
ecorric at

Take that intermediate step from elementary
BASIC to machine language programming!

Intermediate Apple

by
Bill Parker

Illustrated by

Robert J. Peters

DATAMOST
20660 Nordhoff Street

Chatsworth, CA 91311-6152

(818) 709-1202

DATAMOST
ISBN 0-88190-241-1

Copyright © 1984 by DATAMOST, Inc.
All Rights Keserved

This manual is published and copyrighted by DATAMOST, Inc.

Copying, duplicating, selling or otherwise distributing this
product is hereby expressly forbidden except by prior written
consent of DATAMOST, Inc.

The word APPLE and the Apple logo are registered trademarks
of Apple Computer Inc.

Apple Computer Inc. was not in any way involved in the writing

or other preparation of this book, nor were the facts presented
here reviewed for accuracy by that company. Use of the term
Apple should not in any way be construed to represent any
endorsement, official or otherwise, by Apple Computer Inc.

Brief excerpts from software and documentation on B.E.S.T.,
Edit-Soft and APLUS used by permission of Sensible Software.

Apple II is a registered trademark of Apple Computer Inc. Used
by permission of Apple Computer Inc., 20525 Mariani, Cupertino,
CA 95014.

Printed in U.S.A.

ACKNOWLEDGMENTS

To Bill Sanders for the methodology and motivation to finish
this book.

Dedicated to Nancy and Z. Parker, two of my closest friends.

Table of Contents

Chapter 1: Introduction to Structured Programming 11
The Hazards of Unstructured Programming 11

Benefits of Structured Programming 15
The Three Control Structures................... 15
The Problem with GOTOs- 19
ASA: An Alternative to GOTOs 20
Nesting ccc ccc ccc cece ee eee eee eeeees 21

A Word on Variable Names005. 22
Program List Formatting00. 23
SUMMALY cece tcc cee eee eee e eee 27
For Further Reading ccc cee eees 29

Chapter 2: Problem Solving Using Structured
PFOGTAMMING cc cece cece reece reece scencees 31

The Five Steps of Algorithm Development........ 31
An Actual Example: The Shadow and the

Building ccc ccc cece cece eee ees 34
The Four Standard Program Modules 37

SUMMALY cc ccc cece cee cece eee e teens 40

For Further Reading 0... eee ee 42

Chapter 3: Introduction To Flow Diagrams 43
The BasicS 0. ccc ccc cece cee eee eee e ees 43
The Control Structures0000. 47
Nesting 2.0... ccc ccc ccc cece eee eee eees 48
Flow Diagrams vs. Flowcharts.................. 49
Refining Flow Diagrams06: 51
Actual Example 0... ccc eee eee eee 53
SUMMALY cc ec cece eee eee e eee eees 57
For Further Reading000005- 57

Chapter 4: Useful Algorithms cece eeeeeees 59
Sort Algorithms 0... cece eee c eee eens 60

Bubble Sort ccc ccc ce cee eee 60
Select Sort 0... cece cee eee eee eee 61
Shell Sort cc ccc cee cece eee ee eeas 63

DOS Algorithms 0.00. ccc eee ee eee 64
Load Directory Into An Array 64
RWTS ccc cc ccc eee e cee eee eees 66

EXEC Files 0... ccc ccc ccc cc ee ee eee ees 67

SUMMALY ccc ccc ce eee eee cece eees 69
For Further Reading 0.0000 ee eees 69

Chapter 5: Text FileS ccc ccc cece eee eceees 71

Purpose of Text Files 0.0.0... 0... cc cece e eee 71
Structure of Text Files and the Disk 71
Basic File Structure: Records and Fields 74
Sequential and Random Access Files 75

Text File Memory Requirements 77
File Design Considerations0.000008 79
Useful File Handling Techniques................ 81

Make a Sequential File 82
Read a Sequential File..................... 83

Make a Random Access File................ 84

Read a Random Access File 85
Appending Sequential Files 85
Appending Random Access Files............ 86
External Sort of a Sequential File 88
External Sort of a Random Access File 90
Merge Sequential Files4. 92
Merge Random Access Files 93

SUMMALY cece cee eee eee eee e ees 95

For Further Reading 00. cece eee 97

Chapter 6: Enhanced Graphicsceseeeees 99
Limitations of Applesoft 99
Introduction to the HI-RES Screen 101

Introduction to Shapeseceeee- 103

Shape Creating Summary- 109
The Lunar Lander Demonstration.............. 110

Creating the Lunar Lander Shape.......... 110
Lunar Lander 1: Display Lander........... 112

Lunar Lander 2: Lowering the Lunar -
Lander 00. e ee eee ee ees 116

Lunar Lander 38: Display Terrain 117

Lunar Lander 4: Sound Effects 118
Lunar Lander 5: Button Control 119

Lunar Lander 6: Joystick/Paddle Control ... 120

Lunar Lander 7: Explosions............... 120

The Complete Lunar Lander Program 122

SUMMAry 0... ee ee eee ee eee eee eee 127

Chapter 7: Special Printer Techniques 129
The Three Types of Printers 129

Printing Out Normal Text..................... 130
Special Printer Commands 131

Programming the Printer Interface Card 133
HI-RES Sereen Dump0.00206- 137

SUMMAry 0... cee eee eee eee cece e es 139

For Further Reading 0.0.0 cece eee 140

Chapter 8: PEEKs, POKEs, CALLs and Tricks of the
Oo (143

Ampersand 0. ccc ccc cece cece eee eees 143
Applesoft Program Pointers 143
| DY ©). 144

Buffers ... 0.0... ccc cece ccc eee eee eees 144
Command Error Tables 144

Greeting Program0e cee eees 146
Last Loaded File cc cece cee: 147

MON Flags 2c ccc cee eee eee eees 147
RWTS ccc cee cece cee eee eens 147

Error Handling 2... c cece eee 148

Game I/O 2... cc ce cee eee eee 149
Reading Paddles/Joystick 149

Reading Pushbuttons 150
HI-RES Graphics 0... ccc cee eee eee eee 150

Shape Table Pointer...................... 150
Select HI-RES Page...................... 150
Clear HI-RES Page 000. 151
Display Page 02. c ccc cece cece 151
Page Flipping 0.0... ccc e eee eee 151

Reading the Keyboard004- 152
Move Memory ccc cece eee c cece ecees 152
Reset Control 1.0.0.0... cee ccc eee eens 153
Sereen Control 2... ccc eee eee cece 153
Sounds ccc cece cece eee cece eee ee neces 154
SUMMALY ccc eee cece e eee ees 155

Chapter 9: How To Use An Assembler200: 157
Advantages and Disadvantages of Assembly

Language ccc ec cee cece cece eeeee 157
A Comparison: Applesoft and Machine Code..... 157

Choosing an Assembler00000- 159
Getting Started 0... cc ccc ccc eee tees 161
Your First Assembly Language Program 162
Enhancing Your Program00008% 164
Editing Your Program2000ee08% 167
Inside the 6502 ccc ccc cece teens 169
Loading Big Numbers: High and Low Bytes 170
Using Labels 0. ccc cece eee eee ees 171
Control Structures in Assembly Language 173
Basic Techniquesc cece cece e ee ees 175

Sample Applications0 ce eee 178
DOS/Applesoft Problem0000. 180
SUMMALY 2... ccc cece ccc eee eee ence eeees 180
For Further Reading 000000. 182

Chapter 10: Program Development Aids 183
RDLN .. 2... ccc ccc cece cece eee eeeeeees 183
ASA Loc ccc ccc cc ccc cece cece tee e eee eeeeees 187
Programming Aids by Sensible Software Le eeeas 195

Eedit-Soft 0.0... ccc ccc ccc eee ee eee 196
APLUS ccc ccc cee teen eens 198
B.E.S.T. 0. ccc ccc cee ee cee tence 201

Programming Aids by Delta Micro Systems 203
BASIC’ .. 0... ccc ccc cc cee eee eee 203

SUMMALY ccc cece cc eee c cece ee eees 207
Ampersand Utilities6- 207

Applesoft Editors000. 207
Applesoft Pre-Processors 207
Applesoft Optimizers 207

Chapter 11: Structures Languages00. 209
Applesoft 0... ccc ccc ccc ce eee eee eee lees 209
Pascal .. 0... ccc cc cee cece eee ee eens 210
a 210

SUMMALy 0... ccc ee ee cece eee e ee eee ees 212
Bibliography ccc cece e cet e eee eens 213

EDITOR'S INTRODUCTION
William B. Sanders, Ph.D.

This book is for the computer user who understands the fun-
damentals of BASIC programming and is wondering what to do
next. There is a point when the novice computer user reaches a
plateau, where he or she decides whether or not to learn more
about computer programming. At this point, one has little alter-
native than to make a giant leap into the world of machine level

language or into various other higher level languages. Mastering
elementarv BASIC is often traumatic enough to dissuade the
budding programmer from risking his life on the cliffs of machine
language. So the decision is often limited to taking a leap into the
morass of a new language or doing nothing at all.

This book offers another choice. It is an INTERMEDIATE step
that will immensely improve Applesoft BASIC programming
skills and provide a whole array of proven programming tech-
niques. Yet at the same time, it deals with the familiar constructs
of Applesoft BASIC. In fact, the purpose of this book is to make
programming easier, not more difficult. Rather than looking at
BASIC in terms of single statements, functions or commands, it

shows the user how to deal with program blocks and modules.
Small, simple programs are fine for learning how to program, but
there will come a point at which you will want to write a useful,
fairly large program. If you’ve spent any time at all program-
ming, you must have LISTed others’ programs and asked your-
self, ““How could they keep a big program like that straight?”
This book shows you how.

You may well wonder how writing larger, more sophisticated

programs can be easier than writing asmall simple program. For
the most part, a large program is nothing more than a well

organized set of small programs, and the key to that is organiza-
tion and structure. First, rather than rewriting an entire pro-
gram every time you sit down at the computer this book shows
you how to save and then re-use program modules that can be
employed in several programs. With only a few program lines, it
is possible to connect several previously written modules into a
larger program. Thus, the larger program is actually simpler
than blindly piecing together a small one. Also by using struc-
tured programming techniques, you will be able to see more
clearly what you have done. For anyone who has written a huge

program and then gone back to it, one is often at a loss to remem-
ber what everything does and why it does it. By clearly docu-

menting and arranging it, any Applesoft progam can be made
clearer. Mr. Parker even provides some utilities to assist in mak-
ing Applesoft more lucid.

In addition to showing the user how to attack a programming

problem, this book shows how to master some of the more
advanced features of Applesoft. In my introductory book, The

Elementary Apple, I only wanted to get a new user started in pro-

gramming. The book was for someone who brought home their
computer and wanted to get started without too many tears.

However, DATAMOST wanted a book that would take the next

step in programming the Apple Computer. Therefore, many of
the features that were just touched upon in The Elementary
Apple, such as graphic animation, shape tables, POKEs, PEEKs
and disk file handling, are explored in depth here.

Next, the book takes the first step toward advanced program-
ming. It is not the giant leap described above, but rather it is an
introduction to assembly language programming. The best way
to introduce an assembly level program is to explain how to use
an assembler, and that is exactly what it does. This gives the user
a chance to take a look before the leap. You will be shown how to

get an assembler up and working, along with some sample
assembly level programs. Everything will be kept simple, and
while you cannot expect to become an expert at assembly level
programming, you will learn enough to get started.

Finally, the book concludes with a number of utility programs
provided by the author, along with some suggested commercial
programs. All of these programs are utilities to make program-
ming easier, clearer and more efficient.

MEET THE AUTHOR
Bill Parker has the ideal background for creating a book such as
this. With a solid background in both journalism and computers,

he has both the ability to communicate clearly in English and to
write computer programs. Bill is a staff writer for Call-A.P P.L.E.,
and former editor of the Sandy Apple Press, the club magazine of
Apple Corps of San Diego. He has taught computer courses in
both the University of California, San Diego and at San Diego
State University Extension programs. Heis currently a full-time
computer consultant and writer.

10

CHAPTER 1

INTRODUCTION TO STRUCTURED
PROGRAMMING ON THE APPLE

This book will take you from the point of being a fledgling Apple
programmer and show you some important principles that can
help you handle more complicated programming problems.

The method emphasized here is a technique known as structured
programming: a “one-step-at-a-time” method of reducing big
problems into smaller, more manageable ones.

The Hazards of Unstructured
Programming on the Apple

Consider the following two programs:

Program 1:
1@0!=I1+ 1
110 GOSUB 200
126 GOTO 100
13G:

200 PRINT |
2101IF1< 1046 THEN 120
224 RETURN

RUN

NOOO RWW

11

?0UT OF MEMORY ERROR IN 210

Program 2:
100 FOR!|=1 TO 200
110 GOSUB 200
126 NEXT |
130:
200 PRINT |
2101F |< 1G@6 THEN 120
220 RETURN

RUN
1

?NEXT WITHOUT FOR ERROR IN 120

Why are these programs generating nonsense error messages?
After all, little Program 1 couldn’t possibly consume all of the
Apple’s memory and line 100 of Program 2 contains a FOR state-
ment as plain as the nose on your face. So why the errors?

12

These programs are typical examples of unstructured program-
ming, a kind of a programming “by the seat of your pants”
approach to problem solving. The problem with it is that it just
doesn’t follow the way your computer “thinks,” and the error
messages show it.

Another problem with this type of programming is that it is
unclear. The bigger the program becomes, the harder it is to read
and understand. This becomes an even bigger problem when
someone unfamiliar with your program needs to enhance, cus-

tomize or just learn from it. In extreme cases, you may not even be
able to understand your own program, which could occur if you
come back to it after a few months. Your memory of the intricate
portions of your program will be gone, and you will then be unable
to make sense of the more tangled portions of your own code.

Some computer scientists in the 1960’s noticed these things and
decided to take a long, hard look at the state-of-the-art in pro-
gramming at the time. This is what they found:

® There was no organized, systematic way of even approaching

a programming problem. Good programmers simply “dove in”

(sound familiar?) and came up with something that worked —
most of the time. Bad programmers floundered about even
longer.

@® There was no real assurance that a program was written
“correctly” and would be reliable.

@ There was no standardized vocabulary for describing the way
a problem was turned into a program (this is known asalgorithm
development). You had to be intimately familiar with the com-
puter language chosen by the program author to understand
how he solved the problem.

® Programming projects became stalled for expensive periods
of time when old programmers left the project and new ones
came in to replace them. It took a certain amount of time Just to
be able to understand what the previous programmer had
done and then to be able to continue from that point.

13

® Flowcharts were worthless. Although they were supposed to
be done at the beginning of a problem to provide the program-
mer with an easy-to-follow graphical representation of the
steps necessary to write the program, they were frequently

left (if done at all) until after the program was up and running.
This happened because the more complicated a program

became, the more complicated (and unclear) the flowchart

became.

® Trying to read a long program in an effort to understand how
it worked was an exercise in futility, because control branched

all over (through the use of the ubiquitous GOTO statement).

This method of programming, which also prevented large pro-
grams from being broken into smaller, more manageable
“modules,” came to be known as spaghetti programming.

ANYTHING Py srves 7
DONE ? = PROGRAMMING

iS CaMaN “PROGRAM
lac =

This sorry state of affairs led Edsger Dijkstra, one of the “Fathers
of Structured Programming,” to remark in the preface to his
book, A Discipline of Programming:

.. on the one hand I knew that programs could have a
compelling and deep logical beauty, on the other hand I was
forced to admit that most programs are presented in a way
fit for mechanical execution but, even of any beauty at all,
totally unfit for mechanical appreciation.

14

Fortunately, there is help! The same group of scientists who
analyzed the problems caused by “normal” programming prac-
tices also came up with a way to avoid them. This method allowed
programmers to write programs with “compelling and deep logi-
cal beauty” and has come to be known as structured programming.

Benefits of Structured Programming

We will now investigate the basic elements of structured pro-
gramming in Applesoft. Among its benefits are:

1. Programs are more easily understood. Programs are easier to
read and the logic flow is easier to follow.

. The possibility of making errors is reduced. This is known as
“anti-bugging.” You may also have heard of this concept in
the well-known commercial where it is stated, “problems are
built out — not in.”’

. Programs are easier to maintain. This makes it easier for any-
one to understand, improve or enhance your program.

. It’s faster to code with structured programming. The logic is
simple and straightforward.

. It provides an easier transition to other higher level languages.
Currently, most programs written with the aid of higher level
languages use structured programming techniques.

. It’s easier to code large programs. Large programs can be
broken into “modules” and given to different programmers for
development. This speeds up the development of the program
and makes it easier to coordinate the finished modules into one

system.

The Three Control Structures

The benefits of structured programming are the direct result of a
key discovery by researchers:

15

No matter how complicated a program is and no matter in

which language a program is written, any program can be
written with just three basic control structures: sequence,
decision and loop.

As the name implies, control structures tell the computer which
instruction to execute next. It’s how you control the logic flow in

your program that determines how clear and manageable the
program is. Let’s take a look at some examples of each kind of
control structure:

SEQUENCE

True Control Structures Applesoft

100 X=3 100 X=3
110 Y=6 110Y=6
120 PRINT “THIS IS A TEST’12@ PRINT “THIS IS A TEST”

Here, you can see that there is no difference between true control
structures and the structures that Applesoft provides. This is
because sequential statements are the most basic commands
that can be used on a computer; all languages must use them.

DECISION

True Control Structures Applesoft

1Q0IFX>Y 1Q0IFX>Y
THEN PRINT “X > Y" THEN PRINT “X > Y"

This kind of IF THEN decision is the most basie decision struc-

ture available; all languages have this structure in one form
or another.

16

True Control Structures Applesoft

100 IF X > Y THEN 1006 ON X > Y GOTO 11@
: GOTO 14G

110X=3 110X=3
12e0Y=6 120Y=6
13@ PRINT “X > Y” 130 PRINT "X > Y”
14@ IF END 14@ REM IF END

This is an example of a multi-line IF THEN structure. Only the
most advanced BASICs have this feature. Note the use of the IF

END command to tell the computer where the end of the IF block
is. (Statements within the block are executed only if the IF condi-
tion evaluates to true.) Applesoft, which is a minimal BASIC,
must be “forced” to perform the same type of control through the
use of the ON GOTO statement. ON GOTO is used here instead
of IF THEN because, unlike IF THEN, ifthe ON condition is false,

control goes to the next statement within the current line.

1@0 IF X > Y THEN 10@ ON X > Y GOTO 110
: GOTO 140

110X=3 110X=3
12e0Y=6 12e0Y=6
13@ PRINT “X > Y" 130 PRINT "X > Y"

135 GOTO 160
140 ELSE 140 REM ELSE
150 Z=5 150 Z=9
16@ IF END 160 REM IF END

With an IF THEN ELSE structure wecan specify which of the two
blocks of code will be executed. If the condition is true, the first

block is executed and the second block is skipped. If the condition
is false, the first block is skipped and the second block is executed.
Notice here how closely Applesoft’s ON GOTO statement simu-
lates the true IF THEN ELSE structure. In fact, it can be read as:

ON X > Y GOTO 11@: GOTO 140 —»
IF X > Y THEN 11@ ELSE 14@

17

LOOP

True Control Structures Applesoft

100 FORI=1T010 1046 FOR|=17T010
110X=X+1 110X=X+1
120 NEXT | 120 NEXT |

As you can see, there is no difference between the true FOR

NEXT loop and the FOR NEXT loop provided by Applesoft.

1@0 REPEAT 100 REM REPEAT
11@ INPUT ANSS 11@ INPUT ANSS
120 UNTIL ANSS = “STOP” 120 ON ANSS = “STOP"

GOTO 130: GOTO 10d
13@ REM UNTIL

ANSS$ = "STOP"

The REPEAT UNTIL loop is known as a “trailing loop” because
the decision to leave the loop 1s madeafter the body of the loop has

been executed. This means the body of a REPEAT UNTIL loop is
executed at least once.

1@@ WHILE ANSS 1@@ REM WHILE ANSS < >
< > "STOP" "STOP"

114 INPUT ANSS 110 ON ANSS< > “STOP”
GOTO 120: GOTO 140

126 WEND 120 INPUT ANS
130 GOTO 100
146 REM WEND

A WHILE WEND loop is known as a “leading loop” because the

decision to execute the loop is made before the body of the loop is

executed. This means it is possible to completely avoid executing
the WHILE WEND loop. In case you are not familiar with the

syntax, “WWEND” simply means While) END and marks the
end of the loop body.

18

The Problem With GOTOs

You may have heard that GOTOs are the archenemy of struc-
tured programming. In fact, if you look at the sample true control

structures, you'll notice that there is not a single GOTO in the
entire lot. This notion may strike you as a bit odd, especially if you

are used to working with Applesoft which requires GOTOs to
perform loops and decisions.

When Applesoft was created, it was designed with a minimum of
features. Some of the first features to go were structured con-
cepts, which were thought at the time to be unnecessarily space
and time-consuming. Three control structures were built into

Applesoft: IF THEN, GOTO and FOR NEXT, because any of the
“true” control structures could be simulated by these. (GOSUB

is merely an extension of regular sequential programming.)

A problem quickly arose with the GOTO statement. It allowed a
“quick and dirty” means of transferring control throughout the

program and encouraged a “program first, think later” mentality.
If you got in ajam while writing a program, you simply put in a
GOTO to get out! As aresult, programs quickly degenerated into
a mass of twisted and even unused code.

A second problem with GOTOs in Applesoft is that they slow
down your program. To execute a GOTO statement, Applesoft
finds the line number by usually starting at the beginning of the
program and searching downward. GOTQs at the end of a large
program, then, are notoriously slow. The problem extends to
other versions of the GOTO statement, such as:

IF TRUE THEN 100
GOSUB 104
ON TRUE GOTO 140

Finally, GOTOs complicate program editing. If you happen to
delete a line that is the target of a GOTO statement, your pro-
gram will crash when it tries to execute the GOTO! True control
structures utilize the concepts of blocks of code that are delineated

by beginning and ending commands. For example, REPEAT
marks the beginning of a block of code to be executed and UNTIL
marks the end, thus making GOTOs and destination line num-
bers unnecessary.

19

ASA: An Alternative to GOTOs

In Chapter 10 of this book, you’!l see a program that allows you to
use true structured programming with Applesoft. This program
is called, ‘“‘ASA,” which means “Ampersand Structured Apple-
soft.” It works by using the “&” character to extend Applesoft’s
command set. Here are some examples:

DECISION

ASA Applesoft

1@Z&|IFX>YTHEN 1@00N X> Y GOTO 11@
: GOTO 14G

110X=3 110X=3
12e0Y=6 12e0Y=6
13@ PRINT “X > Y” 130 PRINT “X > Y”
14@6& END 140 REM IF END

1008 1IFX>YTHEN 1000N X> Y GOTO 11G
: GOTO 14@

110 X=3 110X=3
1e0Y=6 12e0Y=6
130 PRINT “X > Y” 130 PRINT “X > Y”

135 GOTO 16G
140 & ELSE 144 REM ELSE
150Z=5 150Z=5
160 & END 164 REM IF END

LOOP

ASA Applesoft

100 & RUN 10@ REM REPEAT
110 INPUT ANSS 110 INPUT ANSS
120 & STOP IF 124 ON ANSS = “STOP”

ANSS = “STOP” GOTO 130: GOTO 100
130 REM UNTIL

ANSS = “STOP”

20

100 & ON ANSS < > 100 REM WHILE
“STOP” ANSS < > “STOP”

11@ INPUT ANSS 11@ ON ANSS < > “STOP”
GOTO 120: GOTO 140

120 & CONT 120 INPUT ANSS$
130 GOTO 100
14@ REM WEND

Notice that in the loops, RUN STOP is used instead of REPEAT
UNTIL and ON CONT is used instead of WHILE WEND. This is
done to reduce the amount of coding necessary to interpret the

commands following the “&” character. To keep the explanation
brief, Applesoft reduces a set of “reserved words” like RUN and
STOP to one byte ‘‘tokens.” A one byte character is infinitely

easier to handle than a multi-byte word like, ‘‘“REPEAT”, which
is not normally recognized by Applesoft as a valid command.

With ASA, you'll find that your Applesoft programs are easier to
create and change. In addition, they execute faster than the
GOTO equivalent. Examples in this book will usually use normal
Applesoft. You are free to choose the method you find more

comfortable.

Nesting

Despite the many anti-bugging features of control structures,
there is still one way programs are commonly fouled up: the lack

of proper “nesting.” There may be occasions in which you will
have to place one control structure inside another. This is
called ‘‘nesting”’:

1@Q FOR LINE=1T05
11@ FORCLMN=1T02a
120 PRINT “*";
13@ NEXTCLMN
14 PRINT
15@ NEXT LINE

21

Output:

ate 2fe 2k oe ake ic ake afc ake oie ake ok ok oe 2k 2k Ke ke

ae he ake oe ae oie fe ae aie aie aie te ie aie ok 2k oe ke

te He ie He ae aie oe ae ae ae oe oe oe ok Ke ee

He he 2 ae oe aie oe fe he oe he oe ok Ok ke Ke EE

me ae ee oe ae oe KK OE EK EK KK

In this program, which prints out a box of “stars,” there is a FOR
NEXT loop (lines 110-130) nested inside another FOR NEXT loop
(lines 100-150). As explained so eloquently by William B. Sanders

in his book, The Elementary Apple: (See pg. 3-16 for an interest-

ing picture of this.)

Think of nested loops as a series of fish eating
one another, the largest fish’s mouth encom-

passing the next largest and so forth down to the
smallest fish.

Any control structure can be nested inside any other. With proper
nesting, however, there is only one entry point into a control

structure and one exit point. Troubles begin when you violate
this principle. (The first two programs at the beginning of this
chapter are classic examples of violations of this rule.) The con-
cept of proper nesting will be brought out more fully in a later

chapter on flow diagramming.

A Word On Variable Names

The previous “draw stars” program was easy to understand

because:

1. Each statement was on a separate line.
2. Long, self-descriptive variable names were used.
3. Loop index variables were used.

4. Numbers were used instead of variable names:

22

1@@ FOR LINE=1TOS
110 FORCLMN=1 TO 20
120 PRINT “*";
13@ NEXT CLMN
146 PRINT
15@ NEXT LINE

However, it can be made to run significantly faster by:

1. Putting as many statements on one line as possible.
2. Using at most two letters for a variable name.
3. Not using loop index variables in NEXT statements.
4. Using variables instead of numbers:

100 N1 = 1
>-N5=5

-NT=20

: FOR LN = N1 TONS
: FORCL=N1 TONT

PRINT “*”;
NEXT
PRINT

: NEXT

There are commercial products on the market now that can “op-
timize” Applesoft by changing the first version above into the
second version. As you can see, however, clarity is beginning to
suffer at the expense of execution speed. As will be explained in
the next section, it is a good idea to have two versions of the pro-
gram you are working on, one “for show” and the other “for
execution.”

Program List Formatting

You may have noticed that the programs listed here look a lot
“cleaner” than the way you can get programs to appear on your

screen with Applesoft’s LIST command. This is due to the fact
that the LIST routine in Applesoft is very short and can only pro-
vide a minimum of formatting. The problem becomes very apparent

with more complicated programs:

21@ LET DS = CHAS(13) + CHRS
(4):0P$ = DS + “OPEN":DES =
DS + “DELETE”: WARS = DS + “WR
ITE’:CL$ = DS + “CLOSE":GS =
CHRS$ (34):NS = “CONVERT”: PRINT
OPSNS; DESNS:OPSNS;WASNS: POKE
33,33: LIST 50000 -: POKE 3
3,42: PRINT “RUN 5@00": PRINT
DS"CLOSE CONVERT": END

50020 DS = CHARS (13) + CHRS (4)
: GET NS: PRINT NS: HOME : INVERSE
> PRINT “ CON
VERT ": NORMAL
>: PRINT

50001 PRINT “WHAT NAME WOULD YOU
LIKE TO SAVE THE CONVERTE
D (TEXT FILE) VERSION OF THE

PROGRAM AS?": PRINT

90002 INPUT “REMEMBER TO PUT A'
TON THE END OF THENAME TO
MAKE IT DIFFERENT FROM THE
APPLESOFT NAME: ";N$

50@GG3 PRINT DS“OPEN ”:NS$;DS"DELE
TE ”:N$;DS“OPEN ”:NS$;DS"“WRIT
E”:NS: POKE 33,33: LIST 2,4
9999: LIST 50005 - : TEXT: PRINT

D$“MONO”

90004 HOME: INVERSE: PRINT “DO
NE!”": NORMAL: PRINT. PRINT
“ A TEXT FILE VERSION OF T
HIS PROGRAM”: PRINT “NOW Ex\
STS UNDER THE NAME OF:”: PRINT
>: PRINT NS: PRINT OS“CLOSE ”
(NS: DEL 5G000,50004

24

Now, compare the previous program with this version:

100 RE
110 REM
120 REM
13@ REM
14@ REM
154 REM
1606 REM
170 REM
180 REM
194 REM
200 RE

210

M WE oR Ae ak OK 9K 2 oie 2 oe oo ie i eo 2K oe a eo a ako 2k ok 2 ok OK KE OK Kk KK KK

== MAKE CONVERT ==
RUN THIS PROGRAM TO
CREATE “CONVERT”.

‘EXEC CONVERT WILL
THEN CONVERT ANY
PROGRAM IN MEMORY

INTO A TEXT FILE
UNDER ANY NAME

YOU LIKE.
M PEE SEL ELS STL ESS ESSE SESE TE TT TTS SFE ST ET ES SS

* * &© &® &F F&F HF KR F * %*+ * &# & & & HR

LET DS = CHRS(13) + CHRS(4)
: OPS = DS + “OPEN”
: DES = DS + “DELETE”
: WRS = DS + “WRITE”
: CLS = DS + “CLOSE”
: QB = CHRS(34)
: NS = “CONVERT”
: PRINT OPSNS; DESNS: OPSNS; WRSNS
- POKE 33,33
. LIST 500Q0-
: POKE 33,42
- PRINT “RUN 52200"
- PRINT DS“CLOSE CONVERT"
-END

5g000 D$ = CHRS(13) + CHRS(4)
. GET NS
: PRINT NS
> HOME
> INVERSE
> PRINT © CONVERT "
>: NORMAL
> PRINT

50001 PRINT “WHAT NAME WOULD YOU LIKE
TOSAVE THE CONVERTED (TEXT FILE)
VERSION OF THE PROGRAM AS?"
PRINT

50042 INPUT “REMEMBER TO PUT A‘*.T ON THE
END OF THENAME TO MAKE IT DIFFERENT
FROM THE APPLESOFT NAME: ";NS

25

5@0@3 PRINT D$S"OPEN ".NS; DS"DELETE ”; NS;
DS“OPEN ";NS; DS"WRITE "NS
; POKE 33,33
. LIST @ 49999
: LIST 5@@6@5-
: TEXT
; PRINT DS"MONO”

50604 HOME
: INVERSE
- PRINT “DONE!”
;: NORMAL
: PRINT
: PRINT “A TEXT FILE VERSION
OF THIS PROGRAM"

; PRINT “NOW EXISTS UNDER THE
NAME OF:”"

> PRINT
>: PRINT N&S
: PRINT DS"“CLOSE ”; NS
: DEL 50G00,500G4

You'll notice that the clarity of this program has been greatly
enhanced simply by controlling the spacing between state
ments. Both programs are identical and run the same. The first

was listed with Applesoft’s built-in LIST command, the second
was converted into a text file and edited with a word processor.
(Any word processor that can handle text files will do; most
Apple owners already own at least one word processor.)

This brings us to an important point: Applesoft will fight you
tooth and nail over structured programming. This is because it
was developed before the concept of structuring was thought
desirable for personal computers and also because it had to bea
“stripped-down,” small-as-possible language to fit within a

small portion (12K) of memory in the Apple’s ROM. (Other more
powerful BASICs typically consume at least twice as much

memory and run slower than Applesoft.)

In order to follow the idea of illustrating how structured pro-
gramming increases clarity, programs listed in this book will be
formatted as shown above. You can perform the same process by

using the above program (that’s why it’s listed here) to convert

26

programs into text files and then using a word processor to pro-

perly format your listing. (The text file version can be RUN just
like the Applesoft version simply by first EXECuting it back
into memory.)

This means that to do things right, you will wind up with two files
for every properly structured Applesoft program you write: an
“execution copy” (in Applesoft) that will be directly RUNable in
a “stripped-down” version and a “presentation copy” (a text file)

that is properly REMarked and formatted for maximum clarity.
This is especially important when you need to explain how your

program works to someone else, such as in commercial documen-
tation, magazine articles and the like.

Summary

Unstructured programming is often called programming “by the
seat of your pants.” It requires no forethought and generally
leads to spaghetti code. Among its drawbacks:

* Hard to understand large programs.

* No assurance of reliability.

* No standardized vocabulary.

* Unable to break program into modules.

* Flowcharts are worthless.

