LC
UL

AT
OR

CO
MP

UT
ER

IS
 G

RE
AT

ER
 T

HA
N

CA
LC

UL
AT

OR

EN
TE

R
FI

RS
T

ST
RI

NG
?

ST
OP

P
ro

b
le

m
 N

o.
 4

10

CA

LL

-9
36

80

RE

M
*

DI
SP

LA
Y

TH
E

DA
YS

OF

TH

E
WE

EK

10
0

DI
M

A$
 (
63
)

12
0

A$
="

SU
ND

AY

MO
ND

AY

TU
ES

DA
Y

WE
DN

ES
DA

YT
HU

RS
DA

Y
FR

ID
AY

SA

TU
RD

AY

"

13
0

FO
R

J=
l

TO

9

14
0

FO
R

1=
1

TO

7

15
0

I9
=(

I-
1)

*9
+J

16
0

PR
IN

T
A$

(1
9,

19
);

"
";

19
0

NE
XT

 I

19
2

PR
IN

T
19

5
NE

XT
 J

20
0

EN
D

Se
ct
io
n

5-
1
.2

P

ro
b

le
m
 N
o.

 4

(c
o

n
ti
n

u
e

d
)

>R
UN

S

M
T

W
T

F
S

U
0

U
E

H
R

A
N

N
E

D
U

I
T

D
D

S
N

R
D

U
A

A
D

E
S

A
R

Y
Y

A
S

D
Y

D
Y

D
A

A
A

Y
Y

Y

P
ro

b
le

m
 N
o.

 6

10

CA

LL
 -
93
6

90

D
I
M

S$
(2

50
)

10
0

PR
IN

T
"

I
WI

LL

DI

SP
LA

Y
YO

UR

ST

RI
NG

IN

RE

VE
RS

E
OR

DE
R"

11

0
PR

IN
T

12
0

IN
PU

T
"E

NT
ER

YO

UR

ST

RI
NG

?
",
S$

13
0
IF

LE

N(
S$

)>
0

TH
EN
 2
00

13
5

PR
IN

T
"T
OO

 S
HO

RT
"

14
0

GO
TO
 1
10

20
0
FO

R
1=

 L
EN

(S
$)

TO

1

ST
EP
 -
1

22
0

PR
IN

T
S$

(I
,I

);

23
0

NE
XT
 I

90
0
E
N
D

>R
UN

I
WI

LL

DI

SP
LA

Y
YO

UR

ST

RI
NG

IN

RE

VE
RS

E
OR

DE
R

EN
TE

R
YO

UR

ST

RI
NG

?
TH
IS

IS

A

NI
CE
 D
AY

.

.Y
AD
 E

CI
N
A

SI
 S

IH
T

Se
ct

io
n

5
-2

.1

P
ro

b
le

m
 N

o
.

2

90

R
E
M

*
TE

ST
 F

OR
MA

TT
ER

10
0

IN
PU

T
"T
ES
T

VA
LU

E?

"
;
M
1

11
0

IF

M
l

=
0

TH
EN

E
N
D

12
0

GO
SU

B
10
00

P
ro

b
le

m
 N

o
. 6

90

R
E
M

*
CO

NV
ER

T
FR

OM

<$

1,
23

4.
51

>
TO

 1
23

4.
51

92

R
E
M

*
W
E
M
A
Y

U
S
E

GE
T$
 T

O
PR

OC
ES

S
CO

MM
AS

ON

 I
NP

UT

10
0

PR
IN

T
"E

NT
ER

TE
ST

ST

RI
NG

?
";

10
5

GO
SU

B
20
00

11
0

PR
IN

T
12
0

IF
 M

$
=

"S
TO
P"

TH

EN

EN

D
13

0
GO

SU
B
12
00

14
0

PR
IN

T
M
$
;
"

BE
CO

ME
S
";

M9
$

15
0

PR
IN

T
16
0

GO
TO
 1
00

11
98

R
E
M

*
RE

MO
VE

SP

EC
IA

L
CH

AR
AC

TE
RS

12
00

S$

=

"$
<>

,"

12
10

M
9
$

=
""

12
20

FO

R
19

=

1
TO

LE

N
(M

$)

12
30

FO
R
J
9

=
1

TO

LE

N
(S
$)

12
40

IF

MI
D$

(M

$,
I9

,1
)

=
MI

D$

(S

$,
J9

,1
)

TH
EN
 1
27

0
12

50

NE
XT
 J
9

12
60

M
9
$

=
M
9
$

+
MI

D$

(M

$,
I9

,1
)

12
70

NE
XT
 1
9

12
80

IF

RI
GH

T$

(M

$,
l)

=

">
"

TH
EN

M
9
$

=
"-
"

+
M
9
$

12
90

RE

TU
RN

19
98

R
E
M

*
HA

ND
LE

IN

PU
T

US
IN

G
GE

T$
 T

O
AL

LO
W

CO
MM

AS

19
99

R
E
M

CA
RR

IA
GE

RE

TU
RN

IS

AS

C
13

20
00

M
$

=
""

20
10

GE

T
A
$

20
20

IF

AS

C
(A

$)

=

13

TH

EN

20
90

20
30

PR
IN

T
A$

;
20
40

M
$

=
M
$

+
A
$

20
50

GO

TO
 2
01

0
20
90

RE

TU
RN

1 R
UN

EN

TE
R

TE
ST

ST

RI
NG

?
<$

1,
23

4.
50

>
<$

1,
23

4.
50

>
BE

CO
ME

S
-1

23
4.

50

EN
TE

R
TE

ST

ST

RI
NG

?
2
3
.
4
1

23
.4

1
BE

CO
ME

S
23

.4
1

EN
TE

R
TE

ST

ST

RI
NG

?
ST
OP

P
ro

b
le

m
 N

o
. 8

90

R
E
M

*
TE

ST
 F

OR
MA

TT
ER

13
0

PR
IN

T
Ml

;"

=

";
D$

14
0

PR
IN

T
15

0
GO

TO

10
0

98
8

:
99
0

RE
M
*

FO
RM

AT

DO

LL
AR

S
AN

D
CE

NT
S

99
8

RE
M
*

IN
SE

RT

A

DO
LL

AR

SI

GN

10
00

M9

=

IN
T

(M
l

*
10
0

+
.5
)

10
10

X$

=

ST
R$

(M
9)

10
20

D9

=

LE
N

(X
$)

-

2
10

30

D$

=

LE
FT

S
(X
$,
D9
)

+
CH

R$

(4
6)

+

RI
GH

TS

(X

$,
2)

10

40

D$

=

"$
"

+
D$

10
90

RE
TU

RN

]R
UN

TE
ST

 V
AL

UE
?

31
.9

31
.9

=

$3
1.

90

TE
ST

 V
AL

UE
?
0

P
ro

b
le

m
 N

o.
 4

80

RE
M
*

HA
ND

LE

ZE

RO
 A

MO
UN

T
82

RE
M

AN
D

CH
AN

GE

TH
E

EX
IT

 F
LA

G
90

RE
M
*

TE
ST

FO

RM
AT

TE
R

10
0

IN
PU

T
"T
ES
T

VA
LU

E?
 "

;M
l

11
0

IF
 M

l
=
-

99
99

 T
HE

N
EN

D
11

5
IF

Ml

=

0
TH

EN

D$

=

"0
.0
0"
:

GO
TO

13

0
12

0
GO

SU
B

10
00

13
0

PR
IN

T
Ml

;"

=

";
D$

14
0

PR
IN

T
15

0
GO

TO

10
0

98
8

:
99
0

RE
M
*

FO
RM

AT

DO

LL
AR

S
AN

D
CE

NT
S

10
00

M9

=

IN
T

(M
l

*
10
0

+
.5
)

10
10

X$

=

ST
R$

(M
9)

10
20

D9

=

LE
N

(X
$)

-

2
10

30

D$

=

LE
FT

S
(X

$,
D9

)
+

CH
R$

(4
6)

+

RI
GH

TS

(X

$,
2)

10

90

RE
TU

RN

lR
UN

TE

ST
 V

AL
UE

?
0

0
=

0.
00

TE
ST

 V
AL

UE
?

99
9.
1

99
9.
1

=
99
9.
10

TE
ST

VA

LU
E?
 -
99
99

95

PL

=

3
97

RE
M

*
PL

DE

TE
RM

IN
ES

TH

E
NU

MB
ER

OF

 P
LA

CE
S

10
0

IN
PU

T
"T
ES
T

VA
LU

E?
 "

;M
1

11
0

IF

Ml

=

0
TH

EN

EN
D

12
0

GO
SU

B
10
00

13
0

PR
IN

T
Ml

;"

=

";
D$

14
0

PR
IN

T
15
0

GO
TO

10
0

98
8

:
99
0

RE
M
*

FO
RM

AT

TO

AN

Y
NU

MB
ER

OF

PL

AC
ES

10

00

M9

=

IN
T

(M
l

*
10

~

PL

+

.5
)

10
10

X$

=

ST
R$

(M

9)

10
20

IF

LE
N

(X
$)

>

PL
 T

HE
N

10
50

10

30

T$

=

"0
00
00
00
00
00
00
0"

10
40

X$

=

RI
GH

TS

(T
$,
PL

+

1
-

LE
N

(X
$)

)
+

X$

10
50

D9

=

LE
N

(X
$)

-

PL

10
60

D$

=

LE
FT

S
(X
$,
D9
)

+
CH

R$

(4
6)

+

RI
GH

TS

(X

$,
PL

)
10
90

RE
TU

RN

lR
UN

TE
ST

 V
AL

UE
?

10
2.

01

10
2.
01

=

10
2.
01
0

TE
ST

 V
AL

UE
?

.0
9

.0
9

=
0.
09
0

TE
ST

 V
AL

UE
?

0

P
ro

b
le

m
 N

o.

10

1
HO

ME

20
0

RE
AD

 B
$

21
0

RE
AD

 A
S:

IF

A$

=

"D
ON
E"

TH

EN

99
9

22
0

FO
R

19

=

1
TO

LE
N

(A
$)

24
0

B$

=

RI
GH

TS

(B
$,
38
)

+
MI

D$

(A

$,
I9

,1
)

24
5

HT
AB

 1

25
0

PR
IN

T
B$
;

25
5

FO
R

X9
 =

1

TO

10
0:

NE

XT

X9

26
0

NE
XT

19

29
0

GO
TO

21
0

90
0

DA
TA

"

90
2

DA
TA

"T
HI
S

IS

A

SA
MP

LE

SC

RO
LL

IN
G

ME
SS

AG
E.

"

90
4

DA
TA

"W

E
CA

N
EA

SI
LY

CH

AN
GE

TH

E
ME

SS
AG

E
BY

 C
HA

NG
IN

G
TH

E
DA

TA

ST
AT

EM
EN

TS
.

