THE
ELEMENTARY
APPLE IIGS

William B. _Sanders

A friendly beginner’s guide to the new

Apple IIGS. Learn how to use and program this
powerful new computer—everything from
setting up to creating graphics.

A COMPUTE! Books Publication $15.95

~3

P
{
t

i I B

The Elementary
APPLE IIGS

William B. Sanders

COMPUTE' Publlco‘nons InC. @

BCC umer M
nnnnnnnnnnnnnnnnnnnnnnnnnn

Greensboro North Carolina

Copyright 1986, William B. Sanders. All rights reserved.

Reproduction or translation of any part of this work beyond that permitted by
Sections 107 and 108 of the United States Copyright Act without the permission of
the copyright owner is unlawful.

Printed in the United States of America
10987654321
ISBN 0-87455-072-6

The author and publisher have made every effort in the preparation of this book to insure the ac-
curacy of the programs and information. However, the information and programs in this book are
sold without warranty, either express or implied. Neither the author nor COMPUTE! Publications,
Inc., will be liable for any damages caused or alleged to be caused directly, indirectly, incidentally,
or consequentially by the programs or information in this book.

The opinions expressed in this book are solely those of the author and are not necessarily those of
COMPUTE! Publications, Inc.

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919)
275-9809, is part of ABC Consumer Magazines, Inc., one of the ABC Publishing Com-
panies, and is not associated with any manufacturer of personal computers. Apple
1IGS, ImageWriter, LaserWriter, and ProDOS are trademarks of Apple Computer, Inc.
PostScript is a trademark of Adobe Systems Incorporated.

-

_

1

.

_}

- |

1

B

B B B

i |

Contents

Foreword i v
l.Introduction il 1
2. Getting Started i, 31
3.Moving Along0 i 51
4.Branching Out oo, 69
5. Organizing the Parts 89
6. Some Advanced Topics 111
7. Using Graphics i, 129
8. Text Files and the Disk System 157
9. You and Your Printer 177

10. Super High-Resolution Graphics and Sound 193

11. Utility Programs, Hints, and Help 203

Appendices e 227

A. Applesoft BASIC Token Chart 229

B. ASCII Characterscoviiiininnen.. 233

C. Hex-to-Decimal and Decimal-to-Hex Conversion ... 235

D. Error Messagesc.coiiiiiiiiiiinnn. 241

E. Glossaryoviiiiiiiiiniiiiininnan.. 245

Index oo 260

L

Lo

3 73 1 %

Foreword

Home computers have come a long way since Apple Com-
puter was founded a decade ago. Now, Apple’s introduction of
the IIGS brings renewed excitement to the durable Apple II se-
ries of computers. Because the IIGS runs the whole gamut of
software already available for Apple II computers, there’s an
enormous choice of ready-made software just waiting for you
to run—not to mention the added graphics and sound power
you have right inside your IIGS. In fact, graphics and sound are
what GS stands for.

The Elementary Apple 11GS will lead you gently through
the intricacies of using your new computer, from setting it up
to writing accomplished, sophisticated programs that will
make the machine do your bidding. Step-by-step instructions
and numerous practical examples will show you exactly how
to go about achieving what you want. You'll learn to organize
your work so that it’s easy and logical to follow—a very im-
portant consideration in creating workable programs.

One of the most exciting aspects of the IIGS is its graphics
and sound capabilities, and you'll learn how to use these ad-
vanced features and become acquainted with the built-in tool-
boxes that offer access to them. You'll get an overview of work-
ing with sequential data files and random access files as well.

Newcomers to computing are often frustrated when they
consult their printer manuals. Chapter 9 is devoted to informa-
tion on various types of printers, and it also aids in interpreting
printer codes so that you can generate the output you need.

Finally, you'll be introduced to some of the utility pro-
grams that can help you make your own programs operate
more smoothly and efficiently. Chapter 11 also includes sev-
eral type-in programs that consolidate some of the program-
ming techniques you’ll learn. The appendices provide a handy
reference to Applesoft tokens, ASCII characters, hexadecimal/
decimal conversions, error messages, and a glossary.

With The Elementary Apple 1IGs, you'll make rapid progress
toward being able to develop your own applications, whether
your interests are educational, business- or home-oriented, or
just plain fun.

Introduction

The Elementary Apple IIGS is intended to help you operate your
new computer, get started programming, and generally make
life with your computer easier. It is not designed for profes-
sional programmers or for learning more about applications. It
is the first step for beginners on the Apple IIGS. Material will
be kept on an introductory level, but by the time you have
finished reading, you should be able to write and use
programs.

To use The Elementary Apple I1IGS most effectively, start at
the beginning and work your way through, step by step. The
book has been arranged so that each part or section logically
follows the one preceding it. Skipping around might result in
your not understanding some important aspect of the comput-
er’s operation. The only exception to this rule is Chapter 10,
which lists a number of utility programs that will help you
write programs. Also, there are descriptions of programs that
perform business applications, word processing, and so forth.
When you're finished with this introductory chapter, it would
be a good idea to giance through the programs described in
the Chapter 10 to see if any of them will fit your needs while
you're learning about your Apple IIGS. Depending on your in-
terests and needs, you may find some of them useful.

First Things First
The first thing to learn about your computer is that it will not
bite you. It does, however, require a certain amount of care.
It's possible to destroy disks and information, but by following
a few simple rules you should have no problems. We have all
used sophisticated electronic equipment, such as stereos, tele-
visions, and videotape recorders. They, too, require a certain
amount of care; otherwise, there is no need to fear them.
Likewise, your computer is electronic. If you pour water
or other liquids on the computer, you're likely to damage it.
But use reasonable care, and go ahead and put it to use. Re-
member, it is impossible to write a program that will harm the

3

CHAPTER 1

hardware (the electronic circuits) in your machine. The worst
thing any program you write can do is to erase the information
on a disk. Throughout this book you'll read tips about doing
things the right way and the wrong way, but for the most
part, treat your computer as you would your microwave oven,
garage-door opener, or radio—with care but without fear.

It’s not necessary to learn a lot of computer jargon. How-
ever, some terminology will help you understand how your
IIGS operates. As you progress, more new terms will be intro-
duced, but for the most part the text will be in plain English.
Here are a few terms you’'ll need to know just to get started.

Hardware and Software

Hardware refers to the machine and all of its electronic parts.
Basically, everything from the keyboard to the wires and little
black chips in your computer is considered hardware.

Software consists of the programs that tell a computer to
do different things. Whatever goes into the computer’s mem-
ory is software, which is analogous to the ideas processed by
the human brain. Software is to computers as records are to
stereos. Software operates either in random access memory
(RAM) or read only memory (ROM).

You may hear people talk about expanding their RAM.
This is the part of the computer’s memory into which infor-
mation is entered in the form of data and programs. The more
memory you have, the larger the program and the more data
that can be entered. Think of RAM as a warehouse. When you
first turn on your computer, the warehouse is just about
empty. As you run programs and enter information, the ware-
house begins filling up. The larger the warehouse, the more
information you can store there. When the warehouse is full,
you have to stop.

The basic Apple IIGS comes with 256K of RAM. The K re-
fers to kilobytes, or thousands of bytes. (Actually, a K is 1024
bytes, a bit more than a thousand.) You can expand your Ap-
ple’s RAM to over a megabyte, or one million bytes. For now,
you just need to know that in computer terms bytes are a
measure of storage: the more bytes, the more room. Think of
bytes as you would gallons, inches, or meters—simply a unit
of measure.

ROM is a second type of computer memory. This type of
memory is “locked” into your computer’s chips. Your Apple
IIGS’s programming language, called BASIC, is stored in ROM.
The difference between ROM and RAM is that whenever you

4

S I

3

-3 1

A

Introduction

turn off your computer, all information in RAM will evapo-
rate, but ROM will keep all of its information. Don’t worry,
though; you can save whatever is in RAM on disks and get it
back. You'll learn how later.

Now that you know a few terms and don’t fear your com-
puter, let’s get it cranked up and running. If your IIGS is al-
ready hooked up and working properly, you can skip the next
section and go directly to the section “Power On.”