Structured programming is an example of “think first, pro-
gram later.”” Among its benefits:

* It is easy to understand.

* It is reliable.

* It uses a standardized vocabulary.

* It breaks a program into modules.

27

* Flow diagrams are helpful.

* It is easier to code.

There are three basic control structures in structured program-

ming: Sequence, Decision and Loop. Decision can be expressed

by IF THEN and IF THEN ELSE. Loops can be expressed by
FOR NEXT, REPEAT UNTIL, and WHILE WEND. ON GOTO
must be used in Applesoft to simulate the IF THEN ELSE,

REPEAT UNTIL and WHILE WEND structures.

GOTOs are to be avoided whenever possible. They have the

following drawbacks:

* They encourage sloppy programming.

* They slow down program execution.

* They complicate editing.

Unless & (ampersand) commands are used to extend Applesoft’s

command set, GOTOs must be used to simulate certain control

structures. Their use must be limited to that function.

Nesting refers to the placing of one control structure inside
another. There must be one entry point and one exit point for
every control structure or an improper nesting condition will

result and strange syntax errors may occur during program
execution.

Two programs may be needed when using structured program-
ming in Applesoft: a Presentation Copy (for clarity) and an
Execution Copy (for speed). Here are two lists of elements that
are characteristic of each type:

Presentation Copy (text file)

1. Each statement is listed on a separate line.

2. Self-descriptive variable names are used.

28

8. Long loop index variable names are used.

4. Numbers are used instead of variable names.

5. Plenty of REMarks are used.

Execution Copy (Applesoft program)

1. Two letter variable names are used.

2. Short loop index variable names are used.

3. Variables are used instead of numbers.

4. No REMarks.

For Further Keading

Algorithms + Data Structures = Programs, Niklaus Wirth
(Prentice-Hall, Englewood Cliffs, NJ, 1976). The classic,
definitve statement on structured programming. Not for the
beginning student, however. Just something to keep in mind
when you are ready for it. May well “expand your program-
ming horizons.”

How To Write An Apple Program, Ed Faulk (Datamost, Inc.,
Chatsworth, CA, 1982). Good discussion on structured pro-
gramming in Applesoft.

Introduction To Computers and Data Processing, Gary Shelly
and Thomas Cashman (Ahaheim Publishing, Fullerton, CA,

1980). Textbook with in-depth coverage of general structured
programming techniques. Numerous full color illustrations
and flowcharts.

Problem Solving and Structured Programming In BASIC,
Elliot Koffman and Frank Friedman (Addison-Wesley, Read-
ing, MA, 1979). Excellent, down-to-earth book on structured
programming in a wide variety of BASIC capabilities. Tech-
niques presented here are easy to apply to Applesoft.

29

CHAPTER 2

PROBLEM SOLVING USING
STKROCTURED PROGRAMMING

The Five Steps of Algorithm Development

Within the discipline of structured programming, there is a cer-
tain way to go about solving a problem. This way provides aclear
and logical path to program problem solving. Let’s take a look at
how this is done.

ROUTE
BEWARE of BuGs

A properly structured program is a restated expression of a prob-
lem in machine executable form. This means that the program is
the problem, rewritten in a way that allows the computer to
analyze it and print out an answer.

31

The method of deciding how to restate (solve) a problem is called
algorithm development. It can be summarized in five steps:

Structured Programming; Problem Solving Steps

1. General Statement of the Problem.
2. Data Table.
3. Stepwise Refinement (Top Down Design).
4, Language Implementation.
5. Debugging/Modification.

Here’s what each step means:

1. General Statement of the Problem: You must crystalize
what it is you’re trying to accomplish into one (or just a few)
statement(s). At this point, you are just trying to focus on the
essence of the problem. Do not worry about how to actually
solve the problem or how to state it in a way “close” to how it
would be written in Applesoft.

2. Data Table: On a separate sheet of paper, keep track of the
variables used during program development. This is espe-
cially important with Applesoft, where only the first two let-
ters in Applesoft variable names are significant. A helpful
suggestion is to capitalize just the first two letters of variable
names in the data table to make the significant portion of the
variable name stand out better.

For example, a program like the one presented below, which
does not keep track of the fact that FILENO and FINISHED
look the same to Applesoft, results in the destruction of the
variable used to keep track of the file number:

10 FILENO = FILENO + 1
20 INPUT “FINISHED? (1=Y, @=N): ”; FINISHED
3@ IF NOT FINISHED THEN 1@
40 PRINT FILENO

(You'll find that determining the output variables first makes
the creation of the data table easier.)

A data table also provides documentation for what the vari-
ables do. This can help someone else who is not intimately

32

familiar with your program to understand how it works. Final-
ly, as we will see later, a data table can help you debug
your program.

. Stepwise Refinement: Continually restate the general state-
ment of the problem in simpler steps, until it becomes very

easy to translate the steps into actual Applesoft statements.
This ‘top down” design “begins at the beginning,” and works
its way down into finer and finer detail until you finally wind
up with executable code.

The opposite of this process is known as “bottoms up” pro-
gramming, which refers to beginning the programming process
with simple Applesoft routines that you “know” work and
gradually building them into a complicated program. This is
the antithesis of structured programming: while it is useful for
experienced programmers working with short, uncomplicated
programs, it can result in all of the bad qualities previously
mentioned that are associated with spaghetti programming.

You'll notice that as you refine the problem, the language you
use will gradually change from plain English to asort of “com-
puterese,” e.g., “Draw a box of stars” becomes:

Step 1. For 5 lines
Step 2. For 20 columns
Step 3. Print an “*” at the column and line

indicated

This language is known as pseudo code and will be discussed
later.

. Language Implementation: Depending on your familiarity
with Applesoft, you will reach a point in the stepwise refine-
ment process of a problem when you intuitively recognize
what Applesoft statements are needed to solve the problem.
You can then begin the actual writing of the program.

In some cases, you will be unable to figure out how to trans-
late a step into Applesoft. In this case, leave the step and
assume that you will figure it out later. This is called astub pro-
cedure and allows you to proceed with the rest of the program.
An example of this would be:

33

1@ INPUT “ENTER ANGLE: ”; ANGLE
20 REM COMPUTE & PRINT TANGENT OF ANGLE

HERE
3@ INPUT “AGAIN? "; ANSWERS
42 IF ANSWERS = “YES" THEN 1@

In the above example, statement 20 is a stub procedure (using
a REM statement), waiting for the programmer to figure out

how to find (and print) the tangent of an angle. Stub pro-
cedures give you the advantage of being able to finish the rest
of the program.

5. Debugging/Modification: It’s rare when a program runs
right the first time. Mistakes in a program are called “bugs”
and the process of finding and removing them is called, “debug-
ging.” A useful way of catching bugs is to hand trace a pro-
gram manually (i.e, without RUNning it on the Apple) and
use the data table to record how the variables change. If the
variables change the way you want them to, chances are pretty
good that your program will run.

Also, as you run your program, you'll probably notice ways it
can be improved. As you make changes, the possibility of

introducing a bug increases and the debugging/modification
cycle begins all over again.

An Actual Example:

The Shadow and the Building

Let’s take a look now at an actual problem and see how the prin-
ciples of structured programming can help solve it.

You notice that a certain tall building casts a
shadow on the ground and wonder if it’s possible
to find its height from the length of the shadow
it casts.

34

Here’s the procedure, broken down by steps:

STEP 1. General statement of the problem: Find the height of a
building from the length of the shadow it casts.

STEP 2. Data Table: The data table will have to be filled out in
parts as the program develops. For right now, this is what we
know: (Hint: It’s easiest to begin by defining the output variables
first.)

Constants, Functions

& Temporary
Variables

STEP 3. Stepwise Refinement:

Output
Variables

Input
Variables

1. Find the length of the shadow.
2. Use trigonometry to find the height of the building.
3. Print out the height of the building.

Step 2 stands out like a sore thumb. For most of us, it is just too
vague to be translated directly into Applesoft. Let’s recall our
high school trigonometry and refine that step a bit.

The triangle formed by the building and the shadow it casts is
called a right triangle because it contains a right angle (or an
angle of 90 degrees). A principle of trigonometry states that the
length of any side of a right triangle can be found from the length
of any other side and one of the non-right angles of the triangle.

It’s becoming rather obvious that we are going to need another
input variable, the angle between the end of the shadow and the
top of the building. This is called the angle of elevation. Let’s
update our data table to reflect this new addition:

35

Input Constants, Functions Output
Variables & Temporary Variables

Variables
or

SHADOW HEIGHT
ANGLE

Any trigonometry textbook will tell us that the tangent of the
angle of elevation is equal to the height divided by the length.
Restating this, we find that the height is equal to the tangent of
the angle of elevation times the length. We are now ready to
update our pseudo code with a substep (indicated by a “.1”):

1. Find the length of the shadow.
2. Use trigonometry to find the height of the building.

2.1 Compute the height as the tangent of the angle of
elevation times the shadow length.

3. Print out the height of the building.

Are we done yet? No, because of an idiosyncrasy of Applesoft: it
expects all angles to be expressed in radians (there are “pi”
(3.14) radians in 180 degrees) and not degrees. This means that
we must add another substep:

1. Find the length of the shadow.
2. Use trigonometry to find the height of the building.

2.1 Convert the angle of elevation into radians.
2.2 Compute the height as the tangent of the angle of

elevation (in radians) times the shadow length.
3. Print out the height of the building.

Problem Solving Using Structured Programming

We must also update our data table:

Constants, Functions

& Temporary

Variables

SHADOW PI = 3.14
ANGLE

36

Input
Variables

Output
Variables

HEIGHT

It should be obvious by now that we are ready to translate each
step and substep directly into Applesoft. The process of stepwise
refinement has made this task almost trivial. Notice also that you
may have to rethink your algorithm several times during this
process, inserting substeps, and clarifying what you mean.

STEP 4. Language Implementation: We now have everything we
need to write our Applesoft program directly from the data table
and the pseudo code:

100 Pl = 3.14: REM NOTE HOW CONSTANTS
COME FIRST

11@ INPUT “SHADOW LENGTH: ”; SHADOW
122 INPUT “ANGLE: ”; ANGLE
13@ RADIANS = (ANGLE * Pl) / 180
14@ HEIGHT = TAN(RADIANS) * SHADOW
15@ PRINT “BUILDING HEIGHT IS: "; HEIGHT

] RUN

SHADOW LENGTH: 100
ANGLE: 45
BUILDING HEIGHT IS: 99.9203991

STEP 5. Debugging/Modifications: This program ran right the
first time! You'll find this experience to be more and more com-
mon as you adopt structured programming techniques.

The Four Standard Program Modules

The Building Height Estimator program can be “spiffed up” a bit

to make each of its main parts easier to see and understand.
There are four main parts or modules of a program: Identifica-
tion, Data Table, Initialization and Main Program:

1 GO REM PES ESE LEE EEE ST EEE EEE ES SEL E TES EL ES ES SS SS

11@ REM * BUILDING HEIGHT *
120 REM * ESTIMATOR *
13@ REM * BY BILL PARKER *
1 40 REM PEE LESSEE TERE EE ETE ET ESS RET ELE LES EES EE OE FS

3”

(Identification Module:
Contains the program’s title, author and description of
how it works.)

150 REM THIS PROGRAM COMPUTES
160 REM THE HEIGHT OF A BLDG
17@ REM FROM THE LENGTH AND
180 REM ANGLE OF ITS SHADOW

190 REM +---------------- 4

230 REM : DATATABLE :

910 REM +---------------- 4

(Data Table Module:

Contains a description of all variables used in the program.)

2240 REM INPUT VARIABLES
230 REM SHADOW=LENGTH OF SHADOW
244 REM ANGLE=ANGLE BETWEEN
254 REM BUILDING AND SHADOW
260:

Unitialization Module:

Although in this program this is part of the Data Table,
this 1s where variables are defined.)

270 REM CONSTANT
2°80 PI=3.14

O90:
300 REM OUTPUT VARIABLE

31G REM HEIGHT=HEIGHT OF BLDG
320:

(Main Program Module:

Main program begins here.)

33G@ REM +--------------------- 4

340 REM : MAIN PROGRAM #§:

35@ REM +-------------------+- +

38

360 REM GREETING SCREEN
370 TEXT

‘HOME
380 INVERSE

>PRINT“ BUILDING HEIGHT ESTIMATOR”

: NORMAL
>: PRINT

: PRINT
396:

400 REM GET INPUTS

410 INPUT “SHADOW LENGTH: ”; SHADOW
420 INPUT “ANGLE: ”; ANGLE
430:
440 REM COMPUTE HEIGHT

45¢ RADIANS = (ANGLE * Pl) / 18@

46@ HEIGHT = TAN(RADIANS) * SHADOW

470:

480 REM DISPLAY RESULTS
490 PRINT

> PRINT “BUILDING HEIGHT IS: ”; HEIGHT

Note the format of the REM statements. There are many ways to
REMark a program, but the method shown here is one of the
“safest” for two reasons:

-They are short (less than 33 characters wide) to insure a neat

printout for users with a 40 column screen.

-There are no embedded ‘control characters in the REM state-

ments. There are some commercial Applesoft editors available
that allow you to embed aCTRL-M or aCTRL-J(useful for going
to the next line) or aCTRL-H (forces a backspace to cover up a
line number). While this provides for a very impressive program

listing on the screen or on a printer, it can really foul things up in

a hurry if you try to capture the program in a text file or try to
transmit the program over a telephone line to another computer
with a modem.

Another item: The Renumber program on the DOS 3.3 System
Master diskette was used here to keep the line numbers nice and

neat after statements were added to the program. Instructions

39

on how to use the Renumber utility (which is designed so it can be
in the computer at the same time as a program under develop-
ment!) can be found by RUNning the program called, RENUM-

BER INSTRUCTIONS on the DOS 3.3 System Master diskette.

While RENUMBER INSTRUCTIONS contains a more detailed
explanation than what will be presented here, nevertheless, here

is a brief description of how to use it:

STEP 1: Make sure that you have saved the program you are

working on and insert your DOS 3.3 System Master diskette.

STEP 2: RUN RENUMBER (yes, it’s an Applesoft program)
and press the RETURN key twice. Renumber will load in a
machine code program that actually does all the work and “hide”
it in the upper part of RAM, just under DOS.

STEP 3: LOAD the program you want to renumber and edit it as

you normally would. Renumber will stay out of the way, allowing
you to use your program nearly any way you like. When you want
to renumber your program, you can just type in something as
simple as: &F1@0@0. The & (ampersand) is used to “activate” the
machine code RENUMBER program, which then reads the F

and the 1@00 and interprets these characters to mean, “renum-
ber the Applesoft program in memory, making the first line num-

ber 1@@@ and incrementing by 1@ until the end of the program is
reached.” Therenumbering takes place very quickly and smooth-
ly; normal control of your Apple will then be returned to you.

Summary

The method of deciding how to restate (solve) a problem is called
algorithm development. It can be summarized as follows:

The Five Steps of Algorithm Development

. General Statement of the Problem

. Data Table

. Stepwise Refinement (Top Down Design)

. Language Implementation

. Debugging/Modification Om Oo NO Fe

40

A General Statement is the essence of what you are trying to
accomplish in plain English.

A Data Table is a list of variables used in your program, organized
according to type: input, output, constants, functions and tem-
poraries. A Data Table serves as documentation for how your
variables function and can also help you debug your program.

Stepwise Refinement is the continual breakdown of the General
Statement into sentences that become very close to (approx-
imate) Applesoft statements. The sentences are halfway be-
tween English and Applesoft and are known as pseudo code.

Language Implementation is the almost trivial task of trans-
lating pseudo code into actual Applesoft statements.

Debugging is the process of finding and removing errors in your
program. Antibugging is writing your program in such a way

that the errors never occur in the first place.

Modification refers to finding ways your original program can

be improved.

Top Down Design means creating a program by beginning with
a general statement of the problem and refining it into smaller,
more manageable steps. It requires planning ahead and results
in better programs. Bottoms up programming refers to creating
a program by starting with a small procedure that works and
expanding it into a more complicated program. It requires no
forethought and generally results in spaghetti programming.

A stub procedure is a REMark statement that stands in place of
a procedure that will be coded later. It allows the programmer to
proceed with the rest of the program and can also be used in
debugging to isolate faulty sections of code.

There are four main parts or modules of a program: Identifica-
tion, Data Table, Initialization and Main Program:

ThelIdentification Module contains the program’s name, author

and purpose.

41

The Data Table Module contains a list of variables used in

the program.

Initialization Module refers to variables which must be defined
or procedures which must be performed before the main program

ean work correctly.

The Main Program is the body of the program; it contains the

essence of what you are trying to accomplish.

For Further Keading

Algorithms + Data Structures = Programs, Niklaus Wirth
(Prentice-Hall, Englewood Cliffs, NJ, 1976). The classic, defini-
tive statement on structured programming. Not for the begin-
ning student, however. Just something to keep in mind when you
are ready for it. May well “expand your programming horizons.”

How To Write An Apple Program, Ed Faulk (DATAMOST, Ince.
Chatsworth, CA, 1982). Good discussion on structured program-
ming in Applesoft.

Introduction To Computers and Data Processing, Gary Shelly and
Thomas Cashman (Anaheim Publishing, Fullerton, CA, 1980).
Textbook with in-depth coverage of general structured pro-

gramming techniques. Numerous full color illustrations and
flowcharts.

Problem Solving and Structured Programming In BASIC, Elliot
Koffman and Frank Friedman (Addison-Wesley, Reading, MA,

1979). Excellent, down-to-earth book on structured program-
ming in a wide variety of BASIC capabilities. Techniques presented
here are easy to apply to Applesoft.

42

CHAPTER 3

INTRODUCTION
TO FLOW DIAGRAMS

Sometimes, when working on large, complicated programs, you
may find that even the best use of pseudo code and stepwise
refinement still does not yield results that are understandable
to you.

In such cases, it may be helpful to create a chart of what it is
you re trying to accomplish. Such a chart is called a flow diagram.

The Basics

The basic components of flow diagram figures are:

Node Flow Arrows

Decision Loop

43

Task Process

CO)
Terminal

FIGURE 3.1

Here is an example with a couple of one-line sequential instructions:

INPUT
INPUT N A

NUMBER

PRINT
PRINT N A

NUMBER

FIGURE 3.2

44

We can combine these structures at their common node points to

form a program:

100 INPUT N input
NUMBER

PRINT
11@ PRINT N A

NUMBER

FIGURE 3.3

We can indicate the beginning and end of an actual program
with “terminals”:

(sean _ _

INPUT
100 INPUT N A

NUMBER

PRINT
11@ PRINT N THE

NUMBER

FIGURE 3.4

45

The Control Structures

Decisions are indicated by structures branching off to the side
and meeting again at a common node:

IF THEN

100 IF N<1@@ THEN
PRINT “OK”

IF THEN ELSE

1046 ON N<1@@ GOTO 1
: GOTO 130

116 PRINT “OK”
1246 GOTO 150
13@ REM ELSE
14@ PRINT

“NOT OK"
15@ REM IF END

PRINT

“NOT OK”

MESSAGE

FIGURE 3.5

[) <— 1 Entry Point

NUMBER
<100

?

MESSAGE

N\, Exit Point

10 100 & IF N<1@@ THEN
11@ PRINT “OK”
120 & ELSE
13@ PRINT “NOT OK”
140 & IF END

MESSAGE

46

LOOPS

FOR NEXT

1@@ FOR |I=1TO 14
11@ PRINT “*";
120 NEXT

106 & RUN
11@ INPUT ANSS
120 & STOP IF

ANSS="DONE”

REPEAT UNTIL

1@@ REM REPEAT
110 INPUT ANSS
120 ON ANSS="DONE”"

GOTO 130: GOTO 100
130 REM UNTIL ANSS="DONE”

GET
RESPONSE

100 & ON ANSS="YES"
11@ INPUT “VALID?";

ANSS
120 & CONT

WHILE WEND

10@ REM WHILE VALID
110 ON ANSS="YES”" GOTO 120

: GOTO 140 GET
120 INPUT “VALID?”:ANSS SPONSE
130 GOTO 100 RESPO 14@ REM WEND FIGURE 3.5

47

Nesting

The advantage of using flow diagrams to illustrate how a pro-
gram works really stands out when nested control structures
are used:

102 ON A>B GOTO 11@: GOTO 130
110 IF C>D THEN

PRINT “TEST 1”
126 GOTO 140
13@ PRINT “TEST 2”
14@ REM IF END

PRINT PRINT

SECOND FIRST
TEST TEST

MESSAGE ‘MESSAGE

FIGURE 3.6

48

Flow Diagrams vs. Flowcharts

The previous figure shows two key features of flow diagrams: the
control lines do not cross and the diagram “unfolds” into a spa-
cious and almost symmetrical chart. With this system, it’s easy to
see why program reliability is assured: there is simply no other

path for the program to take.

This is in contrast to flowcharts, which are holdovers from

unstructured days:

Example of a Bad Flowchart

PRINT
FIRST
TEST

MESSAGE.

PRINT

SECOND

TEST

MESSAGE

FIGURE 3.7

49

Flowcharts mindlessly follow just one rule: if true, branch to the
right; otherwise branch down. While figure 3.7 does not appear
to be totally unclear, it is not as clear as the structured version in

figure 3.6. The truth be told, it is typical to find flowcharts with
control lines crossing each other, helter-skelter and with control
figures sprawled all over the page in one, big confusing mess.

Another Example of a Bad Flowchart

FIGURE 3.8

50

Refining Flow Diagrams

Flow diagrams can be refined just as pseudo code can. Here’s a
simple program that begins with the first level of refinement:

START

ENTER
PASSWORD

1. Enter a password

2. Leave a message
3. Say goodbye

SAY
GOODBYE

FIGURE 3.9

51

Note here that the “process” box at top which indicates a further
level of refinement. We now can finish up with the subsequent
level(s) of refinement by placing additional ‘‘expansion” dia-
grams off to the side of the main diagram:

START

ENTER

PASSWORD

1. Enter a password

1.1. Repeat

1.1.1. Get password

1.2 Until correct password

2. Leave a message

3. Say goodbye

SAY

GOODBYE

ENTER
PASSWORD

REPEAT
UNTIL

CORRECT
PASSWORD

GET
PASSWORD

FIGURE 3.10

a2

Actual Example

Here is asample pseudo code listing and flow diagram for a pro-
gram that reads all the file names off a disk and stores them in an

array. (The actual program is listed in the next chapter on sample
algorithms.)

LOAD ALL FILE NAMES

Pseudo Code

1. Display greeting screen.
2. Load all file names from directory into array.

2.1. Repeat (all steps beneath 2.1).
2.1.1. Read a directory sector into the buffer,

2.1.1.1. Callthe directory read routine indexed by whether
or not this is the first time the routine has been called.

2.1.2. Initialize Beginning and End of Name Pointers.
2.1.3. While not end of directory and Beginning of Name
Pointer <= end of buffer.

2.1.3.1. Increment file name counter.
2.1.3.2. While End-of -Name Pointer points to a blank

2.1.3.2.1 Decrement End-of-Name pointer.
2.1.3.3. For each character in the current file name.

2.1.3.3.1. Make sure the high bit is off.
2.1.3.8.2. Add the character to the name being
constructed in the array.

2.1.3.4. Move Beginning and End-of-Name Pointers to
next name

2.2 Until end of directory.

3. Clear error condition caused by RWTS.

4. Print the file names loaded.

a)

FIGURE 3-11

LOAD ALL FILE NAMES

Flow Diagram

DISPLAY

GREETING

SCREEN

READ
ALL

FILE NAMES

CLEAR
ERROR

CONDITION

PRINT THE
FILE NAMES

(continued)

D4

LOAD ALL
FILE NAMES

2.1
REPEAT
UNTIL

END OF

DIRECTORY

2.1.1. READ IN

@ A
DIRECTORY

SECTOR

2.1.2.
INIT
NAME
PTRS

2.1.3. WHILE NOT
EOD &

NAME PTR
STILLGOOD

2.1.3.1.

2.1 2.2.

2.1.3.3.

2.1.3.4.

FIGURE 3 11 (continued)

DD

INC.

NAME CTR

MOVE END
NAME PTR
TO FIRST

NON-BLANK
CHAR.

PROCESS
EACH

CHARACTER

MOVE NAME

PTRS TO
NEXT NAME

2.1.3.2. MOVE END
NAME PTR

WHILE PTR
IS ON

BLANK
CHAR.

DEC.
END NAME

PTR

2.1.3.3. PROCESS EACH

CHARACTER

FOR EACH
CHARACTER

IN FILE
NAME

ADD CHAR.
TO NAME
IN ARRAY

FIGURE 3-11

06

Summary

A flow diagram is a graphical representation of the logic flow of
a program. It is a simplified version of pseudo code and can be
used when the pseudo code of a large, complicated program is not

clear.

The figures used in flow diagrams represent nodes, flow lines,
tasks, processes, decisions, loops and terminals.

Flow diagrams can be nested and refined just like pseudo code.
Unlike flowcharts, flow diagrams unfold into spacious, almost

symmetrical diagrams with control lines that do not cross. A
properly drawn flow diagram is proof of the program’s reliability.

For Further Reading

Introduction To Computers and Data Processing, Gary Shelly and
Thomas Cashman (Anaheim Publishing, Fullerton, CA, 1980).
Textbook with in-depth coverage of general structured program-
ming techniques. Numerous full color illustrations and flowcharts.

Problem Solving and Structured Programming In BASIC, Elliot

Koffman and Frank Friedman (Addison-Wesley, Reading, MA,

1979). Excellent, down-to-earth book on structured program-

ming in a wide variety of BASIC capabilities. Techniques pre-
sented here are easy to apply to Applesoft.

57

CHAPTER 4

This chapter contains some practical routines and subroutines
for use in your own programs. These examples are used to illus-
trate the use of structured programming and are solutions to com-
monly occurring problems. Such solutions are called algorithms.

N
i

><

HLT yh

Kj. = 4,1,

WITH TAIL

aa NS

59

Sort Algorithms

Three commonly used sort algorithms are presented here: bubble,
select and Shell. It must be remembered that these are “bare
bones” subroutines. The name of the actual array (if it is not A$())
and the size of the array (ARRAYSIZE in these examples) must
be specified.

In addition, since speed is a critical factor in sorting, certain
liberties were taken with Applesoft to avoid GOTOs wherever

possible: a special form of the FOR NEXT loop was used--

FOR|I=@OTO1

(stmts)

| = (exit condition): <— Note use of Boolean expression
NEXT |

This type of looping structure adjusts the loop index variable | to

keep the loop repeating until the exit condition is true. This
then, is a REPEAT UNTIL loop in disguise. The use of the FOR
NEXT loop in this manner is not generally allowed from a struc-
tured standpoint because it is too easy to fall into “spaghetti”
programming.

Bubble Sort

The bubble sort is the easiest sort for beginning programmers to
design. It is also the slowest of all the sort algorithms. It works by
starting at the top of the array and comparing subsequent pairs

of elements, switching out of order pairs as it works it way down
to the bottom of the array. It repeats this process until it can go all
the way to the bottom of the array without switching any pairs
(i.e., the array is properly sorted). The slowness of this method is
due to the fact that many comparisons and switches are needed
for every pass through the array. Note the use of the SRTED

(sorted) flag to keep the logic structured:

1@ REM BUBBLE SORT
26 S1$="“CAT” : S2S="BAT” : S8$="DOG"
38 GOSUB 100
40 END

60

100 REM REPEAT

11@ FOR SRTED = GT01
FOR |= 1 TO ARRAYSIZE - 1
SATED = 1
IF AS[I+1) < ASI) THEN
SRTED =@
TEMPS = AS{I)
AS(I) = AS(I+1)
AS(I+1] = TEMPS

12@ NEXT
: NEXT
: RETURN

: REM UNTIL SORTED

Results:

BAT
CAT
DOG

Select Sort

The select sort works by scanning the entire array and selecting
the least element. The least element is then swapped with the top
element and the size of the array is reduced from the top element.
The process is repeated, with the array growing shorter until the
array 1s in order.

A common use of this method Is to sort a hand of freshly dealt
cards into order. Assuming that a9, 7, 2, 4 and an 8 have been
dealt, the hand is scanned for the least card, which in this case is
the 2. The 2 is moved to the left side of the hand and the four
remaining cards, 9, 7, 4 and 8, are scanned again. The 4 card is
moved to the left side and the remaining three cards are
scanned, etc:

61

9

a 9

2 9

24 9
2 4 7 9
24 7 8 9
247 8 9

72 4 8
A The hand is scanned for the least card

7 4 8
----The least card is placed at the beginning

7 4 8
AL Scanning begins again

7 8 and the process is repeated
8 until the cards are in order

The select sort is faster than the bubble sort but is slower than
others. Its beauty lies in its simplicity: it consists primarily of just
two FOR NEXT loops:

1@ REM SELECT SORT
20 S1$="CAT” : S2S="BAT" : S3S="DOG"
340 GOSUB 140
4@ END

100 FOR |= 1 TO ARRAYSIZE -1
: FOR J=1+1 TO ARRAYSIZE

IF AS(J) < A&S(I] THEN
TEMPS = A§(1I)
AS(I) = AS(J)
AS(J) = TEMPS

120 NEXT
> NEXT
: RETURN

Results:

BAT
CAT
DOG

62

Shell Sort

The Shell sort of algorithm was invented by a mathematician
named Donald Shell. The Shell algorithm works to avoid “public
enemy #1” of all sort algorithms: wasting time on comparisons
and swapping. Unlike the bubble and the select sorts, where a

dramatic increase in time is needed to sort large arrays, the Shell
sort is one of fastest, all-around sorts available. (Because of the
complexity of code involved, however, its advantages are not
seen until an array of intermediate size (approximately 100
elements) is sorted.)

Unfortunately, the explanation of how it works is not simple and
only a brief description can be given here. The Shell sort works by
determining a “stride” or a distance between elements. The
elements at the beginning and end of the stride are compared and
swapped if out of order. The stride is moved down to the next pair
and the process is repeated until the program “walks through”
the array. The stride length is reduced and the program walks
through the array again. This process is repeated until the stride
length is less than one element. Its speed results from elements
being selectively swapped over large distances. Interestingly
enough, the speed of this sort can be “fine tuned” by the stride
determining statements at the beginning of the program. It is
curious to note that no one yet has discovered the formula for
determining stride lengths that deliver the fastest results!

1@ REM SHELL SORT
20 S1$=“CAT” : S2ES="BAT" : S38$="DOG"
38 GOSUB 100
40 END

100 STRIDEBND = 1
11@ STRIDEBND = 3 * STRIDEBND + 1

- JF STRIDEBND < ARRAYSIZE THEN 110

12@ REM WHILE STRIDEBND >= 1

63

130 FOR|I=@T01

-: STRIDEBND = (STRIDEBND - 1)73
-1—F STRIDEBND < 1 THEN 1702

142 FOR BTM = STRIDEBND + 1 TO ARRAYSIZE

LNTH = BTM - STRIDEBND
: TEMPBTMS = AS(BTM)

15 IF AS(LNTH) > TEMPBTMS THEN
AS(LNTH + STRIDEBND) = AS(LNTH)
LNTH = LNTH - STRIDEBND
IF LNTH > @ THEN 15@

160 AS(LNTH + STRIDEBND) = TEMPBTMS
: NEXT

-1=@
170 NEXT

: RETURN

: REM WEND (WHILE END)

Results:

BAT
CAT
DOG

DOS Algorithms

Two useful DOS algorithms are presented here: how to load the
directory into an array and how to read or write any track or
sector.

Load Directory Into An Array

The directory of a normal DOS 3.3 diskette can contain up to 105
file names. A CATALOG command will display the names, but

you will be unable to “capture” the information and manipulate it
into other useful formats. The algorithm presented here reads all
of the file names from the directory (including deleted files!) and

loads them into the array of your own choice. You can write your
own program to take advantage of this and do some customiza-
tion such as fancy double column catalogs, printing the names in
condensed type on a mailing label for your disk, etc., ete.