"
98
9

DA
TA

"

99
0

DA
TA

DO

NE

99
9

EN
D

Ch
ap
te
r 6

S
ec

ti
o

n

6-
1.

1

P
ro

b
le

m
 N

o.
 2

90

RE
M

*
EN

TE
R
TH
E

TE
MP

ER
AT

UR
ES

IN

AR

RA
Y
W

10
0

FO
R

J
=

1
TO
 7

11
0

RE
AD
 W
(J

)
12
0

NE
XT
 J

14
5

RE
M

*
SE
T

UP

IN

IT
IA

L
CO

ND
IT

IO
NS

15
0
T

=
W(

l)

16
0
H

=
W(

l)
:L

=
W
(
l
)

17
0

DH

=

1:
DL

=
1

19
0
:

20
0

FO
R

J
=

2
TO
 7

21
0
T

=
T

+
W
(
J
)

23
0

IF
 W

(J
)

>
H

TH
EN

H

=
W(

J)
:D

H
=
J

24
0

IF
 W

(J
)

<
L

TH
EN

L

=
W(

J)
:D

L
=
J

28
0

NE
XT
 J

29
0
:

30
0

PR
IN

T
"A

VE
RA

GE

TE

MP
:

";
T
/
7

32
0

PR
IN

T
"H

IG
HE

ST
 T

EM
P:

";
H;
"

ON
 D

A
Y
";
DH

33
0

PR
IN

T
"

LO
WE
ST

 T
EM

P:

";
L;

H
ON
 D

A
Y
";
DL

89
0
:

90
0

DA
TA

72
,7
8,
76
,7
9,
85
,8
5,
71

99
0

EN
D

1
RU

N
AV

ER
AG

E
TE

MP
:
78

HI
GH

ES
T

TE
MP

:
85

ON

D
A
Y
5

LO
WE

ST
 T

EM
P:

71

ON

DA

Y
7

P
ro

b
le

m
 N

o.
 4

90

R
E
M

*
DR

AW
IN

G
TE

N
NU

MB
ER

S
AT

RA

ND
OM

FR

OM

AM

ON
G
TE
N

92

R
E
M

*
CO

UN
TI

NG

UN

US
ED

DR

AW
S

95
 :

10
0

FO
R

J
=

1
TO
 1
0

11
0

A(
J)

=
1

12
0

NE
XT
 J

18
0

UN

=
0

19
0
:

20
0

FO
R

J
=

1
TO
 1
0

21
0
R

=
IN

T
(

R
N
D

(1
)

*
10

+
1)

11
0

FO
R
J

=
1

TO
 N
l

12
0

RE
AD

 A
1(

J)

13
0

NE
XT
 J

20
0

RE
AD
 N
2

21
0

FO
R

J
=

1
TO
 N
2

22
0

RE
AD

 A
2(

J)

23
0

NE
XT
 J

30
0

FO
R

J
=

1
TO
 N
l

30
5
J
3

=
J

31
0

A3
 (
J)

=

A1
(J

)
31

5
NE

XT
 J

32
5

FO
R

J
=

1
TO
 N
2

33
0

FO
R

K
=

1
TO
 J
3

33
5

IF

A3

(K
)

=
A2

(J
)

TH
EN
 3
65

34
0

NE
XT
 K

34
5
J3

=
J
3

+
1

35
0

A3
(J

3)

=
A
2
(
J
)

35
5

GO
TO
 3
65

36
0

NE
XT
 K

36
5

NE
XT
 J

40
0

PR
IN

T
"T
HE

CO

MP
OS

IT
E

AR
RA

Y:
"

41
0

FO
R
J

=
1

TO
 J
3

42
0

PR
IN

T
A3

 (J
)
;
"

";

43
0

NE
XT
 J

80
0

EN
D

90
0

DA
TA

3,

6,

3,
 9

91
0

DA
TA

4,

2,

8,

6,
 5

]R
UN

TH

E
CO

MP
OS

IT
E

AR
RA

Y:

6
3

9
2

8
5

S
ec

ti
on

 6
-1

.2

P
ro

b
le

m
 N

o.
 2

90

R
E
M
*

EN
TE

R
TH
E

TE
MP

ER
AT

UR
ES

IN

AR

RA
Y
W

95

D
I
M
W
(
7
)

97

PR

IN
T

"E
NT

ER

SE

VE
N

TE
MP

ER
AT

UR
ES

"
10
0
FO

R
J=

l
TO
 7

10
5

PR
IN

T
J;

11

0
IN

PU
T
W
(
J
)

12
0

NE
XT
 J

14
5
R
E
M
*

SE
T

UP

IN

IT
IA

L
CO

ND
IT

IO
NS

15

0
T=

W(
1)

25
0

IF

A(

R)

=

0
TH

EN

UN

=

UN

+

1:

GO

TO
 2

10

26
0

PR
IN

T
"

";
R;

27
0

MR
)

=
0

28
0

NE
XT

 J

29
0

PR
IN

T
29
5

PR
IN

T
UN

;"

UN

US
ED

 D
RA

WS
"

30
0

EN
D

lR
UN

3

8
6

9
4

1
7

2
5

10

17

UN

US
ED

 D
RA

WS

P
ro

b
le

m
 N

o.

6

10

HO
ME

90

RE
M

*
DI

SP
LA

Y
EL

EM
EN

TS

IN

OR

DE
R

AN
D

IN

RE

VE
RS

E
OR

DE
R

10
0

DI
M

AR
(2

0)

11
0

FO
R

J
=

1
TO

20

12
0

AR
(J

)
=

2
*
J

13
0

NE
XT

 J

20
0

PR
IN

T
"D

IS
PL

AY

IN
 O

RD
ER

"
21

0
FO
R

J
=

1
TO

20

22
0

PR
IN

T
AR

(J
);

 "

";

23
0

NE
XT

 J

24
0

PR
IN

T
:
PR

IN
T

30
0

PR
IN

T
"D

IS
PL

AY

IN

RE

VE
RS

E
OR

DE
R"

31

0
FO
R

J
=

20

TO

1

ST
EP

-

1
32
0

PR
IN

T
AR

(J
);

 "

";

33
0

NE
XT

 J

80
0

EN
D

]R
UN

DI

SP
LA

Y
IN
 O

RD
ER

2
4

6
8

10

12

14

16

13

20

22

24

26

28

30

32

34

36

38

40

DI
SP

LA
Y

IN

RE

VE
RS

E
OR

DE
R

40

38

36

34

32

30

23

26

24

22

20

18

16

14

12

10

8
6

4
2

P
ro

b
le

m
 N

o.
 8

10

HO
ME

90

RE
M

*
DI

SP
LA

Y
CO

MP
OS

IT
E

OF

TW

O
AR

RA
YS

95

DI
M

Al
(1

5)
 ,
A2

(1
5)
 ,
A3

(3
0)

10
0

RE
AD

 N
l

16
0
H=

W(
1)

:L
=W

(1
)

17
0

DH
=1

:D
L=

1
19
0
RE

M
20
0

FO
R

J=
2

TO

7

21
0

T=
T+

W(
J)

23

0
IF

 W
(J

)<
=H

TH

EN

24
0

23
2

H=
W(

J)
:D

H=
J

24
0

IF
 W

(J
)>

=L

TH

EN

28
0

24
2

L=
W(

J)
:D

L=
J

28
0

NE
XT

 J

29
0

RE
M

30
0

PR
IN

T
"A

VE
RA

GE

TE

MP
:

";
T/
7

32
0

PR
IN

T
"H

IG
HE

ST
 T

EM
P:

";
H;
"

ON

DA

Y
";
DH

33
0

PR
IN

T
"

LO
WE

ST
 T

EM
P:

";

L;
"

ON

DA

Y
";
DL

99
0

EN
D

>R
UN

EN

TE
R

SE
VE

N
TE

MP
ER

AT
UR

ES

1?
77

2?
79

3?
79

4?
81

5?
77

6?
72

7?
66

AV
ER

AG
E

TE
MP

:
75

HI
GH

ES
T

TE
MP

:
81

ON

DA

Y
4

LO
WE

ST

TE

MP
:

66

ON

DA

Y
7

P
ro

b
le

m
 N

o.
 4

90

RE

M
*

DR
AW

IN
G

FI
VE

NU

MB
ER

S
AT

 R
AN

DO
M

FR
OM

AM

ON
G

TE
N

92

RE

M
*

CO
UN

TI
NG

UN

US
ED

 D
RA

WS

95

DI

M
A(

10
)

10
0

FO
R

J=
l

TO

10

11
0

A(
J)

=1

12
0

NE
XT

 J

18
0

UN
=0

19
0

RE
M

20
0

FO
R

J=
l

TO

10

21
0

R=
 R

ND

(1
0)
+1

25
0

IF

A(

R)
<>

0
TH

EN

26
0

25
5

UN
=U

N+
1:

GO

TO

21

0
26
0

PR
IN

T
"

";
R;

Se
ct
io
n
6-

1.
2

P
ro

b
le

m
 N

o
.

4

(c

o
n

ti
n

u
e

d
)

27
0

A(
R)

=0

28
0

NE
XT
 J

29
0

PR
IN

T
29
5

PR
IN

T
UN

;"

UN

US
ED

DR

AW
S"

30
0
E
N
D

>R
UN

6

9
2

4
7

10

1

3
5

8
37

UN

US
ED

DR

AW
S

P
ro

b
le

m
 N

o
. 6

LID

CA

LL
 -
93
6

90

R
E
M

*
DI

SP
LA

Y
EL

EM
EN

TS

IN

OR

DE
R
A
N
D

IN

RE

VE
RS

E
OR

DE
R

10
0
D
I
M
AR

(2
0)

11

0
FO

R
J=

l
TO
 2
0

12
0

AR
(J

)=
2*

7
13

0
NE

XT
 J

20
0

PR
IN

T
"D

IS
PL

AY

IN

 O
RD

ER
"

21
0
FO

R
J=

l
TO
 2
0

22
0

PR
IN

T
AR

(J
);

"
";

23
0

NE
XT
 J

24
0

PR
IN

T
:

PR
IN

T
30
0

PR
IN

T
"D

IS
PL

AY

IN

RE

VE
RS

E
OR

DE
R"

31

0
FO

R
.7
=2
0
TO

1

ST
EP
 -
1

32
0

PR
IN

T
AR

(J
);

"
";

33
0

NE
XT
 J

80
0
E
N
D

>R
UN

DI

SP
LA

Y
IN

 O
RD

ER

2
4

6
8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

DI
SP

LA
Y
IN

RE

VE
RS

E
OR

DE
R

40

38

36

34

32

30

28

26

24

22

20

18

16

14

1
2

10

8
6

4
2

P
ro

b
le

m
 N

o
. 8

10

CA

LL
 -
93
6

90

R
E
M

*
DI

SP
LA

Y
A
L
L

PO
SS

IB
LE

PA

IR
S

FR
OM
 T

W
O

AR
RA

YS

95

D
I
M

Al
(1

5)
 ,
A2

(1
5)

 ,
A3

(4
0)

Se
ct
io
n
6-
2

P
ro

b
le

m
 N

o
.