Hooking Up Your IIGS

The last thing you should do after reading this section is plug
in your IIGS and turn it on. Everything else should be done
first. This newest Apple II gives you more than one way to
connect the different parts. If this is your first Apple II, you'll
probably want to get all of the latest equipment for it and plug
everything into the special ports provided. On the other hand,
if you have an old Apple (a Ile or older) and want to use your
old interface cards to hook up your disk drive and other
peripherals, you can use the slots. Of course, you may want to
save money by purchasing older used equipment and interface
cards, and so will use the slots instead of the external ports.
Likewise, you can use a combination of slots and ports. We'll
explain the simplest way to do things first.

Figure 1-1. The Apple IIGS

The Apple 11GS computer, shown here with the AppleColor RGB monitor and 5%-
inch disk drive, features 256K of RAM, high-resolution graphics, high-quality
so;md synthesis capabilities, and complete compatibility with existing Apple 11
software.

CHAPTER 1

The Disk Drive

" You can use either 5%- or 3%2-inch-disk drives, or even a com-
bination of both. Having used both, I recommend getting the
3%-inch system. They're easier to handle, and the recording
surface is completely enclosed so you have less chance of acci-
dentally destroying data on the disks by touching or scraping
the media. If you decide on the 5%-inch system, get the newer
kind that you can plug into the disk port.

The main advantage of the 5%-inch system is that there
are more commercial programs for the Apple II series in that
format. The older versions of the 5%-inch drives require an in-
terface card and cable. The card goes into slot 6 inside your
IIGs. You'll need to take the top off your computer, place the
card in the sixth slot from the left, and run the flat ribbon ca-
ble from the card to your drive outside your Apple. (If you
have both a newer drive that plugs into the disk port and an
older one that goes into one of the slots, place the disk drive
interface card into slot 5.)

Installing old drives. Here is a detailed explanation of
how to install an older drive:

1. Find slot 6 (the second from the last slot counting from left
to right as you face the keyboard). With your disk drive you
should also have bought a controller card to which you at-
tach the cable from your disk drive. This card goes into slot
6. Now, gently, but firmly, place the controller card into slot
6. It will fit only one way, with all of the black chips and
electronic apparatus on the right side. Make sure that the
card fits all the way into the slot and is level.

2. On the back of the card are two sets of pins. One set is la-
beled drive 1 and the other drive 2. Carefully place the con-
nector on the end of the cable from your drive onto the set
of pins labeled drive 1. Make sure that the pins and the
holes in the connector line up. Gently, but firmly, press the
connector into place. That’s it. Your disk drive is hooked up.

If you have more than one disk drive, follow the same
procedure to connect the second drive to the set of pins
marked drive 2. If you have more than two drives, you will
need a second controller card. Put it into slot 5 and hook up
the drives as you did the ones in slot 6. (If you have a newer
drive that connects to the external disk port, use slot 5 for
your first disk drive controller card.)

1

N

1

_1

A

Introduction

Hard disks. Some of you will have hard disk systems that
have multiple-megabyte capacity. Usually, you will want to
have a floppy disk drive, either a 3%2- or 5%-inch system, to
use in conjunction with the hard disk. It is strongly recom-
mended that you have your Apple dealer demonstrate the best
arrangement for hooking up a hard disk with a floppy system.

TV or Monitor

In order to see what’s going on in your computer, you need
either a TV set or a monitor. We all know what a TV set does;
a monitor is essentially a TV set for your computer. Monitors
are preferable to TV sets since their resolution is higher
(they're clearer). However, since an outstanding feature of the
IIGs is its color graphics (especially on some of the games),
many people use color televisions (sometimes the family TV)
with their Apples because they cost less than color monitors.

TVs come in many shapes and sizes. You can choose
either a color or black-and-white set. But since not all televi-
sions work well with your IIGS, ask first before you select one
to buy. When I bought a TV set—a color one for the graph-
ics—I simply looked at the color TVs being used on the com-
puters in the stores and bought the same make and model at a
discount house. Whatever the case, check to make sure that
the TV set you purchase will work with your IIGS.

TV connection. To connect a television set to your IIGS,
you will have to use an RF modulator. The modulator unit
goes into the video port, secured by two screws in the unit.
Attach the adapter box to the VHF antenna connectors on
your television set (where the aerial normally goes). Finally,
connect the cord between the modulator and the adapter box.
(Note: Some televisions are now both televisions and monitors.
If your television can be used as a monitor, connect the video
cord directly between the monitor and computer. To hook it
up, simply plug the monitor connector cord into the monitor
jack. The other end of the connector cord goes into a similar
socket in the back of the monitor. When I purchased my mon-
itor, a connector cord did not come with it. I just went into an
electronics store and asked for an RCA standard jack connec-
tor for a monitor. Remember, “RCA standard” is the kind of
plug and cord to ask for since it refers to the size of jack con-
nector you'll need.)

CHAPTER 1

Types of Monitors

Apple Computer makes some perfectly good monitors that you
may want to purchase for your computer. However, you may
want to consider the many different types of monitors that are
available.

Monochrome screen. This type of monitor gives a mono-
chrome (single color) display with prices beginning at less
than $100. The display may be green-on-black, amber-on-
black, or white-on-black, depending on the monitor. The
green-on-black display, usually the least expensive, is quite
good for people doing a lot of word processing and noncolor
graphics programming since it is easy on the eyes. Amber is
supposed to be a good hue for working under fluorescent light.

Since monochrome displays show only a single color, they
are not very good for color graphics. On the other hand,
graphics that are going to be printed in black and white may
actually be viewed better with a monochrome display; there’s
a better chance of seeing what you'll get.

Color/RGB. This type of monitor is the most expensive,
but for people who work a lot with graphics, it is probably
worth the added cost. RGB monitors connect to the video
socket (the monitor socket is round, and the video socket is
elongated). They provide the high resolution needed for seeing
graphics in detail.

Flat screen. Apple makes a flat panel display for maxi-
mizing portability. Just about the only part of your Apple that
cannot be tucked into a relatively small case is the monitor or
TV. However, using the flat display screen, you can have a
small portable screen. It is useful for business applications
when you have to travel; otherwise, it’s fairly expensive, lacks
color, and is not as big as a TV monitor’s screen.

Printers

This section will touch on the different kinds of printers and
will briefly explain how to hook up a printer. If your printer is
already hooked up and working, refer to Chapter 9 for tips on
maximizing your printer’s use.

Several types of printers are available for the Apple IIGS.
Apple sells the ImageWriter and ImageWriter II, Scribe, Daisy
Wheel Printer, LaserWriter, and Apple Color Plotter. Other
companies also make excellent printers, but before you run out
and buy a printer, carefully consider your needs.

-3

-

N

A TR R

Introduction

Dot-matrix. The most popular kind of printer is the dot-
matrix printer. It contains a number of little pins, which are
fired to form little dots that print out as text or graphics. The
advantage of dot-matrix printers is their relatively low cost
and the fact that many of them can generate both text and
graphics. The improved quality of text printing with dot-matrix
printers gives an almost letter-quality product, and usually you
can get several different typefaces.

Much of the graphics and word processing software writ-
ten for the Apple IIGS has been produced with a dot-matrix
printer in mind. For example, a word processor program may
have a sequence for emitting italicized letters on a dot-matrix
printer that will not work on other kinds of printers. Not all
dot-matrix printers are alike, and you should carefully consider
the software available for a printer before buying one. Certain
printers, like the ImageWriter, have more software support in
both graphics and word processing software than do others.
Thus, while you may get a perfectly good, inexpensive printer,
if special software is required to work it, you may end up
spending more time and money getting it to do what you want
than if you had bought a printer that has software support.

Letter-quality. For people whose major computer use is
word processing, there are letter-quality printers. Most of these
are daisywheel printers, which type characters in much the
same way a typewriter does. Each symbol has a molded image
like those found on typewriter heads. These printers are not
good for graphics, but if you want letters, manuscripts, reports,
and other written documents to look top-notch , letter-quality
printers are the next best thing to laser printers. They tend to
be relatively expensive and slow, however, and for most writ-
ten materials, dot-matrix printers are fine.