64

1@ REM LOAD DIRECTORY INTO AN ARRAY
15 DIM FILNAMES{1@5)

20 REM CONSTANTS

34 RDDIRSEC = 45473 : REM READ DIRECTORY
SECTOR ROUTINE

46 B1STNAME = 46281 : REM BEG OF 1ST FILE
NAME IN BUFFER

o@ EBUFFER = 46522 : REM END OF FILE NAME
BUFFER

6G REM PROGRAM VARIABLES

7@ REM NAMENO: REM FILE NAME NUMBER
84 REM BNAMEPTR, ENAMEPTR : NAME

POINTER BEG & END

1@@ REM REPEAT

11@ CALL RDDIRSEC + 15 * (NAMENO > @)
: BNAMEPTR = B1STNAME

120 REM WHILE NOT END OF DIRG&
13@ REM BEG OF NAME PTR <= END OF BUFR

14@ ON (PEEK(BNAMEPTR-3} < > @)
AND [BNAMEPTR <= EBUFFER}
GOTO 150
: GOTO 210: REM <-- ELSE

15@ NAMENO = NAMENO + 1
: ENAMEPTR = BNAMEPTR + 29

16@ REM WHILE END OF NAME PTR = BLANK
170 IF PEEK(ENAMEPTR) = 16@ THEN

ENAMEPTR = ENAMEPTR -— 1
GOTO 17@

180 FOR CHAR = BNAMEPTR TO ENAMEPTR
: BYTE = PEEK(CHAR)
> IF BYTE > 127 THEN BYTE = BYTE-128

190 FILNAMES(NAMENQO) =
FILNAMES(NAMENOQO) + CHRS(BYTE)

>: NEXT

65

200 BNAMEPTR = BNAMEPTR + 35
: GOTO 120

210 ON (PEEK({BNAMEPTR-3) = @) GOTO 220
: GOTO 100

226 REM UNTIL END OF DIRECTORY

Results:

FOR I=1 TONAMENO: PRINT FILNAMES(I): NEXT

HELLO
FID
PROG 1
PROG 2

RWTS

RWTS are the initials chosen by Apple Computer Inc. to stand for
“‘Read or Write a Track and Sector.” As the name implies, RWTS
routines allow you to directly read a256-byte sector from the disk
or write a sector to the disk. Uses for this include changing the
name of your disk, changing the name of your HELLO program,

making permanent patches to DOS, hiding secret codes, examin-
ing sectors, and similar DOS operations.

While the basic principles of RWTS are outlined on pp. 94 - 98 of
The DOS Manual, the reader of that publication is warned in the
very first paragraph, “You may skip this section if you’re not
familiar with machine language.”

Actually, things don’t have to be that difficult. You can do the
same thing from Applesoft with a minimum of muss and fuss.
(See A Simplified Approach to RWTS by the author in CALL -
A.P.P.L.E. In Depth: All About DOS, for further details and a
useful utility that uses RWTS.)

66

The following program performs RWTS for you — all you haveto
do is tell it which track and sector and whether you want to read
from the disk or write to the disk and it will do all the work. Note
that the routine uses a fixed buffer provided by DOS at 46267 to
46522. To read the buffer after you load a disk sector into it, just
PEEK at that range. To change the buffer before writing it out to
the disk, just POKE the new values into that range also:

16 REM RWTS

100 INPUT “ENTER TRACK, SECTOR:”; TK, SC
> INPUT “READ (1} OR WRITE (2):”; RWCODE
- POKE 45121, RWCODE
: POKE 45975, TK

: POKE 45976, SC
‘ CALL 45111 «— RWTS routine
: POKE 45121, 2 «— Restore write code
: POKE 72,0 -+— Clear error condition

EXEC Files

EXEC files are text files of valid Applesoft or DOS commands
that can be executed with the EXEC command. Their primary

advantage is that they are executed as they are read from the
disk; they do not alter any program or pointer in memory.

One area where an EXEC file comes in handy is with binary files.
Often the name of a binary file does not indicate where the file

loads into memory or its length. The beginning address is vital to
ensure that files don’t load on top of one another; the length is
needed during a BSAVE.

The EXEC file presented below tells you the starting address and
length of the last BLOADed or BRUNned binary file. The pro-
gram MAKE FIND LAST BFILE creates EXEC file FIND LAST
BFILE, which in turn displays in decimal and hexadecimal the
starting address and length of the last binary file BLOADED or
BRUN. (A simpler version of this program appears in Bill San-
der’s book, The Elementary Apple. The version below is more

powerful and shows off some tricks you can do with monitor
routines.)

67

MAKE FIND LAST BFILE

1@ REM MAKE FIND LAST BFILE
1@@ LET DS = CHRS (13) + CHRGS (4)
-(OPS = DS + “OPEN”
:DES = DS + “DELETE”
-WRS = DS + “WRITE”
-CLS = DS + “CLOSE”
(NS = “FIND LAST BFILE”
‘(QS = CHRS (34): REM QUOTE

11@ PRINT OPSNS$;DESNS;OPSNS;WRENS
120 PRINT

22"
QS"“LAST BINARY FILE AT:“QS$

> PRINT
“CALL -998
‘CALL -998
Qn

QS" A“QS
“PEEK(43634)+256*PEEK(43635)”

QS", L"QS
“PEEK(43616)+256*PEEK(4361 7)”

130 PRINT
“POKE 69,PEEK(43635)
:POKE 7G,PEEK(43634)
:POKE 58,65
:POKE 59,249
:POKE 49,4
3

QS" AS"QS
“CALL -327
:POKE 69,PEEK(4361 7)
:POKE 7G,PEEK(43616)
:POKE 58,65
-POKE 59,249
:POKE 49,0
On

QS", LS"QS
"CALL -327
:-CALL -998
:CALL -998"

144 PRINT CLSNS

68

Summary

A solution to a problem is called an algorithm. Three types of
sample algorithms for commonly occurring programming pro-
blems on the Apple were presented in this chapter: Sort, DOS
and EXEC algorithms.

Three types of sort algorithms were presented: bubble, select
and Shell. The bubble is the slowest sort, but the one that is

usually thought of by beginning programmers. The select sort is
simpler and faster than the bubble sort and works well with short
to intermediate length arrays. The Shell sort is complicated, but
is one of the fastest sorts for intermediate to lengthy arrays.

Two types of DOS algorithms were presented: how to load the
directory into an array and how to read or write any track or sec-
tor (RWTS). Loading the directory into an array allows the pro-
grammer to do fancy catalog displays, disk labels, ete. The
RWTS routine presented here provides for a simple way of read-

ing or writing a disk sector without the bother of machine
code interfacing.

The example used to illustrate how to use EXEC files from a
structured standpoint is a utility that finds the starting address
and length of the last BLOADed or BRUNned binary file. This
information is displayed in both decimal and hexadecimal form
and requires no knowledge of DOS file storage areas.

For Further Reading

Algorithms + Data Structures = Programs, Niklaus Wirth
(Prentice-Hall, Englewood Cliffs, NJ, 1976). The classic, definitve
statement on structured programming. Not for the beginning
student, however. Just something to keep in mind when you are
ready for it. May well “expand your programming horizons.”

69

CHAPTER 5

TEXT FILES

Purpose of Text Files

Text files provide a convenient means of storing large amounts of
data on a disk for later retrieval and manipulation. If you central-
ize data in a text file, you can write any number of other pro-
grams to access the file. This concept is known as database design
and provides for an efficient means of giving different programs

access to a large body of data.

Another use of text files unique to the Apple is that if valid
Applesoft, DOS, or monitor commands are saved in a text file, the
EXEC <name of text file> command will execute the com-

mands, just as if you had typed them in on the keyboard yourself.

Further information on this can be found in The Apple IT DOS

Manual and in The Elementary Apple.

Structure of Text Files and the Disk

Despite the advent of newer and more powertul operating sys-

tems, Apple’s DOS 3.3 still has some powerful features: it can
typically hold more files on a disk and it uses less disk space for

smaller files.

A standard Apple disk is divided into 35 concentric “rings” called
tracks. Each track is divided into 16 wedge-shaped “sectors,”
giving a total of 16 * 35 = 560 sectors on a disk. Each sector holds
256 bytes or characters, giving the maximum number of bytes on
a disk 256 * 560 = 143,360. It is more convenient to divide this
number by 1,024 (a “K” or Kilobyte) and express it as 143,360 /
1,024 = 140K.

DOS resides on the outer three tracks of the disk and the direc-
tory resides on the middle track (track 17 / $11 hex). This results
in the subtraction of four tracks for a total usable file space of

71

560 — 4*16 = 496 sectors or (496 * 256) / 1,024 = 124K bytes. (In
case you’re curious, the directory is put in the middle of the disk
to reduce access time for the drive’s head to reach it.)

The first sector of track 17 is reserved for something called
“VTOC” (Volume Table of Contents). VTOC is used to keep track
of which sectors are free, or available for file storage. This
scheme serves to protect files that you’ve saved to disk: their
storage sectors are marked in VTOC as “in use.” Utility pro-
grams that compute the amount of free space on the disk usually
examine VTOC for the basis of their calculations.

WHAT DO YOU MEAN

WHICH TRACK SHOULD
WE GOTO? THE RACE
TRACK OF COURSE.

The remaining 15 sectors in track 17 are reserved for the direc-
tory. Each directory sector can contain up to seven file names,

making a total of 7 * 15 = 105 file names possible in your direc-
tory. Thus, it is possible to have several screenfuls of text file
names displayed with the CATALOG command!

If you were to use one of the commercially available “Disk Zap”
programs, you would see that a text file is composed of hex-
adecimal numbers. The hexadecimal system is “base 16” which

means that it has 16 digits, 0, 1, 2, 3, 4, 5, 6, 7,8, 9, A, B, C, D, E, F to
use in creating numbers as opposed to our “base 10” number sys-

tem, which only has 10: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. If you converted

T2

these hexadecimal numbers into decimal, you would see that

they correspond to something called an “ASCII Chart.” You can
see an example of an ASCII Chart on pg. 138 of the Applesoft
BASIC Programming Reference Manual.

However, there is a fly in the ointment; all of the characters in an
Appie text file have 128 added to their ASCII value! This is
peculiar to the Apple and is done to help it distinguish ASCII
characters from non-ASCII characters. An ASCII character with
128 added to it is said to be in “Apple ASCII,” “high ASCII” or
“negative ASCII,” while regular or true ASCII is known as “low
ASCII” or “positive ASCII.” Here are some examples:

ASCII Decimal Hex

Character Lo ASCII/ Lo ASCII/
Hi ASCII Hi ASCII

Upper case letters
193
194

Lower case letters
97 225

98 226
99 227

Punctuation
44 172

45 173

46 174

Control characters
<NULL> 0 128

<CTRL C> 3 131
<CTRL D> 4 132

<CR> 141

13

Notice from the above that the Apple ASCII code for the charac-
ter “‘0” is “BO” and not “0”. If your disk zap program shows you a
“00” in the file, you are looking at the ASCII < NULL> character
and not zero. NULLs are used in text files to tell the Apple when
it has reached the end of the file or a record.

You should also note that while it is possible to POKE a number

such as 255 (which consists of three digits) into a single byte in
RAM, it will be written out to the disk file as three bytes: “2”’, “5”

and “5”. Applesoft is capable of reducing a three-digit number
such as “255” into what is known as a “binary image” and put-
ting it into a single byte. DOS, however, does not have this
capability. Thus all Apple text files are “pure” ASCII; there are
no binary representations of numbers in them.

Basic File Structure: Records and Fields

Files are usually composed of two structures: records and fields.

A file is composed of many records:

Text File Structure

Record 1:

Record 2:

Record 3:

Records, in turn, are composed of fields:

Text File Structure

Field 1 Field 2 Field 3

Field 1 Field 2 Field 3

Field 1 Field 3

74

Record 1:

Record 2:

Record 3:

Though not shown here, for simplicity’s sake a <CR> (141 or

$8D) is at the end of every record and a< NULL > (0) is at the
end of every text file to help DOS find its way around the file.

For example, if we wanted to construct a file of names, addresses

and phone numbers for a telephone directory, atypical file struc-

ture might look something like this:

SAMPLE TELEPHONE DIRECTORY FILE STRUCTURE

JOHN | SMITH 802 BRICK ST.|GLENDALE [ca | 90023}714] 202-9123 |

REYNOLDS |90E. 43RD ST.|NEW YORK Inv | 10123] 217 952-0721

TURNER

Record 1

Record 2

Record 3 INICOLE
1

column“
no. for CITY ZIP f PHONE LAST

beginning finst NAME STREET FIELD CODE ane, NUMBER

FieLD —«*(° 8) FIELD Fieco (5) Fietp (8)
(10) (20) (2) (3)

FIGURE 5.1

Sequential and Random Access Files

A problem pops up immediately here, though: what do you do
with the extra space left over when information does not fill up
the field completely?

FIGURE 5.2

75

There are two techniques for dealing with this situation. The first
avoids the wasted space by separating the fields with a single
character called a “delimiter.” DOS uses a comma as a field
delimiter, but with the use of the LEFT$, RIGHT$ and MID$

string manipulation functions, a delimiter can be any character
you want. It is usually best to pick a character which would not be

confused with a valid data character in the rest of the record.
Under this technique, records have different lengths. This is
called sequential file organization.

Here is an example that uses the “@” character as a delimiter:

SEQUENTIAL FILE ORGANIZATION

Uneven Record

JOHN@ SMITH@802 BRICK ST.@ GLENDALE@CA@90023@714©202-9123 |€— Lengths

BILL@ REYNOLDS@ 1900 E. 43RD ST.@NEW YORK@NY@10123@217 @952-0721 /

NICOLE@ TURNER@601 WING ST.@SAN DIEGO@CA@92115@619 @562-4213

Different 7 <No Wasted Space
Field Lengths

FIGURE 5-3

Note that it is usually simpler, faster and easier to write each

field out as a record by itself (i.e, one field per record). This

makes the <CR> serve as both an “end of field” delimiter and an

“end of record” delimiter.

The second technique uses the blank space to keep the fields
lined up evenly from record to record. Under this technique, all

records have the same length. This is called random access file
organization.

RANDOM ACCESS FILE ORGANIZATION

Same Record rengins)

JOHN SMITH 802 BRICK ST. GLENDALE 90023 j714] 202-9123 |

REYNOLDS | 1900 E.43RD ST. | NEW YORK nyfrovza| 217) 952-0723

Same Field Lengths —__ Padded With Blanks

FIGURE 5-4

16

Apple DOS supports both types of file organization and has

specific commands for each one. However, this is not to say, that
there are only these two types of file structures. There are many

other structures, such as ISAM (Indexed Sequential Access

Method), binary trees and B-trees, but they are more complicated
and are not directly supported by existing DOS commands.

Sequential files save space and can be read or written relatively

quickly, but they are hard to modify. Random access files waste
space and take longer to be read or written but they are easier to
modify. You must therefore plan ahead when considering which
file structure to use for your specific application.

Some sample uses for sequential files would include files that are
designed to be used as is and not modified that often:

@ EXEC files
@® Final drafts of documents

@ Business forms, receipts, etc.

Some sample uses for random access files would include files that
need to be periodically updated or modified:

@ Telephone directory
@® Inventory

@® Billing records

Text File Memory Requirements

It is helpful to know during the planning stages of your program
design how much memory and disk space a text file will occupy.
The following chart provides a basis for this planning. The chart
shows how much space a file containing 100-byte records will
occupy. Memory usage is directly proportional to the figures
presented here, so if your file uses 50-byte records instead, then it
will use half as much memory.

7

TEXT FILE STORAGE REQUIREMENTS
Recs Bytes % RAM Sectors % Disk

Key to Column Headings:

Recs: Number of 100-byte records in the file. Records
actually contain 99 bytes, but the <CR> at the end of the
record counts as byte 100.

Bytes: Total number of bytes in the file.

% RAM: Amount of RAM used by file. Based on a 48K
system with DOS booted. Does not include space re-
quired for the program itself.

Sectors: No. of disk sectors occupied by file. Includes the
track/sector list sector.

% Disk: Amount of disk used by the file. Based on 496
available sectors.

Disk sectors required for random access files:
Sectors = INT(1.999 + ((Recs * Rec length) /256))

Disk sectors required for sequential files:

Sectors = INT(1.999 + (Bytes / 256))

78

File Design Considerations

It is very easy to change records in a random access file. Because
they are all the same length, you can find and replace records by

their numbers (position in the file). Sequential files require a re-
write of the entire file into a temporary file. The original file is
deleted and the temporary is renamed as the original file.

Conversely, it is easier to append records to a sequential file than
itis to arandom access file. Sequential files can usethe APPEND
command, random access files cannot.

Beware of commas. Applesoft’s INPUT command is used to read
information from a disk file. If there is a comma in the incoming
data, Applesoft interprets the comma as a delimiter and will
throw away the rest of your record. This is why you sometimes

get the EXTRA IGNORED error message when reading files. If
you must use commas, use the program listed in Chapter 10 to do
your INPUTting: it will read text characters as is... commas
and all.

Use an array to hold the file. There are two troublesome DOS
commands, POSITION and B)yte that are used to access a file at
specific locations. It is far easier and faster to simply load the

entire file into an array and access the records directly through
the use of array element numbers. If afileis too large to fit into an
array, simply break it into smaller files.

Beware of trying to read or write arandom access file as if it were
a sequential file. A random access file sometimes contains zeros
(nulls) which are interpreted as end of file characters and which

prematurely stop file access.

Beware of ONERR. The ONERR command is useful with “error
trapping,” where mistakes are dealt with under program control
instead of a system crash. The problem with ONERR, however,

is that it is a “loop killer.” This means that if you use ONERR

within a GOSUB or a FOR NEXT loop, the RETURN and the

NEXT statements at the end of these routines will not work.
ONERR was not integrated very well with DOS and destroys a
region of memory in the Apple known as the stack where the

19

return addresses for active GOSUBs and FOR NEXT loops are
kept. To return from an ONERR return you must use a GOTO

statement. Note also that anything after an ONERR statement
is ignored:

1@@ ONERR GOTO 200: GOTO 120
110 GOTO ead
120 PRINT “THIS STATEMENT IS NEVER

EXECUTED”

136:

200 END

Beware of defining DS5=CHRS(13)+CHRE§(4). To execute DOS
commands within an Applesoft program, they must be PRINTed
with a preceding <CTRL D>; e.g.: 18@@ PRINT CHR&(4)
“CATALOG”. It has become common to define the CHRS(4) as
DS and to use the following instead:

102 DS = CHRS[4): REM CTRLD
11@ PRINT D$"CATALOG”

Some programmers have discovered that DOS commands were
apparently intended to be one-statement-per-line commands.

Thus:

11@ PRINT DS“CATALOG”
120 PRINT DS“CATALOG"”

will give you two CATALOGs in succession just fine, but trying to
do the same thing with an Applesoft shortcut does not work:

11@ PRINT DS“CATALOG’”; DS“CATALOG”

Here, you will get the first catalog, but not the second. What some
programmers have done to get around this limitation is to define
DS as a<CR> and a <CTRL D> with DS = CHRS$(13) +
CHRS$(4). When DS is printed, the Apple sees the <CR> and is
fooled into thinking that the following command is on a separate
line. The problem with this trick is that any PRINT DS command
writes the <CR> into any file you have open and write enabled.

For example, if you have two files OPEN so that you can read a
record from one and write it to the other, when you try to read a

record, the D$ will send a carriage return to the write enabled
file.

80

There are some solutions: stick with one DOS command per line,

use complete PRINT statements for each DOS command when
combining them on one line, or use two forms of the DS as needed:
DS=CHRS(13)+CHRF(4) and DAS=CHRGF(4).

Useful File Handling Techniques

Sample routines are included here, demonstrating how to make,
read, append and “merge sort” both sequential and random

access files. Each routine is designed to run by itself “as-is” asa
demonstration program, but with appropriate attention to the

variables used, each routine can be used as a subroutine within
your main program.

Special attention should be paid to the concept of “merge sort-
ing.” There is precious little information avaliable on this topic
relating to personal computers, which deals with the crucial

question, “How do you sort a disk file that is too large to fit
into memory?”’

“That’s easy,” you say. “All you have to do is break up the large
file and sort the subfiles.” Then what? You’d wind up with
several files that range from A to Z; append them together and
you get a big file that is still out of order, because they are not

sorted across the subfiles.

Actually, you almost solved the problem. You read in part of the
original file into memory, sort the records there and write them
out to disk as a subfile. You read in the next part of the original
file and repeat the process until you have copied the original file

in the form of several sorted subfiles. This process is known as
EXTERNAL SORTING, because you are sorting records exter-

nal to your computer’s memory by bringing them into the high
speed memory (RAM) and sorting them there.

The final step is to merge each of the subfiles together. This is
done by taking two subfiles and reading a record from each. The
records are compared and the smaller (lesser) is written to a

merge file. Records are read from the subfiles, compared and
written to the merge file until the subfiles are used up. Since

81

records in the subfiles are in ascending order, records in the
merge file are also in ascending order. Files can be merged
together until it reaches the size of the original file. A copy of the
original file has now been made, except that it is in order.

The combination of external sorting and file merging is known as
MERGE SORTING, and is more time and space efficient than

alternate methods of using numerous smaller files to hold records.

Routines on external sorting and file merging have been included
here to help you with your file sorting problems.

Each of the following routines is preceded with a description of
how the program works as well as tips and pitfalls. Different
routines for sequential and random access files are presented,
allowing you to use the file structure best suited for your purposes.

Make a Sequential File

A file can be created without the danger of partially overwriting
a previously existing file by the same name by OPENing it (to
create it if it doesn’t exist), DELETEing it and reOPENing it

again (for output). See lines 180 - 200. Once WRITE mode has
been turned on, it remains on and records can be written to the

file with an input loop (see lines 220 - 320). A WRITE mode will
have to be turned off if any screen prompts are to be displayed
(see lines 310 - 220).

1 GG REM We a a a KK Ke KK EE KK KEK KK EK KK

11@ REM * MAKE SEQ FILE *
1 °o0 REM EEEKKEKKKKEKEKKKKKKKKKKEEE EE

130 LET DS = CHR$G (4)

140:

15@ INPUT “FILENAME:”: FILNAMES

1/7@:

- 180 PRINT DS“OPEN”FILNAMES
196 PRINT DS“DELETE” FILNAMES

240 PRINT DS“OPEN”FILNAMES
O1d:

220 PRINT “REC”:RC + 1:

82

230 INPUT “:”"; RECS
240 IF RECS = “’ THEN 342
250:

2640 REM RC = REC CTR

°7@LET RC = RC+1
280 LET RCS = STR& (RC)

290 PRINT DS"“WRITE”’ FILNAMES
340 PRINT RECS
3140 PRINT DS: REM TURN OFF WRITE MODE
320 GOTO 220
330 :

3404 PRINT D$S"“CLOSE”

Read a Sequential File

This routine reads a sequential text file. It is extremely simple in

operation: an endless loop in lines 240 - 250 reads records from
the file until the end of the file is reached. This causes an error
condition in DOS, which goes to the error handler indicated by

line 190. Two important things to notice when using the ONERR
statement: ONERR kills any active FOR NEXT loop or sub-
routine (which means the next NEXT statement or RETURN

statement will cause a syntax error) anda POKE 216,0 MUST

be used immediately after the ONERR statement is executed to
keep your Apple functioning properly.

100 REM sete eee e ee eee ee ee eee ee eee

11@ REM * READ SEQ FILE *
4 OD REN 37a at a toi ae a a a a a

130 LET DS = CHAS (4)

140:

154 INPUT “FILENAME:”; FILNAMES

170:
180 PRINT DS“OPEN”FILNAMES

185 PRINT DS“READ’FILNAMES

1940 ONERR GOTO 270

CUO :

244 INPUT RECS: PRINT RECS
250 GOTO 240

6G:

2/0 POKE 216,04
280 PRINT DS“CLOSE”

83

Make a Random Access File

Writing records to a random access file is a little trickier than
writing to a sequential file. The file MUST be opened with an L
(record length) parameter (see line 200) and the WRITE mode

must be turned on EVERY time you want to write a record to

disk. This is to allow you to specify where in the file (with the R, or
record number parameter) you wish to place the record. See lines
290 - 300. Also note that variable names used in WRITE state-
ments must be string variables, even if they specify numbers (see

the RCS (record counter) in line 290).

1 41%) REM He 3h He i a ie 2 he ae ae ae aie ote aie ae aie ake oie 2h i ok OK ok ok ok ak

11@ REM * MAKE RND FILE *
120 REM Me eK ae ie ee eo OE EK KK KK EK KK KK

130 LET DS = CHRS (4)

140:

150 INPUT “FILENAME:”: FILNAMES
160 INPUT “RECORD LENGTH:”:RLS
170:

180 PRINT DS“OPEN” FILNAMES
190 PRINT DS“DELETE”FILNAMES
200 PRINT DS“OPEN”FILNAMES;:".L”: RLS
210:

220 PRINT “REC’:RC + 1:
230 INPUT “:”; RECS
240 IF RECS = “’ THEN 34@
25:

260 REM RC = REC CTR

270 LETRC=AC+1
280 LET RCS = STRS (RC)
290 PRINT DS“WRITE"FILNAMES".R”: RCS
320 PRINT RECS
31@ PRINT DS: REM TURN OFF WRITE MODE
320 GOTO 220
330:
340 PRINT DS“CLOSE”

Read a Random Access File

As is similar to WRITE mode, the READ mode must be enabled
every time a record is inputted. This is done to allow specific
records (the “R” parameter) to be accessed. See lines 280 - 240.

| 141%) REM KKKKKKKKHKKKKRKKKKKEKKKKE KE KH KE

11@ REM * READ RND FILE *
120 REM PES SELLE SESE STEER ERE TELE EET ES

13@ LET DS = CHRGS (4)

14¢:
15¢ INPUT “FILENAME:”; FILNAMES
162 INPUT “RECORD LENGTH:”;RLS
17@:
18¢ PRINT D$“OPEN’”FILNAMES$",L’; RLS
19@ ONERR GOTO 270
COO:
21@LET RC = RC+1
220 LET RCS = STR& (RC)
230 PRINT D$“READ”FILNAMES",R”’;RCS
240 INPUT RECS: PRINT RECS
2540 GOTO 210
6G:
276 POKE 216,40

280 PRINT DS"“CLOSE”

Appending Sequential Files

It is fairly easy to append sequential files together, due to the
DOS APPEND command. It should be remembered, however,

that APPEND is used in place of the OPEN command and that it
is intended only for sequential files. See lines 190 - 200 for an
example of opening one file to receive an APPEN Ded file, and the
normal OPENing of another file to write it to the end of the
first file.

Also note here that the FRE function is used in line 300 (X is a

dummy variable) to force “garbage collection.” Applesoft does
not reuse memory left by reused variable names, but instead
grabs another chunk of memory to store data. INPUT statements

85

(especially in loops) really use up memory and when memory
runs out, Applesoft performs “‘garbage collection” to reuse no-
longer-used memory. This generally takes a long time (as much

as several minutes) because there is so much memory to sift
through. Forcing garbage collection early, when there is less

memory to scan, takes much less time.

1 OO REM KEKKKEKKKKKKEKKKEKKKKKKEKK KEKE

11@REM * APPENDSEQFILES *
12¢ REM KRHERKAKKKKKKKKKKKKKKKKKKKKKEKE

13@ LET DS = CHRS (4)
14G:
15@ PRINT “NAME OF FILE TO APPEND TO:”

- INPUT F1$

160 PRINT “NAME OF APPEND FILE:”: INPUT Fe$

17G@:

186 ONERR GOTO 230
19@ PRINT DS“APPEND’F1$

200 PRINT DS“OPEN"FeS
210 GOTO 270
oo”:

230 POKE 216,04
240 PRINT CHRS (7)“EH?”

250 GOTO 150
6G:
276 ONERR GOTO 35G

280 PRINT DS“READ’FeS
290 INPUT RECS

3@G LET X = FRE (@)

310 PRINT DS“WRITE’F1$
320 PRINT RECS

330 GOTO 280

34G:

359 PRINT DS"“CLOSE”

Appending Random Access Files

Appending random access files together requires using Length
and Record number parameters (see lines 220 - 240 and 360 - 380).

Also remember that the APPEND command finds its way to the

86

end of the file by reading it sequentially and therefore cannot be

used with random access files. A random access file sometimes
contains NULL (zero) characters which are incorrectly inter-
preted by DOS as end of file characters.

The append method here is performed by writing the first ran-

dom access file to a temporary file and writing the second file to
the end of the temporary file. The original first file is deleted and
the temporary file is renamed as the first file.

4 1%) REM PEP ELST EEE ELS ETT SEES EE ES SEE OE SS

11@REM * APPEND RANDFILES' *
120 REN aoa a a it i a a a

13@ LET DS = CHRS& (4)

146 :
15@ PRINT “NAME OF FILE TO APPEND TO:”

: INPUT F1$

160 INPUT “RECORD LENGTH:”;L1$
17@ PRINT “NAME OF APPEND FILE:”: INPUT FeS

180 INPUT “RECORD LENGTH:”;LeS
19@ IF L2S < > L1$ THEN PRINT CHR$ [(7)}"NO!

FILES MUST HAVE RECS OF EQUAL LEN.”

: GOTO 150
OW:

210 ONERR GOTO 280
220 PRINT DS“OPEN”F1$;",L";L1$

232 PRINT DS“OPEN”F2$;",L’;LeS

244 PRINT DS“OPEN TEMP$,L”;L1$
250 GOTO 330

260 :
2/70 REM |I/O ERROR:

280 POKE 216,40

296 PRINT CHRS (7)"EH?"

300 GOTO 150

310:
320 REM COPY FILE1:

33G ONERR GOTO 440

340 LET R1 = R1 + 1

350 LET R1% = STRG& (R11)

360 PRINT DS“READ”’F1$;",R";R1S
370 INPUT RECS

87

38G PRINT DS“WRITE TEMP$,R”;R1$
390 PRINT RECS
4@0 LET X = FRE (0)
414 GOTO 340

420:
430 REM APPEND FILEe TO FILE’:
444 POKE 216.4

45¢@ ONERR GOTO 580
460 LET R2 = Re + 1

470 LET R2S = STRS (R2)
480 PRINT DS“READ’F2$§;",R"ReES
490 INPUT RECS
900 LET X = FRE (@)

510 PRINT DS"“WRITE TEMP$,R”R1$
520 PRINT RECS
53d LET R1 = RA1 + 1
54@ LET R1% = STRS (R11)

550 GOTO 460
560:

570 REM RESTORE ORIG FILE:
580 PRINT DS“DELETE”’F1$

590 PRINT DS“RENAME TEMP$,”F1$
600 :

610 POKE 216,04

620 PRINT DS“CLOSE”

External Sort of a Sequential File

This routine sorts a sequential file that is too large to fit in avail-
able RAM. It follows the principles described in the sequential
file routines listed previously, and works as explained at the
beginning of this section. It can also be used to speed up the sort-
ing of intermediate size files as well, because breaking a file into
subfiles and sorting them 1s faster than sorting one large file (sort
times are generally exponential according to the number of
records involved).

1 GG REM REKREAKKEKREKKEKEEEKEKEKEREKKKEE

11@ REM * EXTERNAL SEG *
12@ REM * FILE SORTER *
130 REM te teteeeeeeeeeeceee te cee ee tee

14@ LET DS = CHRS (4)

150 :

160 INPUT “FILENAME:”: FILNAMES
170 INPUT “MAX NO. OF RECS TO READ:”:

MAXRECS

180:
190 ONERR GOTO 320

240 PRINT DS“OPEN’FILNAMES
O1d:

224 REM OPEN SUBEFILE:
230 LET PART = PART + 1
240 LET PNAMES = LEFTS (FILNAMES,28) +

“." + STRS (PART)

258 PRINT DS“OPEN”’PNAMES
260 PRINT DS“DELETE’PNAMES
2780 PRINT DS“OPEN”’PNAMES
COG :

290 PRINT DS“READ’FILNAMES
3006 GOTO 37G
310:

320 POKE 216,40

330 PRINT CHR$ (7)“EH?”

344 GOTO 160
35G :
360 REM READ IN A SUBFILE:
370 ONERR GOTO 430
380 FOR |= 1 TO MAXRECS
394 INPUT RECS(I)
400 NEXT
4140 GOTO 480
42C:
430 POKE 216,04

440 LET EOF = 1
45G:

460 REM SORT THE SUBFILE:
4720 |1F EOF AND!I= 1 THEN PRINT DS

“CLOSE”PNAMES: PRINT DS“DELETE”

PNAMES: GOTO 630

48@ LETI=!-1

490 FORJ=1 TO!-1
0o@@ FORK =J+1TO!
914 1F RECS(J) > RECS(K) THEN TEMPS =

89

RECS(J): RECS(J) = RECS(K): RECS(K) =

TEMPS

520 NEXT: NEXT

530 :
540 REM WRITE THE SUBFILE:

55@ PRINT DS"“WRITE"PNAMES
560 FORJ= 1 TO!

57@ PRINT RECS&(J)
980 NEXT
590 PRINT DS“CLOSE”PNAMES
600 :
610 |F NOT EOF THEN 230

62G:
63@ PRINT DS“CLOSE”

External Sort of a Random Access File

This is the random access version of the previous external sort
routine. It follows principles used by the random file routines
listed previously. Note that, like the sequential version, it auto-
matically saves subfiles to disk using the same name as the
original, but with “.1”, “.2”, “.3”, etc. appended to the filename.