2

90

R
E
M

*
FI

ND

MA

XI
MU

M
TE

MP

92

R
E
M

FO
R

EA
CH
 D
A
Y

95

DI
M

TE
 (
7,
4)

10
0

FO
R

DA
 =

1

TO
 7

11
0

FO
R

R
E

=
1

TO
 3

12
0

RE
AD

TE

(D
A,

RE
)

13
0

NE
XT
 R
E

14
0

NE
XT
 D
A

15
0

GO
SU

B
20
00

16
5
:

17
0

PR
IN

T
"

MA
XI

MU
M"

18
0

PR
IN

T
"D

AY
 T
EM

P"

20
0

FO
R

DA
 =

1

TO
 7

21
0

PR
IN

T
DA

;"

";
TE

(D
A,

4)

22
0

NE
XT
 D
A

23
0

PR
IN

T
90
0

EN
D

93
0
:

10
00

DA
TA

76
,7
9,
75
,

72
,7
7,
76

10
20

DA

TA

74
,7
9,
81
,

75
,8
0,
83

10
40

DA
TA

80
,7
7,
70
,

68
,6

5,
65

10
60

DA
TA

65
,6
7,
76

19
96

:

19
98

R
E
M

*
FI

ND

MA

XI
MU

M
TE

MP
ER

AT
UR

ES
 H

ER
E

20
00

FO
R

DA

=

1
TO
 7

20
10

TE

(D
A,
 4
)

=
TE

(D
A,

1)

20
20

NE

XT
 D
A

20
50

FO
R

DA

=

1
TO
 7

20
60

FO
R

R
E

=
1

TO
 3

20
70

IF
 T

E(
DA

,
RE

)
>

T
E
(D
A,
 4
)

TH
EN

TE

(D
A,

 4
)

=
TE

(D
A,

RE
)

20
80

NE

XT
 R
E

20
90

NE

XT
 D
A

20
95

RE
TU

RN

lR
UN

MA

XI
MU

M
DA

Y
TE

MP

1
79

2
77

3
81

4

83

5
80

10
0

IN
PU

T
"H

OW
 M

AN
Y

NU
MB

ER
S

IN

FI

RS
T

AR
RA

Y
",

N1

11
0

FO
R

J=
l

TO
 N

l
12
0

PR
IN

T
J;
:

IN
PU

T
A
i
d
)

13
0

NE
XT

 J

19
0

PR
IN

T
20
0

IN
PU

T
"H

OW
 M

AN
Y

NU
MB

ER
S

IN

SE

CO
ND

AR

RA
Y

",
N2

21
0

FO
R

J=
l

TO
 N

2
22
0

PR
IN

T
J;

:
IN

PU
T

A2
 (J

)
23

0
NE

XT
 J

30
0

FO
R

J=
l

TO
 N

l
30
5
J3

=J

31
0

A3
(J

)=
A1

(J
)

31
5

NE
XT

 J

32
5

FO
R

J=
l

TO

N2

33

0
FO

R
K=

l
TO
 J

3
33

5
IF

 A
3(

K)
=A

2(
J)

TH

EN

36

5
34
0

NE
XT

 K

34
5
J3

=J
3+

1
35
0
A3

(J
3)

=A
2(

J)

35
5

GO
TO

36
5

36
0

NE
XT

 K

36
5

NE
XT

 J

40
0

PR
IN

T
"T
HE

CO

MP
OS

IT
E
AR

RA
Y:

"
41

0
FO

R
J=

l
TO
 J

3
42
0

PR
IN

T
A3

(J
);

"
";

43
0

NE
XT

 J

80
0

EN
D

>R
UN

HO

W
MA

NY

NU

MB
ER

S
IN

FI

RS
T

AR
RA

Y
?3

1?
5

2?
91

3?
23

HO
W

MA
NY

NU

MB
ER

S
IN

SE

CO
ND

AR

RA
Y

?4

1?
6

2?
4

3?
23

4?

11

TH
E

CO
MP

OS
IT

E
AR

RA
Y:

5

91

23

6
4

11

6
68

7
76

P
ro

b
le

m
 N

o.
 4

90

RE
M
*

FI
LL

IN
G

AR
RA

YS

WI

TH

RA

ND
OM

NU

MB
ER

S
95

DI
M

Rl
(4

,5
)
,R

2(
4,

5)
 ,
S(
4,
5)

10
0

FO
R

R
=

1
TO

4:

FO
R

C
=

1
TO

5

12
0

R1
(R

,C
)

=
IN

T
(

RN
D

(1
)

*
39
8

+
10

1)

13
0

NE
XT

C:

NE

XT
 R

20
0

FO
R

R
=

1
TO

4:

FO
R

C
=

1
TO

5

22
0

R2
(R

,C
)

=
IN
T

(
RN

D
(1
)

*
39
8

+
10

1)

23
0

NE
XT

C:

NE

XT
 R

29
6

:
30
0

PR
IN

T
"

FI
RS

T
AR

RA
Y"

31

0
FO

R
R

=
1

TO

4

32
0

FO
R

C
=

1
TO

5

33
0

PR
IN

T
Rl

(R
,C

);
"

";

34
0

NE
XT

 C

35
0

PR
IN

T
36
0

NE
XT

R

37
0

PR
IN

T
39
6

:
40
0

PR
IN

T
"

SE
CO

ND
 A

RR
AY

"
41

0
FO

R
R

=
1

TO

4

42
0

FO
R

C
=

1
TO

5

43
0

PR
IN

T
R2

(R
,C

)
;
"

";

44
0

NE
XT

C

45
0

PR
IN

T
46
0

NE
XT

 R

47
0

PR
IN

T
49
6

:
49
8

RE
M
*

EN
TE

R
SU

MS

HE

RE

50
0

FO
R

R
=

1
TO

4:

FO
R

C
=

1
TO

5

52
0

S(
R,

C)

=

R1
(R

,C
)

+
R2

(R
,C

)
53
0

NE
XT

C:

NE

XT
 R

59
6

:
60
0

PR
IN

T
"

SU
MS

"
61

0
FO

R
R

=
1

TO

4

62
0

FO
R

C
=

1
TO

5

63
0

PR
IN

T
S(

R,
C)

;"

";

64
0

NE
XT

C

65
0

PR
IN

T
66
0

NE
XT

 R

Se
ct
io
n
6-
2

P
ro

b
le

m
 N

o
.

4
(c

o
n

ti
n

u
e

d
)

1 R
UN

FI

RS
T

AR
RA

Y
21
6

38
0

27
3

36
8

22
1

19
6

37
3

11
8

29
8

21
2

39
8

40
2

34
5

13
4

37
7

37
9

20
3

15
4

25
9

27
4

SE
CO

ND
 A

RR
AY

12

2
16
7

13
0

24
0

49
7

41
8

29
1

1
3
1

49
0

39
2

26
3

32
9

19
0

34
9

36
9

27
1

11
0

29
1

33
4
41
6

SU
MS

33
8

54
7

40
3

60
8

71
8

61
4

66
4

24
9

78
8

60
4

66
1

73
1

53
5

48
3

74
6

65
0

3
1
3

44
5

59
3

69
3

Se
ct
io
n
6-
3

P
ro

b
le

m
 N

o
.

2

1
R
E
M

*
CH

AN
GE

S
IN

CO

MP
UT

ER

RE

SP
ON

SE

SU

BR
OU

TI
NE

FO

R
MO

RE

RA

ND
OM

 S
EL

EC
TI

ON

2
:

4
R
E
M

*
FI

RS
T
DE

L
50

00
,5

01
5

6
R
E
M

*
TH

EN

EN

TE
R
TH
E

FO
LL

OW
IN

G
LI

NE
S

50
00

ST

=

IN
T

(
R
N
D

(1
)

*
N
0

+
1)

50

02

FO
R

19

=

ST
 T
O
N
0

50
04

IF

LE
FT

S
(N

A$
(I

9)
,1

)
=

RI
GH

TS

(P
ES

 (
19
)
,
1)

A
N
D

AV
(I

9)

=

1
TH

EN

50

50

50
06

NE

XT
 1
9

50
10

FO
R

19

=

1
TO
 S
T

50
12

IF

LE
FT

S
(N

A$
(I

9)
,1

)
=

RI
GH

TS

(P
ES

 (
19
)
,1
)

A
N
D

AV
(I

9)

=

1
TH

EN

50

50

50
14

NE

XT
 1
9

P
ro

b
le

m
 N

o
.

4

90

R
E
M

*
FI

ND
 T

HE

AL

PH
AB

ET
IC

AL
LY

FI

RS
T

NA
ME

95

D
I
M

WE
S
(7
)

10
0

GO
SU

B
90
0

19
6
:

IN
PU

T
A
N

IN
TE

GE
R7

81
72

63
54

9
8

1
7

2
6

3
5

4
9

IN
PU

T
A
N

IN
TE

GE
R7

0

P
ro

b
le

m
 N

o
. 4

10
0

PR
IN

T
"I

NP
UT

A
N

IN
TE

GE
R"

;
11

0
IN

PU
T
N

12
0

IF
 N

=
0

TH
EN
 E
ND

13
0
FO
R

E=
4

TO

0

ST
EP
 -
1

14
0

T=
10

~
E

15
0

I=
N/

T
16
0

PR
IN

T
I;

"
";

17
0

R=
N-

I*
T

18
0
N
=
R

19
0

NE
XT
 E

20
0

PR
IN

T
:

PR
IN

T
21

0
GO

TO
 1
00

>R
UN

IN

PU
T
A
N

IN
TE

GE
R7

28
93

1
2

8
9

3
1

IN
PU

T
A
N

IN
TE

GE
R7

0

P
ro

b
le

m
 N

o
. 6

90

R
E
M

*
RE

VE
RS

E
TH

E
DI

GI
TS

OF

PR

IM
E
NU

MB
ER

S
10
0
FO

R
X=

10
0
TO

90
0

ST
EP
 2
00

11
0
FO

R
Y
=
l

TO

99

ST

EP
 2

12
0

N=
X+

Y:
NU

=N

13
0
FO

R
Z=

3
TO
 N

ST

EP
 2

14

0
IF

Z*

Z>
N

TH
EN
 1
70

15
0
IF

 N
/Z

*Z
=N

TH

EN
 3
70

16
0

NE
XT
 Z

17
0

GO
SU

B
90
0

20
0
FO

R
Z
=
3

TO

R
E

ST
EP
 2

21
0

IF

Z*

Z>
RE

TH
EN
 3
00

22
0

IF

RE

/Z
*Z

=R
E

TH
EN
 3
70

23
0

NE
XT
 Z

30
0

PR
IN

T
N
U
,

37
0

NE
XT
 Y

33
0

NE
XT
 X

20
0

SM
S

=
WE

S
(1
)
:P
0

=
1

21
0

FO
R

19

=

2
TO
 7

22
0

IF
 W

ES
 (
19
)