Compare before you buy. If a dot-matrix printer does not
deliver the quality of print you require, and if a laser printer is
more than you need, take a look at different daisywheel print-
ers. Finally, if you decide a daisywheel printer is what you
need, check the speed in terms of characters per second (cps).
If you do not require great speed, you can get away with a rel-
atively inexpensive, but slow, daisywheel printer. If you do a
lot of printing—for example, in a business application—you
will need a faster, heavier, and (alas) more expensive one.

Laser. This type of printer will give you the highest-quality
printing available, but it is probably more than most people
need. Laser printers are for desktop publishers, who require

CHAPTER 1

near-typeset quality. On the low end, a laser printer will run
about $2,000; on the high end, around $5,000. This printer is
not very good for printing things like self-adhesive labels, and
it cannot use carbon forms that make multiple copies with a
single pass. However, for publishing newsletters, designing
forms, and myriad other uses, laser printers provide top-of-
the-line output. In time, if they follow the path of computers,
laser printers will become much less expensive and do more.

Other printers. Besides the printers discussed above, you
may want to consider a few other kinds of printers and plot-
ters. One printer that works somewhat like a dot-matrix
printer is the ink-jet printer. These printers are quiet and fast,
and they give somewhat better print quality than do dot-ma-
trix printers. The dots are formed by little dots of ink being
shot from a jet instead of by pins hitting a ribbon. However,
the ink cartridges are more expensive than dot-matrix ribbons,
and you cannot make single-strike carbons with the ink-jet
system.

You may want to consider a thermal printer, but I do not
recommend it. These printers can be very inexpensive, they
are quiet, and they can create either graphics or text. However,
they require special, expensive thermal paper that can lose the
images printed on it. If portability is important, a thermal
printer might fill the bill as a portable printer, but you can get
a really good ink-jet portable that uses standard paper that
does not fade.

Finally, you may need a plotter. This device is good for
certain kinds of design applications, but it’s not recommended
as a general-use printer. Basically, plotters are machines that
draw with pens. They are good for designs and diagrams of
everything from blueprints to circuitry design. They work on a
different principle from that of standard printers, and they can
do very interesting text. However, the text generated by plot-
ters is primarily for labeling different parts of a diagram, not
for general text.

A word of advice. Before you buy a printer, decide what
you will need it for, and then look at the features of all the
different kinds. And, by all means, ask to see a demonstration
on a IIGS just like yours. For some kinds of printers, you will
need an interface card and cable to hook the printer up to
your computer, just as you do with some disk drives. Make
certain to get the correct interface and cable that go with your
printer. Some interfaces and cables are sold separately; it’s
possible to get the wrong interface and cable if you're not

10

U N N R

B N D

Introduction

careful. This is why it is important to see a demonstration of
the printer hooked up to a IIGS. The ImageWriter and
ImageWriter II are the most popular Apple II printers and are
easily hooked up to your IIGS. Before you purchase a printer,
it'’s a good idea to ask others with printing needs similar to
your own for suggestions.

Connecting a Printer

To connect your printer, simply plug it into the printer port
(serial 1) of your IIGS or connect it to a special interface card.
For connecting a parallel (Centronics) printer interface, you
will have to buy a special parallel-interface card. Follow these
steps to install it:

1. Connect the cable to the printer. On one end of the cable is
a connector to the interface card, and on the other is a con-
nector to the printer. As a general rule, the connector to the
printer is the larger one.

2. Connect the other end of the cable to the interface card,
much in the same way you connected the disk drive cable
to the disk controller card.

3. Make sure there is some slack in the cable from the printer
and put the interface card into slot 1. That's it.

Caution: Never insert interface cards or remove them from
your computer while the power is on. You could give yourself
the shock of a lifetime.

Other Gadgets

Besides the disk drive, TV or monitor, and printer, most new
users don’t have anything else to hook up at this point, so you
can skip to the next section. However, if you plan to expand
your IIGS or have already bought other gadgets with your sys-
tem, read the following.

Lots of slots. One of the nicest features of the Apple IIGS
is its expandability and adaptability. The seven slots in the
back provide you with the ability to grow as your needs and
interests do, and the memory expansion slot lets your comput-
er's RAM size grow. So there are a total of eight slots available
for your use. However, you cannot use all of the slots (on the
inside) and the ports (on the outside) at once. You will have to
see the section on using the Control Panel and read the section
on configuring the slots. It’s not difficult, but it is important.

11

CHAPTER 1

RAM cards. The firmware cards known as RAM cards are
additional memory. These cards go into the memory expansion
slot and are used to add more memory to the IIGS for general
use. Your IIGS can handle several megabytes of RAM, and
once you start using programs that take up a lot of memory,
you will want to think about expansion. For example, if you
do a lot of word processing, the files can get pretty big. With-
out added RAM memory, you'll have to break your files into
smaller chunks and link them from disk files. This works fine,
but it’s much easier to work with a complete file in memory at
one time. If you have really big files, such as a whole book,
you will want to be careful about how much RAM you use.
The double-sided 3%z-inch disks hold 800K, and if you have
more than that in RAM, you cannot save it to your disk. If you
fully expand your RAM, you will probably want to get a hard
disk with ten or more megabytes of storage.

RAM drive. Using your Control Panel, you can reserve a
certain amount of RAM for a RAM drive. A RAM drive is like
a disk drive, except it exists in RAM. The advantage of using a
RAM drive is speed. It’s a lot faster to load and execute pro-
grams or to save them using your RAM drive instead of the
physical drive. If you use graphics a lot, you will want to load
the picture files into your RAM drive, and that will make it
easier to load and use them. However, be careful. When you
turn off your IIGS, everything in your RAM drive will be va-
porized. So before you quit, be sure that anything you have
created and saved in your RAM drive has also been saved to a
physical disk as well.

Modem. A modem is a device that enables your computer
to communicate with other computers over telephone lines.
You can use one of your serial ports, usually serial 2, to plug
in your modem. Other modems plug into a slot inside your
computer. The older types of modems are called acoustic cou-
plers, and they have a cradle for the telephone handset.
Acoustic couplers are more likely to lose data being transmit-
ted and are generally less reliable than ones that connect di-
rectly to your computer. If you buy a modem, avoid the
acoustic type, and make sure you can connect it to your IIGS,
either through one of the slots or directly to one of the serial

orts.
P With a modem, you can call other computers and engage
in the lively exchanges of information available on local com-
puter bulletin boards. Commercial services allow you to check

12

N

]

i -

23

3

3

3

3

3

Introduction

stock prices, send and receive electronic mail, access your bank
account, and take advantage of an increasing number of services.

Finally, modems operate at different baud rates. The baud
rate refers to the speed at which a modem can transmit and
receive data. Most modems are 300, 1200, or 2400 baud—price
increases with speed. In general I recommend a 1200-baud
modem since, at the moment, the speed/price ratio is best on
these. When you make a call with your computer, the tele-
phone company charges the same rates as for voice calls. The
faster your modem sends and receives data, the less time you
will have to spend on a call, and the lower your phone bill. If
you plan to make heavy use of a modem in business or in
transferring data long distance, the 2400-baud modem can
very quickly pay for the difference in price.

Mice and things. There are numerous other cards that
make the Apple into many different computers: special graph-
ics printer drivers, Z80 cards to give you CP/M, and cards to
turn your IIGS into just about anything you want. There are
even multifunction cards that combine a number of the above
cards into a single card using a single slot.

In addition, you can plug in a mouse, game paddles, or a
joystick. These devices are used with special programs ranging
from word processors, such as Mouse Write, to hundreds of
games that depend on the joystick and game paddles. Since
these are linked to certain types of software, check what soft-
ware goes with the hardware.

Power On

Now that your IIGS is all set to go, simply plug it in, along
with your television or monitor and printer; then turn on the
power and let it rip. Find the power switch and turn it to the
on position. If everything is working correctly, you will hear a
bell and your disk will make a noise. Press the key marked
control and the one marked reset simultaneously. You should
see a bracket and blinking cursor at the bottom of your screen.
If you have an Apple ImageWriter or some other kind of
printer connected to the serial 1 port, you're all set to test your
printer. Skip ahead to the section “Printer Test Program.”