1 GG REM KRHEKKKKKKKKKKKKKEKKKKKKKKKEEEKS

11@ REM * EXTERNAL RND *
12@ REM * FILE SORTER *
130 REM Saas a toto a iia tt it

140 LET DS = CHRS (4)

158 DIM RECS(1G@)

16G:
170 INPUT “FILENAME:”:; FILNAMES

180 INPUT “RECORD LENGTH:”;RLS
190 INPUT “MAX NO. OF RECS TO READ:”:

MAXRECS

200:
21G@ ONERR GOTO 25d

220 PRINT DS“OPEN’FILNAMES;",L”; RLS
230 GOTO 300

240:

254 POKE 216,40

90

2604 PRINT CHRS (7)"EH?”

27/0 GOTO 170
8G:
©9040 REM OPEN SUBFILE:
300 LET PART = PART + 1

31@ LET PNAMES = LEFTS (FILNAME$,28) +
".” + STRS (PART)

320 PRINT DS“OPEN”’PNAMES

330 PRINT DS“DELETE”PNAMES
3420 PRINT DS“OPEN”’PNAMES§;",L”: RLS
356:

364 REM READ IN A SUBFILE:
370 ONERR GOTO 45@

380 LET le =@
3940 LETI=1!1+1:le =le+1

400 PRINT D$S"READ”"FILNAMES§;",R” STRS (1)

414 INPUT REC§(le2)

42@ IF le < MAXRECS THEN 390

4306 GOTO 50d
440:

450 POKE 216,40
460 LET EOF = 1

476:
480 REM SORT THE SUBFILE: |

490 IF EOF AND le = 1 THEN PRINT DS“CLOSE”

PNAMES: PRINT DS“DELETE”PNAMES
: GOTO 650

500 FORJ=1TOle-1

51@ FOR K=J+1TOle

920 IF RECS(J) > RECS(K) THEN TEMPS =
RECS(J): RECS(J) = RECS(K): RECS(K) =

TEMPS
53G NEXT : NEXT
540:

550 REM WRITE THE SUBFILE:
56@ IF EOF THEN le = le - 1

57@FORJ=1TOle
980 PRINT DS“WRITE”PNAMES;",R” STRS (J)
994 PRINT RECS&(J}
600 NEXT
6140 PRINT DS“CLOSE”PNAMES
620:

91

630 IF NOT EOF THEN 300
640:

65@0 PRINT DS“CLOSE”

Merge Sequential Files

This routine merges together two sorted sequential text files and
saves them under any name you choose. It is normally used to
merge together “.1”, etc. subfiles generated by the external sort
routines. Note that merging is intended for files which are sorted
in order. Use the appending routines if you merely want to join
two files together.

100 REM $ *#8*# 8848588460 e eee EEE EERE

11@REM* MERGESEQGFILES *
120 REM Ae He ae ee ee he he ae ee ok ee KK KK KE KE KE

130 LET DS = CHRS (4)

140:
150 PRINT “NAME OF 1ST FILE TO MERGE:”

160 INPUT F1$

170 PRINT “NAME OF @ND FILE TO MERGE:”

180 INPUT Fes

196 PRINT “NAME OF MERGE FILE:”

200 INPUT F3$

O10:
220 ONERR GOTO 240

230 GOTO 280

244 POKE 216,40
2506 PRINT CHR& [(7)"EH?”

260 PRINT DS“CLOSE”: GOTO 15@

270:

284 PRINT DS“OPEN’”F1$
290 PRINT DS“OPEN”FeS
3040 PRINT DS“OPEN”F3S$

310 PRINT DS"“DELETE”’F3$
320 PRINT DS“OPEN”F8$
33G :

340 REM GET A REC FROM EACH:

354 PRINT DS“READ”’F1$

360 INPUT R15

92

370 PRINT DS“READ" Fes

380 INPUT R2$
390:

400 ONERR GOTO 480

410:

420 REM PUT LOWER REC IN MERGE:

43@ IF R1$ < = ReS$ THEN F1 = 1: PRINT
DS“WRITE”F3$: PRINT R1$: PRINT

D$S"“READ"F1$: INPUT R1%$: GOTO 43@
440:

45¢ LET F1 = @: PRINT DS“WRITE”’F3$: PRINT

Res: PRINT DS“READ’FeS$: INPUT R2&S
: GOTO 430

460:
472 REM ONE FILE EMPTY:
484 POKE 216.4

490 PRINT DS
500 ONERR GOTO 57@
510:
520 REM COPY OTHER FILE:
530 IF F1 THEN PRINT DS"“WRITE’F3S: PRINT

Res: PRINT DS“READ’Fe$: INPUT R2&S
: GOTO 530

54G:

554 PRINT DS“WRITE’F3$: PRINT R1$: PRINT
D$S“READ”’F1$: INPUT R1$: GOTO 55@

560:

570 POKE 216,04

584 PRINT DS“CLOSE”

Merge Random Access Files

This routine is the random access version of the sequential merge
routine listed previously.

1 01%) REM SEEKESSCEKEKESEKEKESEKEKKHEAKKEKES

11@REM * MERGERNDFILES' *
12¢ REM KSKKKRKEKKKKKKEKEKKEKKKEKKKEEKE EK

130 LET DS = CHRS (4)
140:

93

15@ PRINT “NAME OF 1ST FILE TO MERGE:”

160 INPUT F1$
162 INPUT “RECORD LENGTH:”;L1$
170 PRINT “NAME OF @ND FILE TO MERGE:”

1820 INPUT Fes

182 INPUT “RECORD LENGTH:”;L2S
184 IF VAL (L1$) < > VAL (L2$) THEN PRINT

CHRS$ (7)“RECS MUST BE SAME LENGTH!"
: GOTO 150

190 PRINT‘ ‘NAME OF MERGE FILE:”

204 INPUT F3$
C10:

220 ONERR GOTO 240
234 GOTO 280

240 POKE 216,04
250 PRINT CHR$& [(7)"EH?”
260 PRINT D$S“CLOSE”: GOTO 150

O70:

280 PRINT DS“OPEN’F1$;",L";L1$

290 PRINT DS“OPEN’F2$;“,L”;Les
3040 PRINT DS"OPEN’F3S$

314 PRINT DS“DELETE”’F3$
320 PRINT DS“OPEN”;F3$;",L";L1$

330:

344 REM GET A REC FROM EACH:
342 LET R1 = R1 + 1:R2 = Re + 1

354 PRINT DS"READ"F1$;",R”; STRS (R1)

362 INPUT R1$
37@ PRINT DS“READ"F2$;",R”; STRS (Re)

380 INPUT Res
390:

400 ONERR GOTO 480
410:

420 REM PUT LOWER REC IN MERGE:

43@0 IF R1$ < = ReS THEN F1 = 1:RG=RSG+1

- PRINT DS"WRITE"F3$;",R"; STR

(R3): PRINT R1%:R1 = R1 +1: PRINT DS
“READ’F1$;",R”"; STRS (R171): INPUT R1$:

GOTO 43@
44G:

450 LET F1 = @:R3 = RB +1: PRINT DS

“WRITE"F3$;",R”; STRS (R3): PRINT

94

R2$:R2 = Re + 1: PRINT DS“READ" Fes:
“,R”; STRS (R2): INPUT RES: GOTO 430

GC:

4706 REM ONE FILE EMPTY:

480 POKE 216,2

490 PRINT DS

900 ONERR GOTO 570

910:

920 REM COPY OTHER FILE:

030 IF F1 THEN R3 = RB + 1: PRINT DS“WRITE”

F3$;",R”; STRS (R3)}: PRINT

R2$:Re = Re + 1: PRINT DS"“READ’F2$:;"“,R”:
STRS (R2): INPUT R2S: GOTO 53d

040:

954 LET R38 = R3 + 1: PRINT DS“WRITE”’F3$§;",R”:
STRS (R3): PRINT R1$:R1 = R1 +1: PRINT

DS"“READ"F1$;",R”; STRS (R1): INPUT R1$

: GOTO 550

560:
5740 POKE 216,0

580 PRINT DS“CLOSE”

Summary

Text files provide a convenient means of storing large amounts of
data on a disk for later retrieval and manipulation.

A centralized collection of data in a file that is available for use by
other programs is called a data base.

An initialized disk is composed of 35 tracks and 16 sectors for a

total of 560 sectors or 140K bytes. DOS and the directory use
four of these tracks, bringing the total amount of space available
for files to 124K.

A maximum of 105 files can normally be stored on a disk.

Text files are composed 100% of Apple ASCH or high ASCII

characters. Files are composed of records, records are composed
of fields and fields are composed of ASCII characters. Embedded

95

within the text file is the end of file marker (G@), the end of record
marker, <CR> and the end of field marker, (usually a comma,

although it can be a delimiter of your own choice).

Files can be organized in many ways. Sequential, random
access, ISAM, binary tree and B-tree are the names of just afew
of these organization methods. Apple DOS directly supports only
the first two methods, sequential and random access.

Sequential files have records with different lengths and some-
times use delimiters to mark the beginning and ending of fields.
They are easy to program and provide a fast and compact means

of storing information; however, they are difficult to manipulate,
and should be used to store information that does not change
very often, such as EXEC files, final drafts of documents and
receipts.

Random access files do not need delimiters; their fields are easy
to identify because they have a uniform record length. The extra
length wastes time and space, but allows for easier file manipula-
tion. Random access files are useful for information that needs to
be updated frequently, such as inventory records, billing records
or possibly a telephone directory.

Here Boss,
THis Just

96

The presence of commas in a text file can cause loss of data when
records are read with the INPUT command, and should be used
with a great deal of planning.

An array is one of the best methods for manipulating a file. No
time consuming disk drive accesses or confusing DOS commands
are needed. In addition, many powerful Applesoft commands are
available for manipulating records.

ONERE is a useful error trapping command, but if used within a
GOSUB structure or a FOR NEXT loop, it becomes a “loop-
killer.” In such cases, a GOTO statement must be used to return

to the calling routine.

Merge sorting is a technique that allows the sorting of disk files
which are too large to fit in memory. It involves repeatedly read-
ing a portion of a large file into memory where it can be sorted
quickly, and writing the sorted records to disk in the form of sub-
files. The subfiles are then merged together to form a sorted ver-

sion of the original.

For Further Keading

The DOS Manual (Apple Computer, Cupertino, CA, 1980). The
official Apple DOS user’s manual. Contains useful and some-
times in-depth suggestions for using DOS.

All About DOS, (Call-A.P.P.L.E., Kent, WA, 1983). A book filled
with useful DOS utilities written by users. Explains system bugs
and how to overcome them. Detailed examination of various

facets of DOS.

Apple Files, David Miller (Reward Books, Reston, VA, 1982). In

depth book on text file handling. Covers sequential, random
access and even VisiCalc type DIF files.

Beneath Apple DOS, Don Worth and Pieter Lechner (Quality
Software, Reseda, CA, 1981). Popular book that goes into great

depth in explaining the intricacies of DOS. For the intermediate
to advanced user.

97

CHAPTER 6

ENHANCED GRAPHICS

The Apple II and Apple //e computers have the capability of
generating high resolution (also called hi-res) graphics. Incred-
ible things have been done with hi-res graphics on the Apple in
the last few years, including creating a pseudo70 -column board,
projecting 3-dimensional figures, animation, and turning the
Apple into a “strip-chart” recorder.

This chapter will focus on one feature, animation, and will show
you some simple Applesoft routines to put a little ‘“‘action” on
your screen. We will gradually build a simple “Lunar Lander’
game, where you try to land a gently descending spaceship onto a
narrow mountain on the surface of the moon. If you miss, the

spaceship will explode, complete with visual and sound effects.

Limitations of Applesoft

One of the first facts you'll have to face is that you can only go so
far with Applesoft when working with animation. Every time you
add another Applesoft statement to make a figure do something,
you slow the action down. Add enough statements and the
animation will no longer be worthwhile. Practically speaking,
you can move one figure at a time and you can only make it do a
limited number of things.

This is not to say that doing animation with Applesoft is not
worth the effort. Some very impressive effects can be done if you
work within the limitations. An example that comes to mind is a
program called Fly Menu created by Beagle Bros. Software.
When the program is run, a picture of two men (the Beagle Bros.
logo) is displayed and a fly buzzes around their heads. When the
fly lands on the man on the left, his eyes shift and look at the fly.

99

The fly then enters his ear, and flies through his head before exit-
ing on the other side. The fly then buzzes around a bit more, stops

in mid-air and is suddenly devoured by a anteater-like tongue
darting from the other man’s mouth. The entire effect is very
entertaining and you never are aware that only one figure is
being moved at a time.

The limitations of Applesoft can best be overcome by using the
following techniques:

@ Use shape tables. They are the fastest thing you have going
for you.

® To erase ashape, don’t use XDRAW. Instead, set HCOLOR to

black and draw the same shape over the coordinates you want
erased. XDRAW can sometimes leave unerased dots behind.

@ Move only one shape at a time.

® Use “page flipping’ to move objects around. This reduces
visual flicker to a minimum.

100

® For speed purposes, put as many statements on one line as
possible, using a colon to combine them.

@® Usevariable names instead of numbers. Applesoft takes extra
time to convert a number into a format it can use.

® Use only one or two letter variable names. It takes Applesoft
longer to go through a program with more characters in it.

Finally, if you really want to get the most out of animation, you
will have to use an ultra-fast language like assembly language or

FORTH. Be prepared, though; while they are extremely fast in
terms of execution speed, these languages are not easy to learn.

Introduction to the Hi-res Screens

There are two “pages” of memory set aside for hi-res graphics,

HGR and HGR2. These are also sometimes called “page one” and
“page two,” respectively. Each page consumes 8,192 bytes (8K)

of memory and consists of 192 lines by 280 columns. Each column

ean hold one dot, which works out to (192 X 280) 53,760 dots on
one page! Numbering begins with line 0, column 0 at the upper
left corner of the screen:

A HI-RES PAGE

COLUMNS
x

LINES 0.0 ee ol 279
(Y)

53,760 dots

191

FIGURE 6-1

101

Some little known facts:

CALL -31@0 displays hi-res page 1 without clearing it first,

unlike the HGR command. CALL -3@86 clears the hi-res screen

selected by location 230 (see next paragraph), whether or not
that screen is being displayed.

It is possible to draw on or erase either hi-res page without dis-
playing it (Le, without using a HGR or HGR2 command) by
executing the following command first: POKE 230,32 (page
one) or POKE 230,64 (page two).

It is possible to display a complete hi-res page one with no text

lines at the bottom of the screen and it’s also possible to display a
“mixed” hi-res page two with 4 lines at the bottom of the screen
for text. In fact, it’s possible to display any screen without destroy-

ing any data just by using the following POKEs:

TEXT-- POKE 49236,0 : POKE 49234,4: POKE 49233,4
HGR1-- POKE 49239,0 : POKE 49236,4: POKE 49235,@

: POKE 49232,0
HGRI1-- POKE 49239,0 : POKE 49236,0: POKE 49234,@

‘ POKE 49232.0 (full sereen HGR1)

HGR2-- POKE 49239,0 : POKE 492374: POKE 49234,0
: POKE 49232,0

HGR2-- POKE 49239,0: POKE 49237,0: POKE 49235,4
: POKE 49232,0 (mixed screen HGR2)

By way of explanation, the above numbers are called soft switches
because they are under software control. By POKEing them with
any number (0 was used here), they perform certain special
functions:

49232: Display graphics
49233: Display text
49234: Select full screen (text or graphics)
49235: Select mixed screen (graphics)
49236: Select page one (text or graphics)
49237: Select page two (text or graphics)
49239: Select hi-res graphics

It’s helpful to note that the display switches (49232 and 49233)
should be POKEd last to avoid revealing the screen as it changes.

102

IT HAVE A DOT HERE SORRY MAN,
TO BE DELIVERED TO} I‘LL NEED AN
A NON-PLOTTED X AND Y TO
VECTOR. PLACE HIM.

Introduction to Shapes

Shapes are predefined figures that can be quickly and easily

drawn on the hi-res screen with the Applesoft DRAW command.

Shapes are composed of vectors, which are numbers correspond-

ing to a “plot a dot” decision and a move:

HI-RES SHAPE VECTOR ENCODING SCHEME

Numbered Numbered

Clockwise Clockwise

Plot Move

oe

A vector

Non-plotting Vectors Plotting Vectors

Note: Add 4 to non-plotting vector to

get equivalent plotting vector. FIGURE 6-2

103

A vector consists of a dot either plotted or not plotted on the
screen and a move up, down, left or right. Note that the dot is
plotted (or not plotted) first and then the movement is made. No
other movements (e.g., diagonally) are allowed. This is the reason

why diagonal lines have a slight “stairstep” appearance. Also
note here that an open circle is used to represent a non-plotted

dot. This is unlike the figure used in the Applesoft BASIC Pro-
gramming Reference Manual, which uses just an arrow without
any dot at all. The notation used here helps keep the difference

between the two types of vectors clear.

A shape can be constructed by drawing these vectors on a sheet
of graph paper. As an example, let’s define a box with a hole in
the top:

SAMPLE BOX DRAWN WITH VECTORS

End

FIGURE 6-3

To keep things simple, the color white will be used for our exam-
ples, which causes the dots to be plotted next to each other. Since
the dots will overlap each other when they are actually placed on
the video screen, the effect will be a delicate white line.

A couple of points worth noting here: it’s always good to begin in
the middle of your shape, even if there are no dots to be plotted
there, to allow the shape to be rotated correctly with the ROT
command. Also, although the Applesoft BASIC Programming
Reference Manual does not explicitly say so, there are two things

104

you cannot do with vectors: you cannot move up three times in
succession without plotting and you cannot move up two times
without plotting, and then do a plot. This is because the zero code
associated with the move up without plotting vector causes
Applesoft to think either it has reached the end of the shape or
has reached a part of the shape that is to be ignored.

Once you’ve properly created your figure, you can begin the
process of translating it into a DATA statement by writing the
code number next to each vector. TheApplesoft BASIC Program-
ming Reference Manual uses a method far more complicated than
the one shown here. Refer to it if you need more depth in under-

standing how this process works. For right now, all we need is a
clear and simple method that works:

SAMPLE BOX WITH VECTORS & VECTOR CODES

FIGURE 6-4

Next, start at the beginning of your shape and write down the
codes in order:

67744511667

Now, starting at the left side of the string of numbers, count off
three numbers. If the third number is a1, 2 or a3, break the string
there. If not, back up and break the string into two numbers:

105

BREAKING THE VECTOR CODE STRING

67744511667

Count off three digits

ex}aass 1667
is the third digit "1", “2”, or “3?

671744511667
No. Back up and break into two digits

67|744511667
Count off three digits

671744511667
Is the third digit 1’, “2” or “3”?

67174] 4511667
No. Back up

67174| 4511667
Count off three digits

6717414511667
Gota’1”, so...

67174] 4511 1667
Break into 3 digits

671741 4511 16167
Etc.

FIGURE 6-5

Convert the code groupings into decimal by multiplying the
second number by8, the third number (if any) by 64 and then add-
ing the results together:

CONVERTING BROKEN VECTOR CODES INTO DECIMAL

6 7 | 7 4 | 4 5 1 | 1 #6 | 6 7
x8 i <8 <8 X64 | <8 | <8

(6+56) (7+32) (4+40 +64) (1+48) (6+56)

t Y t Y Y
62 39 108 49 62

FIGURE 6-6

106

These numbers are called the shape definition. Note how they are
condensed into fewer decimal numbers. Add a zero and you can

use the numbers directly in a DATA statement:

DATA 62,39,108,49,62,0

We need one more item before we can use our shape: a shape
index. The index tells Applesoft how many shapes we are using
and where they are located. If you are using one shape, the index
is always DATA 1,0,4,0. Just think of income tax form 1040 and
you'll find it easier to remember. Here’s what the numbers mean:

SHAPE INDEX

DATA 1,6,4.6

No. of shapes in this table |

(Can range from 1-255) “High byte” of offset to shape
definition 1. (@=$, 1=256,

Unused 2=512, etc.)

Offset to shape definition 1

(four bytes) from beginning of

shape index

FIGURE 6-7

Suppose that you want to use two shapes and that the second
shape is composed of 20 vectors. To do this, you would translate
the second shape into an additional DATA statement just like the
first and change the index to this:

SAMPLE SHAPE INDEX FOR TWO SHAPES

DATA 2.9.6,9,26,6
A

No. of shapes in this table____/ “High byte” of offset to shape

Offset to shape definition 1

Unused (6 bytes for the index plus 20
bytes to skip past shape

Offset to shape definition definition 1).

Offset (high order)

FIGURE 6-8

107

The shape index and shape definition(s) together comprise the
shape table. Once the shape table is created, all that is left to do is

to load it in memory and tell Applesoft where it is. To load the
table in memory from DATA statements, this technique will work:

100 DATA 1,4,4,0: REM SHAPE INDEX

110 DATA 62,39,108,49,62,0: REM SHAPE
DEFINITION

120 TABLE = 32768: REM $8000

130 HIMEM: TABLE
140 ONERR GOTO 160

150 FOR|=@T01
: READ BYTE

- POKE TABLE,BYTE

: TABLE = TABLE + 1

-1=0

» NEXT

As we can see from line 120 above, a good place to put the shape
table is high in memory out of the way of the program and then to

move the HIMEM pointer down (line 130) to protect the table

from being overwritten by the program. The loop in line 150 is an
endless loop because index variable I is always reset back to its
starting value, 0. This causes the DATA statements to be READ
until an out of data error condition occurs. The ONERR state-
ment at line 140 then causes control to continue with the rest of
the program.

We must now tell Applesoft where the table has been loaded. Two
special memory locations have been set aside for this very pur-

pose: 232 and 233. To use them, we must break the table address
Into two parts, a “high byte” and a “low byte.” The high byte is
simply the number of times the address can be divided by 256; the
low byte is the remainder:

160 TH% = TABLE/ 256: TL% = TABLE-TH% * 256
176 POKE 232,TL% : POKE 233,TH%

Note that the low order byte is stored first.

Once this has all been done and hi-res graphics have been ini-
tialized with the following mandatory commands:

108

HGR: HCOLOR = 3: ROT =@: SCALE = 1

the shape can then be drawn with one simple command:

DRAW SHAPE AT LINE,COLUMN.

Shape Creating Summary:

1. Draw your shape on a piece of graph paper, using vectors
and starting in the middle of the shape.

. Number each vector using the appropriate code.

. Write the codes down in astring. Make sure you don’t havea

“000” or a““004” — “005” (illegal moves). Count the number of

codes. There should be just as many codes as there are vec-
tors in your drawing.

. Break the string into groups of two or three digits, de-
pending on whether the third digit is a1, 2, or 3 (use a three

digit group) or a 0,4,5,6,7 (use a two digit group).

. Convert the groups into decimal numbers by multiplying the
second digit by 8 and the third digit (if any) by 64 and adding

the results. If you have a result that is greater than 255, you

didn’t do step 4 correctly. Also, if you have a single digit at
the end of the string, just treat it as a decimal number.

. Put the decimal numbers in a DATA statement and add a

zero at the end to indicate to Applesoft where the shape
definition ends.

. Create the shape index and put it in a DATA statement in
front of the shape definition(s). The index for a table contain-

ing just one shape is always DATA 1,4,4,@.

. Decide where you want to load the shape table and READ/
POKE the data there. If the table is to be located high in

memory, you should move HIMEM down to protect it from

your program.

109

9. Break the address of the table into a low and high order byte
pair and POKE them into locations 232 and 233, respectively.

10. Use the DRAW command to put the shape wherever you

like.

The Lunar Lander Demonstration

The rest of this chapter will show you how to put the preceding
principles to work. We will do this by illustrating how to create
and use a Lunar Lander game. When we finish, you'll see how to
use shape graphics and the game paddles or a joystick to land a
rocket ship on the moon. For now, let’s take things one step at
a time.

Creating the Lunar Lander Shape

Let’s use a simple design:

LUNAR LANDER SHAPE VECTOR ENCODED

Ne
4 e

4 2

@ e

1 START 5 2

Lunar Lander

4(4) 2(2) 6(3)
7(2) °

in om 7(2)

ay ay 4 5(2) 5(2) 6

1 5 2
®

4{3) 2(3)
O 6(3)

3(4)
FIGURE 6-9

110

Note the use of a subscript in the drawing to save time in indicat-
ing multiple copies of the same vector code.

When we write the vector codes in a string, we have:

226222338334441455774444
1415552526667755652666

Breaking the string into groups of two and three digits accord-
ing to the third digit, we have:

22: 622 : 2338: 88:44:41: 45:57:74: 44:41:41

° 55:52:52: 66:67: 75:56:52: 66:6

Multiplying the second digit by8, the third digit (if any) by 64 and
adding the results, we have:

18,150,218,27,36,12,44,61,39,36,
12,12,45,21,21,54,62,47,53,21,54,6

By adding a zero at the end, we can use these numbers as a
DATA statement:

DATA 18,154,218,27,36,12,44,61,39,36,12,12,
45,21,21,54,62,47,53,21,54,6,0

We can now use this shape definition in a program to display the

Lunar Lander on the hi-res screen. The program about to be
presented does this in the following manner:

Lines 1080,1120: Initialize variables. To keep the program run-
ning fast, most of the numbers used in the program (especially in
loops) have been changed to variable names and defined here.
Some of the variables defined here are not used yet. They will be
later as we enhance the program. Here are the meanings of the
variable names:

BEG: Beginning (of anything)
BT: Game button 1
CLRSCRN: Clear the screen
FT: Fifty
N1, N2, N5, N7, N8, N39: Numbers 1, 2, 5, 127, 128, and 96

111

P1, Pe: Hi-res pages 1 and 2

REG: Regular (scale)
SH: Shape number
SP: Select page
SG, S1, S2, S3, S4: Various soft switches
TABLE: Address of shape table
WHITE: Hi-res color white
Z: Number 0

Lines 1170-1180: Move HIMEM down. This protects the shape
table from the program.

Lines 1190-1200: Tell Applesoft where the shape table is.

Lines 1250-1450: Load the shape table. Line 1450 clears the error

condition caused by READing past the end of DATA.

Line 1500: Clears the text screen to make sure the bottom four

lines of text are empty when we switch to hi-res graphics mode
and also makes sure we have the proper color, scale and rotation.

Lines 1550-1580: Select page two and clear it, then select page
one and clear it. This does the clearing “invisibly” and exits with
page one selected.

Lines 1640-1820: Draw the Lunar Lander on hi-res page one.
Line 1640 specifies a screen location near the top, line 1700 dis-
plays hi-res page one, line 1780 draws the Lander on the screen

and line 1820 makes sure we are displaying hi-res page one in
mixed (four lines of text displayed at the bottom) mode.

Lines 1900-1960: Restores HIMEM to its original (before the
program was run) setting, waits for a keypress from the user and
switches to a clear text screen.

Lunar Lander 1: Display Lander

4 Gad REM HM HK He MH He KM He He Me he he Me ee Me He he he OK eK 2K aie ae a oe Re ee oe oo ok ke

101@ REM * LUNAR LANDER 1 *
1@2@ REM * DISPLAY LANDER .
1@3@ REM * DEMO *
1 4G REM RKKKKKKEKK KH HE KEES EE KK KK KKK KKK EK KKK KK EK

112

1060 REM INITIALIZATION

1080 REM --------------

1090 REM VARIABLES

11@@ REM --------------

1110 BEG = 1
: BT = 49249

: CLRSCRN = -3086

:-FT=50

>N1 = 1

>N2=e2/79

>N5=5

=N7 = 127

:>N8= 128

> NS = 96

> P1 = 32
; P2 = 64

>: PG = 32

>: REG = 1
1120 SH = 1

:SP=230

: $0 = 49239

:S1 = 49234

;S2 = 49232

:S3 = 49236

:S4 = 49235
-: TABLE = 32768

:WHITE=3

:>Z2=G

1130

114@ REM -------------
115@ REM POINTERS
116@ REM -------------
117@ OLDHIMEM = PEEK(115) + 256 *

PEEK(116)
118@ HIMEM: TABLE

: REM PROTECT TABLE
119@ TH% = TABLE / 256

: TL% = TABLE - TH% * 256

113

1200 POKE 232,TL%
: POKE 233,TH%
: REM SET SHAPE PTR

1210

1220 REM ----------------
123 REM DATA TABLES
1240 REM ----------------
1250 REM ==> SHAPE TABLE

1260 REM SHAPE INDEX
1270 DATA 1,4,4,4
1280

1290 REM SHAPE DEF 1 (LANDER)
1300 DATA 18,154,218,27,36,12,44,61,39,36,12,

12,45,21,21,54,62,47,53,21,54,6,0
1310

1420 REM ==> LOAD DATA TABLES

1430 ONERR GOTO 145@

1440 FOR|=@0T01
‘ READ BYTE
: POKE TABLE,BYTE

: TABLE = TABLE + 1
-1=@

: NEXT
145@ POKE 2160
1460

1484 REM INIT GRAPHICS

1500 HOME
: HCOLOR = WHITE
: SCALE = REG
: ROT = UP
: REM MANDATORY STMTS

1510

114

155@ FOR | = Pe TO P11 STEP -P'
156@ POKE SP|l

: CALL CLRSCRN
19580 NEXT
159G

16@0 REM ---------------------------
161@ REM DRAW LUNAR LANDER
162@ REM ---------------------------
1630 REM ==> INITIAL START

1640 X=140
: Y=16
: OY=10

165

169@ REM ==> DISPLAY GRAPHICS

1760 POKE S@,Z
: POKE $1,Z
: POKE S2,Z

171G

1780 DRAW SH AT X.Y
1820 POKE S3,Z

: POKE S4,Z

1910 REM RESTORE SYSTEM

193@ HIMEM: OLDHIMEM
1940

1956 HOME
: VTAB 22
: PRINT “DONE!”
: PRINT “PRESS A KEY TO RETURN TO
TEXT: ";

: GET ANSS
: PRINT ANSS

1960 TEXT
>: HOME
: PRINT “BYE...”

115

Lunar Lander 2: Lowering the Lunar Lander

Now we come to actual animation. We will add statements that
will gradually lower the Lunar Lander by drawing it on screen
one and in a little lower position on screen two. Screen one is dis-
played and then screen two is switched on, giving the illusion that
the Lander has moved down a bit. While screen two is being dis-
played, the original figure on screen one is “invisibly” erased and
redrawn a little lower. Page one is then displayed, again giving
the illusion that the Lander has moved down. This page flipping
process is repeated, until the Lander reaches the bottom of
the screen.

Add the following statements to Lunar Lander 1:

1664 REM ==> RATE OF FALL & FINISH HEIGHT
1670 RF = 1: FIN = 108 / RF
1680:

Note: By changing RF, you can control how quickly the Lander
falls; however, using values for RF that are less than .52 will cause
problems with the sound routine for the Lander.

1720 REM ==> MOVE LANDER
1730 FOR ! = BEG TO FIN

1746 HCOLOR = BL
: DRAW SH AT (QX),OY

: HCOLOR = WH
-OY= Y

:_OX =X

Note: OX and OY refer to old X and old Y. These coordinates must

be saved so that the shape can be erased after a new shape is drawn

ata different location. OX must be enclosed in parentheses above to
prevent Applesoft from reading the statement as:
DRAW SHA TO x,0Y

1780 Y=Y+AF
: DRAW SH AT X.Y
: POKE S3 +N1 * (PG = P2),Z
: PG = N9- PG
: POKE SP,PG

116

1796 NEXT
1800

Note: The Lander is made to move down by adding the rate of fall to
the Y coordinate. The expression (PG = Pe2) is a Boolean expres-
sion and returns a1 if the current page being drawn upon is page
two; it returns a 0 if not. The 1 or the 0 control whether N1 (1) will

be added to softswitch three, which selects page one or page two.
PG = NS - PG toggles the page setting back and forth from page
one to page two, causing the shape to be drawn on different pages

each time this routine is used.

Lunar Lander 3: Display Terrain

Now we'll add some ground for the Lander to hit. Because we are
working with page flipping, the ground must be drawn on both
pages to prevent a visual flicker. Note that the terrain will be
drawn before the hi-res pages are displayed, giving a smoother
initial viewing. Add the following statements:

152@0 REM --------------------------------

1530 REM DRAW GRND ON BOTH PGS
154@ REM --------------------------------

155@ FORI=Pe TO P1 STEP-P'1
156@ POKE SP

: CALL CLRSCRN
1 978 HPLOT @,15@

HPLOT TO 100,15@
HPLOT TO 120,135
HPLOT T0 13@,135
HPLOT TO 133,125
HPLOT TO 148,125
HPLOT TO 155,135
HPLOT TO 164,135
HPLOT TO 196,150
HPLOT TO 279,150

1580 NEXT
1590

117

181G REM ==> MAKE SURE ON MTN
1822 POKE SP,P1

: HCOLOR = BLACK
: DRAW SH AT (OX),118
: HCOLOR = WHITE
: DRAW SH AT (OX),118
- POKE $3,Z
- POKE 84,Z

1830

(Note: if the rate of fall is adjusted, it could cause the final position

of the Lander to goa little further than where we want it to stop. We

can correct this by erasing the final position of the Lander and
making sure that it 1s redrawn at the correct location).