<
SM

S
TH

EN

SM

S
=

WE
$(

I9
):

P0

=
19

23

0
NE

XT
 1
9

24
0

PR
IN

T
"A

LP
HA

BE
TI

CA
LL

Y
FI

RS
T

=
";

SM
$

25
0

PR
IN

T
"

IN

PO

SI
TI

ON

NU

MB
ER

:
";
PO

80
0

EN
D

89
6

:
89
8

RE
M

*
RE

AD
 W

EE
KD

AY
 N

AM
ES

90
0

FO
R

19

=

1
TO
 7

91
0

RE
AD

 W
ES

(1
9)

96
0

NE
XT
 1
9

99
0

RE
TU

RN

99
6

:
10
00

DA
TA

SU

ND
AY

,
MO

ND
AY

,
TU

ES
DA

Y
10

10

DA
TA

WE

DN
ES

DA
Y,

TH

UR
SD

AY
,

FR
ID

AY

10
20

DA
TA

SA

TU
RD

AY

]R
UN

AL

PH
AB

ET
IC

AL
LY

FI

RS
T

=
FR

ID
AY

IN

PO

SI
TI

ON

NU

MB
ER

:
6

Ch
ap
te
r 7

Se
ct
io
n 7

-1

P
ro

b
le

m
 N

o
.

2

10
0

PR
IN

T
"I

NP
UT

AN

 I
NT

EG
ER

";

11
0

IN
PU

T
N

12
0

IF
 N

 =
 0

 T
HE

N
EN

D
13

0
FO
R

E
=

8
TO

0

ST
EP

-
1

14
0

T
=

10

~
E

15
0

I
=

IN
T

(N

/
T)

16
0

PR
IN

T
I;

"
";

17
0

R
=

IN
T

(N

-

I
*

T
+
.5
)

18
0

N
=
R

19
0

NE
XT
 E

20
0

PR
IN

T
:

PR
IN

T
21

0
GO

TO
 1

00

]R
UN

IN

PU
T

AN
 I

NT
EG

ER
73

13
45

0

0
0

0
3

1
3

4
5

59
0
EN

D
89
6
RE

M
89
8

RE
M

*
RE

VE
RS

E
HE

RE

90
0

T=
0:

RE
=0

:E
1=

-1

91
0

FO
R

E=
4

TO

0

ST
EP
 -
1

92
0

EX
=1

0
~
E

93
0

I=
N/

EX

94
0

T=
T+
I

95
0

IF
 T

=0

TH

EN

98
0

96
0

E1
=E

1+
1

97
0

RE
=R

E+
I*

10

~
El

97
5

N=
N-

I*
EX

98
0

NE
XT
 E

99
0

RE
TU

RN

lR
UN

10

1
10
7

11
3

13
1

14
9

15
1

15
7

16
7

17
9

18
1

19
1

19
9

31
1

31
3

33
7

34
7

35
3

35
9

37
3

38
3

38
9

70
1

70
9

72
7

73
3

73
9

74
3

75
1

75
7

76
1

76
9

78
7

79
7

90
7

91
9

92
9

93
7

94
1

95
3

96
7

97
1

98
3

99
1

Se
ct
io
n 7
-2

P
ro

b
le

m
 N

o
.

2

10
0

RE
M

*
CO

NV
ER

T
DE

CI
MA

L
TO

 B
IN

AR
Y

11
0

DI
M

A(
16

)
12

0
FO

R
J=

l
TO
 1
6

13
0

A(
J)

=0

14
0

NE
XT
 J

20
0

IN
PU

T
"E

NT
ER

AN

 I
NT

EG
ER

",
I

21
0

IF

I<

=0
 T

HE
N

99
9

29
6
RE

M
29
8

RE
M

*
LO

AD
 T

HE
 A

RR
AY

30
0

FO
R

J=
16

 T
O

1
ST

EP
 -
1

31
0

A(
J)

=I

MO

D
2

32
0
1=

1/
2

36
0

NE
XT
 J

39
6
RE

M
39
8

RE
M

*
DI

SP
LA

Y
RE

SU
LT

S

Se
ct
io
n
7-
2

P
ro

b
le

m
 N

o
.

2

(c

o
n

ti
n

u
e

d
)

40
0
T
1
=
0

40
2
FO
R

J=
l
TO
 1
6

40
4

T1
=T

1+
A(

J)

40
6

IF

T1

=0
 T

HE
N
42
0

41
0

PR
IN

T
A
(
J
)
;

42
0

NE
XT
 J

45
5

PR
IN

T
:

PR
IN

T
46
0

GO
TO
 1
20

99
9
EN

D

>R
UN

EN
TE

R
A
N

IN
TE

GE
R7

12
9

10
00
00
01

EN
TE

R
A
N

IN
TE

GE
R7

32
76

6

11
11

11
11

11
11

11
0

EN
TE

R
A
N

IN
TE

GE
R7

0

P
ro

b
le

m
 N

o
. 4

10
0

R
E
M

*
DE

VE
LO

P
H
E
X

IN
PU

T/
OU

TP
UT

13

0
H$

=

"0
12

34
56

78
9A

BC
DE

F"

14
0

GO
SU

B
40
0:

R
E
M

*
RE

QU
ES

T
&
VE

RI
FY

15

0
PR

IN
T

16
0

PR
IN

T
N
$
;
"

";
NU

19
0

GO
TO
 1
40

39
6
:

39
8

R
E
M

*
RE

QU
ES

T
&

CA
LL

 V
ER

IF
Y

40
0

PR
IN

T
:

IN
PU

T
"
H
E
X

NU
MB

ER
?
";

N$

41
0
L

=
L
E
N

(N
$)

42
0

IF

L

=
0

TH
EN

EN

D
43

0
IF

L

<
5

TH
EN
 4
40

43
2

PR
IN

T
"T
OO

MA

NY

DI

GI
TS

"
43

4
GO

TO
 4
00

44
0

GO
SU

B
70
0

45
0

IF

F
L

=
0

TH
EN
 4
90

46
0

PR
IN

T
"
B
A
D

FO
RM

AT
":

GO

TO
 4
00

49
0

RE
TU

RN

69
5
:

45
0

PR
IN

T
"T
OO

 S
MA

LL
"

46
0

GO
TO
 2
00

50
0

PR
IN

T
"Y

OU

GO

T
IT
 *
**
"

51
0

EN
D

lR
UN

I

WI
LL

TH

IN
K
OF

A

NU
MB

ER

BE

TW
EE

N
1

A
N
D

N.

HO
W

LA
RG

E
WO

UL
D
YO

U
LI

KE

N
TO

 B
E7

91

YO
UR
 G

UE
SS

:
45

HI
GH

ER

YO
UR

 G
UE

SS
:
66

LO
WE

R

YO
UR

 G
UE

SS
:
55

LO
WE

R

YO
UR

 G
UE

SS
:
50

HI
GH

ER

YO
UR

 G
UE

SS
:
52

YO
U
GO

T
IT

**
*

P
ro

b
le

m
 N

o
.

4

10

HO
ME

11

0
GO

SU
B
11

00

12
0

GO
SU

B
12
00

13
0

GO
SU

B
13

00

14
0

GO
SU

B
14
00

15
0

GO
SU

B
15
00

20
0

PR
IN

T
:

PR
IN

T
"M

ON
TH

LY

PA

YM
EN

T
=

$
";
P$

21
3
P
A

=
V
A
L

(P
$)

*
N
l

22
0

GO
SU

B
15
00

23
0

PR
IN

T
"

TO
TA

L
PA

YM
EN

TS

=

$
";
P$

24
0

PA

=

V
A
L

(P
$)

-
P

25
3

GO
SU

B
15
00

26
0

PR
IN

T
"

TO
TA

L
IN

TE
RE

ST

=

$
";
P$

90
0

E
N
D

10
96
 :

10
98

R
E
M

*
G
E
T

IN
TE

RE
ST

 R
AT

E
11

00

PR
IN

T
"A

NN
UA

L
IN

TE
RE

ST

RA

TE

(%
)

";

11
10

IN
PU

T
I

69
8

R
E
M

*
VE

RI
FY
 H

E
X
ST

RI
NG

70
0
F
L

=
0:

R
E
M

*
GO

OD

IN

PU
T

70
5
N
U

=
0

71
0

FO
R

J
=

1
TO
 L

72
0

FO
R

K
=

1
TO
 1
6

73
0

IF

MI
D$

(H

$,
K,

1)

=

MI
D$

(N

$,
J,

1)

TH

EN
 7
60

74
0

NE
XT
 K

75
0

F
L

=
1:

R
E
M

*
B
A
D
IN

PU
T

75
5

GO
TO
 7
90

76
0
N
U

=
N
U

+
(K

-

1)

*

16

~

(L

-
J
)

77
0

NE
XT
 J

79
0

RE
TU

RN

lR
UN

HE
X

NU
MB

ER
?

F0
F0

F0
F0

61

68
0

HE
X

NU
MB

ER
?

S
ec

ti
o

n
 7

-3

P
ro

b
le

m
s

of
 G

en
er

al
 I

n
te

re
st

P
ro

b
le

m
 N

o.
 2

90

HO
ME

10
0

PR
IN

T
"

I
WI

LL

TH

IN
K
OF

A

NU
MB

ER

BE

TW
EE

N
1

A
N
D
N.