If you have a printer connected to an interface card in slot
1, you'll have to use the Control Panel. To do that, hold down
the key marked control and press the open Apple key (it's an
outline of an apple); then press the key marked esc. That will
give you access to the Desk Accessories. Select the Control

13

B

)

CHAPTER 1

Panel by moving the up- and down-arrow keys, and then

press the return key when the cursor is over the Control Panel m]

option. '
You will see the Control Panel appear on your screen.

)

Figure 1-2. The Control Panel

Select the Slots option, and you will then go to that
screen.

Figure 1-3. Slots Option—Control Panel

Place the cursor over. Slot 1: Printer Port, and press the
right-arrow key. This will toggle slot 1 so that it now shows:

Slot 1: Your Card |

14

1 1

3

Introduction

If a checkmark is beside an option, it means that’s the de-
fault option. Now, since slot 1 is your interface card and not
serial 1 (the printer port), your IIGS will know to use your
printer interface card and will not try to send output to the de-
fault printer port.

Printer Test Program

First, enter the word NEW; then press the return key. Press the
return key at the end of each line.

NEW
10 D$=CHR$(4)

20 PRINT D$; “PR#1”

30 PRINT “MY PRINTER IS WORKING!”
40 PRINT D$;““PR#0”

Make certain that you have entered the program exactly
as it appears. If there is even a minor difference, correct it so
that it is the same. Put the ribbon and some paper into your
printer. Now, turn on your printer and make certain that its
switches and lights indicate that it is online. Type in the word
RUN, and press the return key. If your printer is attached
properly, it will print out the message MY PRINTER IS
WORKING! If a 2SYNTAX ERROR or another error message
jumps onto the screen, you wrote the test program improperly.
Go back and do it again. If the system hangs up (if the screen
goes blank and nothing happens), check to be sure the printer
is turned on and is online. If it still doesn’t work, turn off the
power on the printer and computer, and review the steps for
hooking up your printer.

Booting Disks

Assuming your system is working correctly, let’s boot a disk.
This will get your disk operating system (DOS—pronounced
doss) operating. Apple’s DOS is called ProDOS, and it’s stored
on a disk that comes with your computer. (Actually, there’s a
ProDOS 8 and a ProDOS 16 as well as DOS 3.3 and 3.2.
Since we will be working with Applesoft BASIC, you will be
in the Apple II mode and using ProDOS 8. We'll just refer to
it as ProDOS or DOS throughout this book.) The disks are
shipped in the 3%:-inch format, so if you are using a 5%-inch
drive, go to your computer store and ask to have ProDos
transferred to a 5%-inch disk.

15

CHAPTER 1

Booting With the DeskTop

If you're familiar with Apple’s Macintosh computer, then you
will have a very easy time using the DeskTop. The DeskTop is
a graphic interface between you and the IIGS operating sys-
tem. Rather than having to type commands like CAT and DE-
LETE to manipulate information on disk, DeskTop lets you
perform disk operations using menus and graphic figures
(called icons) controlled by the mouse. If you are new to the
DeskTop system, you'll find that using it is almost intuitive.
Just stick your 3%2-inch System Utilities disk into your drive
and wait until it clicks in. Or with a 5%-inch drive, close the
drive door once the disk has been inserted. Turn on your com-
puter and you will see two icons (small figures) on your screen
that represent a disk and a trash can. Along the top of your
screen you will see the following menu bar:

File Edit View Special Help

Using the mouse as an arm, you will pull down the vari-
ous menus by placing the pointer on the menu you want to
see and then pressing the mouse button. To see what is in a
disk, either double-click on the icon or choose Open from the
File menu. To get used to it, try it both ways.

To prepare a disk for use, you'll need to format it. Take a
blank disk, or a disk whose information you don’t mind being
destroyed. Place it in a drive. Pull down the Special menu and
choose Format. Be sure you choose to format the blank disk and
not your system disk. (The best way to guarantee that you do
not format the wrong disk is to eject the disk you do not want
formatted. Remember, everything on a disk is destroyed when
you format the disk. So watch yourself when you do this.)
You may also format a disk from the System Utilities options
and from BASIC if you have DOS 3.3 running. See below for
instructions on formatting disks without the DeskTop.

To run a program from the DeskTop, just open the disk
with the program on it and double-click it with the mouse
pointer. Once you have your BASIC programs saved on disk,
you can execute them from the DeskTop. To erase a program
or file you don’t want any more, drag (place the pointer on the
icon and hold the mouse button down) it to the trash can icon.
The program or file will immediately be erased from your
disk. With 3%-inch disks, if you place the disk in the trash, it
will just be ejected from the drive. (With 5%-inch disks, you
have to open the door and take them out.)

16

U U

A

R TR S R

11 1 3

Introduction

Booting Without the DeskTop
Skip this section if you use the Desktop.

Now let’s see how to boot a ProDOS disk that does not have
the DeskTop. Take the ProDOS disk and place it into the disk
drive. Insert it gently and evenly until it is all the way in, and
it will click into place. If you have a 5%:-inch drive, close the
door on the disk drive once the disk is in. Now turn on your
computer and the drive will start spinning. The disk drive will
spin for a while, and then a message will appear on your
screen with the title of the disk. When you're presented with a
menu to select an action, take the option to exit. When you
have successfully done this, a cursor will appear indicating
that your system is all set to go.

Reading the Contents: CAT and CATALOG

To find out what is on a disk without the DeskTop, simply
type in the word CAT and press return. If your system is
properly booted, you will be presented with a listing on your
screen showing you the various files on your disk. If you get a
?SYNTAX ERROR after you have correctly typed in CAT, it
means your system did not boot. Instead of shutting off the
power, enter PR#6 and press the return key. This is another
way of booting your system, except you do not have to turn
off the power. (You can also reboot by pressing the control
and open-Apple keys and pressing the reset key.)

Impressing your friends. Remember that the disk drive is
controlled by slot 6. By typing in PR#6, you access that slot.
(If you put a drive controller card in slot 5, PR#5 would boot
the disk system.) To impress people, type in IN#6, and it will
do the same thing as PR#6. If you really want to knock ‘em
dead, type in CALL —1401 . That’s simply a way to show off
and another way to boot your system.

Running Your First Program

When you use the DeskTop, running a program just requires
that you place the pointer on the program you want and per-
form a double-click. (Alternatively, you can do a single-click to
select a program and choose Open from the File menu.) How-
ever, if you are writing BASIC programs and you want to run
a program from BASIC without reentering the DeskTop, do
the following. Enter

RUN Program.Name
17

CHAPTER 1

Your disk drive will whirl, and shortly your program will
appear. That’s just about all there is to it; however, there are a
few more things you should know before we continue. Let’s
look at a few files. Enter

CAT

and press the return key.

The files on your disk will appear on the screen. Actually,
since there’s a hierarchical file system on your disk, only those
of the “current directory” will be seen. (A hierarchical file sys-
tem means that your disk is arranged like a file cabinet with a
lot of drawers and file folders. What you see depends on what
drawer and file folder are currently open.) The files represent
the main types you will see on a disk.

In this book, we will spend most of the time writing BAS
(BASIC) files, but we will also be creating TXT (text) files. BIN
(binary) and VAR (variable) files will be introduced in later
chapters. There are a couple of other DOS commands we’ll
mention now. Notice the little asterisk (*) next to the files on
the disk. This means the file is LOCKed. If a file is locked, it
cannot be removed from the disk with the DELETE command.
If you want to delete a locked file, you must first UNLOCK it.
See Table 1-1.

Table 1-1. Some DOS Commands

(Must be all uppercase)

Command Result

RUN or - Executes BAS files

BRUN Executes BIN files

LOCK Prevents a file from being overwritten or removed
with a DELETE command

DELETE Removes a file from the disk

UNLOCK Removes the LOCKed status of a file and enables
the user to remove it with a DELETE command

For the time being, don’t change anything on the disk
that came with your computer. Get a blank disk and use it for
experiments with your DOS commands.

Formatting Blank Disks Without the DeskTop

First, if you do not have a blank disk, go get one. Do not use
your System Disk for this next procedure except to boot your

18

-3 1 13

-

Introduction

DOS. Look at the diagram of a 3%2-inch disk (Figure 1-4), or
skip ahead to the discussion of 5%-inch disks if that’s what
you’re using.