Lunar Lander 4: Sound Effects

Sound adds a special flavor to graphics. No matter how simple
the sound, it adds new zest to the animation. Here, we will make
the Lander beep as it falls, the pitch falling as the Lander falls.

We'll close with a higher pitched closing “trill” to add a touch of
class to the end of the display. Add the following statements:

1350 REM ==> TONE GENERATOR
1360 DATA 32,177,0,32,248,230,142,252,2,32,

76,231
1376 DATA 142,253,2,32,76,231,142,254,2,1398,

168,174
1380 DATA 252,2,1793,48,192,136,208,5,206,

253,2,244,8,2e02
1390 DATA 208,245,174,252,2,208,237,173,

255,2,141
1400 DATA 253,2,206,254,2,208,237,96
141G:

145¢@ POKE 216.4
: SOUND = TABLE - 57

1460

118

Note: The beginning address of the tone generating routine is deter-

mined by subtracting the length of the routine from the current set-
ting of TABLE, which is at the end of the TABLE.

174@ CALL SOUND: FT + 1,N5,N1
: HCOLOR = BL

: DRAW SH AT (OX),OY

: HCOLOR = WH

:OY=Y

:-OX =X

Note: The CALL statement is using a machine code program
POKEd in previously from the DATA statements. Machine code is

the only thing that has enough speed to keep up with animation.
The three values or parameters following the CALL statement con-

trol pitch, duration and the number of times to repeat the tone.

187@ REM ==> CLOSING TRILL
1880 FOR|=@TO64 STEP8

‘ CALL SOUND: 160 - 1,1G,1

> NEXT

1890

Lunar Lander 5: Button Control

This example will show you how to use button 1 on either the
game paddle or joystick to “freeze” the action and stop the Lunar
Lander in mid-air. Add the following statement:

175@ IF PEEK(BT) > N7 THEN WAIT BT,N8,N8

Note: The WAIT command makes the computer “‘freeze’”’ until the
location tested (button 1 in this case) changes. In this statement, if

button 1 1s pushed, PEEK(BT) will become greater than 127 and
the action will freeze until bit value 128 (the first N8) of BT is
turned off (as indicated by the second N8) by releasing the button.

For further information on the WAIT command, consult the
Applesoft Reference Manual.

119

Lunar Lander 6: Joystick/Paddle Control

This example will show you how to use a Joystick or a game pad-
dle to “steer” the Lunar Lander as it descends. Game paddles can
be read with the PDL(@) and PDL(1) functions. A joystick is read
the same way; you can think of ajoystick as a set of game paddles
at right angles to each other. To keep things simple, we’ll read
PDL(@) which also corresponds to the joystick being moved
along one axis. Add the following statements:

1640 X = INT(270 * RND(1))
:Y=1@
-OY = 10

1650

Note: This causes the Lander to be placed at a random column

when the game starts. This makes it a little more challenging to
land it on the mountain.

1760 X = X + N1 *(PDL{Z) > N7]
/X=X-—N1 *(PDL{Z) < N7)
IF X > N2@ THEN X=N1

177G IF X < N1 THEN X= N2

Note: The horizontal position of the Lander is incremented if the
paddle/joystick is turned toward the right past the halfway point
of 127 and decremented tf turned toward the left past the halfway
point. Wraparound (moving the Lander from one edge of the screen
to the other) is provided by the two |F statements should the Lander

stray too far to one side.

Lunar Lander 7: Explosions

This example will show you how to use a second shape and rotate
it quickly to simulate an explosion. It will be used here if the
Lander fails to land on the mountain. The explosion shape looks
like this:

120

EXPLOSION SHAPE VECTOR ENCODED

e
°

e @ oO

- XO @
Explosion Shape

(Random Shape)

Start
@

@

@

© 0/0 © @ &— Vectors omitted
here for the

®eeo0o sake of clarity

° 5) 00 ®

End

Vectors: 55 | 05 |77 |74 |43 | 46 | 77 | 61 | 56 | 55 | 56 | 52 [73
Decimal: 45 40 63 39 28 52 63 53 45 53 21

Vectors: 07 |74|6
Decimal: 56 55 6

DATA 45,40,63,39,28,52,63,14,53,45,53,21,31,56,55,6,0

FIGURE 6-10

Add the following statements:

127 DATA 286,0,29,0

1320 REM SHAPE DEF e (EXPLOSION})
1330 DATA 45,44,63,39,28,52,63,14,53,45,53,21,

31,56,55,6,0
1340

184@ REM ==> EXPLODE IF NOT
1852 IF X > 15GORX<

13@ THEN HCOLOR = BLACK
: DRAW SH AT (OX),118
-FORR=G1TO112 STEPB
:ROT=R
: HCOLOR = WHITE
: DRAW SH + 1 AT(OX],118
: CALL SOUND: 255,5,1
: HCOLOR = BLACK
: DRAW SH + 1 AT(OX],118
: NEXT

1860

i21

The Complete Lunar Lander Program

To let you see what the program looks like with all the additions
and enhancements, here is an updated listing:

1 141% REM KRKEKKKRKKKKKEKKKKKKKEKKKSEKHEKKAKKKKEKEKEKKKE

1010 REM * LUNAR LANDER *
1@22 REM * COMPLETE *
1030 REM * DEMO *
1G04@ REM TEESE SEE ES ELT ERE RES EL ETS EEE ETE SESE ES TS Ft

1060 REM INITIALIZATION

1G8@ REM -------------

1090 REM VARIABLES

11@QZ REM -------------

1110 BEG = 1

: BT = 49249

: CLRSCRN = -3086

: FT = 50
> N1 = 1
-N2@=279

>-N5=5

©=NZ7 = 127

-N8 = 128

- NS = 96

-P1 = 32

: P2 = 64

>: PG = 32

>: REG = 1

1120 SH = 1

: SP = 230
: SO = 49239

> S1 = 49234

:S2 = 49232

-S3 = 49236

:S4 = 49235

: TABLE = 32768

‘-WHITE=3

‘Z=G6

113¢

122

114@ REM ------------
115@ REM POINTERS
116@ REM ------------
117@ OLDHIMEM = PEEK(115) + 256 *

PEEK(116)
118@ HIMEM: TABLE

: REM PROTECT TABLE
119@ TH% = TABLE/256

: TL% = TABLE - TH% * 256
1200 POKE 232,TL%

: POKE 233,TH%
: REM SET SHAPE PTR

1210

122 REM ----------------
123 REM DATA TABLES
124@ REM ----------------

1250 REM ==> SHAPE TABLE

1260 REM SHAPE INDEX
12706 DATA 2,6,6,4,29,0
1280

129@ REM SHAPE DEF 1 (LANDER)
13Q0 DATA 18,150,218,27,36,12,44,61,39,36,12,

12,45,21,21,54,62,47,53,21,54,6,0
1310

132@ REM SHAPE DEF 2 (EXPLOSION)
1330 DATA 45,46,63,39,28,52,63,14,53,45,53,21,

31,56,55,6,0
1340

135@ REM ==> TONE GENERATOR

1360 DATA 32,177,6,32,248,230,142,252,2,32,
76,231

1370 DATA 142,253,2,32,76,231,142,254,2,138,
168,174

1380 DATA 252,2,1 73,48,192,136,208,5,206,
253,2,240,8,202

123

1390 DATA 208,245,1 74,252,2,208,237,173,255,
2,141

1400 DATA 253,2,206,254,2,208,237,96
1410

142@ REM ==> LOAD DATA TABLES

1430 ONERR GOTO 14504
1440 FOR|=@T01

- READ BYTE
: POKE TABLE,BYTE
: TABLE = TABLE + 1
-1=0

> NEXT
1450 POKE 216,40

: SOUND = TABLE - 57

1460

1480 REM INIT GRAPHICS

15006 HOME
: HCOLOR = WHITE
: SCALE = REG
: ROT = UP
: REM MANDATORY STMTS

1510

1520 REM --------------------------------

153@ REM DRAW GRND ON BOTH PGS
154@ REM --------------------------------

155@ FOR | = Pe TO P1 STEP-P1
156@ POKE SP,|

: CALL CLRSCRN
157@ HPLOT @,15@

: HPLOT TO 100,15@
> HPLOT TO 120,135

> HPLOT TO 130,135
> HPLOT TO 133,125
: HPLOT TO 148,125
> HPLOT TO 155,135

124

> HPLOT TO 160,135
: HPLOT TO 19@,15@
: HPLOT TO 279,15@

1580 NEXT
1590

16@@ REM ---------------------------

161@ REM DRAW LUNAR LANDER
1620 REM ---------------------------

1636 REM ==> INITIAL START

164 X = INT((270 * RND(1}))
:-Y=1@
-OY=10

1650

166@ REM ==> RATE OF FALL & FINISH HEIGHT

1670 RF = 1
> FIN = 108/RF

1680

1690 REM ==> DISPLAY GRAPHICS

1760 POKE S@,Z
: POKE 81,2
>: POKE S2,Z

1710

1720 REM ==> MOVE LANDER

1736 FOR |= BEG TO FIN

174@ CALL SOUND: FT + ILN5,N1

: HCOLOR = BL
: DRAW SH AT (OX),0Y

: HCOLOR = WH

-OY= Y
: OX =X

1750 IF PEEK(BT) > NZ THEN WAIT BT,N8,N8
1760 X= X+ N1 * (PDL(Z) > N7)

> X = X—-N1 *(PDL(Z) < N7}

- IF X > N2 THEN X=N1

125

1770 |IF X< N1 THEN X= Ne
1780 Y=Y+RF

: DRAW SH AT X,Y
- POKE S3 + N1 * (PG = P2),Z
: PG = N9-PG
: POKE SP,PG

1790 NEXT
1800

1810 REM ==> MAKE SURE ON MTN

182 POKE SP,P1
: HCOLOR = BLACK
: DRAW SH AT (OX),OY
: HCOLOR = WHITE
: DRAW SH AT [OX),118-
: POKE §3,Z
: POKE S4,Z

1830

1840 REM ==> EXPLODE IF NOT

185@ IF X > 150 OR X < 130 THEN

HCOLOR = BLACK
: DRAW SH AT (OX),118

‘FOR R=@TO11e STEPS
-ROT=R
- HCOLOR = WHITE

: DRAW SH + 1 AT (OX),118
: CALL SOUND: 255,5,1
: HCOLOR = BLACK

: DRAW SH + 1 AT (OX),118
> NEXT

1860

187@ REM ==> CLOSING TRILL

1886 FOR|I=@T0O 64 STEPS
: CALL SOUND: 100 - 1,1G,1
> NEXT

1890

126

191@ REM RESTORE SYSTEM

1930 HIMEM: OLDHIMEM
1946

1950 HOME

: VTAB 22
: PRINT “DONE!”

: PRINT“PRESSA KEY TO RETURN TOTEXT:”:
: GET ANSS

: PRINT ANSS

1960 TEXT
> HOME

- PRINT “BYE...”

Summary

The Appleis capable of high resolution graphics and animation.
However, if Applesoft is used to express the program, the degree

of sophistication of the animation will be limited.

Shape tables, page flipping and speed tips are all necessary to
get Applesoft to work fast enough with animation.

There are two hi-res pages in memory, each one taking up 8,192
bytes of RAM.

Through the use of CALLs and soft switches accessed through
certain POKEs, it is possible to display hi-res pages without
clearing any information stored in them and also to draw and
erase on a page without displaying it. It is also possible to display
a full sereen page 1 and a mixed page two, unlike the respective
HGR and HGRe commands.

Shapes are pre-defined figures composed of vectors. Vectors are
plotted or unplotted dots, followed by a move. A shape table is
composed of a shape index and up to 255 shape definitions.

127

You cannot move up three times in succession without plotting a
point, nor can you move up twice without plotting and then do
a plot.

There are one-digit numerical codes associated with each of the
eight vectors. The codes can be converted into decimal and used
in DATA statements.

You must always define the hires color, ROT and SCALE values,
or else the shape will not be drawn correctly.

128

CHAPTER 7

SPECIAL PRINTER TECHNIQUES

Three Types of Printers

There are three types of printers commonly available for per-
sonal computers today:

— Thermal

e.g., Silentype

— Dot matrix
e.g., Epson, Prowriter

— Letter Quality (daisy wheel)
e.g., Brother, C. Itoh, Diablo, Qume

129

Thermal printers use a specially treated paper that turns black
when it is heated. Characters are formed by passing a hot print
head over the paper. Thermal printers are compact, lightweight,
quiet and easy to operate. They can easily handle hi-res screen
dump. Their use is on the decline mainly because of the type of
paper they use: it is smaller and more expensive than regular

paper, and it contributes to the relatively poor quality of the
characters generated on it.

Dot matrix printers form characters by striking tiny pins against
a ribbon adjacent to a sheet of paper. The pins form a matrix of
small dots on the paper that resemble characters. The quality of
the appearance of the letters depends on the density of the dots.
Dot matrix printers are fast and economical. They can also han-
dle graphics printing such as hi-res screen dumps. They can usea
wide assortment of regular paper, including mailing labels, typ-
ing paper, stationery and fan-folded computer paper. Some busi-
ness users find that dot matrix characters are not of sufficient
quality for correspondence purposes. For this reason, dot matrix
printers are also known as “near-letter quality” printers. This

situation may ease somewhat as printer manufacturers develop
character matrices with higher densities.

Letter quality printers use a small hammer to strike a spinning

daisy wheel of characters against a ribbon and paper. Characters
formed this way, especially when made with the use of film rib-
bons, are crisp, clear and of superior quality. Letter quality
printers are expensive, slow and are generally not capable of
generating graphics, such as hi-res screen dumps.

Printing Out Normal Text

Most printers have a simple way of operating with the Apple:
simply use PR#1 and PRINT statements to send text to the
printer and use PR#@ to stop:

106 PR#1
20 PRINT “THIS IS A TEST”
30 PR#@

Results:

THIS IS A TEST

130

One “inside tip” that can help you avoid a puzzling error condi-
tion is to use CALL 1@@e2 after a PR# instruction if you plan on
using DOS commands from within your program. For example,
this does not work:

10 PR#1
20 PRINT CHRS(4)"CATALOG"
30 PR#@

Results:
CATALOG (prints the word, doesn’t do a CATALOG)

But this does:
16 PR#1 : CALL 1002
20 PRINT CHRS(4)"CATALOG"
30 PR#@ : CALL 1@02

Results:
(prints a CATALOG of the disk)

The PR# statements disconnect DOS, but CALL 1@@2 connects
it again. A more detailed explanation of this problem can be
found on pg. 102 of The DOS Manual.

Another technique that works 1s:

10 PRINT CHRS(4)"PR#1"

The problem with this method is that it sends a carriage return to
the screen. This may cause the screen to scroll and ruin a text
dump that you might be attempting.

Special Printer Commands

Computer printers can go far beyond the printing of normal text.
They can emphasize, italicize, proportionally space, double space,

subscript, tab, underline, and much more. These features can be
activated by using special printer command codes. Each printer

has its own set of codes and the instruction manual included with
the printer can further explain these commands. A problem
immediately arises, however, in trying to translate the instruc-
tion manual into something that the Apple can execute.

131

Here’s an example from Appendix B of Epson’s Graftrax Plus
Printer Manual:

Epson Manual:

Dec Hex Symbol Function

15 OF SI Shift in. Turns on compressed character
mode. Does not work with emphasized

mode. Stays on until cancelled by DC2
(18).

Translation:

Command Code Applesoft ‘Function

<ESC> “E” CHRS$[(27)“E” Turn on emphasized mode

Example:
PR#1
PRINT CHRS$(15)"THIS IS A TEST’

Epson Manual (Original MX-100):

ESCD+n1+n2+.....+nk+NUL
(1<=(njd<=233, k<=12)

Example:
(DATA)-ESC D <5>H <A>H <15>H NUL ABC HT

DEF HT GHI HT JKL CRLF
(PRINT) ABC DEFGHI = JKL

Translation:

<ESC> "D”; 1st tab setting; 2nd tab setting; ... ;last tab set-
ting; CHRS(G)

132

Tab settings may range from 1 to 233; up to 12 tabs may be set.

Example:

PRINT CHRS(27)"D";CHR&(5); CHRS[1Q):
CHRS$(21); CHAS(Q);

PRINT “ABC";CHRS(9);“DEF”; CHRS(9);“GHI";

Results:

CHRS(9)"UKL”

ABC DEF GHI JKL

The point of these examples is that you need to be able to trans-

late what is in the printer manual into something that you can use
on your Apple. The following guidelines will help:

1. There are usually just two types of printer command
codes: control codes and ESCape codes. An example
of a control code is <CTRL O> or CHRS(15), which
on the Epson turns on compressed character mode.
An example of an ESCape code is <ESC> “E”, which
on the Epson, turns on emphasized mode.

. You cannot send the <ESC> character to the printer

merely by pressing the ESC key. The Apple will inter-
cept the key and try to interpret it as an ESC 1,J,K or
M “cursor move” command. Use PRINT CHR$(27)
to send the <ESC> character to the printer.

. Usethe ASCH chart in the Applesoft BASIC Program-
ming Reference Manual to convert any strange codes

like NUL, BEL, ESC, etc., that you may encounter.

Programming the Printer Interface Card

Sitting quietly inside your Apple, usually in slot 1, is a printer
interface card, without which, as they say in the movies, printing

would not be possible. It does the following important functions:
1. It receives characters from the Apple that are to be printed

and holds them until the printer is ready to pick them up.

133

This “middleman” technique is necessary because the

Apple can print characters at a speed of greater than 19,000
characters per second, while your printer can only print at

speeds typically ranging from 10 to 200 characters per
second.

A normal printer interface card can hold only one character
at a time, so this means that your card will freeze your
Apple until the printer gets all of the characters for printing.

IF I HAD
A BUFFER ALL
YOU CHARACTERS
WOULD BE IN
BIG TROUBLE.

Some printer interface cards known as printer buffers are
capable of holding more than one character at a time;
typically they can hold at least 16,384 characters. This

allows your Apple to send all of the characters to be printed
to the buffer in a second or so. You then have full control
over your Apple and can move on to other programming
projects. The printer, on the other hand, can get its charac-
ters from the buffer whenever it wishes.

134

2. A program in the printer interface card watches all charac-
ters being sent to it, and when it receives a carriage return,
it sends it on to the printer, but it also adds a line feed to
advance the paper. Double spacing or no line feeding may be
the result of not setting your printer’s internal switch settings
to acknowledge this fact.

3. Some programs in printer interface cards have advanced fea-
tures such as the ability to perform a hi-res screen dump.
These features are usually activated by sending the program a
CTRLI(CHR&(9)).This means you will have trouble sending a
CTRL| tothe printer for other uses such as atab commandora
graphics character. In addition, there are certain other control
characters that activate certain features in a printer interface
card. The most notorious of these characters are CHRS(7]
through CHR$(13).

To get around this problem, you can avoid the program in the

card and send characters directly to the storage area on the
eard itself. The printer can then pick the character up with-
out interference.

The storage area on the card is called a data latch. You can
put a character there with a simple POKE. POKE
49296,ASC(“A”) for example, will put the ASCII code for
the letter “A” in the Epson APL parallel printer interface
eard data latch. The addresses for data latches vary from
ecard manufacturer to card manufacturer, but they can

usually be found in the back of your card’s user’s manual.

There is one last thing you need to know if you are putting
characters directly into your interface card. The printer
does not know you have put the character in the card unless
you specifically tell it. This is done by raising or lowering a
strobe signal, which is a little like ringing a doorbell to get
someone’s attention. Some cards (such as the Epson APL)
have a built-in hardware strobe, which means as soon as
you put a character in the data latch, the card immediately
tells the Epson that the character is there. You don’t have to
worry about anything else. Other cards require a software
strobe, which means another POKE: (The Grappler is used
for the following example).

135

POKE 49297,ASC(“A") : REM Put character in data latch
POKE 49298,ASC("A”) : REM Lower strobe (alerts

Epson}
POKE 493G@@,ASC(“A") : REM Raise strobe back to

normal

Some ecards don’t even use a data latch: (The PKASO ecard is
used for the following example.)

POKE 51201,ASC("A") : REM Make sure strobe is up
POKE 512@@,ASC(“A”") : REM Lower strobe (alerts

Epson)
POKE 51201,ASC("A") : REM Raise strobe back

| to normal

In some cases, the information you need is expressed in an

assembly language program in the back or an Appendix of the
card’s user’s manual. Here’s an example of how to translate such
a program into Applesoft: (Example used here is from the PKASO
manual).

Data Output to the Printer:

1 WAIT LDA $C@S0 See if printer is ready.
2 ROLA Get bit 6 (Ready flag).
3 BPL WAIT Not yet; keep looping until it is.
4 LDA DATA Get the character to print.
5 STA $C8Q1 Make sure strobe is up.
6 STA $C800 Lower strobe to alert printer to

get char.
7 STA $C801 Raise strobe up again .

Note: In line 2, ROL and not ROL A is usually used by most
Apple assemblers.

The Applesoft equivalent of the program would be:

1 WAIT 49296,64 : REM Wait til printer is ready.
4 A = ASC("B") : REM Get the character (‘‘B”)

to print.
s) POKE 512@01,A: REM Make sure strobe is up.
6 POKE 51200,A: REM Lower strobe to alert

printer.
7 POKE 5120G,A : REM Raise strobe up again.

Note that line 1 of the above Applesoft program does the work of the
first three lines of the assembly language program.

136

Hi-res Screen Dump

After you determine your card’s data latch and strobing pro-

cedure, you can use the following Applesoft program to do a hi-
res screen dump on any dot matrix printer. Special thanks to Bob

Diaz of Epson America who wrote the original version of this pro-
gram. Note that the screen characters must be POKEd directly
into the card to avoid compatibility problems with characters in
the range of CHRS{7) —- CHRS(13).

This program is set to work with the Epson MX-80 printer and
the Epson APL (Apple) printer interface card; remember to
adjust the WAIT and POKE addresses in line 200 if you are using
a different printer system. Be patient with the program; there
will be a long wait after each line is printed... Applesoft is just
plain slow at times.

Explanation of the Program:

Line 130 goes to a graphics subroutine that draws a figure on hi-
res screen one.

Line 150 defines variable names and constants used as Epson
command codes.

Line 170 turns on printer output, sets line spacing to seven dots
(graphics spacing) and sets the page number to hi-res page one

(use 16384 for page two).

Lines 190-200 sean the hi-res screen along the right edge from

top to bottom, convert a hi-res screen byte into a bit image

character and sends it to the printer. A hi-res page is divided into
three zones, each zone is divided into eight sections and each sec-
tion is divided into eight lines. Line 190 indents the figure to keep
it centered on the paper and also prepares the printer to receive

256 “bit image” characters. The beginning of line 200 sends 64
blanks to make the total number of graphics characters sent to
the printer add up to 256.

Line 220 restores normal line spacing, video output and text
mode.

137

Finally, note that the hi-res screen is printed sideways on the
paper to simplify the calculations involved in getting a byte from
the screen and printing it out on paper.

1 GU REM KKKEKKKKKKKKKKKKEKKKEKKKKKKKKKKKKKKKKEKEKE

11@REM * HI-RESSCREEN DUMP PROG *
129¢ REM KKKKKKKKKKKKKSEEKEKAKKSEKAKKKKKKKKKKKKKEK ES

13@ GOSUB 25@
: REM PUT FIGURE ON SCREEN

140

150 ESCS = CHRS (27)
. EAS = ESCS + “A”
: EKS = ESCS + “K”
: E1$ = ESCS +1”
. E2$ = ESCS + “2”

160

176 PR#1
: CALL 1062
: PRINT E15;
: PG = 8192

18G

19@ FOR X = 39 TOGSTEP -1
PRINT SPC(1Q);EKS CHRS(Z) CHRS(1):

220 FORI=17T064
: PRINT CHRS([Q);

NEXT
FOR ZN =@ TO 8G STEP 4a
FOR SC = TO 896 STEP 128

FOR LN = @T0 7169 STEP 1024
WAIT 49601,128,128

POKE 49296, PEEK(ZN + SC +
LN + X + PG]

210

138

220 PRINT E2&S

: PR#@
: CALL 1002

: TEXT
: END

230

240 REM + --------------------------------------- +

252 REM : FIGURE DRAWING ROUTINE
260 REM + --------------------------------------- +

270

280 HGR2

: HCOLOR=3
: FOR X=@TO279 STEP 4

HPLOT 140,96 TO x,@

> NEXT
: FOR Y=@TO 191 STEP 4

HPLOT 144,96 TO 279.,Y

: NEXT
: FOR X =279 TOG STEP-4

HPLOT 140,96 TO X,191
> NEXT

: FOR Y= 191 TO@STEP-4

HPLOT 144,96 TO GY

> NEXT

2940 HCOLOR = @
>: FORI=e2 TO ed STEP 2

HPLOT 11@+1,70+1 TO 17@-1,70+1TO 17G@-I,
12@-! TO 11G+1,12e@-!1 TO 110+1,70+1

: NEXT
300 RETURN

Summary

There are three types of printers commonly available for per-
sonal computers today: thermal, dot matrix and letter quality.

Information on the Apple is printed with a simple procedure:

10 PR#1
24 PRINT “THIS IS A TEST”
34 PR#0

139

CALL 1@@2 should be used after a PR# statement if DOS com-
mands are to be used from within a program.

Printers are capable of performing special functions such as
underlining, subscripting, italicizing, tabbing, double spac-
ing, and the like. The features your printer is capable of perform-
ing are found in your owner’s manual. To decipher the owner’s
manual, remember that ESC can be expressed as PRINT

CHRS&(27) and CTRL codes can be expressed as CHRS(Q)
through CHRS(31). An ASCII chart can help you translate any
names that you may not know suchas HT, FF, CR, NUL, and BEL.

The printer interface card is a necessary middleman to receive
characters from your Apple until the printer can get them. A
printer buffer is a special kind of interface card that returns con-
trol of your Apple back to you and yet allows the printer to get
characters as it needs them from the buffer.

There is a program within your printer interface card that per-
forms certain extra actions when it receives special characters,
usually within the range of CHRS(7) to CHRS(13). You can
avoid these extra actions and send characters directly to the
printer by POKEing characters directly into the card’s data
latch. Some cards also require you to POKE a software strobe to

tell the printer that a character is waiting to be picked up.

It is possible to use an Applesoft program to print out a copy, or

dump of the hi-res screen. To do this, however, characters must
be POKEd directly into the printer interface card to avoid com-

patibility problems with the program already in the card.

For Further Reading

The Elementary Apple, William Sanders (DATAMOST, Inc.,
Chatsworth, CA, 1983) Introduction to several different types of

printers and the basics of how to use them.

The Other Epson Manual, Bill Parker (Quality Software, 1984). A
thorough examination of the entire series of Epson dot matrix

printers. Numerous tips, sample programs and charts. Written
specifically for the frustrated Apple user.

140

Programming the Apple: A Structured Approach, J.L. Campbell
and Lance Zimmerman (Robert J. Brady Co., Bowie, MD, 1982).
Good overview of various types of printers and how to use them.

141

CHAPTER 8

PEEKS, POKES, CALLS
AND TRICKS OF THE TRADE

Ampersand

The ampersand character (&), when used within Applesoft,
causes the Apple to transfer control to a machine code program
indicated by the ampersand vector.

Example:

1040 REM MACHINE CODE TO CLEAR THESCREEN

110 DATA 32,88,252,96
120:
13@ REM ADDRESS TO STORE MACHINE CODE

14¢@ ADDR = 768
150 AH% = INT(ADDR/256) : AL% = ADDR -

AH% * 256
160:
17@ REM PUT MACHINE CODE IN MEMORY

180 FORI=@TOS3S :READ BYTE : POKE

ADDR +1.BYTE : NEXT

190:
20@ REM SET UP AMPERSAND VECTOR
210 POKE 1014,AL% : POKE 1015,AH%

CoG:

230 REM AMPERSAND DEMO

240 & : REM THIS CLEARS THE SCREEN

Applesoft Program Pointers & Locations:

Beginning of program : PEEK(1@3) + 256*PEEK(1@4)
End of program : PEEK(175) + 256*PEEK(1 76)

143

Beg of simple variable : PEEK(1@5) + 256*PEEK(1@6)
table (LOMEM)

Beg of array table : PEEK(1@7) + 256*PEEK(1@8})
End of program and : PEEK(1@9) + 256*PEEK(1 10)

all tables
Hi-res page 1 Range : 8192 - 16383
Hi-res page 2 Range : 16384 - 24576
End of free space : PEEK(111) +256*PEEK(112)
HIMEM : PEEK(115) + 256*PEEK(116)

DOS

Buffers

With a normal boot-up, DOS 3.3 creates three buffers for use in
reading and writing files from the disk. The buffers reside just be-
low DOS and are protected by HIMEM which is moved tojust below

the buffers. Each buffer uses 595 bytes of space, and most users
never use the last two buffers. While the MAXFILES 1 command

can eliminate unused buffers, you may want to use the buffers to
hold temporary values or machine code programs instead. Here

are some useful formulas for finding the buffers:

Top of buffers: TB = PEEK(4@192) +
256*PEEK(40193) + 37

No. of buffers: NB = PEEK(436@7)
Btm of buffers: BB = TB—595*NB + 1
Beg of any buf: BA = TB — 595*(buffer no.: 1-3)
Addtnl buffers
that can be created: AB = PEEK(436@8)

COMMAND/ERROR TABLES

The command table contains the names of all valid DOS com-
mands; the error table contains the names of all DOS error

messages generated when an error condition is encountered.
Once you know the locations of the commands and error messages,
you can easily change them with a few POKEs, giving you the
ability to create friendlier commands (such as “CAT” instead of
“CATALOG’”) and error messages (such as “CUT A NOTCH!”

instead of “WRITE PROTECTED’). Here are the locations:

144

Command Table: (read down)

4314@ INIT 43185 EXEC 43233 PR#

43144 LOAD 43189 WRITE 432356 IN#

43148 SAVE 43194 POSITION 43239 MAXFILES

43152 RUN 43202 OPEN 43247 FP

43155 CHAIN 43°06 APPEND 43249 INT

43160 DELETE 43212 RENAME 43252 BSAVE

43166 LOCK 43218 CATALOG 43257 BLOAD

4317@ UNLOCK 43225 MON 43262 BRUN

43176 CLOSE 43228 NOMON 43266 VERIFY

43181 READ

(43271 = end of command table)

The ASCII value of the last letter of each command is greater
than 128; the other letters are always less. DOS is able to find its

way through the command table by scanning each character to
see if 128 has been added to it. For example, to change “CATA-
LOG" to"CAT", you would add 128 to the "T” and then “‘close up”

the table to write over the “ALOG” portion:

POKE 43220,PEEK(4322@)+128
FOR|=43225 T0 43271 : POKE I-4,PEEK(I] : NEXT

Error message table: (read down)

43380 LANGUAGE NOT 43477 DISK FULL

AVAILABLE

434@2 RANGE ERROR 43486 FILE LOCKED
43413 WRITE PROTECTED 43497 SYNTAX ERROR

43428 END OF DATA 43509 NO BUFFERS
AVAILABLE

43439 FILE NOT FOUND 439530 FILE TYPE
MISMATCH

43453 VOLUME 43548 PROGRAM TOO
MISMATCH LARGE

43468 I/O ERROR 43564 NOT DIRECT
COMMAND

DOS finds error messages a little differently than the way it finds

commands. It always goes to the locations listed above. Prac-
tically speaking, this means that you cannot replace an error

145

message with one that is longer than the original. It also means
that you don’t have to worry about closing up the table over an

unused portion of an error message: DOS simply stops when it
reaches a letter whose ASCII value is greater than 128. Here’s
how you would change “WRITE PROTECTED” to “CUT A
NOTCH”:

MSG$="CUT A NOTCH!”
FOR I=1 TO LEN(MSGS$)
POKE 43412+1,ASC(MIDS[MSGS,|,1))

NEXT
BS=RIGHTS(MSGS,1)
POKE 43412+LEN(MSGS),ASC(BS)+128

Greeting Program: POKE 40514

Sometimes it is desirable to be able to boot a disk that uses a
binary (machine code) or a text (EXEC file) greeting program.
While this can be done by booting up an Applesoft program
which BRUNs a binary file or EXECs a text file, this method is
slow because it requires two programs to be loaded from the disk
and executed. The following three steps will show you how to
initialize a disk so that it directly boots a binary or text file:

Step 1:
POKE 4@514,52 <— Allow binary greeting program
POKE 4051 4,20=—- Allow text file greeting program

Step 2:
Clear the memory with a NEW command, enter 1@ REM, insert
a blank disk and enter INIT HELLO (or whatever name you want
to give the binary or text file).

Step 3:
DELETE HELLO (or whatever name you choose for the greeting
program) and save your binary or text file on the disk under the
same greeting name(HELLO inthis example). FID can be used to
transfer your greeting program from another disk to the one just
initialized. Once you have done this, the disk will boot the binary
or text file directly.