11
0

PR
IN

T
"H
OW

 L
AR

GE

WO

UL
D
YO

U
LI

KE
"

12
0

PR
IN

T
"N
 T
O
BE

";

13
0

IN
PU

T
N

14
0

IF
 N

<

1
TH

EN

:

PR
IN

T
"T
OO

SM

AL
L"

:
GO

TO
 1
10

15
0
N
l

=
IN
T

(
RN

D
(1
)

*
N

+
1)

20
0

PR
IN

T
20
5

IN
PU

T
"Y

OU
R

GU
ES

S:
 "
;G

21
0

IF
 G

<

1
TH
EN
 4
50

22
0

IF
 G

>
N

TH
EN
 4
00

23
0

IF
 G

=
N
l

TH
EN
 5
00

24
0

IF
 G

<
N
l

TH
EN
 3
00

25
0

PR
IN

T
"L

OW
ER

"
26
0

GO
TO
 2
00

30
0

PR
IN

T
"H

IG
HE

R"

31
0

GO
TO
 2
00

40
0

PR
IN

T
"T
HA
T'
S

BI
GG

ER

TH

AN

YO

UR

LI

MI
T"

41

0
GO

TO
 2
00

11
20

IF

I

>
1

TH
EN
 1
14

0
11

25

PR
IN

T
"P

ER
CE

NT
AG

E
PL

EA
SE

"
11

30

PR
IN

T
:

GO
TO
 1
10

0
11

40

I
I

=
I

/
10
0

11
50

I
I

=
I
I

/
1
2

11
88

R
E
M

*
EX

IT

WI
TH

MO

NT
HL

Y
RA

TE

IN

 I
1

11
90

RE
TU

RN

11
96
 :

11
98

R
E
M

*
G
E
T
PR

IN
CI

PL
E

12
00

PR
IN

T
"

EN
TE

R
PR

IN
CI

PL
E

($
)
";

12
10

IN
PU

T
P

12
90

RE
TU

RN

12
96
 :

12
98

R
E
M

*
G
E
T

NU
MB

ER

OF

 Y
EA

RS

13
00

PR
IN

T
"

NU
MB

ER

OF

 Y
EA

RS
 "
;

13
10

IN
PU

T
N

13
20

N
l

=
N

*
1
2

13
88

R
E
M

*
EX

IT

WI

TH

NU

MB
ER
 O

F
PA

YM
EN

TS

IN

 N
l

13
90

RE

TU
RN

13

96

:

13
98

R
E
M

*
CO

MP
UT

E
MO

NT
HL

Y
PA

YM
EN

T
14
00

X

=
(1

+

II
)

~
N
l

14
10

PA

=

(P

*

I
I

*
X)

/

(X

-
1)

14

90

RE
TU

RN

14
96
 :

14
98

R
E
M

*
FO

RM
AT

PA

YM
EN

T
15

00

X

=
IN

T
(P
A

*
10
0

+
.5
)

15
10

P$

=

ST
R$
 (
X)

15
20

Y

=
LE

N
(P
$)

-
2

15
30

P$

=

LE
FT

$
(P
$,
Y)

+

".
"

+
RI

GH
T$

(P
$,
2)

15
90

RE

TU
RN

lR
UN

AN

NU
AL

IN

TE
RE

ST

RA

TE

(%
)

?1
7

EN
TE

R
PR

IN
CI

PL
E

($
)
?5
00
00

NU
MB

ER

OF

 Y
EA

RS
 ?
30

MO
NT

HL
Y

PA
YM

EN
T
=

$
71

2.
84

TO

TA
L

PA
YM

EN
TS

=

$
25

66
22

.4
0

TO
TA

L
IN

TE
RE

ST

=

$
20
66
22
.4
0

M
at

h
-O

ri
en

te
d

 P
ro

b
le

m
s

P
ro

b
le

m
 N

o.
 2

50

R
E
M

*
EU

CL
ID

'S

AL

GO
RI

TH
M

10
0

IN
PU

T
"

FI
RS

T
NU

MB
ER

?
";

N1

M
at

h
-O

ri
en

te
d

 P
ro

b
le

m
s

P
ro

b
le

m
 N

o
.

2

(c

o
n
tin

u
e
d
)

10
5

IF
 N

l
=

0
TH

EN

EN

D
11

0
IN

PU
T

"S
EC

ON
D

NU
MB

ER
?
";

N2

15
0
Q

=
IN

T
(N
l

/
N
2
)

16
0
R

=
N
l

-
N
2

*
Q

17
0

IF
 R

 =

0

TH
EN
 2
00

17
5
N
l

=
N
2

18
0
N
2

=
R

19
0

GO
TO
 1
50

20
0

PR
IN

T
"G

RE
AT

ES
T

CO
MM

ON

FA

CT
OR

:
";

N2

21
0

PR
IN

T
22
0

GO
TO
 1
00

lR
UN

FI

RS
T

NU
MB

ER
?
10

01

SE
CO

ND
 N

UM
BE

R?
 1
30

0
GR

EA
TE

ST

CO

MM
ON

FA

CT
OR

:
13

FI
RS

T
NU

MB
ER

?
0

P
ro

b
le

m
 N

o
. 4

10

HO
ME

50

R
E
M

*
FI

ND

PE

RF
EC

T
NU

MB
ER

S
10
0

D
I
M
FA

(5
0)

11

0
C
I

=
0

20
0

FO
R

N
U

=
2

TO

32
76
7

ST
EP
 2

21
0
SU

=
1

22
0
F
l

=
1

23
0

FA
(F

1)

=
1

25
0

FO
R

IN

=

2
TO

SQ
R

(N
U)

26
0
X

=
N
U

/
IN

27
0

IF

X

<
>

IN
T

(X
)

TH
EN
 3
30

28
0

FA
(F

l
+

1)

=
IN

29
0

FA
(F

l
+

2)

=
X

30
0
F
l

=
F
l

+
2

31
0
SU

=

SU

+

IN

+
X

32
0

IF

SU

>
N
U

TH
EN
 4
20

33
0

NE
XT
 I
N

34
0

IF

SU

<

>
N
U

TH
EN
 4
20

35
0

PR
IN

T
N
U
;
"

IS
 P
ER

FE
CT

"
36
0

FO
R

19

=

1
TO
 F
l

37
0

PR
IN

T
FA

(I
9)

;"

";

15

20

25

18

24

30

20

21

29

P
ro

b
le

m
 N

o
. 8

10

HO
ME

50

R
E
M

*
FI

ND

PI

FR

OM

A

SE
QU

EN
CE

10
0

PI

=
2

11
0

FO
R

19

=

1
TO

15
00

ST

EP
 4

12
0
PI

=

PI

+

16

/

((
19
)

*
(1
9

+
2)

*

(1
9

+
4)
)

14
0

NE
XT
 1
9

15
0

PR
IN

T
"A

PP
RO

XI
MA

TE

VA

LU
E:
 "
;P
I

90
0

EN
D

lR
UN

AP

PR
OX

IM
AT

E
VA

LU
E:

3.

14
15

91
76

Ch
ap
te
r 8

S
ec

ti
on

 8
-3

P
ro

b
le

m
 N

o
. 2

5
D$

=

CH
R$
 (
4)

10

F$

=

"P
LA

CE
S"

20

D
I
M

NA
$
(3
00
)

30

GO
SU

B
80
00
:

R
E
M

*
RE

AD
 N

AM
ES

AR

RA
Y

95

HO
ME

10
0

GO
SU

B
12
00
0:

R
E
M

*
ED

IT
 N

AM
ES

SP

EL
LI

NG

14
0

GO
SU

B
85
00
:

R
E
M

*
RE

WR
IT

E
TH

E
NA

ME
S

FI
LE

19
0

EN
D

79
96
 :

79
98

R
E
M

*
RE

AD
 N

AM
ES

FI

LE

80
00

PR

IN
T

D$
;"

OP
EN

";
F$

80
05

PR

IN
T

D$
;"

RE
AD

";
F$

80
10

IN
PU

T
N
0

80
30

FO
R

19

=

1
TO
 N
0

80
40

IN

PU
T

NA
$
(1
9)

80
50

NE

XT
 1
9

80
60

PR

IN
T

D$
;"

CL
OS

E"
;F

$
80
90

RE

TU
RN

84
96
 :

84
98

R
E
M

*
UP

DA
TE

NA

ME
S

FI
LE

zzs

38
0

NE
XT

 1
9

39
0

PR
IN

T
:
PR

IN
T

40
0

CI

=

CI

+

1
41

0
IF

 C
I

=
4

TH
EN

EN

D
42
0

NE
XT

 N
U

90
0

EN
D

lR
UN

6

IS

PE

RF
EC

T
1

2
3

28

IS
 P

ER
FE

CT

1
2

14

4
7

49
6

IS
 P

ER
FE

CT

1
2

24
3

4
12
4

8
62

16

31

31
28

IS
 P

ER
FE

CT

1
2

40
64

 4

20
32

 8

10
16

16

50
8

32

25
4

64

12
7

P
ro

b
le

m
 N

o.

6
10

HO
ME

50

RE
M
*

FI
ND

PY

TH
AG

OR
EA

N
TR

IP
LE

S
10
0

FO
R

LI

=

1
TO

25

12
0

FO
R

L2

=

LI

+

1
TO

25

13
0

X
=

LI

*

LI

+

L2

*

L2

14
0

FO
R

HY

=

L2
 +

1

TO

50

15
0

XI

=

HY

*

HY

15
5

IF

XI

>

X
TH

EN

18
0

16
0

IF

XI

<

X
TH

EN

17
0

16
5

PR
IN

T
L1

,L
2,

HY

17
0

NE
XT

 H
Y

18
0

NE
XT

L2

19
0

NE
XT

 L
I

lR
UN

3

4
5

5
12

13

6
8

10

7
24

25

3
15

17

9
12

15

10

24

26

12

16

20

85
00

PR

IN
T

D$
;"

OP
EN

";
F$

85

10

PR
IN

T
D$

;"
WR

IT
E"

;F
$

85
20

PR

IN
T

N0

85
30

FO

R
19

=

1
TO

N0

85

35

PR
IN

T
NA

$
(1
9)

85
40

NE

XT

19

85
80

PR

IN
T

D$
;"

CL
OS

E"

85
90

RE

TU
RN

11

99
6

:
11
99
8

RE
M
*

ED
IT

PL

AC
E

NA
ME

S
SP

EL
LI

NG

12
00

0
PR

IN
T

"E
DI

TI
NG

PL

AC
E

NA
ME

S.
"

12
00

5
PR

IN
T

12
01

0
IN

PU
T

"F
IX

 N
AM

E?

";

X$

12
01

5
IF

X$

=

"D
ON

E"

TH

EN

12

09
0

12
02

0
FO

R
19

=

1
TO

N0

12

02
5

IF
 N

A$
(I

9)

=

X$
 T

HE
N

12
04

0
12

03
0

NE
XT

19

12
03

5
PR

IN
T

"N
OT

FO

UN
D"

:
GO

TO

12

00
5

12
04

0
IN

PU
T

"N
EW

PL

AC
E?

";

X$

12
04

5
FO

R
J9

=

1
TO

N0

12

05
0

IF

X$

=

NA
$(

J9
)

TH
EN

12

07
0

12
05

5
NE

XT

J9

12

06
0

NA
$
(1
9)

=

X$

12
06

5
GO

TO

12

00
5

12
07

0
PR

IN
T

"D
UP

LI
CA

TE

NA

ME
 -

 R
EE

NT
ER

"
12

07
5

GO
TO

12

00
5

12
09
0

RE
TU

RN

P
ro

b
le

m
 N

o.