Figure 1-4. 3%2-Inch Disk

N e o O

) N6 Ir
- |1 o
‘

[E
\l

Front Back

N

(|
.

The front, or top, of the disk is the side that faces upward
when you insert it into your drive. This is the side on which
you should place the label. In the upper right corner of the
disk is the write-protect window. When the window is closed,
you can change what’s on the disk; when it’s open, all of the
files are protected from being changed. For example, if you
have some files that you do not want to be accidentally de-
leted, you may wish to physically write-protect them by open-
ing the write-protect window. If you attempt to format the
disk, you will be informed that it is write-protected.

On the back side, or bottom, of the disk, you can see the
slot with the write-protect window. Slide it up and down to
see how to open and close the write-protect window. You'll
want a blank disk (one with no programs or files saved on it)
with a closed write-protect window (not write-protected) for
practice. If you're using a 3%:-inch-disk system, skip the fol-
lowing section on 5%-inch disks (see Figure 1-5) and move
ahead to see how to format a disk.

19

CHAPTER 1

Figure 1-5. 5%-Inch Disk

Front

The item to notice on your blank 5%2-inch disk is the
square notch in the upper right corner. This is the write-protect
notch. If there is no notch on a disk, or if the notch is covered
by a little tab (called the write-protect tab), you cannot change
files on that disk—even if all the files are unlocked. This is an
important feature since it protects you against accidental era-
sure or overwriting. Be careful not to touch any of the exposed
disk surface in the window of the disk. Touching can damage
the disk, making it impossible to read the files on the disk.

Now follow these steps to format a disk without using the
DeskTop:

. Boot your ProDOS disk (System Ultilities).

. When the menu appears, choose the option Format a Disk.

. REMOVE the ProDOS disk.

. Place your blank disk in the drive and close the door. Be
sure that the write-protect window is closed on 3%:-inch
disks (or the write-protect notch is uncovered on 5%-inch
disks.)

5. Follow the prompts on the menu.

BN =

Once your disk has been formatted, you'll never need to

format it again unless you want to destroy all the files on that
disk.

20

S U R R

-

1

B

Introduction

To format a disk from BASIC in DOS 3.3, do the following;:

1. Boot a DOS 3.3 disk.
2. Place an unformatted disk in the drive.
3. Key in the following, pressing the return key after each line:

NEW
10 TEXT : HOME
INIT HELLO

Every DOS 3.3 disk must have a HELLO program. Actu-
ally, the HELLO program doesn’t have to be named HELLO.
You could just as easily use INIT HOWDY or INIT STARTING-
PROGRAM. However, HELLO is the name almost all DOS 3.3
programmers use (it's a convention, a rule that most people
follow voluntarily). The one-line program

10 TEXT : HOME

can be any program you want to be the startup program.
Don’t ever delete the HELLO program from a DOS 3.3 disk.

Similar to a Typewriter

If you're familiar with a typewriter keyboard, you will see
most of the same keys on your Apple IIGS. For the most part,
these keys do almost the same things as typewriter keys. Of
course, you cannot type just anything on the screen. If you
start typing away, you'll get a ?SYNTAX ERROR unless you
put in the proper statements. Otherwise, though, think of your
keyboard as you would a typewriter keyboard.

Keys You Won’t See on a Typewriter

While most of the keys on your IIGS look like those on a type-
writer, many do not, and they are important. The following
keys are peculiar to computers; you will soon get used to them
even though they will be a bit mysterious at first. Refer to Fig-
ure 1-6 for the keys discussed.

Esc. The esc key in the upper left corner stands for escape.
Depending on the program in memory or the particular task
you're working on, it will do different things. You'll use it
when you're editing programs (discussed in Chapter 2). For
now, you should know that when you press esc, you will af-
fect the next keyboard entry. Also, to operate the esc key, you
don’t have to hold it down while simultaneously pressing an-
other key.

21

CHAPTER 1

Figure 1-6. The IIGS Keyboard

—
e JJ6 e
) | T b

8

e

o]

Control. To use this key, you must hold it down while
pressing another key. Try holding it down and pressing the G
key. Does that ring a bell? Later, you will learn the use of con-
trol characters that are initiated by pressing the control key and
another key simultaneously.

Reset. The reset key is often a panic button. When things
freeze up on your computer, sometimes the only way to
unjam them is to hit control-reset. Depending on the program
in memory, hitting the reset key will have different effects.
With certain programs in memory, strange things can happen
if you hit reset. Don’t be afraid of it, but for now, use it only
when instructed or when a program freezes up on you. As a
general rule, never press reset when your disk drive light is on
and the door is closed.

Arrow keys and space bar. The left, right, up, and down
arrows move the cursor without affecting the characters on the
screen. If you advance the cursor with the space bar (the long

22

B DR R

A

N

Introduction

—
-

.

s (s

CCE)

L0IE

>|?
]~ / shift ! 2

e ——

i

JJEE [

key at the bottom of your keyboard), you will wipe out any
characters you see on the screen. This is because a space is en-
tered as the character. The arrows are used extensively in
editing. If you retrace a line with the right arrow, you will ver-
ify the line. Later, in the discussion of editing programs, you
will see that there are many uses for the arrow keys.

Return. The return key is something like the carriage re-
turn on a typewriter. In fact, you may see it referred to as a
carriage return, or CR, in computer articles. It works in a man-
ner analogous to a typewriter’s carriage return: After you've
pressed it, the cursor bounces back to the left-hand side of the
display screen. However, there are other uses for the return key.

Apple key. The open-Apple key on your IIGS operates
something like the control key in that, when pressed in con-
junction with other keys, it affects the way other keys work.

23

- o |

CHAPTER 1

New Meanings for Old Keys

Some of the familiar keys have different meanings for comput-
ers from those we usually associate with the key symbols.
Many are math symbols that you may or may not recognize.
The next chapter will illustrate how these keys can be oper-
ated, and they will be discussed in detail. For now, here’s a
quick look at the math symbols:

Symbol Meaning
Add

Subtract

Multiply (different from conventional)
Divide (different from conventional)
Exponentiation (the symbol is called a caret)

~ * | +

In addition to some of the new representations for math
symbols, other keys will be used in ways that you are not used
to. As we continue, we will explain the meanings of these
keys. Just to accustom you to the idea that the IIGS has special
meanings for certain keys, here are some others that have spe-
cial meanings:

Symbol Meaning

$ String variable or hexadecimal value
End of a BASIC program statement
% Integer variable

? Can be used as a BASIC PRINT statement

Don't try to understand what these symbols do. Just be
prepared to think about symbols in “computer talk.” As you
become familiar with the keyboard and the uses and meanings
of these symbols, you will be able to handle them easily. The
first step is being aware that the different meanings exist.

On the Screen

We’ve mentioned the cursor, but haven't told you much about
it. If you've not already noticed, the cursor is a blinking checker-
board square. At other times it can be a solid square or a
blinking underline. Perhaps the easiest way to understand the
cursor is to think of it as a marker that tells you where you are
and what your computer is doing. When the cursor disap-
pears, your computer is either running a program or is hung
up and not operating. If you think it’s hung up, hit the con-
trol-reset key combination or reboot your system by turning it
off and then on again. In addition, there are different prompts
representing different states.

24

-

.

U B

1

3

3

Introduction

Different Prompts

As you have seen, the Applesoft prompt is the bracket-shaped
marker—]—meaning that the language Applesoft is ready to
go. If you have Integer BASIC in residence, your prompt looks
like an arrowhead: >. Whenever you see the > prompt, you
know that Integer BASIC, and not Applesoft, is in operation.
Finally, if your prompt is an asterisk *, you are in the monitor.
This is a new meaning for monitor; it's where machine-level
programming is done. For the most part, you do not want to be
in the monitor. If you see the *, press control-C and press the
return key to get back into BASIC—either Applesoft or Inte-
ger. (Just for fun, if you find yourself in monitor, press L, and
you'll get an assembly listing. This may be useful. If you're
showing off your IIGS to a friend and you accidentally bomb
and end up in monitor, press L and list the assembly/machine
code. Your friend will think you know what you’re doing.)