146

Last Loaded File

Starting address = PEEK(43634) + 256*PEEK(43635)
(binary only)

Length = PEEK(43616) + 256*PEEK(4361 7)
(binary only)

Name= FOR |I=43637 TO 43666 : PRINT CHRS([PEEK(I));
>: NEXT

MON Flags: POKE 43614

The PRINT CHR$(4)"NOMON 1,0,C” command turns off the
printing of all input, output and commands of a program being

executed and “hides” what your program is doing. It has one
drawback: the NOMON 1,0,C command itself is printed out.
This can be avoided by using the POKE equivalent of the
command:

POKE 43614,0 : REM NOMON 1,0,C (no output)
POKE 43614,112 : REM MON 1,0,C (output restored)

(l=32, O=16, C=64; just add up the numbers corresponding to
the letters that you want to use.)

RWTS (Kead or Write a Track/Sector)

Through a few POKEs and a CALL, it is simple to read a sector
from adisk and put it in a fixed 256-byte buffer beginning at loca-
tion 46267. The buffer can be examined with PEEKs, changed

with POKEs and written to the disk again.

TYPE
DRIVE
TRACK
SECTR

45121 (Read = 1, Write = 2)

46584 (1 or 2)
45975 (0-34)

45976 (0-15)
45111

72
46267-46522

RWTS
ERR
BUFFER

147

4

oe e ANN

in

Example: (drive 2, track 17, sector 15)

POKE TYPE,1 POKE TYPE,2
POKE DRIVE,2 POKE DRIVE,2
POKE TRACK,1 7 POKE TRACK,1 7
POKE SECTR,15 POKE SECTR,15
CALL RWTS CALL RWTS
POKE TYPE,2 POKE ERR,G
POKE ERR,@

Error Handling

Instead of having your Apple crash when it encounters an error

condition (such as when someone leaves a disk drive door open),
the ONERR GOTO statement can be used to keep the program
going. Once an error has been encountered and the ONERR
GOTO istaken, PEEKing at location 222 will tell you what kind of
error has occurred so that you can take appropriate action. The

following table is a combination of both Applesoft and DOS
error conditions:

148

@ NEXT WITHOUT FOR 16*SYNTAX ERROR
1*LANGUAGE NOT AVAIL. 22 RETURN W/O GOSUB
2 RANGE ERROR 42 OUT OF DATA
3 RANGE ERROR [again) 53 ILLEGAL QUANTITY
4*WRITE PROTECTED 69 OVERFLOW
9*END OF DATA 77 QUT OF MEMORY
6*FILE NOT FOUND 94 UNDEFINED

STATEMENT
7*VOLUME MISMATCH 1G@7 BAD SUBSCRIPT
8*1/0 ERROR 1206 REDIMENSIONED

ARRAY
9*DISK FULL 133 DIVISION BY ZERO

1@*FILE LOCKED 163 TYPE MISMATCH
11*SYNTAX ERROR 176 STRING TOO LONG
12*NO BUFFERS AVAIL. 191 FORMULA TOO

COMPLEX
13*FILE MISMATCH 224 UNDEFINED FUNCTION
14*PROGRAM TOO LARGE 254 BAD INPUT
15*NOT DIRECT 255 CTRL C INTERRUPT
COMMAND

Note: The ‘“*”’ symbol refers toa DOS error message; the rest refer
to Applesoft.)

Game I/O

Reading Paddles/Joystick:

PQ = PDL(G)
P1 = PDL(1}

PDL will return a value ranging from 0 to 255. Each paddle cor-
responds to one axis of ajoystick. It is interesting to note that it is
possible to connect four paddles or two joysticks to the game port,
provided that they are read directly from the “extra” locations,

PEEK(49254) and PEEK(49255).

149

Reading Pushbuttons:

B1 = PEEK(49249)
Be = PEEK(49259)
B3 = PEEK(49251]

The button readings will remain less than 128 until a button is

pushed. It is interesting to note that the Apple is capable of read-
ing three buttons. Also note that paddle numbering begins with
zero while button numbering begins with one.

Hi-res Graphics

Shape Table Pointer: 232-233

These two locations point to where you have loaded a shape
table. Sample use:

ADDR = 768
AH% = ADDR / 256 : AL% = ADDR - AH%*256
POKE 232,AL% : POKE 233,AH%

Select Hi-res Page: POKE 230

Selecting a page means being able to alter it in some way, regard-
less of whether it is displayed or not. It is possible, for example, to
display page one while drawing a picture “invisibly” on page two
through the use of location 230. Here are the POKEs:

POKE 230,32 : REM Hi-res page 1
POKE 234,64 : REM Hi-res page 2
POKE 230,128 : REM Hi-res page “3”

Selecting page three actually accesses a part of RAM above the
hi-res pages. While this area cannot be displayed, it can hold a hi-

res picture and be moved into an actual hi-res page for display
purposes.

150

Clear Hi-res Page: CALL -3086

It is interesting to note that it is possible to clear a hi-res page to

black without displaying it. By selecting the page desired (see
previous paragraph) and CALLing -3@86, the page will be
cleared.

Display Page 1: CALL-31@0

This command is a quick way to “flip” back to hi-res page one and
examine the screen without destruction of data. Unfortunately,
there is no equivalent command for page two.

Page Flipping:

Displaying the text and hi-res pages without clearing the screen

can be accomplished by selecting the appropriate series of POKEs
presented below:

TEXT -- POKE 49236,0 : POKE49234,0 : POKE49233,2
HGR1-- POKE 49239,0 : POKE 49236,0 : POKE 49235,

> POKE 49232,0
HGR1-- POKE 49239,@ : POKE 49236,0 : POKE 49234,

: POKE 49232,@ (full screen HGR1)
HGRe-- POKE 49239,@ : POKE 49237,0 : POKE 49234,0

: POKE 49232,0
HGRe-- POKE 49239,0 : POKE 49237,0 : POKE 49235,

: POKE 49232,@ (mixed screen HGR2)

The above numbers are called soft switches because they are
under software control. By POKEing them with any number (0
was used here), they perform certain special functions:

: Display graphics
: Display text
: Select full screen (text or graphics)
: Select mixed screen (graphics)
: Select page one (text or graphics)
: Select page two (text or graphics)
: Select hi-res graphics

151

It’s helpful to note that the display switches (49232 and49233)

should be POKEd last to avoid revealing thescreen as it changes.

Reading The Keyboard: CALL -756

The following method of reading the keyboard is quick, simple
and does not generate any garbage. It is ideal for single keypress
responses that do not need to be saved. Note that clearing the
strobe with a POKE 49168 is not needed with this method:

100 PRINT “PRESS ANY KEY TO CONTINUE:”;
: CALL -756

The key pressed is not lost; however, it can be retrieved and
used:

100 PRINT “PRESS A KEY:”; : CALL -756
11G CHARS = CHRS[PEEK(49152))
122 PRINT CHARS

Reading the keyboard can be done in the middle of a running
Applesoft program to see if the user wants to change the action.
This is how it can be done by using the keyboard strobe directly:

102 HOME
11@ VTAB 12: HTAB 1G
12@ PRINT “PRESS A KEY:”
13@ IF PEEK[49152) < 128 THEN 114
14@ VTAB 12: HTAB 23
150 PRINT CHRS[PEEK(49152))
16@ GOTO 110

Move Memory

The following is a monitor move routine that is very fast, espe-
cially when compared to the speed of moving memory by PEEK-
ing and POKEing. To use it, you must specify the beginning and
ending addresses of your source block of memory and the begin-
ning address of the destination where you want to move it. The
following example moves hi-res page two to hi-res page one:

152

1 DEF FN HI{X) = INT(X/256)
: DEF FN LO(X) = X- 256 * FN HI[X)

110

12@ SB = 16384 : REM Source beginning
: SE = SB + 8191 : REM Source end
: DB = 8192 : REM Destination beginning

13G

140 POKE 6G,FN LO(SB)
: POKE 61,FN HI(SB)
: POKE 62,FN LO(SE)
: POKE 63,FN HI(SE)
: POKE 66,FN LO(DB)
: POKE 67,FN HI(DB)
:POKE 71,0 <«—Clears the “Y register’
: POKE 58,44 <— MOVE routine (lo byte)
: POKE 59,254 <-— MOVE routine (hi byte)
:CALL-327 <«— “Go” processor

Keset Control: POKE 1012.2

A very simple POKE 1@12,0 will cause your Apple to reboot if
you hit RESET. It will also undo itself (restore a normal RESET)
after the Apple reboots.

Screen Control

Clear Screen

Clear to end of line: CALL -868

Clear to end of page: CALL -958
Clear entire screen : CALL -936

Cursor Moves

— CALL -484
<+— CALL -1008
up CALL —998 (useful in EXEC files to keep the cursor

from ‘‘creeping’’ down as each line executes)
down CALL-982

153

Scroll

Scroll up: CALL -912

Sounds

Click Speaker

Merely PEEKing at location 49200 any way you can will cause
the speaker to click. Do this enough times in a loop and you will
get a buzz. Actual musical tones require the speed of machine
code routines. Here’s an example of how to produce sound from
the speaker:

Example 1:
X = PEEK(492@@) : REM Make one click
(barely audible)

Example 2:
FOR!I=1 TO 100: X = PEEK(492G@@) : NEXT
> REM Make buzz

Example 3:
FORI=11T0100
X= PEEK(4920Q) + PEEK(492@@) + PEEK(492GQ)

NEXT : REM Lower pitched buzz

Example 4:

S = 49200
FORI=1 TO 100
X = PEEK(S) + PEEK(S) + PEEK(S)
NEXT : REM Higher pitched buzz (Applesoft works
faster with variables)

Ring The Bell

CALL -1@52

154

Summary

These are just a few of the tricks you can do with some of the
built-in functions of the Apple.

By looking at the monitor listing for the Apple in the Applesoft
BASIC Reference Manual, you can find your own POKEs and
PEEKs. Just remember to convert the hex numbers into decimal
and you're all set.

For Further Reading

All About Applesoft (Call-A.P.P.L.E., Kent,WA). In-depth analysis
and tutorial of Applesoft BASIC, including many programs and
utilities written by users.

Apple II Reference Manual, Christopher Espinosa (Apple Com-
puter, Cupertino, CA, 1979). Official technical manual to the
inner workings of the Apple II family of computers. A classic.

Apple II Monitors Peeled (Apple Computer, Cupertino, CA, 1981).
Official guide to how to use the monitor routines at $F800 to
$F FFF (-2048 to -1) and the page zero locations used by the mon-
itor. Many practical examples and shortcuts. For the inter-
mediate to advanced user.

Applesoft Basic Programming Reference Manual (Apple Com-

puter, Cupertino, CA). Official user’s manual to the language.
Contains many useful charts.

What’s Where in the Apple? (Micro Ink, Chelmsford, MA 1981).
Atlas of every memory location within the Apple, listing their
names and explaining what they do. Alphabetical and numer-

ical listings.

155

CHAPTER 9

HOW TO USE AN ASSEMBLER

An assembler is a program that lets you write programs in a
powertul language called assembly language.

Advantages and Disadvantages of
Assembly Language

Assembly language programs have two main advantages: speed
and customization. Assembly language programs run at an
incredible speed that no higher level language (like Applesoft)
can match. You can also do things with assembly language that
are impossible to do with higher level languages.

There are also some disadvantages with assembly language. It is
difficult to learn, there are many new concepts, and it requires a
more intimate knowledge of how your computer works. Assembly
language is also tedious and error prone. There is little error
checking available and debugging can become a major time
consumer.

A Comparison: Applesoft and Machine Code

Let’s take a look at the amazing speed available by comparing an
Applesoft program with a machine code equivalent. Machine code
is the assembled or compiled version of your assembly language
program. Essentially, the assembly program is a dressed up ver-
sion of machine code, replacing numbers with easy-to-remember
expressions.

157

Here’s an Applesoft program that clears the screen by wiping

each line from left to right with a small “pad”:

1@0 FOR LINE=1 TO 24
11@ VTAB LINE
120 FORCLMN=1 T0 4@
130 HTAB CLMN
140 IF CLMN > 1 THEN

HTABCLMN -1
PRINT “"; : REM CLEAR PREVIOUS
INVERSE CURSOR

150 IF CLMN < 4@ THEN
INVERSE: REM IF NOT EOLN, SHOW
INVERSE CURSOR

160 PRINT “”;
>: NORMAL

17@ NEXT CLMN
18@ NEXT LINE

RUN this program and you'll find that you can watch the cursor
move across the screen, erasing characters as it goes.

Now, without clearing any memory, enter in the machine code
equivalent of the above program with the following steps:

JCALL-151

*300:A9 GG 85 06 AS GO 85 G7 A5 @6 8525
2822 FC

*3GF:A4 07 FG @6 88 AS AG 91 28 C8 AV2G
Cd 27 90 Ge

*31F:A9 AG 91 28 2C GG CG 30 15 A5 Fl 2G
A8 FC E6 G7

*32F:A5 G7 C9 28 9G DA E6 G6 A5 GB C9 18
94 C7 2C 10 CO 6A

*<CTRL C>

Note: To type this program in, do not type the ‘*’’; itis shown here
to match what you will see on the screen. Type in everything else on
the line just as you see it; type the 300 and the ‘:”’ and the numbers
after it. If you see a space, put one in; if you don’t, don’t put one in.

It’s that simple. Press RETURN at the end of the line, just as you
would with an Applesoft line. The last line returns you to Apple-
soft when you enter CTRL-C (don’t type in the < or > symbols)
and press RETURN.

158

Now, let’s give this program something to erase, so LIST the
Applesoft program given previously (it should still bein memory)
and then run the machine code program by entering: CALL 768.
Zip! If you blinked your eyes, you missed it! If you don’t believe it
is working the same way as the Applesoft program, you can slow
it down with Applesoft’s SPEED command. LIST the Applesoft
program again, enter SPEED=1@0 and CALL 768 again. You
can now watch the pad move dutifully across the screen. If you
want to stop the action, just press a key.

The other advantage of assembly language previously men-
tioned is customization. You can do things with it that you cannot

do with higher level languages. It is almost impossible to read a
RAM card from Applesoft, for example; only machine code will
do. Higher level languages cannot keep up with higher baud
rates available with modems. Unless you use machine code, you

will lose information being sent over phone lines.

Choosing an Assembler

To begin using assembly language, you must first get an assem-

bler. These can be purchased in nearly any large computer store
that sells Apple software or can be purchased through mail
order.

Some of the more popular assemblers available are:

Merlin ($64.95) Southwestern Data Systems

10761 Woodside Avenue #E
Santee, CA 92071
(619) 562-3670

Macro assembler; powerful line editor, 70-column hi-res charac-
ter generator; numerous utilities included; supported by the
book, Assembly Lines by Roger Wagner.

Big Mac ($28.50) Call -A.P.P.L.E.
(must be a member)

21246 68th Ave.,, S.
Kent, WA 98032
(206) 872-2245

159

Forerunner of Merlin; macro assembler; source listings are iden-

tical with Merlin; supported by monthly articles in Call-A.P.PLE.

ORCA/M ($99.95) Hayden Software
600 Suffolk St.
Lowell, MA 01853

Probably the most powerful of all macro assemblers available for
the Apple. Packed with features not available with any other
assembler. Full screen editor. Excellent, high-quality documen-

tation, although it is intended for the intermediate to expert
user.

The Assembler ($69.95) MicroSPARC Ince.
10 Lewis St.

Lincoln, MA 01773
(617) 259-9710

Powerful macro handling capabilities. A companion library of

macro definitions, Macrosoft, is also available to allow the user

to write in a BASIC-like language. (Both The Assembler and

Macrosoft can be purchased together for $99.95)

S-C Macro Assembler ($80) S-C Software
Box 280300
Dallas, TX 75228

(214) 324-2050

Macro assembler; supported by excellent monthly newsletter,
Apple Assembly Line, also published by S-C.

LISA ($119.95) Sierra On-Line, Inc.
Coarsegold, CA 938614
(209) 683-6858

Extremely fast assembly times; supported by the book, Using
6502 Assembly Language by Randy Hyde (DATAMOST).

DOS Tool Kit Apple Computer

20525 Mariani Ave.
Cupertino, CA 95014

160

Official assembler of Apple Computer, includes many useful
utilities.

Due to the popularity, power and economy of the Big Mac/Merlin

class of assemblers, the following examples were done with
Merlin. Because of the simplicity of the examples, however, it

should not be too difficult to adapt the exercises to other

assemblers.

Getting Started

The first thing you must do after you get an assembler is make a
backup copy of it. When you are working with assembly language,
you are working at the very “nuts and bolts” level of the Apple,

and mistakes are not tolerated very well by the system. At the

very worst, you could accidentally write garbage on your disk,
ruining information stored there. A backup copy will prevent the
destruction of your original.

Try to make a backup copy using COPYA or one of the commer-
cially available copy programs. If that fails, the manufacturer of
the assembler is probably using some sort of copy protection

scheme. Merlin uses such a scheme and requires you to boot the
original and press the C key while the disk is booting to make a
copy. You are limited to three copies and each copy made is a
mule (won’t reproduce).

161.

ENTREES
69 AND 70 HAVE
REEN DELETED.

Your First Assembly Language Program

Boot up your backup copy of Merlin and look at the final screen.
You are presented with a menu of choices, such as C for CATA-
LOG, D for DRIVE CHANGE (i.e., change from drive 1 to drive
2), E for enter the EDITOR, etc. The author of Merlin decided

to call this the EXEC mode. We want to write a program, so let’s
press the E key to enter the editor.

You'll now see a: prompt symbol to tell you that you are in the
editor. We want to add lines, so press the A key and RETURN to
enter add mode. Thenumber 1 now appears at the left edge of the
screen, showing you the line number you are currently adding
(creating).

An assembly language line is composed of four fields: Label, Op
Code, Operand and Comment. Merlin is set to automatically
move the cursor to the beginning of each field when you press the
space bar or the right arrow key. Practice moving the cursor back
and forth among the four fields with the right and left arrow keys
until you get used to the way the cursor “jumps’”’.

162.

Let's try our hand at converting the Applesoft command to clear
the screen, CALL -936, into an assembly language instruction.
A CALL in Applesoft is the same as a JSR (Jump to Subroutine)
in assembly language. We need to create a JSR -936 instruction,
then. We do this by hitting the space bar once to make the cursor

skip to the second field (there is no label in this instruction). We
can now type JSR. Hit the space bar to go to the next field. Now
type in -936 and press RETURN. Your instruction should look
like this:

1 JSR -936

It should not look like these:

JSR -936 (forgot to skip the label field)
JSR-936 (began in wrong field; no

space after JSR)

JSR-936 (forgot to put a space after
the JSR)

JSR -936 (began in wrong field)

If you make a mistake and you haven’t finished the line by press-
ing RETURN, you can simply backspace and type over the error.
If you have entered the line, press RETURN again to exit add
mode and enter NEW. This will erase the program completely,
just like NEW does in Applesoft. You can then start all over
again with a clean slate. Later on, you'll be shown less drastic
ways to correct a mistake.

Finally, we need to add a “finishing touch” to mark the end of the

program, an RTS instruction. RTS means ReTurn from Sub-

routine and until you become more advanced, you must end every
program with this instruction. (RTS is needed because assembly
language programs are actually glorified subroutines; you must
always return to the language that called (ran) the program).
Press the space bar once to skip to the op code field, type RTS and
press RETURN. Your program should now look like this:

1 JSR -936

2 RTS

163

That’s it! Press the RETURN key to get out of add mode and to
return to edit mode. You should see the: prompt symbol again.
You can now instruct Merlin to assemble your program by typing
the three letters ASM and pressing the RETURN key.

ASM <RETURN>

Merlin will now ask, Update source (Y/N)? For now, all you
need to know is to always answer N to this question. Your pro-
gram has now been assembled from the source code you typed in
(the JSR and the RTS instructions) into object code (also called
machine code). Because we didn’t tell Merlin where to put the

object code, it automatically put it at location 58000 (the “$”
means the numbering system) or 32768 decimal. This means that
we should be able to CALL 32768 and our little screen clearing
program will run! NOTE: Due to space constraints, the 48K ver-
sion of Merlin automatically puts object code at $5000 (20480)
instead of $8000.

But first, we have to quit Merlin so that we can return to Applesoft
to run the program. Press the Q key and then the RETURN key

to quit the editor and then simply press Q again to quit Merlin. Go

ahead and CALL 32768 and watch your first program work.

Enhancing Your Program

Now, let’s return to our program and make some enhancements.
If you are using the RAM card (64K) version of Merlin or Big Mac,

all you have to do to return to the EXEC mode of Merlin or Big
Mac is enter ASSEM. If you are using a non-RAM card (48K)
version of Merlin or Big Mac, enter CALL 1016 to return to

EXEC mode. (1016 is the address of the CTRL Y vector).

Press E to enter the editor again and enter L to list your program
(it should still be there). Now let’s add a line to the bottom of the

program to turn off the listing of the cross-referenced symbol
table at the end of an assembly. The symbol table is just a list of

all the labels used in a program. Since we haven’t used any labels,
we don’t need this listing. Turning off the listing doesn’t hurt
anything and will give us a shorter, clearer print out.

164

To add lines to the end of your program, enter “A” to enter add
mode. You should now see “3”, meaning that you’re about to
enter line number 3 in the program. Tap the space bar once to
move the cursor to the op code field and type LST OFF (remem-

ber to put a space between the LST and the OFF). Hit RETURN
at the end of this line, hit RETURN again to exit from add mode,
then enter edit mode and enter L. Your program should look
like this:

1 JSR -936
2 RTS
3 LST OFF

Now, enter ASM (and N to Update source?) and you'll see a

much cleaner listing of your program. Notice also the object code
listed on the left side of the screen:

BGG: 2058 FC 1 JSR -936
8003: 60 2 RTS

Object code is always expressed in the hexadecimal number sys-
tem. The 8000 is the address where the object code is being
assembled. The 20 is the machine code form of the assembly
language instruction JSR. (Note that assembly language is not

the same thing as machine code.) To see how -936 equals 58 FC,
ask Merlin or Big Mac to convert -936 into hexadecimal for you by
simply typing in -936 and pressing RETURN. You'll get the
answer:

-936 <— You type this
$SFC58 <— Merlin gives you this

Do you see that by cutting the hex number in half, forming two

bytes, and by switching the bytes that you arrive at the same
number as in the object code listing?

FC58
(cut in half)

FC 58
(switch bytes)

08 FC

165

The three bytes we have examined, then, occupy memory ranges
8000-8002:

20 08 FC

t f t
8000 8001 8002

This next instruction (60 or RTS will begin at 8003 and in fact,

that’s what the object code listing tells us:

8000: 2058 FC 1 JSR -936
BUG3: 60 2 RTS

Not all programs begin at $8000. A lot begin at $300 or other
places, so you must be able to tell Merlin where you want your

program to assemble. This is done with the ORG and OBJ
instructions. ORG means Origin address and OBJ means Object
code address. It is not helpful to go into more detail on what these
terms mean; they are quite complicated. For now, just follow the
discussion and see what effect they have on your program.

Let’s change our program so that it assembles at $300. This is a
popular place to put programs and is also known as “page 3”.

We must insert the ORG and OBuU instructions Above line1, so we

use the | command: !1 (and press RETURN). You will now see a
new line 1 being displayed. Press the space bar and type in

the following:

1 ORG $300
2 OBJ $300
3 (Hit the space bar once and hit RETURN

to give yourself a blank line here.)

Note that we put a blank line at line 3 to make the printout look a
little clearer. When you see line 4, don’t type anything, just press
RETURN and you will exit add mode and return to edit mode.

List your program now and you should see this:

1 ORG $300
2 OBJ $300
3
4 JSR -936
) RTS
6 LST OFF

166

ASM your program and you should see this:

1 ORG $300
2 OBJ $300
3

0300: 2058 FC 4 JSR -936
0303: 60 a) RTS

Everything looks the same as before except that the addresses on
the left edge of the listing now begin at the address specified,
$300. You should note that under normal conditions, Merlin and
Big Mac will allow you to specify an OBJ only within page 3 or

above $8000. If you try to do this anyway, you will getta MEMORY
FULL error. This is done to protect the rest of memory, which is

used for your source program.

Editing Your Program

Let’s learn how to correct typing errors in your program. First,
let’s put in some labels to give us something with which to prac-
tice. Insert the following lines above line 4 (use the command |4
and press RETURN). (Remember: these are labels so this time
don’t hit the space bar before typing them.)

4 LABEL’
09 LABEL2
6 LABELS

List the program and you should see:

ORG $30
OBJ $300

LABEL1
LABEL2
LABELS

JSR -936
RTS
LST OFF OONAaoARWN—

167

Let’s delete line 5. Simply enter D5. Your program will look like
this (note how the assembler automatically renumbers the lines):

1 ORG $300
OBJ $300

RTS
LST OFF

Insert LABEL@ above line 5 again. Now, let’s delete a range of

lines with D4,5. Your program should look normal again (with-

out the labels). Insert the labels back into the program again.

Now let’s change all occurrences of the word, LABEL into CATS.
C is used to indicate the change command, so enter C“LABEL
“CATS” and press RETURN. Merlin will ask you: All or some
(A/S)?. It wants to know if you want to change every occurrence
of LABEL to CATS throughout the entire program. If you do,
press the A key. If you want Merlin to stop at every thing it

changes and ask you if you want to make the change permanent,
enter S. If you choose the S option, you may accept the change by
pressing Y or reject it by pressing the ESC key. You may ter-
minate the changing at any time by entering CTRL C.

Now let’s change the words CATS into other words on a line-by-
line basis. To do this, we want to edit each line containing CATS,
so enter E4,6. (You could also have done this by entering
E“CATS”). Merlin will display each line and give you the oppor-
tunity to type over CATS with anything else you like.

If you wish to insert letters within a line, enter CTRL | (the left
arrow key will get you out of insert mode). If you wish to delete
letters within a line, enter CTRL D. Pressing CTRL N will move
the cursor to the end of the line, CTRL B will return the cursor to
the beginning. CTRL F will find (move the cursor to) the next
character that you type.

168

When you are done editing the line, press RETURN. Note that
you don’t need to put the cursor at the end of the line before hit-
ting RETURN. All visible characters will be saved. You can cut
off characters after the cursor, however, by entering CTRL Q (for
quit) instead of pressing RETURN.

Inside the 6502

The brain of your Apple is the small black chip known as the
“6502.” You can see it if you take the lid off your Apple and look at

the green board (the motherboard) inside. The 6502 chip is

marked as such on top and on the motherboard with small

white digits.

The 6502 has three storage registers that can hold any number
from 0 to 255. Each register has a name: A (the accumulator), X
and Y. The essence of assembly language programming is to load
one of these registers with a number, manipulate it somehow in
the register and then store it back out to main memory.

Let’s take a simple example. Let’s load the accumulator with the
number 1 and store it in memory. From edit mode, enter NEW to
erase any program in memory, enter “A” to enter add mode and
enter the following program:

LDA #1
STA6
RTS
LST OFF ROW

Note the # symbol in line 1 and the lack of a # symbol in line 2.
The # symbol is how you tell the assembler to get the actual num-
ber instead of the contents of an address.

For example, assume I have a shoe box. I take a nice, black felt-
tip pen and write a6 on the outside. This is now box number 6. I
then take a sheet of paper and write a1 on it and put it in the box.
We now have the number 1 (#1) inside box number 6 (6).

169

Suppose I have another box that I have labeled “1.” If I want to
take the contents of box 1 out and put it in box 6, I would say LDA
1 and not LDA #1. Sothen the # would refer to the piece of paper
while a number without the # symbol would refer to a box that
could hold the piece of paper. In a similar manner we can refer to
the loading of shoe boxes in assembly language, except that we

call the shoeboxes a more computer-like term, ‘“‘bytes.”

SY Moved ,
HIGH

cS, BYTES
-_, ——$—$—$———

tf

y, (Vs | poten TOON OO ® oo OD

tl

ASM the above program, quit Merlin and CALL 32768 torunit.
While it looks like nothing has happened, you must remember
that the program wasn’t supposed to do much either. Enter
PRINT PEEK(6) to make sure that a 1 has indeed been stored in
location (byte) number 6. Return to Merlin by entering ASSEM.

Loading Big Numbers: High and Low Bytes

Now suppose we have a number larger than 255. How do we load
that into a register? Since we can’t squeeze a large number into
one register, we must split it up and put it in two registers! Thus,
we must use two bytes to hold numbers greater than 255.

The number is split up by dividing it by 256. The quotient is called
the “high byte,” the remainder is called the “‘low byte.”

170

Fortunately, we don’t have to do any division; the assembler will

do it for us if we use a special notation:

#<number (this is the low byte of the number)
#>number (this is the high byte of the number)

So, if we had a number like 260, we'd have:

#<260 (= 4 because 260/256 = 1 with a
remainder of 4)

#>260 (= 1 because 260/256 = 1)

We could then load up two registers with this number:

LDA #<26G@ (this is the same as saying, LDA #4)

LDY #>260 (this is the same as saying, LDY #1)

Note: The Apple Toolkit assembler reverses this order, ustng > for
the low byte and < for the high byte.

Using Labels

One other point before we can make a useful application. Just as
in Applesoft, you can use variable names in assembly language

to replace actual values:

For example, this

PRINT “HI”

can be replaced with

STRINGS = “HI”
PRINT STRINGS

In assembly language, we can use labels to replace actual values

also:

For example, this

8000: AS 04 1 LDA #<$8004
(04 is the low byte of $8004)

8002: AG8G 2 LDY #>$8004
(80 is the high byte of $8004)

171

8004: C8 CY 3 ASC “HI"
(C8=“H”, C9=“T” in ASCID

can be replaced with

B00: AIG4 1 LDA #<STRING
B02: ADB 2 LDY #>STRING
84004: C8 C9 SSTRING ASC “HI"

In the second example, you can see that Merlin is smart enough to
know that STRING is alabel that equals $8004. It is then ableto
treat STRING as a variable name of sorts and work with the
number that it represents. Labels are used because it’s easier to
refer to a part of a program by aname than it is to try to figure out

the address. Also note the use of the “pseudo” op code ASC to tell
the assembler that “HI” is a string of ASCII characters to be
inserted in the object code.

Wecan put all of this together to create a short assembly language
program that will print out a string:

1 LDA #<STRING
2 LDY #>STRING
3 JSR SDB3A PRINT OUT STRING
4 RTS THIS IS THE END

OF THE PROGRAM
OSTRING ASC “THIS ISA TEST"
6 HEX 0G
7 LST OFF

Line 3 in this example uses a routine already inside Applesoft at
address $DBSA. This routine is called STROUT and its purpose
is to output a string. STROUT requires only that the low byte of
the address of the string you want printed is in the A register
(line 1), the high byte of the address of the string is in the Y regis-
ter (line 2) and that there is a zero at the end of the string (line 9).
Note the use of comments in lines 3 and 4 to help explain what the
program does.

To make things a little clearer, we can create another label (lines
1&5):

172

STROUT =$DB3A 4

e
3 LDA #<STRING
4 LDY #>STRING
rs) JSR STROUT PRINT OUT STRING
6 RTS
7 STRING ASC “THIS IS A TEST”
s) LST OFF

Note that you may have seen line 1 expressed as STROUT EQU

$DBS3A in other assemblers. Either form may be used on Merlin;

the = sign is used here for clarity.

Control Structures In Assembly Lanquage

You'll recall from the chapter on structured programming that
any program in any language can be written with only three con-
trol structures: sequence, decision and loop. It’s time now to see

how to create these structures with 6502 assembly language.

Sequence

Sequence is the easiest structure to show; all of the examples
used so far are examples of sequential programming. Coding
that does not involve branching to different areas of the program
is sequential. Some examples:

LDA #1
LDX #2
LDY #3
STA 1
STX 2
STY 3

Here we load up each of the 6502’s registers and store them back

out again in locations 1,2 and 3.

173

Decision

A decision is usually made in 6502 programming by comparing
two values and then branching, depending on the results. For
example, we can take the trivial example of loading X with the
contents of location 36 and seeing if it was a2. Ifitis, we'll branch
to some other part of the program:

LDX 36

CPX #2 (This means compare the contents
of X with 2)

BEQ PARTe2 (Branch if X equals 2)

PART1 RTS (Quit if X does not equal 2)
PART2 LDY #4 (Do this if X does equal 2)

RTS

Loop

Looping is also done with a comparison and a branch, but the
branch taken is to the beginning or end of the loop. For example,
let’s look at a loop that loads X with @ and then adds 1 to X until X =

1Q. (This is the same thing as saying FOR X = 1 TO 1@ in
Applesoft and is also known as a “trailing decision” loop):

LDX #@ (Make sure X reg contains zero)

LOOP INX (Increment X: add 1 to X)

CPX #11 (Have we gone too far?)
BNELOOP _ (No, keep going)

RTS (Yes, quit)

A WHILE WEND type of loop with a leading decision that per-
forms the loop only if X is less than 11 looks like this:

LDX #2 (Initialize X)

LOOP CPX #11
BEQ DONE
INX
JMPLOOP (“Jump” back and do the loop

again)
DONE RTS

174

Basic Techniques

How to Convert 1-Byte PEEKs to Assembly Lanquage:

LDA NUMBER ;A = PEEK(NUMBER)

How to Convert 2-Byte PEEKs to Assembly Language:

LDA NUMBER ;A% = PEEK(NUMBER)/256
LDX NUMBER+1 ; X% = NUMBER - A%*256

How to Convert POKEs to Assembly Language:

LDA NUMBER ;POKE ADDRESS,NUMBER
STA ADDRESS

How to Convert CALLs to Assembly Language:

JSR ADDRESS ;CALL ADDRESS

How to Kead a Keypress:

LOOP LDA $COQG Read the keyboard
BPL LOOP
BIT $CO010 Clear the keyboard strobe

Note: The A register will contain the character with the
high hit on when the loop is exited.