4

1
RE

M
*

CH
AN

GE
S

IN
 C

OM
PU

TE
R

RE
SP

ON
SE

SU

BR
OU

TI
NE

FO
R

MO
RE

RA

ND
OM

SE

LE
CT

IO
N

2
:

4
RE

M
*

FI
RS

T
DE

L
50

00
,5

01
5

6
RE

M
*

TH
EN

EN

TE
R

TH
E

FO
LL

OW
IN

G
LI

NE
S

50
00

ST

=

IN
T

(
RN

D
(1
)

*
N0

+

1)

50
02

FO
R

19

=

ST

TO

N0

50
04

IF

LE
FT

S
(N

A$
(I

9)
,1

)
=

RI
GH

TS

(P

E$
(I

9)
,1

)
AN

D
AV

(I
9)

=

1
TH

EN

50

50

50
06

NE

XT

19

50
10

FO
R

19

=

1
TO

ST

50
12

IF

LE
FT

S
(N

A$
(I

9)
,1

)
=

RI
GH

TS

(P
ES
 (
19
)
,1
)

AN
D

AV
(I

9)

=
1

TH
EN

50

50

50
14

NE
XT

19

Se
ct
io
n

8-
5

P
ro

b
le

m
 N

o.

2

9
RE

M
*

ID

=>

EN

TR
Y

ID
EN

TI
FI

CA
TI

ON
 N

UM
BE

R
10

RE
M

*
N5

=>

 N
EW

SP

AC
E

11

RE
M
*

DS

=>

DE

LE
TE

D
SP

AC
E

30

D$

=

CH
R$

(4
)

50

L0

 =

12
8

60

F$

=

"
FI
RS
T

FI
LE

"
70

DI
M

LA
$

(9
)
,L
E

(9
)
,D
A$
 (
9)

96
 :

98

RE
M
*

MA
IL

IN
G

LI
ST

EN

TR
Y

ED
IT

OR

10
0

GO
SU

B
10
00
:

RE
M
*

RE
AD

 D
AT

A
LA

BE
LS

11

0
GO

SU
B

90
0:

RE

M
*

RE
AD

 A
VA

IL
AB

LE

SP

AC
E

PA
RA

ME
TE

RS

12
0

GO
SU

B
30
00
:

RE
M
*

RE
QU

ES
T

ID

12
5

IF

ID

=

0
TH

EN

EN
D

13
0

GO
SU

B
31
00
:

RE
M
*

RE
AD

 A
ND

ED
IT

EN

TR
Y

14
0

GO
SU

B
60
0:

RE

M
*

WR
IT

E
EN

TR
Y

TO

FI

LE

15
0

GO
TO

12
0:

RE

M
*

DO

IT
 A

GA
IN

59
6

:
59
8

RE
M

*
WR

IT
E

EN
TR

Y
60
0

PR
IN

T
D$
;
"O

PE
N"

;F
$;

 "
,L

";
L0

61
0

PR
IN

T
D$

;"
WR

IT
E"

;F
$;

",
R"

;I
D

62
0

FO
R

19

=

1
TO

N0

63
0

PR
IN

T
DA

$(
19

)
64
0

NE
XT

19

65
0

PR
IN

T
D$

;"
CL

OS
E"

 ;
F$

69
0

RE
TU

RN

89
6

:
89
8

RE
M

*
RE

AD
 A

VA
IL

AB
LE

SP

AC
E

90
0

PR
IN

T
D$

;"
OP

EN
";

F$

91
0

PR
IN

T
D$

;"
RE

AD
";

F$

92
0

IN
PU

T
NS

93

0
IN

PU
T

DS

94
0

PR
IN

T
D$

;"
CL

OS
E"

;F
$

99
0

RE
TU

RN

99
6

:
99
8

RE
M

*
RE

AD
 D

AT
A

LA
BE

LS

AN

D
LI

MI
TS

10

00

RE
AD

 N
0

10
10

FO
R

X9

=

1
TO

N0

10

20

RE
AD

 L
A$

 (
X9
)
,L
E
(X
9)

10
30

NE
XT

 X
9

10
90

RE
TU

RN

19
96

:

19
98

RE
M
*

DA
TA

LA

BE
L

&
LI

MI
TS

31
95

IF

LE
FT

$
(A

N$
,1

)
=

"N
"

TH
EN

32

05

32
00

PR

IN
T

"Y

OR

 N
";
:

GO
TO

31

85

32
05

IN

PU
T

"
:

";
DA

$(
I9

)
32

10

IF

LE
N

(D
A$
(I
9)
)

<
=

LE
(I

9)

TH

EN

32
60

32
20

PR
IN

T
"T
OO

LO

NG
":

GO

TO

32

05

32
60

NE
XT

19
:

GO
TO

32
90

32
80

PR
IN

T
D$

;"
CL

OS
E"

;F
$

32
90

RE
TU

RN

Ch
ap
te
r
9

Se
ct
io
n

9-
1

P
ro

b
le

m
 N

o.
 2

10
0

HG
R

:
PO

KE
 -

16

30
2,

0
10

5
X0

=

10
0:

Y0

=

10
0

11
0

GO
SU

B
20
0

12
0

GO
SU

B
30
0

13
0

EN
D

19
6

:
19
8

RE
M

*
VE

CT
OR

PL

OT
TI

NG

RO

UT
IN

E
20
0

RE
AD

 C
,X

,Y
,X

1,
Y1

21

0
IF

 C
 =

-

1
TH

EN

29
0

22
0

HC
OL

OR
=

C
23
0

HP
LO

T
X

+
X0

,Y

+

Y0
 T

O
XI

+

X0
,Y

1
+

Y0

24
0

GO
TO

20
0

29
0

RE
TU

RN

29
6

:
29
8

RE
M

*
SE
T

UP
 B

LI
NK

IN
G

30
0

FO
R

18

=

1
TO

15
0

31
0

HC
OL

OR
=

0
33

0
GO

SU
B

40
0

34
0

HC
OL

OR
=

3
35

0
GO

SU
B

40
0

36
0

NE
XT

 1
8

39
0

RE
TU

RN

39
6

:
39
8

RE
M

*
LI

GH
T

HE
RE

40
0

HP
LO

T
29

+

X0
,

-
63

+

Y0
 T

O
30

+

X0
,

-
63

+

Y0

41
0

HP
LO
T

29

+

X0
,

-
62

+

Y0
 T

O
30

+

X0
,

-
62

+

Y0

42
0

FO
R

19

=

1
TO

50
0:

NE

XT

19

49
0

RE
TU

RN

99
6

:
99
8

RE
M

*
VE

CT
OR

DA

TA

20
00

DA
TA

9

20
05

DA

TA

ID

#,

4
20

10

DA
TA

CO

DE
,

5
20

15

DA
TA

LA

ST
,

20

20
20

DA

TA

FR
ST
,

20

20
25

DA
TA

AD

DR
,

30

20
30

DA

TA

CI
TY

,
16

20
35

DA

TA

ST
AT
,

2
20
40

DA
TA

"Z

IP

",

5
20
4
5

DA
TA

PH

ON
,

17

29
96

 :

29
98

RE
M

*
RE

QU
ES

T
ID

30
00

PR
IN

T
30

10

IN
PU

T
"I
D

#:
 "

;I
D

30
20

IF

ID

<

NS

AN

D
ID

>

=
0

TH
EN

30
90

30
30

PR

IN
T

"N
ON

-E
XI

ST
EN

T
ID

":

GO

TO

30
00

30
90

RE
TU

RN

30
96

 :

30
98

RE
M

*
RE

AD
 T

HE

EN

TR
Y

IF

IT

IS

 R
EA

L
31

00

PR
IN

T
D$

;"
OP

EN
";

F$
;"

,L
";

L0

31
10

PR

IN
T

D$
;"

RE
AD

";
F$

;"
,R

";
ID

31

20

IN
PU

T
X9
:

IF

X9

=

ID
 T

HE
N

31
40

31

25

PR
IN

T
ID

;"

HA

S
BE

EN

DE

LE
TE

D"

31
30

El

=

0:

GO

TO

32
80

31
40

DA

$(
1)

=

ST
R$

(X
9)

31
45

FO

R
19

=

2
TO

N0

31

50

IN
PU

T
DA

$(
19

)
31

55

NE
XT

 1
9

31
60

PR

IN
T

D$
;"

CL
OS

E"
;F

$
31

65

HO
ME

31
70

PR
IN

T
LA

$
(1
);
 "

";
DA

$(
1)

31

75

FO
R

19

=

2
TO

N0

31

80

PR
IN

T
LA

$(
I9

);
":

";

DA
$(

I9
);

31

85

PR
IN

T
TA

B(

25

);
"

OK
";
:

IN
PU

T
AN

$
31

90

IF

LE
FT

S
(A

N$
,1

)
=

"Y
"

TH
EN

32
60

99
9

RE
M

*
TH

E
TO

WE
R

10
00

DA
TA

3,

0,
0,

80
,0

10

05

DA
TA

3,

20
,0

,2
4,

-5
0

10
10

DA
TA

3,

40
,0

,3
5,

-5
0

10
13

RE
M

*
TO

P
OF
 T

OW
ER

10

15

DA
TA

3,
20
,-
50
,4
0,
-5
0

10
20

DA
TA

3,
20
,-
50
,2
0,
-5
5

10
25

DA
TA

3,
40
,-
50
,4
0,
-5
5

10
30

DA
TA

3,

20
,-

55
,4

0,
-5

5
10

35

DA
TA

3,
25
,-
55
,2
6,
-6
0

10
40

DA
TA

3,

35
,-

55
,3

4,
-6

0
10

45

DA
TA

3,
26
,-
60
,3
4,
-6
0

10
50

DA
TA

3,
28
,-
60
,2
8,
-6
5

10
55

DA

TA

3,
32
,-
60
,3
2,
-6
5

10
60

DA
TA

3,
28
,-
65
,3
2,
-6
5

10
63

RE
M

*
TH

E
DO
OR

10
65

DA
TA

3,
30
,0
,3
0,
-8

10
70

DA
TA

3,
30
,-
8,
34
,-
8

10
75

DA
TA

3,

34
,-

8,
34

,0

10
77

DA
TA

3,

33
,-

4,
33

,-
4

10
88

RE
M

*
TH

E
WI

ND
OW

10
90

DA
TA

3,
26
,-
30
,3
2,
-3
0

10
95

DA
TA

3,

26
,-

33
,3

2,
-3

3
11

00

DA
TA

3,

26
,-

36
,3

2,
-3

6
11

05

DA
TA

3,
26
,-
30
,2
6,
-3
6

11
10

DA
TA

3,
29
,-
30
,2
9,
-3
6

11
15

DA
TA

3,

32
,-

30
,3

2,
-3

6
19
90

DA
TA

-1
,0
,0
,0
,0

Se
ct
io
n 9
-2

P
ro

bl
em

 N
o.