Controlling the Control Panels

Whenever you wish, you can open up your Desk Accessories
and change certain parameters. Usually, you'll have to do this
only once when you choose your basic system—for example,
to change the disk drive, monitor, and printer. You've seen
how to set the slots, but there are several more options that
you may need to change periodically. Let’s see what they are.
(Remember, to get to the Desk Accessories, press control-open
Apple and the esc key.

When you see the various options that can be controlled,
some will have a checkmark (/) next to them. This indicates
the standard, or default, condition. Use the arrow keys to
move the cursor, the escape key to cancel and back out of a
file, and the return key to save a set of changes you’ve made.
Moving the cursor over a choice with the left- and right-arrow
keys will toggle the various options available. For example,
moving the cursor over the 40-column default in the Display
file will toggle it to 80 columns. The checkmark will disap-
pear, and your text and programs will be shown in 80 columns
instead of 40. The option in braces—{ }—is the nondefault
option available when a single alternative is available. Thus,

\/ Type: Color {Monochrome}

means that the default type of display screen is a color one,
while the single alternative is monochrome.

25

CHAPTER 1

We'll go over the various files in the Control Panel. Most
of the options are self-explanatory; we’ll try to clarify those
that may cause confusion.

Display

The Display choices are for the most part self-explanatory. The
Standards option will change everything back to the default
parameters, and if any single default parameter is changed, the
checkmark next to Standards will disappear, and the Yes will
be changed to No. If you want to undo several changes, you
can just toggle the No to Yes, and everything will go back to
the default condition. Figure 1-7 gives the Display options.

Figure 1-7. The Control Panel: Display

Options

The Options parameters are of the “set and forget” variety.
Once you have comfortably set them, you don’t have to worry
about doing so again. Most users will incorporate the U.S.A.
keyboard, but you can change it to the one desired. Keyboard
buffering refers to a “type ahead” buffer for fast typists. If you
really type fast, you can have the keystrokes stored in a small
buffer to be sent to the screen when the computer catches up
with your typing speed.

You can adjust the next four parameters to your own com-
fort. For example, if you want very fast repeats for keys held
down, move the asterisk to the right. If you want slower re-
peats so that you won't get too many of the same thing racing
across your screen, move the asterisk to the left. Do the same

26

-

N R R

Introduction

with the other speed controls. Figure 1-8 shows the Options
parameters.

Figure 1-8. The Control Panel: Options

Sound

The sound panel (Figure 1-9) lets you change the sound of the
bell. This may sound like a rather silly option, but if you can
make the sound more pleasant, why not?

Figure 1-9. Sound Panel

System Speed

This is another option that you'll probably leave alone most of
the time:

System Speed: Fast/Normal
27

CHAPTER 1

Your IIGS can run at either 2.8 MHz (megahertz) or 1 MHz.
You might as well use the faster speed unless you come across
a program written for an older Apple II that has a timing rou-
tine, or unless you have an older interface card, such as a disk
interface card, that has a timing-dependent routine. If you
have a program or device that does not seem to be working
correctly, try changing the speed to see if that has any effect.

Clock

Setting the clock (Figure 1-10) is fairly self-explanatory. About
the only thing to decide is whether you want 24-hour (mili-
tary) or AM/PM format.

Figure 1-10. Clock Settings

Serial Printer Port

If you have an ImageWriter or ImageWriter II printer, you can
leave the printer port at the default settings. If you have a par-
allel printer, you will need a printer interface card, and you
can use this port for another device if you want. You may also
have to make adjustments for software with this control panel.
It all depends on your printer software. For example, if the
software adds a linefeed (LF) after a carriage return (CR), you
may not want another one added automatically. This problem
will be especially prevalent with public domain (free) software.
If your output is not what you expect, you may want to adjust
some of these values. Figure 1-11 illustrates the printer port
panel.

28

-

U -

N

5 D D B

Introduction

Figure 1-11. The Printer Port Panel

1 ridzha
OFF Handsha

1. Camcel fEsc

Modem Port

The modem port panel (Figure 1-12) is just like the printer
port, except it sets the parameters for the second serial port.
The default configuration is the same as for the printer port,
except the default device is the modem and the baud rate is
1200 instead of 9600. Depending on the type of modem you
have, the baud rate is the most likely to be set. I recommend a
modem with a baud rate of 1200 since it has the best cost/
speed ratio on the market, but you may have a 300- or 2400-
baud modem, depending on your needs and finances. Remem-
ber, though, higher-rated modems can run at lower speeds,
but lower-rated modems cannot run at higher speeds.

Figure 1-12. Modem Port Panel

29

CHAPTER 1

Summary

This first chapter has been an overview of your new machine.
You should know how to hook up the different parts of your
IIGs-and get it running. Also, you should be able to boot and
initialize a disk, CATALOG (or CAT) the contents of a disk,
and run a program from your disk drive. You should know
some of the basic ProDOS commands for manipulating files
on your disk. Finally, you should be familiar with the key-
board and know what the cursor and prompts mean.

At this point there is still much to learn. Don't feel bad if
you don’t understand everything. As we go along, you will
pick up more and more, and what may be confusing now will
become clear later. Have faith in yourself, and in no time you
will be able to do things you never thought possible.

The next chapter will get you started in learning how to
program your Apple. It is vitally important that you enter and
run the sample programs. Also, it is recommended that you
make changes in them after you have first tried them out to
see whether you can make them do slightly different things.
Both practical and fun (and crazy) programs are included so
that you can see the purpose behind what you will be doing
and enjoy it at the same time.

30

1

S RN

.

N

1

Getting Started

In this chapter you'll be introduced to writing programs in the
language known as Applesoft BASIC, also called floating-point
BASIC. The best way to learn programming is to actually do it
and to keep it simple. By breaking a large problem into a se-
ries of little problems, you can do just about anything you
want. The trick is to solve one problem at a time. By simplify-
ing the problem, you simplify the solution. Just ask yourself,
““What do I want done? What steps are involved in getting the
job done? In what sequence do the steps occur?”

The First Statement: PRINT

Probably the most often used statement in Applesoft is
PRINT. Words that are enclosed inside quotation marks fol-
lowing a PRINT statement will be printed to your screen.
Numbers and variables will be printed if they are preceded by
a PRINT statement. This statement commands your computer
to print output to the screen or to the printer from within a
program or in the immediate mode. You may well ask what
the difference is between the immediate and program modes.
We'll explain, but first turn on your computer and make sure
the bracket prompt is on your screen and blinking. Also, to
clear memory and make sure nothing is there that will get
mixed up with your statements, type in the word NEW and
press the return key.

Immediate mode. The Immediate mode executes a com-
mand as soon as you press return. For example, try the
following;:

PRINT “THIS IS THE IMMEDIATE MODE"”

After you've pressed return, if everything is working correctly,
your screen should look like this:

PRINT “THIS IS THE IMMEDIATE MODE”
THIS IS THE IMMEDIATE MODE

See how easy that was? Now try PRINTing some num-

33

CHAPTER 2

bers, but don’t put in the quotation marks. Try the following
(pressing return after each line):

PRINT 6
PRINT 54331

As you can see, you can enter a number without quotation
marks, but the actual value of the number is placed in mem-
ory rather than a “picture” of it (we'll discuss this later).

Program mode. In this mode the execution of statements
is delayed until your program is run. All statements that begin
with numbers on the left side will be treated as part of a pro-
gram. Try the following.

10 PRINT “THIS IS THE PROGRAM MODE”

Nothing happens, right?

Type in RUN and press return. Your screen should look like
this:

10 PRINT ““THIS IS THE PROGRAM MODE”

RUN

THIS IS THE PROGRAM MODE

Clearing the Screen and Writing Your Name

Let’s write a program and learn three new statements: TEXT,
HOME, and END. The TEXT statement clears any graphics
from the screen and puts you in the text screen, placing the
cursor in the lower left corner. The HOME statement clears
the screen and places the cursor in the upper left corner. The
END statement tells the computer to stop executing state-
ments. From the immediate mode write in the TEXT and
HOME statements to see what happens. Remember to press
return after each statement in the immediate mode.

Now, let’s write a program using TEXT, HOME, END,
and PRINT. (Be sure that you press the return key at the end
of each line.)