How to Read a Line, Commas And All:

GETLNS = SFD6F
JSR GETLNS

175

Note: Upon exit, the string will be stored in the input buffer ($200

or 512) and the length of the string will be in the X register. When
you are done with your program, use JMP SEQ@G@3 (return directly

to Applesoft) instead of an RTS to prevent your Apple from try-
ing to execute the string.

How to Print a Number (0 - 65535) in Decimal:

LINPRT= SED24
LDX #<NUMBER
LDA #>NUMBER
JSR LINPRT

How to Print a Decimal Number in Hex:

PRNTAX= S$F941
LDX #<NUMBER
LDA #>NUMBER
JSR PRNTAX Print A & X regs in hex

How to Print a String:

STROUT= S$DB3A
LDA #<STRING
LDY #>STRING
JSR STROUT
TS R

STRING ASC “THIS IS A TEST"
HEX G0

How to Add Two 1-Byte Numbers:

NUMBER1 =6 lo byte first
NUMBERe = 7 lo byte first

RESULTS =8
LDA NUMBER’
CLC Make sure carry is clear
ADC NUMBER2
STA RESULTS

176

How to Add Two 2-Byte Numbers:

NUMBER1 = 6 lo byte first
NUMBERe = 8 lo byte first
RESULTS =1@

LDA NUMBER1
CLC Make sure carry is clear
ADC NUMBER2
STA RESULTS
LDA NUMBER1 +1
ADC NUMBER2+1
STA RESULTS+1

How to Subtract Two 1-Byte Numbers:

NUMBER1 =6 Lo byte first
NUMBERe = 7 Lo byte first
RESULTS =8

LDA NUMBER1
SEC Must be done before a

SBC inst.
SBC NUMBER2
STA RESULTS

How to Subtract Two 2-Byte Numbers:

NUMBER1 =6 Lo byte first
NUMBERe = 8 Lo byte first
RESULTS =1@

LDA NUMBER1
SEC
SBC NUMBER2
STA RESULTS
LDA NUMBER1-+1
SBC NUMBERe+1
STA RESULTS+1

177

Sample Applications

Print the Beginning and End of an Applesoft
Program in Memory:

TXTTAB =1@3
STREND = 1@9
COUT >=S$FDED
LINPRT = $ED24

LDX TXTTAB Beginning of program pointer
LDA TXTTAB+1
JSR LINPRT
LDA #"” Put a space between the

answers
JSR COUT
LDX STREND End of program pointer
LDA STREND+1
JSR LINPRT
RTS

CATALOG the Disk:

BASIC =S$EQ03
STROUT = SDB3A

LDA #<STRING
LDY #>STRING
JSR STROUT
JMP BASIC

STRING HEX 84 CTRL D
ASC “CATALOG”
HEX G0 Used by STROUT to mark

end of string

Change Disk Drive Number (2 to 1 or 1 to 2):

LDA #3
SEC
SBC SAA68
STA SAA6B

178

Print Starting Address and Length of Last Binary
File In Hex:

PRNTAX =S$F944
COUT = S$FDED

LDX $AA72
LDA $AA73
JSR PRNTAX
LDA #°"
JSR COUT
LDX SAA6G
LDA $AA61
JMP PRNTAX

Print Name of Last File Loaded or Kun (any typel):

COUT = $FDED
LDX #@

LOOP LDA $AA75,X
JSR COUT
INX
CPX #30
BNE LOOP
RTS

Print Name of Disk:

COUT = S$FDED
LDX #10

LOOP LDA 46@0G,X
JSR COUT
DEX
CPX #$FF
BNE LOOP
RTS

179

DOS/Applesoft Problem

There is a compatibility problem between DOS and Applesoft
when you attempt to BRUN a program that uses COUT to print
characters, as many of the programs above do. BRUNning may
cause your Apple to hang. If this occurs, you must change your

program so that the very first thing it does is save the contents of
DOS location SAA59Y. Then, just before you exit the program,
you must restore $AA5SY. Here’s an example:

LDA S$AA59 Grab this byte
STA SFE and save it in free space

COUT = $FDED
LDX #10

LOOP LDA 4600G,X
JSR COUT Print name of last file loaded
DEX
CPX #S$FF
BNE LOOP
LDA SFE Retrieve the byte
STA $AA59 and restore it again
RTS

Summary

This chapter is a very brief introduction to assembly language
and the use of an assembler. Both the language and the assem-
bler are capable of far more than what you’veseen here and many
tricks and shortcuts could have been taken, but the examples

were presented with the beginning assembly language program-
mer in mind. To really learn assembly language programming, it
is suggested that you purchase one of the books intended to
accompany the matching assembler and listed previously under

the section entitled, “Choosing An Assembler.”’

An assembler is a commercially prepared program that allows
you to write assembly language programs. Without an assem-

bler, you cannot write in assembly language.

180

Assembly language gives you speed and the ability to do things
that are difficult to do from higher level languages. It suffers
from the disadvantage of being tedious and requiring time to
debug faulty programs.

An assembly language instruction consists of four fields: Label,
Op Code, Operand and Comment. An assembly language pro-
gram is also known as a source file or source program. It assem-
bles or compiles into object code or machine code.

In comparing Applesoft commands to assembly language in-
structions, we find that CALLs are the same as JSRs, PEEKs are

the same as LDAs, POKEs are the same as STAs and variable

names are similar to labels.

ORG determines at which address the source listing will be
assembled without physically placing the object code anywhere,
while OBJ controls where the object code will be physically
placed in memory.

The “brain” of the Apple is the 6502 chip. It has three main
registers in it (A, X and Y) that are used by assembly language
programmers. Each register can hold a number from 0 to 255.
Characters can be stored in the registers in the form of ASCII
numbers.

The Apple cannot store numbers greater than 255 into a single

memory location or byte. Numbers greater than 255 can be
broken up into two bytes, however, by dividing the number by
256. The quotient is called the high byte, the remainder is called
the low byte.

Pseudo op codes like ASC, EQU, = and HEX do not mean any-
thing to the 6502 chip, but instead are used to tell the assembler
to perform a function that would be difficult or laborious to do
by hand.

Now you have had enough of an introduction to assembly pro-
gramming to decide whether or not it is your cup of tea. There is a
good deal you can do with Applesoft, but to really control your
computer, learning assembly/machine code programming is
necessary.

181

For Further Reading

Also look at the list of books in the “Choosing an Assembler’
section in this chapter.

6502 Assembly Language Programming, Lance Leventhal (Osborne/

McGraw-Hill, Berkeley, CA, 1979). No-nonsense, straightforward

approach to 6502 assembly language programming. Complete,
detailed and accurate. Numerous and detailed charts and dia-
grams. Sample applications on a wide variety of topics. For 6502
microprocessors in general. A classic.

An Introduction to Microcomputers — Volume 0: The Beginner’s

Book, Adam Osborne (Osborne & Associates, Berkeley, CA, 1979).

Detailed, yet simple examination of how microprocessors work.

Numerous illustrations.

AnIntroduction to Microcomputers — Volume 1: Basic Concepts,

Adam Osborne (Osborne & Associates, Berkeley, CA, 1976). A
continuation of Volume 0. Goes into great depth on how the
machine code instructions work.

Apple Machine Language Don and Kurt Inman (Reward Books,
Reston, VA, 1981). A true beginner’s introduction to machine

code programming. Very user friendly. The emphasis is on
machine code and not assembly language.

Microelectronics (Scientific American, 1977). Excellent explana-
tion of how the hardware in personal computers works. Numer-
ous large, full color photographs. A reprint of articles from

Scientific American.

Understanding Microprocessors, Don Cannon and Gerald Luecke
(Texas Instruments Learning Center, Dallas, TX, 1979). An

excellent, illustrated introduction to how the hardware of mic-
roprocessors works. Beginning to intermediate level.

182

CHAPTER 10

PROGRAM DEVELOPMENT AIDS

This program will show you how to use some utility programs
that will make your programming in Applesoft more manage-
able. We will take a look at:

@® RDLN, an assembly language routine you can type in that
allows you to input strings containing commas.

@ ASA, or Ampersand Structured Applesoft (enclosed herein)

that gives you a multi-line IF THEN ELSE, REPEAT UNTIL,

and WHILE WEND control structures.

@ Anintroduction to how to use APLUS, astructured Applesoft
pre-processor and other important aids from Sensible Software.

® An introduction to BASIC’, a powerful structured version to

Applesoft, from Delta Micro Systems.

RDLN

RDLN, pronounced Read Line, is a short routine that allows you
to input strings containing commas, colons, semicolons and other
characters that normally return an ?7EXTRA IGNORED error
message from Applesoft. This utility was mentioned in Chapter 5
(Text Files), where it was explained that it could be used to read
files containing these characters.

183

YOU DON’T SEEM
TO UNDERSTAND, YOURE
NOT NEEDED AROUND

HERE.

To create this program, CALL -151 to enter the monitor and
type in each line of the object code listed on the left edge of the
following printout (disassembly) of the program. For example,
the first line 'coks like this:

0300:20 B1 @@ 233 JSRCHRGET § Skip":’separator
(--Type this--) (-------------------- Ignore this --------------------)
(machine code) (assembly language)

You would then type in:

0300: 20B1@0 (and press the RETURN key)

Note that you should type exactly what you see: if you see a
blank, put one in; if you don’t, don’t put one in. It’s that simple.

The first few lines would look like this (remember to press
RETURN after each line):

G300: 20 B1 G2
0303: 20 E3 DF
Q306: 20 6C DD

184

When you finish typing in the program, enter <CTRL C>
<RETURN?> to return to Applesoft and enter BSAVE RDLN,
AS$300,L45. This will save the program on disk. The assembly
language source file listed below gives you an example of how to
use it.

Here is the complete program listing for you to use (Merlin was

the assembler used):

4 SHEESSSSETECKESKEHSEESKSESERKESASEKSKSSESKESKESKKEKKRSERKERESE

2* RDLN (Read Line) by Bill Parker, 7/29/83
3* Adapted from Apple Assembly Line, 12/83, p 17
4* This program allows the entry of a string of

5* characters, commas and all, from Applesoft.

6* Example:
7 * PRINT CHRS(4);“BLOAD RDLIN,A76B8”
B* RDOLN = 768
9 * CALL RDLN:RECS : REM Input a line

s

x

*

]

s

*

*

5

1 G SSESSSESESSECESCSESRESSESHSSSSESHKEKSESSEEKESSHSE SEES KEEKKRSEKEEKEESESE

11

12 ORGS3@@ Note: This is RELOCATABLE
13
14 * Page @ locations
15 CHRGET = $B1

16 FRESPC = §71

17 VARPNT = $83

18*
19 * Input Buffer
20 INBUFR = $200

21*

22 * Applesoft Routines
23 CHKSTR = $DDE6C
24 GETSPA = $E&452

25 INLIN = $D5ec
26 MOVSTR = S$ESE2
27 PTRGET = $DFE3

28
29*
30 * Parse RDLN command
31 *

G300:20B1 00 32 JSR CHRGET Skip ":" separator
Q303:20E3DF 33 JSR PTRGET Find or creat var. descriptor
G3@6:2e@6C DD 34 JSR CHKSTR But make sure var is string

35 *
36 * INput a string into the variable chosen
37 *

3@39:202C 05 38 JSR INLIN Read a line from input device
39 *

185

@3GC: E8

G3GD: BD 00 G2

0312: D@ FA

@312: BA

4313: 48

0314: 20 5e £4

0317: AG G

0319: 91 83

@318: CB
@31C: 15 71

@31E: 91 83
G32: C8
@321: A5 72

0323: 91 83

4325: A2 BA
4327: Ad Ge

4329: 68

B32A: 4C E2 E5

--End assembly-

45 bytes

Errors: @

4@ * Compute string lenth & make room for it in memory
41 *

42

43

44

45

46

61

LOOP INX Always starts

at SFF

LDA INBUFR,X Got a "@"'

(EOL marker)

BNE LOOP ‘No, Keep
checking

TXA ; Yes, get ready
to make room

PHA ;Save string
length

JSR GETSPA Make room in

string area
*

* Plug in length and pointer to string in

* variable descriptor

LDY #0
STA (VARPNT),Y

INY

LDA FRESPC

STA (VARPNT).Y
INY
LDA FRESPC+1

STA (VARPNT)Y
*

Length of

string

Addr (lo) of
storage

Addr (hi) of

storage

62 * Move string from input buffer to string storage area
63
64
65
66

67

68

*

LDX #<INBUFR
LDY #>INBUFR

PLA

JMP MOVSTR

LST OFF

186

;Retrieve

string length

(Uses A.X,Y as
shown above)

Don't print
symbol table

ASA
ASA, or Ampersand Structured Applesoft, is a “poor man’s”
structured Applesoft. You can have it for the price of this book;
simply type it in from the program listed below (use the instruc-
tions given previously in RDLN if you need help).

ASA gives you a multi-line IF THEN ELSE structure, a repeat
until loop and awhile wend loop. The structures are implemented
by using the & character as shown below. Also, to keep the pro-
gram as simple and as short as possible, Applesoft tokens were
used instead of the words normally associated with these

structures:

ASA Usual Usage

& IF <eondition> THEN IF <eondition> THEN
<statements> <statements>

& ELSE ELSE
<statements> <statements>

& END IFEND

& RUN REPEAT
<statements> <statements>

& STOP IF <condition> UNTIL <condition>

& ON <condition> WHILE <condition>
<statements> <statements>

& CONT WEND

4 SHARSESKKRECSERASESESKSEEAKRERSELSEKSSSTEKETCSEESEREKSKSEKREKSESEEE

2* ASA- Ampersand Structured Applesoft6/11/83 *
3 * Version 1.@ - By Bill Parker *
4* *

5 * Purpose: Allows the use of structured *
6* programminginApplesoftthroughtheuseof *

7* three control structures: *
B * 1. Atrue multi-line IF THEN ELSE: *
9g * & IF condition THEN *

10* <stmts> *
11 * & ELSE *

12* <stmts> *
13* END *

187

14 * 2. A REPEAT UNTIL loop: .
15 * & RUN *

16 * <stmts> *
17 * & STOP IF condition *
18 * 3. A WHILE DO loop: *
19* & ON condition *
20 * <stmts> *
21 * & CONT *

22* ThisprogramisRELOCATABLE.Usestwopg. *
23* Glocations: IFCTR=25@, ONCTR=251.Features *

24 * a self-initializing ampersand hookup. *

25 * To create: Type in object code and *
26 * BSAVE ASA, AS80000, L430 *

27 * To start: Simply BRUN ASA anywhere you *
28 * have room. *

*
og SEKASEECRKSKEKRSESSESKSSEK SSS SAREE SEKKEKSHSHKKEKEKSEKEKEKSSK

3G

31 * Definitions

32 AMPERTKN = 175
33 CONTTKN = 187
34 ENDTKN = 128
35 IFTKN = 173
36 ONTKN = 180
37 RUNTKN = 172

38 STOPTKN = 179
39

4G * Page zero locations
41 CHRGET = $B1
42 CURLIN = $75
43 FAC = $9D
44 \FCTR = 250

45 ONCTR = 251
46 TXTPTR = $B8
47

48 * Page 3 locations
49 AMPERVEC = §$3F5
a) /)

51 * Applesoft routines

52 ADDON = $D998
53 FRMEVL = $DD7B
54 NESTERR = $DD@B
55 NEWSTT = $D7D2
56 PRSYNERR = S$DECS
57 SYNCHR = $DEC@
58

59 * Monitor routines
60 RETURN = $FF58

61

188

800:

80Ge2:

80G4:

BOGE:

80G9:

BQGA:

8@GD:

SGGE:

8011:

8012:

8014:

8016:

8017:

BQ1A:

81D:

BO1E:

8020:

Bee:

B24:

BU2B:

BG629:

B02B:

8G2D:

8G3G:

8032:

AS 06

85 FA
85 FB

20 58 FF

BA

BC 00 21
CA

BD 0 01
18
69 16

90 01

C8

BD F6 G3

8C F7 G3

6@

C9 AD
FQ 1F
C9 45
DO15
20 B1 BA

C9 4C
DO GE
26 B1 Ga
C953
D@ G7

93
94
95
96
97
98
99
180
101

BEG OF PROGRAM -- This is a “header” section

that clears the IF and ON counters (which keep
track of loop nesting levels) and initializes the

ampersand vector no matter where this program is
BRUNed. * #* & &

SETAMPER

IFCTR
ONCTR

RETURN

AMPERVEC +1

AMPERVEC+2

Clear SIF and

S&ON counters

Put current loc

in stack

‘Get stack

pointer

Get loc hi

;Move — stack

ptr up

Get loc lo

#CK4I1F-

SETAMPER-e2

Lo byte > SFF?

:Yes-inc

hi- byte

Put BOP (lo) in
& vector

Put BOP (hi)

in & vector

;-Return to

Applesoft

Begin parsing for SIF THEN, SELSE, SEND, ‘*
&RUN, &STOP, SON, &CONT .

CK4IF

CK4ELSE

189

CHRGET
#'S'
CK4END

Got IF token?

Got ELSE?

BO34:
8037:
8039:
B03B:

803D:

8Q03F:

8041:

8644:

8047:

8049;

804B:

BQ4E:

8@51:
8053:
8@55:

BO5B:

BODSA:

805C:

BQ@5E:

806@:

BQB63:

8G65:

8067:

8QBA:

806C:

8G5E:
8071:

8073:
8075:

8077:

8079:

807B:

807D:

807F:

8081:

8083:
8085:

20 B1 GO
C9 45
FO 54
C3 8d

FO6A

DO 6B

20 B1 00

20 7B DD

AS 9D
FO @3

4C B1

20 B1 GG

C9 AF
D@ FS
20 B1 G0

C9 AD

FO1F

C945
DO15

28 B1 0
C9 4C
D@ GE
20 B1 BO

C953

DU G7
20 B!1
C945
FO 13
C9 8a

FO @6

DO D3

E6 FA
DG CF

AS FA

FO 69

C6 FA
BS

105 CK4END

106

107

108 *

JSR
CMP
BEQ
CMP

BEQ

BNE

CHRGET
#°E’
ELSE
#ENDTKN

END

CK4RUN

109 * Process & IF command

118 *
1171 IF

112

113 CK4TRUE
114

115 TRUE

116 FALSE

117
118
119

120

121
122 CK4ELSE1
123

124
125
126
127

128

129
130
131
132
133 CK4END1

134

135

136 IF1
137

138 END‘

139

140
141

JSR

JSR

LDA
BEQ

JMP

JSR

CMP
BNE

JSR

CMP

BEQ

CMP
BNE

JSR
CMP
BNE
JSR

CMP

BNE
JSR
CMP
BEQ
CMP

BEQ

BNE

INC
BNE

LDA

BEQ

DEC
CLV

190

CHRGET

FRMEVL

FAC

FALSE

CHRGET

CHAGET

AMPERTKN
FALSE

CHRGET

#IFTKN

IF1

#°E’
CK4END1

CHRAGET
#°L
CK4END1
CHRGET

#'S'

CK4END1
CHAGET
#°E'
ELSE1
#ENDTKN

END1

FALSE

IFCTR
FALSE

IFCTR

SKIP1

IFCTR

Got END

token?

Check for

other tokens

Get off IF token

Evaluate cond

& put in FAC

Eval. to @?

Yes, condition

is false

No, skip THEN

& resume

Skip until &

token

is found

Look at char

after &

Is it IF?

Yes

Is it ELSE?

Is it END

token?

Not correct &

command

Correct nest

end?

No, keep going

8O86:

BG8B:
BOBA:
BG8C:

8Q8F:

BU9e2:

8094:

BOSE:

BO9B:

BO9A:

BOSC:

BOSE:

BOAG:

BOA2:

BOA4:

SGAB:

8GA7:

8GAQ9:

8GAC:

8QGAE:

8GBG:

BOBe2:

80B4:

SOBE:

B0B9:

80BB:

SGBE:

SGBF:

80CO:

80C1:

BGCe2:

8GC4:

04 C6

AS FA

D@ Ce
4C Bi 82

20 B1 BO

FO G3

4C C9 DE

68

AA
68
A8
AS 76

48

142 BVC FALSE Branch always

143 ELSE1 LDA IFCTR Correct nest?

144 BNE FALSE No, keep going

145 SKIP1 JMP CHRGET Got to end OK;

return

146 *
147 * Process & ELSE command

148 *

149 ELSE JSR CHRGET Get off ELSE

15@ CMP #IFTKN

151 BEQ IFe

152 CMP #ENDTKN
153 BEQ ENDe

154 BNE ELSE Skip to correct

nest

155 IF2 INC IFCTR

156 BNE ELSE

157 END2 LDA IFCTR

158 BEQ END

159 DEC !IFCTR
162 CLV

161 BVC ELSE

162 END JMP CHRGET

163

164 * S=====$==S SSS S555 SS SSS SSS SS>>>=*

165 * CHECK FOR SRUN/STOP (REPEAT UNTIL) LOOP
166 *

167 CK4RUN CMP #RUNTKN

168 BEQ AMPRRUN

169 CMP #STOPTKN

170 BEQ AMPRSTOP

171 BNE CK40N Not RUN or

STOP, keep

chking
172 *

173 * Process & RUN command
174 *

175 AMPRRUN JSR CHRGET Get off RUN
token

176 BEQ *+5 End of stmt?

177 JMP PRSYNERR No-bad

&RUN cmd
178 PLA Save current

rtn addr
179 TAX

180 PLA

1B1 TAY

1Be LDA CURLIN+1 Save line no of

current

183 PHA ;line being

executed

191

8GC5:

80C7:

BGCB:

8GCA:

8SGCB:

BO0CD:

8QCE:

80D@:

80D1:

80De:

8@D3:

80D4:

8Q0D5:

8GDE:

8GDS:

SGDB:

8SGDE:

80E1:

BGE3:

8GE5:

8GEE:

8GEQ:

SGEB:

8GED:

SOFC:

SGF3:

8BGFS:

SOFB8:

8GFA:

8GFD:

8OFF:

8102

8104:

AS 75
48

AS BY

48

AS B8

48

AS AC

48

98

48
BA
48
60

20 B1 GB

AS AD

20 CO DE
20 7B0DD

AS 3D

DB 25

BA
BD @3 01

CS AC
FO G3
4C @B DD
BD 04 01

85 BB

BD @5 @1
85 BY
BD @6 01
85 75
BD Q@7 01

: 85 76

E8

184
185

186

187

188

189
196

191

192

193
194
195
196

197 *

LDA CURLIN
PHA

LDA TXTPTR+1

PHA

LDA TXTPTR

PHA

LDA #RUNTKN

PHA

TYA

PHA
TXA
PHA
RTS

198 * Process & STOP command

199 *
246 AMPRASTOP JSR CHRGET

201

202
203

204

205
206 LOOPAGIN

207

208
209
210
211

LDA #IFTKN

JSR
JSR

SYNCHRAR
FRMEVL

LDA FAC

BNE

TSX

LDA

EXITLOOP

5103,X

CMP
BEQ
JMP
LDA

#RUNTKN
*+5
NESTERR

$1@4,X

TXTPTR

$105,
TXTPTR+1

$106,X
CURLIN
$107,X
CURLIN+1

192

Save current

position
;of where we

are in the

-Applesoft
program

Save RUN

token as an

‘identification

byte

;Return orig
rtn addr

on top of all
‘these values

;Return to

Applesoft prog

Get off STOP
token

On an IF token

now?

Err msg if not

Eval condition

after IF

(cond stored
in FAC]

Check ID byte

for RUN

Restore

previously

saved

values from

AMPRRUN

68105:

816:

8107:

810A:

81GB:

81@E:

811G:

B112:

8118:

8116:

8117:

8119:

811A:

811B:

B11E:

8120:

8122:

8124:
8126:

8129:

812B:
812C:

812E:

8130:

8132:

8134:

8136:

8137:

8138:

8139:

813A:

813C:

E8
SA
4C De D?7

BA

BD 63 @1

CS AC

F@ @3
4C 6B DD
BA

18

69 G7

AA
SA
4C D2 D7

CS B4
FO 07
CS BB
FO 6G
4C CS DE

220 INX
221 TXS

222 JMP NEWSTT Rtn to A/S
prog & resume

223 EXITLOOP TSX ‘Time to quit
looping

224 LDA $1@3,X Make sure
loop is

225 CMP #RUNTKN ‘properly
nested

226 BEG *+5
227 JMP NESTERR
228 TXA :Drop stack

pointer down
229 CLC sto delete

previously

236 ADC #7 ;saved values
under
AMPRRUN

231 TAX

232 TS

233 JMP NEWSTT Rtn to A/S

prog & resume

234
235 8S ss... 5555505552. 22 2.55 5 = =

236 *CHECK FOR SON/CONT (WHILE DO) LOOP

237 *
238 CK40ON CMP #ONTKN

239 BEQ GotOn
240 CMP #CONTTKN
241 BEG GOTCONT
242 BUMCMD JMP PRSYNERA Finally: not

valid & cmd

243 *

244 * Process ON/CONT loop
245 *
246 GotOn LDA TXTPTR Back TXTPTR

up to

247 SEC s>beg of stmt
248 SBC #6

249 STA TXTPTR
250 LDA TXTPTR+1
251 SBC #@
252 STA TXTPTR+1
253 SAVE2STK PLA ;sPCL
254 TAX

255 PLA ;-PCH
256 TAY
257 LDA CURLIN+1 Cur. A/S line

no.
258 PHA

193.

813D:

8146:

8142:
B143:

8145:

B146:

B148:

B149:

B14A:

814B:

B14C:

814D:

B14F:

8152:
8155:
8157:
8159:

B15A:

815B:
815C:

815D:

815F:

8160:

8161:

8164:

8166:

8168:

816B:

B816D:

816F:

B171:

8173:

B175:

B177:

8179:

817B:

817D:

817E:

81 8G:

8183:

A5 75

e@98 DY

2678 DOD
AS 9D
FO 01
6G

BA

SA
20 B1 OO

CS AF

D@ F9

206 B1 2
C9 B4
DG G4
E6 FB
D@ EE
CS BB

D@ EA

AS FB
F@ @5

C6 FB
BB
08 E1
20 B1 BO

4C De D7

EVALON

277 DROPSTAK

278
279
28
281

282
283 SKIPON

284

285

286

287

288

289

296

291 :2

292

293

294

295
296
297
298 CONT

299

LDA

PHA
LDA
PHA
LDA

PHA
LDA

PHA
TYA

PHA
TXA
PHA

LDY

JSR

JSR
LDA
BEQ
RTS

TSX

TXA
CLC
ADC

TAX

TXS
JSR

CMP

BNE

JSR
CMP
BNE
INC
BNE
CMP

BNE
LDA
BEQ

DEC

CLV

BVC

JSR

JMP

194

CURLIN

TXTPTR+1

TXTPTR

#ONTKN

#7

ADDON

FRMEVL
FAC
DROPSTAK

#7

CHRGET

AMPERTKN

SKIPON

CHRGET

#ONTKN

2

ONCTR
SKIPON

#CONTTKN

SKIPON

ONCTR

CONT

ONCTR

SKIPON

CHRGET

NEWSTT

1D to insure

right nest

Move TXTPTR

up to cond

Add Y to

TXTPTR

Eval condition
Do loop?

No
;Yes: rtn to

Aplsoft

;Bury prev.

saved

‘loop values

Skip ON loop

body

until correct

CONT

is reached

Correct CONT

reached

Get off CONT

token

and rtn to

Aplsoft

32d *

301 * Process & CONT command

3G2 *

8186: BA 303 GOTCONT TSX ‘Make sure we

have

8187:BD00301 304 LDA $1@3,X properly

nested cmds

81BA: C9 B4 305 CMP #ONTKN

818C: FO @3 306 BEQ *+5

818E:4C @BDD 307 JMP NESTERR

8191:BD@401 308 GETFMSTK LDA $1@04,X Retrieve prev.

saved

8194: 85 BS 309 STA TXTPTR values

8196:BD 0501 310 LDA $1@5,X

8199: 85 B9 311 STA TXTPTR+1

819B: BD @6 01 312 LDA %$1@6,X

819E: 85 75 313 STA CURLIN

81AQ0:BD 0701 314 LDA %$107,X

81A3: 85 76 315 STA CURLIN+1

81A5: BA 316 TXA ;Bury this

loop'’s

81A6: 18 317 CLC ‘values

81A7: 69 G7 318 ADC #7

81A9: AA 319 TAX

81AA: SA 320 TXS

81AB: 4C D2 D7 321 JMP NEWSTT Return to

Aplsoft

322 LST OFF Turn off

symbol table
listing

--End assembly--

430 bytes

Errors: @

Programming Aids By Sensible Software

For some time, I have used software written by Sensible Soft-

ware and have found their products to be very useful, of high

quality and economically priced. This is a brief introduction to
three of their fine products for enhancing Applesoft: Edit-Soft (a
line editor), APLUS (structured form of Applesoft and “pretty
lister’”’), and B.E.S.T. (optimizer and cross referencer).

195

EDIT-SOFT:

Edit-Soft is an Applesoft line editor that is easy to use and filled
with features. To run it, you simply RUN the HELLO program on
the disk, which will install your choice of the 48K or the 64K ver-

sion of Edit-Soft. If you select the 48K version, Edit-Soft will load
in memory between DOS and its buffers. The 64K version loads
into the RAM card.

Let’s take a look at a sample session, using Edit-Soft to create a
program that asks for a password and does a CATALOG if the
password is correct. After we RUN HELLO, Edit-Soft will tell us
that it is ready and will return us to Applesoft.

What next? Let’s ask Edit-Soft.

&HELP

HELP TABLE

Commands For Use In Editor Or Applesoft

& ENTER EDITOR
GH### EDIT LINE ###
SAH HH, ## # AUTO (START# # #, STEP# # #)
&C CTL-CHR IN INVERSE
GF# # # FIND (SEARCH FROM # # #)
CTRL-F CONTINUE SEARCH
&H HELP--LIST COMMANDS
&K KTLL--REMOVE EDITSOFT
SS# # # SPLICE LINE # # #

Macro Commands:

&B SAVE MACRO DEFINITIONS
&L LOAD MACRO DEFINITIONS
&M DEFINE MACRO
&R REPLACE MACRO
&D1/De2 DEFINITION TABLE,PG 1 OR 2

ANY KEY TO CONTINUE

196

Editing Commands: Use In Editor Only

CTLS
CTL-X
SHFT-CTRL-M

ESC-RETURN
—P
<—_

ESC
CHAR
CTL-C
CTL-E
CTL-V
CTL-L
CTL-K
CTL-J

LOWER CASE
EXIT EDITOR
CTL-CHAR OVERRIDE

ENTER ENTIRE LINE
INSERT
DELETE
GO TO BEGINNING OF LINE
CHARACTER SEARCH
COMPRESS
GO TO END OF LINE
VERIFY END OF BUFFER
PRINT [
PRINT
PRINT _

Now that we know what the commands are, let’s see what the

macros look like:

&D1

CTL-O
CTL-T
CTL-L
CTL-P
CTL-D
CTL-R
CTL-V
CTL-A
CTL-E
CTL-Z

CATALOG
TEXT: HOME:POKE-16300,0
LIST
PRINT
PRINT CHRS([4)”
RUN
CALL -151
12,U
33,R
24,D

We can now begin to write a program. Let’s use the autonumber
feature:

&A100

100 REM

110 REM * Edit-Soft Demo *
12¢ REM FHREEEREREHEEEERERE KOTO _COUIET-

M><M>

197

130 INPUT “ENTER PASSWORD: ”;PWS
140 IF PWS < > “ABCD” THEN 130
15@ PRINT CHRS(4)"CATALOG”

&10G
1 1% REM Me oe oe ee oie ee ok 2 kK KK KK

Note: We edited line 100 after writing the program so that we could
tell how long it should be. Line 110 shows that entering lower case
can be done by using CTRL S as a shift toggle. Line 120 shows that
a <CR> can be embedded at the end of a REM to space down the
next line. When you enter the quotation mark in line 130, a charac-
ter count is displayed ona status line at the top of the screen so that
you can format strings properly while you’re on the screen. In line
150, we used the CTRL D macro to quickly print the first half of the
statement. Pretty nice!