 2

50

RE
M

*
SI

MP
LY

EN

TE
R

PR
OG

RA
M

9-
10

A,
B,

C
51

RE
M

*
AN

D
TY
PE

LI

NE

21
0

AC
CO

RD
IN

G
TO
 T

HE

FO

RM
UL

AS

231
• • •

Bibliography

Apple Computer, Inc., has put out many valuable publications. Some of
them are included as appropriate with various hardware and software
items.
Applesoft: BASIC Programming Reference Manual. 1978.
The Applesoft Tutorial. 1979.
Apple Software Bank, Contributed Programs. Volumes 1 and 2, 1978.
Apple Software Bank, Contributed Programs. Volumes 3-5 , 1978.
Apple II BASIC Programming Manual (Integer BASIC). 1978.
Apple II Reference Manual, Hardware and Software. 1979.
Apple II: The DOS Manual, Disk Operating System. 1980. (Includes 16-

sector-diskette information.)
DOS version 3.2: Disk Operating System Instructional and Reference

Manual. 1979.
Other publications devoted to the Apple II and Apple II Plus com­

puters:
Computer Station's Programmer's Guide to the Apple II. Computer Sta­

tion, 1978. (All material edited from Apple manuals listed above.)
Dougherty, William E. The Apple II Monitor Peeled. 1979.
Poole, Lon. With Martin McNiff and Steven Cook. Apple II User's Guide.

Osborne, McGraw-Hill, 1981.
The following periodicals carry articles, features, and reviews of the

Apple computers and peripherals:
Byte
Compute
Creative Computing
Interface Age
kilobaud Microcomputing
Nibble
On Computing
Personal Computing
SOFTLINE
SOFTALK

2 3 2

I n d e x

ABS function, 6 0 , 6 1 , 6 9
Addition

Integer BASIC, 12
Applesoft, 9

AND, 7 6
A P P E N D instruct ion, 1 6 9
Apple Integer BASIC, 1-2

prompt (>) , 6
Applesoft, 1-2

prompt (]) , 2
Argument , of a function, 3 3 , 6 0
Arrays

Applesoft n u m e r i c , 1 0 3 - 1 0 7 , 1 0 9 - 1 1 1
Applesoft string, 1 1 2 - 1 1 3
Integer BASIC, 1 0 8 - 1 0 9

Arrow keys, 4 0 - 4 2
ASC function, 9 0 , 9 3
ASCII , 8 2
Ass ignment s ta tement , 13 , 2 4
ATN function, 7 6

Base -2 , 1 2 9 - 1 3 1
B a s e - 1 0 , 1 2 9 - 1 3 1
B a s e - 1 6 , 1 3 3 - 1 3 5
Binary

digit, 1 3 0
n u m b e r system, 1 2 9 - 1 3 3
program, 1 4 6

Bit, 1 3 0
Built-in functions. See Func t ions
Byte

defined, 1 3 0
option in DOS, 1 6 9

C A L L for H O M E in Integer BASIC, 7 5
C A L L s , 2 0 0 - 2 0 1
Cartes ian coordinate system, 4 5 , 1 8 1 - 1 8 2
Casse t te tape, 1 9 7 - 1 9 8

CATALOG instruct ion, 1 4 6
C h a r a c t e r sets, 9 8 - 1 0 2
C H R $ function, 9 3
C L O S E instruct ion, 1 4 7 - 1 4 9
C O L O R = s ta tement , 4 5
Colors

Hi-Res , 1 7 2
Lo-Res , 4 5

C o m m a .
delimiter, 1 0 - 1 1 , 12, 8 0
in a file, 1 5 5

C o m m a n d s . See Instruct ions;
S t a t e m e n t s

C o m p u t e r language , definition of, 1
C O N instruct ion in Integer BASIC, 2 2
Conca tena t ion of strings

Applesoft, 8 3
Integer BASIC, 8 9

C O N T instruct ion in Applesoft, 2 2
C O S function, 7 6
C T R L - B , 1 9 5 - 1 9 6
C T R L - C , 17, 2 2 , 2 5 , 3 0 - 3 1 , 1 9 6
C T R L - D , 1 4 7 - 1 4 8
C T R L - S , 7 3
C u r s o r controls , 4 1 - 4 2

Deferred execut ion , 1 4 - 1 5
D E E F N function, 6 7
D E L E T E instruct ion, 1 4 6 , 1 9 9
Delimiters, 11 , 8 0
DIMension s ta tement , 8 5 , 1 0 7 , 1 0 8 ,

1 1 0 - 1 1 1
Disk, 1 4 5
Disk drive, 1 4 5
Division

Integer BASIC, 12
Applesoft, 9

Dollar sign, string variable, 7 9 , 8 4
DOS (Disk Operat ing Svs tem) , 1 4 5 - 1 4 6 ,

1 6 9

DOS options
, B , 1 6 9
,D, 1 6 8 - 1 6 9
, L in O P E N , 1 5 7 , 1 6 3 - 1 6 4
,R

in P O S I T I O N , 1 6 9
in R E A D and W R I T E , 1 5 7 , 1 6 4 ,

1 6 9
,S , 1 6 8 - 1 6 9
,V, 1 6 8 - 1 6 9

D R A W statement , 1 8 7 , 1 9 3 - 1 9 4
Drive option in DOS, 1 6 8 - 1 6 9
D u m m y

data, 3 0 , 8 1
variable, 6 7

E-format . See Scientific notation
E l e m e n t , array, 1 0 3
E N D s ta tement , 6
E q u a l to, 2 5 - 2 6
E q u a l s sign, 2 4
E r r o r m e s s a g e s

*** > 2 5 5 E R R , 8 5
*** > 3 2 7 6 7 E R R , 1 1 , 3 3
*** BAD B R A N C H E R R , 3 0 , 5 4
*** BAD N E X T E R R O R , 3 8
*** BAD R E T U R N E R R O R , 5 0
*** M E M F U L L E R R , 1 9 8
*** N O E N D E R R O R , 7
*** S T R I N G E R R , 8 7
*** S Y N T A X E R R O R , 7, 1 5 , 9 1
7 E X T R A I G N O R E D , 14
7 I L L E G A L Q U A N T I T Y E R R O R

I N . . . , 5 3 , 6 1
7 N E X T W I T H O U T F O R E R R O R

I N . . . , 3 8
? O U T O F DATA E R R O R IN . . ., 18, 81
7 R E E N T E R , 15 , 7 8
7 R E T U R N W I T H O U T G O S U B

E R R O R IN . . . , 5 0
7 S T R I N G T O O L O N G E R R O R

I N . . . , 8 3
7 S Y N T A X E R R O R , 5, 2 9
? U N D E F ' D S T A T E M E N T E R R O R

I N . . . , 3 0
B R E A K I N . . . , 1 6 - 1 7 , 2 2
E R R , 1 9 8
R E T Y P E L I N E , 15 , 7 8
S T O P P E D AT . . ., 3 0 , 3 8 , 5 0 , 5 4 , 8 7
V O L U M E M I S M A T C H , 1 6 9

E S C key, 4 1
E X E C instruct ion, 1 5 6

E x e c u t i o n , program 4
deferred, 2 0 - 2 1
immediate , 2 0 - 2 1

Exponent ia l symbol) , 6 6

Files, data, 1 4 5 - 1 4 7
r a n d o m a c c e s s , 1 5 6 - 1 5 7
sequential , 1 4 7 - 1 4 9 , 1 5 4 - 1 5 6

Files, text. See Files, data
F L A S H s ta tement , 7 3

P O K E in Integer BASIC, 7 5
F O R and N E X T s ta tements , 3 7
F P instruct ion, 1 4 6 , 1 9 6
F R E function, 7 2
F u n c t i o n s

A B S , 6 0 , 6 1 , 6 9
ASC, 9 0 , 9 3
ATN, 7 6
C H R $, 9 3
C O S , 7 6
D E F F N , 6 7
E X R 7 6
F R E , 7 2
INT, 3 5 , 5 9 , 6 1 - 6 2 , 9 5
L E F T S , 9 4
L E N , 8 7 , 9 4
LOG, 7 6
P E E K , 7 4 , 7 8
P D L , 7 4
P O S , 7 4
programmer-def ined, 6 7
R I G H T S , 9 4
R N D , 3 3 , 5 9 , 6 1 , 6 9
S C R N , 5 7
S G N , 6 0 , 6 1 , 6 9
SIN, 7 6
S P C , 7 3
S Q R , 6 1
S T R $, 9 4
TAB, 7 3
TAN, 7 6
VAL, 9 4

G E T , 7 5 , 7 8
G O S U B s ta tement , 4 8 , 5 3

nested, 5 4
GOTO s ta tement , 16
GR s ta tement , 4 4
Graphics:

H i - R e s i n Applesoft, 1 7 1 - 1 7 4
colors, 1 7 2
graphics screen , 1 7 1 - 1 7 2
m i x e d graphics and text , 172

Graphics (continued)
Lo-Res , 4 3 - 4 7

colors, 4 5
full-screen graphics , 5 7
graphics screen , 4 4 - 4 5
mixed graphics and text , 4 5

Greater than, 2 7
Greater than or equal to, 2 7

H C O L O R = s ta tement , 1 7 1 - 1 7 3
Hexadec imal n u m b e r system, 1 3 3 - 1 3 5
HGR s tatement , 1 7 1 - 1 7 2
H I M E M : s tatement , 1 8 9
H L I N s tatement , 4 6
H O M E statement , 7 2
H P L O T s tatement , 1 7 1 , 1 7 3 - 1 7 4

TO, 1 7 3 - 1 7 4
HTAB s tatement , 7 3 - 7 4

I F . . . T H E N statement , 2 5 , 3 6 , 5 2 , 5 6
Immediate execut ion , 1 4 - 1 5
INIT instruction, 1 6 8 , 1 9 8
I N P U T s tatement , 1 4 - 1 5 , 1 4 8

prompted, 6 0
Instruct ion syntax , 1
Instruct ions

A P P E N D , 1 6 9
CATALOG, 1 4 6
C L O S E , 1 4 7 - 1 4 9
C O N in Integer BASIC, 2 2
C O N T in Applesoft, 2 2
D E L E T E , 1 4 6 , 1 9 9
E X E C , 1 5 6
FR 1 4 6 , 1 9 6
INIT, 1 6 8 , 1 9 8
INT, 1 4 6
LIST, 4 - 5 , 6
LOAD, 1 4 6 , 1 9 7
L O C K , 1 4 6 , 1 6 9
MON, 1 6 9 - 1 7 0

c o m m a n d s option, 1 6 9
input option, 1 6 9
output option, 1 6 9

N E W , 2
N O M O N , 1 6 9 - 1 7 0

c o m m a n d s option, 1 6 9
input option, 1 6 9
output option, 1 6 9

O P E N , 1 4 7 - 1 4 9 , 1 6 8 - 1 6 9
P O S I T I O N , 1 6 9
R E A D , 1 4 7 - 1 4 9

Instruct ions (continued)
R U N , 3 , 1 4 6
SAVE, 1 4 6 , 197 , 1 9 9
U N L O C K , 1 4 6 , 1 6 9
W R I T E , 1 4 7 - 1 4 9