10 TEXT

{0 HOME

30 PRINT “<YOUR NAME>",
40 END

RUN

All you should see on the screen are your name and the
blinking cursor. Now, here are two shortcuts that will save
you time in programming and in memory. First, instead of en-
tering new line numbers, you can put multiple statements on
the same line by using a colon (:) between statements. Also,

34

R R B

-

3

Getting Started

instead of typing in PRINT, you can enter a question mark (?).
Try the following program to see how this works.

10 TEXT : HOME
R0 ? “<YOUR NAME>" : END

These two lines do exactly the same thing, but you don't
have to put in as many lines or write out the word PRINT. As
a rule of thumb, always begin your programs with TEXT :
HOME. This will help you get into a habit that will pay off
later when you're running all kinds of different programs with
text and graphics everywhere. There will be exceptions to the
rule, but for the most part, by beginning your programs with
TEXT : HOME, you will start off with a nice, clear screen in
the proper mode for most applications. While you're just get-
ting started, it’s probably a good idea to use the colon spar-
ingly since it’s easier to understand a program with a
minimum number of statements in a single line. Some pro-
grammers like to string together as many statements in a line
as possible, but that’s not a good idea in the long run. It is
much easier to debug (find mistakes in) a program that has
more separate lines than one with a lot of lines strung to-
gether with colons.

Also, make liberal use of the REM statement. When the
computer sees a REM statement in a line, it goes on to the
next line number, executing nothing until it comes to an exe-
cutable statement. The REM statement works as a REMark in
your program lines so that other users of your program will
know what you are doing and as a reminder to yourself of
what you have done. Here’s how REM works:

10 TEXT : HOME : REM This sets the full-screen text mode
and clears the screen.

20 PRINT “<YOUR NAME>" : END

30 REM This fabulous program was created by <Your name
here>

When you run the program, you will see that the REM
statements have no effect at all. However, what your program
is doing is much clearer since you can read what the state-
ments do in the program listing.

A case of case. When you write a program, your IIGS
doesn’t care whether you use lowercase or uppercase letters.
Keywords will automatically be changed to uppercase. Words
enclosed in quotation marks or following REM statements re-
main in whatever case they were originally typed in.

35

CHAPTER 2

Setting Up a Program

Now that you've written a program, let’s take a look at using
line numbers. In your first program, you used the line num-
bers 10, 20, and 30. You could have used line numbers 1, 2,
and 3, or 0, 1, and 2, or even 1000, 2000, and 3000. In fact,
there is no need at all to have regular intervals between num-
bers. Line numbers 1, 32, and 1543 would work just fine.
However, it’s usually a good idea to number programs by
tens, starting at 10. Wouldn't it be easier to number them 1, 2,
3, 4, 5, and so forth? In some ways perhaps it would be, but
overall, that’s definitely not a good policy. Here’s why. Type
in the word LIST and press the return key. If your program is
still in memory, it will appear on the screen. Suppose you
want to insert a line between lines 20 and 30 that prints your
home address. Rather than rewriting the entire program, you
can just enter a line number with a value between 20 and 30
(such as 25) and enter the line. Try it, but first remove the
END statement in line 20.

25 PRINT ‘“<YOUR ADDRESS>"
RUN

Your name and address are now printed on the screen.
All you had to do was to write in one line instead of retyping
the whole program. If you had numbered the program by
ones instead of tens, you would not have been able to do this.
There would have been no room between lines 2 and 3 as
there was between lines 20 and 30. You would have had to
rewrite the whole program. With a small program, rewriting is
not much of a problem, but when you have hundred- and
thousand-line programs, you'll be glad there are spaces be-
tween line numbers.

Listing Your Program

As you just saw, entering the word LIST produces a listing of
your program. To make it neat, type in HOME : LIST and
press return. You'll get a listing on a clear screen. However,
once you start writing longer programs, you won’t want to list
everything—just portions. Here are the options available with
the LIST statement:

36

3

Getting Started

Statement Result

LIST Lists entire program

LIST 20 Only line 20 is listed (or any line number you
choose)

LIST 20,30 Lists all lines from 20 to 30 inclusive (or any other
range of lines you choose)

LIST -40 Lists from the beginning of the program to line 40

(or any other line number chosen)
LIST 40- (or 40,) Lists from line 40 (or any other line number cho-
sen) to the end of the program

Try listing different parts of your program with the op-
tions available to see what happens. These statements will
give you some examples of the different options:

LIST 286
LIST 20-
LIST -20
LIST 25,30

Weird programming. Generally, you will want to use the
LIST statement from the immediate mode as you write your
program. However, you can use it from within a program. Just
for fun, add this line to your program:

40 LIST

Run it and see what happens. Believe it or not, this has some
very practical applications, which you will see in some pro-
grams later in the book. For the time being, though, it’s just
for fun.

Saving Programs

Suppose you write a program, get it working perfectly, and
then turn off your computer. Since the program is stored in
RAM memory, it will go to Never-Never Land, and you will
have to write it in again if you want to use it. Fortunately, it’s
a simple matter to save a program to your disk. We’ll use your
program as an example. Make sure your program is still in
memory by LISTing it. If it’s not, you'll need to write it in
again. Now make sure a formatted disk is in the drive and en-
ter the following:

SAVE MY .PROGRAM

The disk will start whirling, and the red light will glow on
the disk drive. This means the disk drive is writing your pro-
gram to disk. When the red light goes out, enter the word
CAT and press the return key. You should see

37

CHAPTER 2

MY.PROGRAM BAS 1

which means that your program has been successfully saved
to disk.

Sometimes you will want to save your program to a cer-
tain subdirectory. For example, you may want to organize
your disk into different types of programs. One program might
be a graphics program and another a practice program for
using variables. If you want to save a program called COLORS
in a subdirectory called GRAPHICS, you will enter

SAVE /GRAPHICS/COLORS

Using subdirectories will make it easier for you to find
things in a given category. If you want to save another graph-
ics program—say, one that draws lines—you can save it under
the GRAPHICS subdirectory. For example, you can save it as
LINES, using the format '

SAVE /GRAPHICS/LINES

Now both the program COLORS and the program LINES
have been saved in the same directory.

Recalling Programs

The best way to be sure that you have saved a program to
disk is to turn off your Apple completely, and then turn it on
again. Go ahead and do it; then CAT your disk. You should
be able to see your program (MY.PROGRAM) in the catalog.
Now, enter the word RUN and the name of your program.
The dash (-) works just like RUN.

RUN MY.PROGRAM or - MY.PROGRAM

The disk drive will whirl for a while, and then your pro-
gram will be executed. In this case the screen should go blank.
Your name and address should appear at the top of the screen
along with a listing of your program. This means that you
have successfully saved a program to disk.

If you use a subdirectory, you must name the path to
your program. For example, if you have saved a program
called COLORS under the subdirectory GRAPHICS, you must

RUN /GRAPHICS/COLORS

While using ProDOS, you can save time by establishing a
PREFIX using the PREFIX command. For instance, to make
GRAPHICS the default directory, just enter

PREFIX /GRAPHICS/
38

B

1

Getting Started

Until you name another PREFIX, all RUN commands will run
the file you have named that is in the subdirectory called
GRAPHICS. Thus, if you have established GRAPHICS as your
prefix directory, you will be able to enter

RUN COLORS

and you will get the program without having to specify the
subdirectory GRAPHICS. Also, any program you save will be
placed in the prefixed directory.

Now, try something else. Enter the following:

NEW Clears memory

LIST Shows that nothing is in memory
LOAD MY.PROGRAM

LIST

RUN

You can just run the program directly from disk, but you
can also load a program and then run it. There will be many
occasions when you will want only to load and list a program,
but not run it. When you begin working on larger programs,
you may spend several days working on the same one. Since
you do not want to leave your computer turned on the entire
time, you will save parts of the program as you go along.

A Safety Net

As you begin writing longer programs, you should save a copy
of your program to disk occasionally—every 25 lines or so, for
example. If you do this, when your dog accidentally trips over
your cord and turns off your computer, you won't lose your
entire program.