APLUS:

APLUS enhances Applesoft to allow you to use structured pro-

gramming to simplify your programming efforts. APLUS also
includes a “pretty lister” which gives you a neatly formatted
printout of your program (APLUS programs only) when you use
the &LIST command.

To create an APLUS program, simply program in Applesoft as
you normally would... with or without your choice of an Apple-
soft line editor. You are allowed to use certain additional com-
mands like WHEN ELSE, UNLESS FIN, etc., to give your

program structure. By using the &LIST command instead of
LIST, the printout will be correctly formatted, showing off the
control structures. The program can be SAVEd and LOADed just
as anormal Applesoft would. To run the program, however, you
must first LOAD it into memory and use GCONVERT to convert
the APLUS commands into normal Applesoft.

198

Here’s an example of excerpts from an APLUS game demonstra-
tion program from the system disk and its Applesoft converted
equivalent (Remember: this is not the entire program):

1000 “DO INITIALIZE”

10140 UNTIL (SL= > 1@QR SR= > 10)

1020 : “DO DRAW GAME-BOARD”

103@: UNTIL (LH< > GOR RH< > @)
1440: : “DO CHANGE-PLAYER- DIRECTION?”

105@: : “DO CALC-PLAYER-MOVES”
1060::"“DO MOVE-PLAYERS”

107@:: “DO SKILL-DELAY”

1080: ::FIN
1090: “DO ANALYZE WIN"

1100 ::FIN
111@"“DO GIVE FINAL RESULTS”

1120 END

2290 "TO INITIALIZE”
23@0 : SL= @:SR= @:REM SCORES
2310: TEXT:HOME
2320 : VTAB 1G:HTAB 14
2330: FLASH
234@ : PRINT “BARRICADE”
2350 : NORMAL
236 : VTAB 17:HTAB 6
237@ : PRINT “PRODUCED BY SENSIBLE

SOFTWARE”
2380 : VTIAB 23
239 : PRINT “COPYRIGHT 1979 -- ALL

RIGHTS RESERVED”
2400 : SKILL= 14@d
2410: "DO DELAY”
2420: HOME
2430: PRINT “THE OBJECT OF BARRICADE IS

TO FORCE”
2442: PRINT "YOUR OPPONENT TO HIT A WALL

BEFORE YOU":PRINT “DO.”
2450: PRINT :PRINT
246G: PRINT “HOW GOOD ARE YOU (@=NOVICE,

9=EXPERT)”

199

2474: INPUT SKILL
2480 : SKILL= INT (1@- SKILL)
2490: IF SKILL< GOR SKILL> STHEN SKILL= 9
25d : SKILL= 3@* (SKILL- 1)
2510::FIN

2520 “TO DELAY”

2530: FOR D= 1TO 30@0@:NEXT D
254G ::FIN

Applesoft Converted Equivalent:

1000 GOSUB 22960: i:::iitiin:
1810 REM NTIL(SL = > 18 OR SR= > 10)
1020 GOSUB 2@6G@rritttis:

1@3@ REM NTIL{[LH < > @ORRH< > @)
1046 GOSUB 11 93G@riiitittess:

1056 GOSUB 142@G@riinisn:
1060 GOSUB 172G@r:::itrt:
10706 GOSUB 2559G@rii:
1080 IF NOT(LH < >@OR RH< > @) GOTO 1030
1094 GOSUB 184G@::::itiii:

11Q01F NOT(SL=>1@0ORSR=> 10)GOTO1010
1110 GOSUB 198G@rriitieins:
1120 END
2290 REM cies:

2300 SL = @:SR = @: REM SCORES
2310 TEXT : HOME
2320 VTAB 1G: HTAB 14
2330 FLASH
2344 PRINT “BARRICADE”
2350 NORMAL
2360 VTAB 17: HTABE6
2376 PRINT “PRODUCED BY SENSIBLE

SOFTWARE”
2380 VTAB 23

2390 PRINT “COPYRIGHT 1979 -- ALL RIGHTS
RESERVED"

2400 SKILL = 1400

200

2410 GOSUB 25262:::::::::

2420 HOME
2430 PRINT “THE OBJECT OF BARRICADE IS

TO FORCE”
2440 PRINT “YOUR OPPONENT TO HIT A WALL

BEFORE YOU”: PRINT “DO.”

2450 PRINT : PRINT

2460 PRINT “HOW GOOD ARE YOU (@=NOVICE,
S=EXPERT)"”

2470 INPUT SKILL
2480 SKILL = INT (10 - SKILL)
2490 IF SKILL < @OR SKILL > 9 THEN SKILL=9
2500 SKILL = 3@ * (SKILL —- 1)
25106 RETURN ::

2520 REM ein:
253@ FOR D = 1 TO 3@00: NEXT D

2544 RETURN ::

B.E.S.T.:

B.E.S.T. stands for BASIC Enhanced Software Tools and is a
handy utility for optimizing, cross referencing, renumbering and
merging Applesoft programs.

To optimize a program means to change it so that it runs faster

and is more compact. Cross-referencing prints out a list of vari-
ables, and a list of line numbers and where they are used. This is

useful in debugging, spotting logic errors and in identifying
unused sections of code.

We will use B.E.S.T. here to let you see what the previous pro-
gram looks like when optimized. To use B.E.S.T., BRUN B.E.S.T.
LONG (the LONG refers to the “long” version which has more
space-consuming features). You will be presented with a help
menu of commands and their meanings. This menu can be dis-
played at any time by typing in SHLP.

Next, we load the above program, taking care to remember that it
is the normal Applesoft conversion of the APLUS program. We
use the B.E.S.T. command & MEM and B.E.S.T. tells us that the
program is 2,630 bytes long. Now let’s see what B.E.S.T. can do.

201

We will first optimize the variable names by shortening them to
one character (reassignment of names begins with “A” and pro-
ceeds through each letter of the alphabet). Shortening the names
will reduce the size of the program, cutting the amount of time
needed by GOTO statements to search through the program for
their destination line numbers. Variable optimization is per-
formed with the SVOP command, which quickly tells us that the

program size is now 2,472 bytes. That’s about a6 percent savings
in space, but we can do even better than that.

We will use B.E.S.T.’s other optimization option, SROP, which

removes REMarks, combines smaller lines into big ones and
renumbers the program with as small as possible line numbers.
This reduces program size even more and cuts the time it takes to

go from one line number to the next. SROP quickly does its work
and tells us that the program Is now 1,422 bytes long, nearly half
of the program’s original size!

This is what the optimized program looks like:

1 GOSUB 48
© GOSUB 47
3 GOSUB 6: GOSUB 23: GOSUB 39: GOSUB 52:

IF NOT(A< >@ORB<>Q)GOTO3

202

4 GOSUB 4@: IF NOT(C => 10O0RE=> 19)
GOTO 2

5 GOSUB 46: END
48 C = G@:E = @: TEXT: HOME: VTAB 10: HTAB

14: FLASH : PRINT “BARRICADE”: NORMAL
: VTAB 17: HTAB 6: PRINT “PRODUCED BY
SENSIBLE SOFTWARE": VTAB 23: PRINT
“COPYRIGHT 1979 -- ALL RIGHTS
RESERVED”:X = 1400: GOSUB 51: HOME
: PRINT “THE OBJECT OF BARRICADE IS TO
FORCE”: PRINT “YOUR OPPONENT TO HITA
WALL BEFORE YOU": PRINT “DO.”: PRINT
: PRINT |

49 PRINT “HOW GOOD ARE YOU (@=NOVICE,
9=EXPERT)”: INPUT X:X = INT (1 — X]: IF
X <@ORX>STHENX=9

50 X = 30 * (X- 1): RETURN
51 FOR D = 1 TO 300: NEXT D: RETURN

Programming Aids By Delta Micro Systems

BASIC

Delta Micro Systems publishes a powerful pre-processor for
Applesoft called BASIC’ (pronounced “basic prime”). BASIC’ is
sort of a scaled down version of Pascal, although it has some
features that Pascal does not. For example, its REPEAT UNTIL

loop may have the UNTIL anywhere within the loop instead of

only at the end as is the case with Pascal. This gives added flex-
ibility in controlling loop exits. It also does away with the need for

terminators like NEXT, WEND, IFEND, ete. by using a con-
venenient auto-indent feature instead.

BASIC’ works by giving you access to a line editor to create a
structured form of Applesoft. This program is saved in a text file
which Is automatically printed out on paper, properly formatted
with page headings and the date! You can use BASIC’s translator
to convert the text file into a standard Applesoft program.

203

The entire package is easy to use and allows you to write beauti-

ful Applesoft programs. It also is just plain fun to use. Following
are some examples, showing what a typical BASIC’ prime source
file looks like, how BASIC’ prints it out, and how it converts into

Applesoft. The program is taken from a demonstration in the
BASIC’ user’s manual and is designed to print out a range of
ASCII characters.

BASIC’ Source Code:

1>BASIC’ EXAMPLE
!'>DELTA MICRO SYSTEMS
I=

PRINT “ASCII Character Tables” ! Heading
REPEAT

INPUT “From,To: ”;N,M
UNTIL N=@AND M = 8! Double zeroes to quit
DO TABLE

END
PROC TABLE! ASCII characters for codes N
through M

PRINT “Code”,“Char” ! Print headings
FORI=NTOM
UNTIL 1 > 127! Upper limit
PRINT I, |! Code

IF |< 32 ! Control code
CASE |

13! Carriage return
PRINT “<RTN>”

#27! ESCAPE
PRINT “<ESC>”

ELSE ! All others
PRINT “<CTRL> ";CHRS(64+1)

ELSE ! Printable characters

PRINT CHRS{(I)

“Pretty Listing’ of BASIC’ Source Code:

BASIC’ V1.2 #1 ASCII DEMO.T 31-JUL-83 PAGE 1

LN# REF

204

! BASIC’ EXAMPLE
DELTA MICRO SYSTEMS

AWN

0 200 PRINT “ASCII Character Tables” ! Heading
6 201 REPEAT
7 201 INPUT “From,To: ";N,M
8202 UNTILN=G@ANDM=24 ! Double

zeroes to quit
9203 DOTABLE

14 205 END

11 40@ PROC TABLE ! ASCII characters for
codes N through M

12400 PRINT“Code”,“Char” ! Printheadings
13400 FORI=NTOM
14 401 UNTILI > 127 ! Upper limit
15 402 PRINT I, ! Code
16 403 IFI< 832 ! Control code

17 404 CASE |

18 404 #13 | Carriage return
19 405 PRINT “<RTN>”

24 407 #27 |! ESCAPE

21 408 PRINT “<ESC>”
ce 410 ELSE ! All others

23 411 PRINT “<CTRL> ”:
CHRS$(64 +1)

24 412 ELSE ! Printable characters
25 413 PRINT CHR&X(I)

BASIC’ V1.2 #1 ASCIITDEMO.T 931-JUL-83 PAGE 2

LN# REF

PROCEDURE CROSS REFERENCES:

TABLE # 400 11: *MAIN* 9S

205

Translated Applesoft Code:

240 PRINT “ASCII Character Tables”
201 INPUT “From,To: ";N,M

202 IF N=@AND M=@ THEN 2@5
203 GOSUB 400

204 GOTO 201

205 END

400 PRINT “Code”,“Char”: FORI=NTOM

401 IF | > 127 THEN 415
402 PRINT I,
403 IF NOT (I < 32) THEN 413
404 IF NOT (1 = 13) THEN 407
405 PRINT “<RTN>"”

406 GOTO 412
4Q7 IF NOT (Il = 27) THEN 411

428 PRINT “<ESC>”
409 GOTO 412

41@ GOTO 412

411 PRINT “<CTRL> ”; CHRS (64 + 1)
412 GOTO 414
413 PRINT CHRS (1)
414 NEXT |

415 RETURN

Output:

RUN

ASCII Character Tables
From,To: 10,15

Code Char
1G <CTRL> J
11 <CTRL> K

12 <CTRL> L
13 <RTN>

14 <CTRL> N
15 <CTRL> O

16 <CTRL> P
17 <CTRL> Q

206

Summary

We examined three methods of aiding your program develop-
ment work in Applesoft: through the use of the & character (ASA
by Bill Parker), through the use of added commands in an Apple-
soft program (APLUS, by Sensible Software) and through the
use of a sophisticated pre-processor (BASIC’ by Delta Micro
Systems).

There are many aids available for your work with Applesoft.
Here are just a few of the more popular ones:

Ampersand Utilities:

Amper-Array, Chart,Screen,Sampler I/SDS ($49.95 ea.)
Amper-Magic/ADS ($75. vol. 1, $35. vol. 2)
Ampermanager/CA ($22.50, must be a member)
Ampersoft/MS ($49.95)
Routine Machine/SDS ($64.95)

Applesoft Editors:

A.C.E./SDS($39.95)
Applesoft Editor Package/PSP ($40)
Edit-Soft/SS ($39.95)
ES-CAPE/SC ($60)
GALE/MS ($49.95)
Global Program Line Editor/CA ($38.50, must be a member)

Applesoft Pre-Processors:

APLUS/SS ($39.95)
BASIC’/DMS ($129)

Applesoft Optimizers:

B.E.S.T./SS ($40.00)

207

Key to above publisher code:

ADS = Anthro-Digital Software
Box 1385
Pittsfield, MA 01202

CA = Call -A.P.P.L.E.
21246 68th Ave. S.

Kent, WA 98032
(206) 872-2245

DMS = Delta Micro Systems
Box 15952
New Orleans, LA 70175
1-800-535-1814 (toll free)

MS = Micro-Sparc
Box 325
Lincoln, MA 01773

PSP = Peters Soft-Products
Box 694
Didsbury, Alberta
CANADA
TOM O0WO

SDS = Southwestem Data Systems
10761 Woodside Ave #E
Santee, CA 92071
(619) 562-3670

SS = Sensible Software

6619 Perham Drive

West Bloomfield, MI
(313) 399-8877

208

CHAPTER 11

STRUCTURED LANGUAGES

This is just a brief look at some truly structured languages for
those who are interested in going beyond Applesoft. We'll be tak-
ing a look at Apple UCSD Pascal and a “new kid on the block’”’
called C.

Applesoft

Here is a sample Applesoft program that runs an empty loop for
10,000 iterations. We'll time it and use it as a comparison against
our two structured languages:

1@@ REM THIS APPLESOFT PROGRAM
11@ REM RUNS AN EMPTY LOOP FROM
120 REM 1 TO 10,600

13@LETI=1
14@ PRINT “START. ”; CHRS (7);"

l="
15@ FOR | = 1 TO 10000: NEXT
16@ PRINT “STOP. ”; CHRS (7);"

Execution time: 10.5 secs.

Notice the typical “unattractive” features of BASIC that make it
hard to read: lines broken in the middle, spacing between charac-
ters in odd places, and all letters are in upper case. It also runs
relatively slow. Compare this with the following Pascal program:

209

Pascal

This Pascal program runs an empty loop 10,000 times.

Program Foo;
Var |: Integer;
Begin

l:=1;
Writeln(‘Start. ‘Chr(7),l =',0);
For | :=1 To 10000 Do;
Writeln(‘Stop. "“Chr(7),l =‘);

End.

Execution time: 6.0 secs.

Here, we can see that clarity has been greatly enhanced by proper
spacing, using upper and lower case and avoiding line breaking.
There also has been an increase In speed: it runs nearly twice as
fast as Applesoft. Some features that are different from BASIC
are: statements must end with a ;. Variable names (called iden-

tifiers) must be declared as to their type (avoiding the need to end
a variable name with things likeS or %). | := 1 means assign 1 to

I, |= 1 means compare I tol. Strings are encased (delimited) by
apostrophes and not quotes; there is no NEXT in aFOR loop, but

there is a Do; Writeln means PRINT; and Chr is used instead
of CHRS.

C

Now, let’s take a look at a C equivalent:

This C program runs an empty loop for 10,000 iterations.

main()

int I;

printi{"Start,\ O07 | = %dAn", i);
for{i= 1; i!= 10000; ++i);
printf(“Stop.\ 007 | = %d.\\n”, i);

210

Execution time: .75 sec.

A C program is similar in structure, in many respects, to a Pascal

program, but it runs considerably faster. This is because aC pro-
gram is compiled into “native code,” while UCSD Pascal is com-
piled into a slower running “p-code.”’ Native code is the Apple’s

own 6502 machine code which can be executed directly. P-code is
a pseudo-machine code, similar to BASIC “‘tokens,” which must

go through the time consuming step of being “interpreted” each
time the program is run. P-code does have its advantages, how-

ever; it is more compact and it can be executed on different types
of computers using appropriate p-code interpreters.

You can see that C has some different ways of expressing things:
printf means print formatted or a sort of PRINT USING state-
ment; / is used to send a special character to the C compiler, such

as 007, which is the ASCII code for a bell or beep, and n, which is
the command for a “‘new line” or <CR>; %d tells C where to put
a decimal number in the string to be printed; finally, the braces
({}) are used to mark the beginning and end of a structure.

In case you are curious, here are some details about C: It was

invented by a person by the name of Dennis Ritchie in the 1970’s
at Bell Laboratories. It’s called “C’” because its predecessors
were called “BCPL” and “B.” It was originally developed for use
on a PDP-11 minicomputer under the UNIX operating system.

211

C is considered to be the language of the future. It has all the
structure and elegance of Pascal, but few of the limitations. C has
recently become available for Apple programmers with the release
of the Aztec C compiler from Manx Software Systems. This is an

excellent implementation of C and works within the DOS 3.3
environment. A CP/M (Z-80 card required) version and aProDOS
version are also available or will be soon.

You will be interested to know that when you run the AztecC pro-
gram (which is done simply by BRUNning a certain program),
part of Apple DOS is rewritten, turning your Apple into a UNIX-
like machine. (UNIX is an operating system used on large,

powerful computers.) You have total access to any of your DOS
3.3 disks and can manipulate standard DOS files with an im-
pressive array of powerful commands. A word processor (to

write and edit source programs), an assembler and a relocating
linking loader are included. The Aztec C version, running under

DOS 3.3 is well thought out and easy to use. The added power it
gives you as a programmer really makes it something to consider.

Of course, when working with these more sophisticated lan-

guages, you must give up one of the strong points of BASIC:
immediate response during program testing. All things con-
sidered, it sure is convenient to be able to RUN a program and
immediately see whether or not it runs. With structured lan-
guages, the programs must becompiled first, before it can be run.
This can be quite time-consuming, but in the long run, it makes
for better programs and easier programming sessions. And that’s
the whole name of the game, isn’t it?

Summary

Two of the most popular structured languages currently avail-
able on the Apple are Pascal and C. They offer elegance, clarity,
speed and the capability of being run on different types of com-
puters. However, they must be compiled and they do not offer the
same sort of spontaneity that BASIC does.

212

Bibliography

Borgerson, Mark, A BASIC Programmer’s Guide to Pascal, New
York, NY: John Wiley & Sons, 1982. ($9.95)

Cooper, Michael, Doug and Clancy. Oh! Pascal, New York, NY:

W.W. Norton, 1982. ($15.95) Nearly 500 pages of textbook-like

explanations, sample programs and diagrams. Modern, some-
times off-beat approach. Used as a textbook for teaching beginning-
level programming at some universities.

Fox, Michael, David and Waite, Pascal Primer, Indianapolis, IN:
Sams Books, 1981. ($16.95)

Koffman, Elliot, Problem Solving and Structured Programming in
Pascal. Reading, MA: Addison & Wesley, 1981. ($13.95) Very clear
and compact work. Part of a series on structured programming.

Ledgard, Henry, John Hueras, and Paul Nagrin, Pascal With

Style: Programming Proverbs, Rochelle Park, NJ: Hayden, 1979.
($6.95)

Ledgard, Henry and Andrew Singer, Elementary Pascal, New
York, NY: Vintage Books, 1982. ($12.95)

Lewis, T.G., Pascal Programming for the Apple, Reston, VA: Res-

ton Publishing, 1981. ($112.95)

Peckham, Herbert and Arthur Luehrmann, Apple Pascal: A

Hands On Approach, New York, NY, McGraw-Hill, 1981. ($14.95).
A must-have for beginning Apple Pascal programmers. More
than 400 pages, very clear.

Zaks, Rodnay, Introduction to Pascal (Including UCSD Pascal),
Berkeley, CA: Sybex, 1980. ($12.95)

BDS C User’s Group, Box 287, Yates Center, KS 66783.

213

Dr. Dobb’s Journal, 1263 El Camino Real, Menlo Park, CA 94025.
A colorful and authoritative monthly magazine that carries
many useful programs and utilities.

Dwyer, T., Cand the Personal Computer, Reading, MA: Addison-

Wesley, expected in 1985.

Kernighan and Ritchie, The C Programming Language, Engle-
wood Cliffs, NJ: Prentice-Hall, 1978.

Manx Software Systems, Box 55, Shrewsbury, NJ 07701, (201)

780-4004. Sells the 6502/DOS 3.3 Aztee C compiler for $199. CP/
M and ProDOS versions also available.

Purdum, Jack, C Programming Guide, Indianapolis, IN: Que
Corporation, 1983. Excellent, very readable book. Draws on
examples from a BASIC programmer’s standpoint. Very com-
plete coverage.

214

A

algorithm -.....----..---e ene 59-69

| DOS 64, 69
SOYt --_.----------------------------- n-ne nnn nn nnn nn nnn n nnn 60-63

algorithm development -_--..._...------------------- 13, 31-34, 40-41

data table -........_--..-_____---------- eee 32
debugging __________---_-____---__--------- ene 34
language implementation --- 33
modification -.............-.-------------------------------- eee 34
statement of problem _____.____-.-.--.----..-.--------------------- 32°
stepwise refinement -...........__---------------------------------- 33

APLUS ..WWWWWWWW222 2 - enn nnn nen 198
appending
random access files--.--------------------------------- 86
sequential files -.-- 85

70) 0) (2-0) 6 71
Applesoft _--.--....---------------.------------- eee 209
QIYAY ----------------------------------- =n nnn nnn 60, 61, 95

loading directory into -_.......------------------------------=------ 64
AGA nanan anna nnn nnn nnn n een ene e eee e ee ee nee 20-22, 187
7s) ©) 5 a 73

Apple _... 22 W--- 2-2 nnn nnn nn ene nn nnn nee n nee nneeneneeene 73
high -.....----.------------------------- oe enna nnn nnn e nnn eee eee eee 73
ee 73
Negative ---------~-----------------------n nen nnn nen n nnn en nen n enn ee nnn ne 73
positive -_.----------------------------------- 2-22 n-ne nnnnn ene nen 73

assembler -____..-.--...-------------------------------- een 180
C0) (0-0) ee 159
use Of ...__----__-_.-.--_------------------------- eee 157-182

Assembly language -- 173

B

BASIC’ -..------------------------- nnn nn en nnn nn nen nee en ene eennee ene -=- 203
basie file structure -.__........-.-------------.--------------------- 74-75

215

3) OR 201
binary trees -.........--...---.------------------------------ 77, 96
bubble sort ----------------------.------------------------------- 60-61, 69
buffers —......-..--.------------ ene ee eee eee 144

Cc

0 210, 212
CALLS ..-.2W22 WWW ----- nnn en enn ne eee nee een eee 143-155
clear hi-res page -...-..-----.--- 151
ecommand/error tables -.._-------.-.-----------------.--------- 144-146
control structures ------------------------------.-------------- 16-18, 28

decision -........----..-------------------- 22 -e nee e eee 16, 28
loop ---------------------------------+------------ =e 18, 28
sequence -__..__--------------------- eee eee eee 16, 28

creating shapes -..--.-.----.------------------------------------ 109-110
CUYSOP MOVES. --------------------n-n enon nnn n enn enen nn nnn ene nn nnn eee 153

D

data base -- 95
data table -___..____-- anne 32-33
data table module ----------.---_----_---...--------------------------- 38
debugging ---_..--------------------------------- ee eeeee eee een nnn 34
decision --.--.-- 16, 28
design considerations, file -__....__-.__._-._------------------ ae 79
Cae 71
DOS.----------------------nn anna nn nnne nen ene ene eee eee 144, 180
DOS algorithms -.......--.----.----------------------------------- 64, 65

E

0 167

enhanced graphics --- 99-128
error handling -.._.-..__----_----------------------------------- ano 148
error message table -------.-- 145
error trapping --------.-------------------------- eee nn nn eee 719

216

EXEC files -__-._----..-------------------------------------- 67, 69, 77
execution COpy --------------------------- n-ne eee een eee 28, 29
external sorting -- 81

of random access files -........--...------------------------------- 90
of sequential files --------_-------.--------------------------------- 88

F

fields -------------------~---------------------- ene nee n nen n nen ee ee 74, 95
file design considerations -__-_------.----.--_------------------------ 719
file handling techniques -- 81

appending random access files .__-......-.....-..-------------- 86
appending sequential files --------.------------------------------- 85
external sort, random access file -..-----.-.----.--------------- 90
external sort, sequential file ---.-_-_.._..-_-.-_-.._---------_- 88
making a random access file --------------..------------------- 84
making a sequential file -...---..---_.._--__---_----------- 82
merging a random access file ------------------------------------ 93
merging a sequential file ------------_-----_---_---.--------------- 92
reading a random access file -.-.-._.-__.__-__-.--.------------- 85
reading a sequential file -----------------------_-. tececee ene neeeene 83

file structure-......-_.-...-.----.------_---------- eee 74
flowchart -------------------------------------- n-ne nn nnn nnn n nnn n nee 14
flow diagrams -- 44-56

refinement of --- 50
versus flowcharts --- 49

G

game I/O ..----.--..----------------------------- 5-2 +--+ eee eee 149
COs i 0 ae 19
greeting program ..---.---.----------------------+----+-------------- 146

H

high ASCII ---------------------------------------0------------- 22-2 eee 13
high bytes -_.._..__--_----------------------------- anne 170, 181
hi-res graphics --- 99, 127, 150

217

hi-res screens ---------------------------------- eee 101

hi-res screen GUMD-.--------neencnenneennennenneeneneennenn ee ne 137

I

identification ---------------------------------------~-----------.5--- eee 38
initialization module --------------------_----------------------------- 38
ISAM .-- 77-96

J

joystick -- +++ -- eee 149

L

el) 171
language implementation ----.---------._.---------_----------------- 33
leading loop --- 18
limitations of Applesoft --.--- 99
loading a directory into a array ------------------------------------ 64
loop --------------------------------------- nnn eee en nen ene 18, 28
low ASCII -- eee 73
low byte -- 170, 181
lunar lander demonstration -__...-.--...._--.---------------- 110-121

complete program-....-.-.------------------------- 122-127

M

machine code_..---------------------------nen nen ee eee een eee 157
main program module -.--- 38
making random access files ----.------------------------------------ 84
making sequential files -------...-..----_-.--------------------------- 82
memory requirements, text file ------.-------------------------- 77-78
merge Sort ---.---------------------------------- aaa ee ee ene 81, 82, 97

merging random access files -- 93
merging sequential files --------.-.----._-_--------------------------- 92
modification --------.---------------------------------- =e ee nee eee nee 34

218

MON flags -.__.-_--_--_--~-------------- one nne nnn nee 147
multi-line structure --.------.-- 17

N

negative ASCII -.......-.-._-...-- 73
nesting -...-----------------------------------e eee ene n anne nee ee eee 21-22

O

one-line sequential intructions -.-.--......--.--.----.-------------- 44

ONERR ._______._WWW-W----- enna een ne nnn nen 79-81, 97

P

paddles --.......---....-------.---------------2--------2----22e-- 2 nee 145
page flipping ----------.--- 127, 151
parts of a program -.........-..------------------------------- 37, 41-42

data table -.......-......-.-.--.--------------------------------------- 38
identification -_.__...._._----------------------------- eee nee 38
initialization ._.....-.--.-.---------------------------ee nee n eee 38
main program---------------------------------2------2-00------ 38

A) 210, 212
PEEKS .-.-- 143-155
POKES------------------------- enn ne nnn ene n nen nee nnn 143-155
positive ASCII __.__..__-___.___W---------- +--+ nnn 73
presentation copy --...-.--..-------------- eee ee eee 28
printer interface card -.........---------.-.--.-.-------------- 133, 140
printer techniques -- 129-141
printers -_....-.--------------------------------------- een nn ene 129

types ----------------------- nen nee 129, 139
printing text_-___-_---_-- een eee 130

problem solving --.....-....--.------------------------------------- 31-42
program development aids -------------.--------------------- 183-208
program list formatting -._.....-.....--.----.------------------------ 23
program modules .-- 37

219

pseudo code -2222222o-w wenn nee nnn e eee n eee ne nee e eee e ee ne 33

pseudo opcode ...--..-.------------------------------------- ene 181

push buttons -....-------------------------------2--e--nnenne nee neeenes 150

RK

random access files -...----------------.--.-..._------------------ 75, 96

appending --nn-nen nnn en enn nee 86
external sort of _.......-..------- eee nne cent eee nee eee eee nee nee 90
making -...-.---------------------- een nn ne een e ee ee een e eee ene 84

MEPZiNG -..~---------------------nenene nnn en en en en en en en en en en nn ne enn 93
organization of _...---------------------------------nn-a een nee ene e ne 76
reading -_---2-- n-nonane 85

34D) 0) a 183
read or write a track and sector -_-.------_-----__-_------- 66-67, 69
reading a random access file -- 85
reading a sequential file -_.-...._-.----.__-------------------------- 83
records .-------------------------------------en nee ee een nnneenneeneenee 74, 95
renumber -..._.-----..------------------------------ one eee ene e een ene 39
REPEAT UNTIL loop -.-....-.---- 22 18
reset control -._......-.-------------------------------n2e-- one nee ne 153
RWTS -_-.__--___---__--.--------------- nen 66-67, 69, 147

S

screen control -........--.--------------------------------- ene 153
Sectors -----.------------.---------------------- === ee ene nee ee nee 71-95
select hi-res page -------------------------------------nnen nen nee nnn 150
select sort -- ee 61-62, 69
sequence -____..........--- 16, 28
sequential files -___-____-__-.--.---------------e-e-e nee 75-77, 96

appending -.._.........--------------------------------- eee 85
external sort of --__--------- ~~ oon een 88
making ---.------------------------------------ o-oo nnn eee een nen 82
Merging -_.----.~------------------ anne enn eee eee eee 92
organization of --------.---------------------------------e- enn ne ene 76
Yeading -_.......----------------2-- nen nee nee 83

shape table pointer -_..--.....-.....------_.._--------.-------------- 150
shape tables -------------------------------------- n-ne nnn nen e nn nen nen 127

220

shapes--- 103-110
Shell sort ---.-- 63-64, 69

sounds ----------------------------- anne ene ne eee nn een eee nenneeee 154
spaghetti programming -.--_...-.------------------------------- 14, 27
special printer commands ..-_---.----------------------------- 131, 140
stepwise refinement --- 33
structure of text files and the disk -----------------.-------------- 71
structured programming -_____......----------------------------- 11-29

benefits of _...---...---.------- ene e eee 15, 27
problem solving with --- 31

stub procedure .-__...--- 41

T

text files ___...._--__-----_----------- =e --nee nnn 71-97
memory requirements ----.------------------------------------ 77-718
structure of----------------------------2-e ee een ne ee nee 71-75

top down design -_..--.--- 41
tracks -- =e 71, 95
trailing loop ----..-- 222-2 =e 18

U

unstructured programming, hazards of -..__-.--__--.-_------ 11-14

V

variable names .-.__.-- 22
vectors -......-.-.----------------------- eee nnn 127

VTOG _u. unin nnn nnn nnn nnn ene n ene n eee eee enn 72

W

WHILE WEND loop .-...._--.--.-------------------------------------- 18

6502 chip ..---.---------------------- oe n nn en nn ne nee enn ne ennnnn ne 169

221

INTERMEDIATE

APPLE
Perfect for the BASIC programmer who is ready to
move on.

THE INTERMEDIATE APPLE will take you from being a
fledgling Applesoft programmer and show you important
principles that can help you handle more complicated
programming problems. You'll learn how to structure
your program “one step at atime,” reducing big problems
into smaller, more manageable ones. Your programming
will become clearer and easier to understand in the
process.

The many benefits of structured Applesoft programming
include:

® Programs are easily understood.
® Errors are reduced.
® Programs are simple to maintain.
® Coding is faster, speeding up program

development.
© Easy transition to other high level languages.
® Coding large programs is simplified.

In addition, you'll learn about flow diagrams, algorithms,

text files, enhanced graphics, special printer techniques,
and many more tricks of the trade. So if you’re ready to
take that intermediate step, THE INTERMEDIATE APPLE
is ready for you!

ISBN 0-88190-241-1

() DATAMOST:
20660 Nordhoft Street, Chatsworth, CA 91 31 1-6152

(818) 709-1202

488351°0015(