I N T instruct ion, 1 4 6
I N T function, 3 5 , 5 9 , 6 1 - 6 2 , 9 5
I N V E R S E s ta tement , 7 3

P O K E in Integer BASIC, 7 5

K, 1 0 2 4 bytes, 1 3 3
Keyword, 1, 13

Left arrow key, 4 0
L E F T S function, 9 4
L E N function, 8 7 , 9 4
L e n g t h option in O P E N , 157 , 1 6 3 - 1 6 4
Les s than , 2 5 - 2 6
Les s than or equal to, 2 5 - 2 6
L E T s ta tement , 1 3 - 1 4
Let t er s

uppercase , 9
lowercase , 9

L ine n u m b e r
Applesoft, 3
Integer BASIC, 6

L I S T instruct ion, 4 - 5 , 6
LOAD instruct ion, 1 4 6 , 1 9 7
L O C K instruct ion, 1 4 6 , 1 6 9
Logical operators , 7 6
Loop, 2 4 , 3 7
L o w e r c a s e letters, 9

Menu , 1 4 1 - 1 4 4
MIDS function, 9 4
MOD, 7 5
M O N instruct ion, 1 6 9 - 1 7 0

c o m m a n d s option, 1 6 9
input option, 1 6 9
output option, 1 6 9

Multiplication
Integer BASIC, 12
Applesoft, 9

N E W instruct ion, 2
N O M O N instruct ion, 1 6 9 - 1 7 0

c o m m a n d s option, 1 6 9
input option, 1 6 9
output option, 1 6 9

8 3 8
• • •

N O R M A L s ta tement , 7 3
P O K E in Integer BASIC, 7 5

NOT, 7 6
Not equal to, 2 6
N u m b e r sys tems

B a s e - 2 (b inary) , 1 2 9 , 131
B a s e - 1 0 (dec imal) , 1 2 9 - 1 3 1
B a s e - 1 6 (h e x a d e c i m a l) , 1 3 3 - 1 3 5

O P E N instruct ion, 1 4 7 - 1 4 9 , 1 6 8 - 1 6 9
O R , 7 6

P E E K function, 7 4
P E E K s , 2 0 1 - 2 0 2
P D L function, 7 4
P L O T s ta tement , 4 5 - 4 6
P O K E s ta tement , 4 2
P O K E s , 2 0 2 - 2 0 3
Polar graphs , 1 8 2
P O S function, 7 4
P O S I T I O N instruct ion, 1 6 9
P R I N T s ta tement , 3 , 1 4 8

blank, 16
equivalent of question m a r k (?) in

Applesoft, 2 1
Program:

definition of, 1
editing, 4 - 5 , 3 9 - 4 2
planning, 2 3 - 2 4

Programmer-def ined functions, 6 7
P r o g r a m m i n g , definition of, 1
Prompt

Applesoft (]) , 2
Integer B A S I C (>) , 6
monitor (*) , 1 9 6

Prompted I N P U T , 6 0

Quest ion m a r k (?) , as P R I N T
in Applesoft, 21

Quote , printing in Integer BASIC, 1 5 5
Quotes , used in PRINT, 3

R a n d o m n u m b e r s , 3 3 - 3 5 , 1 0 5 - 1 0 7
R E A D . . . DATA s ta tements , 1 7 - 1 8
R E A D instruct ion, 1 4 7 - 1 4 9
Record option

in P O S I T I O N , 1 6 9
in R E A D and W R I T E , 157 , 1 6 4 , 1 6 9

R e c t a n g u l a r coordinate system, 4 5 ,
1 8 1 - 1 8 2

Relational operators , 2 7
R E M a r k s ta tement , 2 5
R E P T key, 4 0 - 4 1
Reserved word, 13
R E S E T key, 2 5 , 1 9 6
R E T U R N

key, 2
s ta tement , 4 8

Right arrow key, 4 0
R I G H T S function, 9 4
R N D function, 3 3 , 5 9 , 6 1 , 6 9
R O M , 1 9 5 - 1 9 6
R O T = s ta tement , 187 , 194
Rounding, 6 4
R U N instruct ion, 2 , 1 4 6

SAVE instruct ion, 1 4 6 , 197 , 1 9 9
Scientific notation, 10 -11
S C R N function, 5 7
Semicolon delimiter, 1 0 - 1 1 , 12
SGN function, 6 0 , 6 1 , 6 9
Shapes , 1 8 7

table, 187 , 1 8 9 - 1 9 1
vectors , 1 8 7

S H I F T - N (^) , 6 6
SIN function, 7 6
Slot option in DOS, 1 6 8 - 1 6 9
S P C function, 7 3
S P E E D = s tatement , 7 3
S Q R function, 61
STAR prompt, 1 9 6
S t a t e m e n t s

C O L O R = , 4 5
DIMension, 8 5 , 107 , 108 , 1 1 0 - 1 1 1
DRAW, 1 8 7 , 1 9 3 - 1 9 4
E N D , 6
F L A S H , ' 7 3

P O K E in Integer BASIC, 7 5
F O R and N E X T , 3 7
G E T , 7 5 , 7 8
G O S U B , 4 8

nested, 5 4
GOTO, 16
H C O L O R = , 1 7 1 - 1 7 3
HGR, 1 7 1 - 1 7 2
H I M E M : , 1 8 9
H P L O T , 1 7 1 , 1 7 3 - 1 7 4

TO, 1 7 3 - 1 7 4
GR, 4 4
H L I N , 4 6
H O M E , 7 2
HTAB, 7 3 - 7 4

Statements (continued)
I F . . . T H E N , 2 5 , 3 6 , 5 2 , 5 6
I N P U T , 1 4 - 1 5 , 1 4 8

prompted, 6 0
I N V E R S E , 7 3

P O K E in Integer BASIC, 7 5
L E T , 1 3 - 1 4
N O R M A L , 7 3

P O K E in Integer BASIC, 7 5
PLOT, 4 5 - 4 6
P O K E , 4 2
PRINT, 3 , 1 4 8
R E A D . . . DATA, 17
R E M a r k , 2 5 - 2 6
R E T U R N , 4 8
R O T = , 187 , 1 9 4
S C A L E = , 187 , 194
S P E E D = , 7 3
TAB, 7 6
T E X T , 4 5 , 1 7 1 - 1 7 2
V L I N , 4 6
VTAB, 7 3 - 7 4 , 7 6
XDRAW, 187 , 1 9 3

S C A L E = s tatement , 187 , 194
S T E P 3 7
S T R $ function, 9 4
String

Applesoft, 7 9 - 8 3
comparison in Applesoft, 8 2
comparison in Integer BASIC, 8 7
character , 7 9
data, 7 9
Integer BASIC, 8 4 - 9 1
subscripts , 8 5 - 8 6
variable, 7 9 , 8 4

Subroutines , 4 8
Subscript

array, 1 0 3 - 1 0 4
string, 8 5 - 8 6
zero, 107 , 108 , 1 1 1 , 124

Subtract ion
Integer BASIC, 12
Applesoft, 9

TAB
function, Applesoft 7 3
s ta tement , Integer BASIC, 7 6

TAN function, 7 6
T A P E , casse t te , 1 9 7 - 1 9 8
T E X T s ta tement , 4 5 , 1 7 1 - 1 7 2
3 D 0 G , 1 9 6
Truncat ion , 131

U N L O C K instruct ion, 1 4 6 , 1 6 9
U p p e r c a s e letters, 9

VAL function, 9 4 - 9 5
Variable

array, 1 0 3
dummy, 6 7
initialization, 2 8 - 2 9
integer in Applesoft, 1 2 3 - 1 2 4
intermediate , 6 4
n u m e r i c , 1 2 - 1 3
string, 7 9 , 8 4

V L I N s ta tement , 4 6
Volume option in DOS, 1 6 8 - 1 6 9
VTAB s ta tement , 7 3 - 7 4 , 7 6

W R I T E instruct ion, 1 4 7 - 1 4 9

X D R A W statement , 1 8 7 , 1 9 3

Zero subscript , 1 0 7 , 1 0 8 , 1 1 1 , 124

5626-5
$12.95

Basic APPLE BASIC
JAMES S. COAN
This book is a complete guide to Applesoft BASIC and takes the reader from
beginning concepts, such as entering data and obtaining output, and planning
programs, to more advanced topics, such as numeric and string arrays, and
sequential and random access files. Alternative techniques for programming
in Apple Integer BASIC are also provided. Both low-resolution and high-resolu­
tion graphics are discussed.

This best-selling author follows his successful approach of beginning with
short, simple programs that are gradually expanded to form complex programs
that illustrate creative problem solving. Over 80 distinct useful programs are
included, and all can be found easily with the convenient program index.

Programmer's Corner sections at the end of each chapter focus on special
Apple II features or advanced programming ideas, including special screen
editing, full-screen graphics, advanced file handling, shape tables, and more.
Appendixes include getting started, loading and saving programs, commonly
used PEEKs, POKEs, and CALLs, and answers to all even-numbered exercises.

Also by the same author...

Basic FORTRAN
Write meaningful FORTRAN programs immediately. This step-by-step approach
to learning FORTRAN programming begins with short, complete programs
that are developed into longer, more comprehensive ones. Over 80 program
examples are included #5168-9, paper, 248 pages.

Advanced BASIC: Applications and Problems
Designed for programmers who want to extend their expertise in BASIC. Offers
advanced techniques and applications, including coordinate geometry, area,
sequences and series, polynomials, graphing, simulations, and games. # 5 8 5 5 - l ,
paper, #5856-X, cloth, 192 pages.

Programming in Applesoft BASIC
JAMES S. COAN AND SCOTT BANKS
This self-instructional software package offers a powerful, hands-on approach
to computer literacy for the beginning programmer on the Apple II computer.
Included are 2 disks and an Activities Book containing programming exercises
and suggested solutions for 12 disk-based lessons. The package is designed for
the user to have complete control of his or her learning pace. #14009 (includes
text and 2 Apple II diskettes).

H A Y D E N B O O K C O M P A N Y , I N C .
Rochelle Park, N e w Jersey

ISBN 0 - 8 1 0 4 - 5 6 2 6 - 5