Now that you have saved and loaded programs, here’s
another neat trick. Remembering that you have saved your file
under the name MY.PROGRAM, you can change the contents
of that file. First, add the following line and then LIST your
program:

{7 PRINT “<YOUR CITY, STATE & ZIP>"

Since line 27 has been added, your program is now different
from the program you saved in the file MY.PROGRAM. Now,
using lowercase letters, enter this line, followed by pressing
the return key:

save my.program

Clear memory with NEW, LOAD the file MY.PROGRAM,
and LIST it. Line 27 is now part of MY.PROGRAM. All you

39

CHAPTER 2

have to do to update a program is to LOAD it, make any
changes you want, and then save it under the same filename.
However, be very careful. No matter what program is in mem-
ory, this program will be saved when you enter the SAVE
command. If your disk has PROGRAM.A and you write a dif-
ferent program, and then save it under the tite PROGRAM.A,
PROGRAM.A will be destroyed and the saved program will
actually be the new program. The best way to avoid overwrit-
ing a cherished program is to LOCK it. Then if you try to save
a program to that filename, your computer will tell you FILE
LOCKED. It will not overwrite that file with any other pro-
gram until you UNLOCK it. Also, if you have a really impor-
tant program, it’s a good idea to make a backup file. For
example, if you had saved your current program under the
filenames, MY.PROGRAM and MY.PROGRAM.B, you would
have two files with exactly the same program. To play it really
safe, save the program on two different disks.

I told you so department. Sooner or later this will hap-
pen to you: You'll have several disks, one of which you want
to initialize. You'll pick up the wrong disk, one with valuable
programs on it—possibly one you bought for $157.23. There
will be no write-protect tab on the disk, and after you initial-
ize it and blow away everything on it, you will realize your
mistake. You cannot avoid that happening at least once, be-
lieve me.

Therefore, to insure that such a mistake is not irreversible,
here’s what to do: make backups. The copy program on system
master disk that came with your computer is very handy. Sim-
ply run it and copy valuable programs from one disk to another.
Take your original and put it somewhere out of reach. Then,
when you accidentally erase a disk, you can make a copy.

Fixing Mistakes: Error Messages

By now you have probably entered something and received a
message saying ?SYNTAX ERROR IN 30 or some such number
(referring to line 30 or wherever an error was detected). This
message will occur in the immediate mode as soon as you hit
return and in the program mode as soon as you run your pro-
gram. Depending on the error, you will get different types of
messages. As you continue, you will see various messages, de-
pending on the operation. For now, we’ll concentrate on fixing
errors in program lines rather than on the nature of the errors
themselves. This process is referred to as editing programs.

40

|

-

3

Getting Started

Deleting lines. The simplest type of editing involves in-
serting and deleting lines. Let’s write a program with an error
in it and then fix it up.

NEW

10 TEXT : HOME

R0 PRINT *‘‘ AS LONG AS SOMETHING CAN”’

30 PRINT : “GO WRONG” : REM LINE WITH ERROR
40 PRINT “IT WILL”

B0 END

RUN

If you write the program exactly as it appears above, you will
get a ?2SYNTAX ERROR IN 30 message. Now, enter these lines:

30
LIST

What happened to line 30? You've just learned how to
delete a line. Whenever you enter a line number and nothing
else, you delete the line. You already know how to insert a
line; so, to fix the program, just enter the following line:

30 PRINT ‘“GO WRONG”

Now when you run the program, it should work fine. The
error was inserting the colon between the PRINT statement
and the words to be printed. Another way to fix the program
is simply to reenter line 30 correctly without first deleting it,
but you can see how simple it is to delete a line by entering
the line number.

Now suppose there are several lines that you want to de-
lete. Instead of having to write all of the line numbers, you
can use the DEL statement. Try the following:

DEL 20,50
LIST

Only line 10 is left. To DELete a range of lines, enter the first
line you want deleted, a comma, and the last line you want
deleted.

The Apple Editor

Within your IIGS is a trusty little editor. Before reading a de-
scription of it, however, look through the discussion of utilities
in Chapter 11. The editor in your Apple works just fine, but
there are some really powerful ones available. The Program
Line Editor (PLE) from Beagle Bros. is an excellent editor and is
available commercially. Using PLE instead of the editor in

41

CHAPTER 2

your IIGS will save you a considerable amount of time and
speed in your progress toward learning to use programming
statements. For now, though, we’ll concentrate on the editor
in your computer. It has one huge advantage—it’s right in
front of you.

To begin, we’ll write another bad program and fix it. To
keep things consistent, use the 40-column mode (if you're in
80 columns, just press the esc key and 4 to switch to 40 col-
umns). Also, just for fun, here is something new. In line 40,
after you've put in the first quotation marks, press the control
key, and while holding it down, press the G key. You will
hear a bell, but you will not see the G. Now, type in the fol-
lowing program and run it:

NEW

10 TEXT : HOME

R0 PRINT “IF I CAN GOOF UP A PROGRAM ’;
30 PRINT “I CAN” : FIX IT : REM BAD LINE

40 PRINT “ ”’: REM control-G BETWEEN QUOTATION MARXS
50 END
RUN

You should see ?SYNTAX ERROR IN 30. To repair it, instead
of rewriting line 30, follow these six steps:

1. LIST your program.

2. Press the esc key.

3. Press the up-arrow key repeatedly until the cursor is on line
30; then use the left- or right-arrow key to move the cursor
to the start of the line.

4. Press the esc key again.

5. Press the right-arrow key until you get to the second quota-
tion mark in line 30. Then press the space bar twice. This
will erase the quotation mark and the colon.

6. Continue pressing the right-arrow key until the cursor is to
the right of the word IT, type a quotation mark (), and
then press return.

LIST the program again. Line 30 should be correct and
the REM statement should be gone. Now run the program.
You should see the statement IF I CAN GOOF UP A PRO-
GRAM I CAN FIX IT and hear a bell ring. When you LISTed
your program, you should also have heard a bell ringing. The
bell rings whenever you run or LIST a program with the hid-
den control-G. In longer programs, it is sometimes helpful to
use control-G’s in REM statements to flag various parts of the
program. This makes locating parts of long programs easier.

42

-

3

3

Getting Started

However, there’s a mystery. What happened to the REM
statement in line 30? When you use your Apple’s editor, you
must retrace the entire line with the cursor if it is to be main-
tained in the line. Essentially, this is like rewriting the line; as
soon as you hit the return key, the line is terminated. Since
you did not retrace the REM statement, it was erased.

Let’s learn more about the editor. Enter the following pro-
gram. (Remember, in Applesoft, you can use a question mark
to replace PRINT statements. If you LIST the program before
you run it, you will see that all of the question marks have
magically been transformed to PRINT statements.)

10 TEXT : HOME

20 ? “SOMETIMES I LIKE TO WRITE LONG, LONG LINES
AND REALLY EXPRESS MYSELF AND TELL THE
COMPUTER THE WAY THE WORLD WAS CREATED ”’

: WHEW!
30 ? “AND SOMETIMES I LIKE SHORT LINES”
40 ? “DING, DING” : PRINT “ ’: REM ENTER control-G
TWICE
INSIDE THE QUOTATION MARKS
50 END
LIST (See what happened to the question marks?)
RUN

If you ran the program, it bombed. The problem is that
the WHEW! is thrown in without a PRINT statement or quota-
tion marks after the colon has terminated the line. To repair it,
LIST the program, hit esc, walk the cursor up to line 20 (using
the up-arrow key), then hit esc again. Starting at line 20, re-
trace the line to the point where the mistake has been made.
To make it simple, remove the second quotation mark and,
leaving the colon in place, add a quotation mark after the
word WHEW!. Since the colon is now inside the quotation
marks, it will be printed as part of the PRINT statement and
will be ignored as a line-termination statement. After you've
run the cursor over the rest of line 20, press return. Now run
the program.

Something strange happens to the statement in line 20. It
has a big space in it, but you did not put it there. Here’s what
has happened. When you retraced the line, the cursor went
out into “space” as you traced past the end of the first line,
and the computer thought you were entering spaces. To avoid
this problem in the future, before entering the editor, enter

POKE 33,33

43

CHAPTER 2

This statement resets the text window so that, as soon as the
cursor hits the end of a line, instead of going into space, it im-
mediately wraps around to the start of the next line. To test it,
do the following;:

1. Reenter line 20 in the original wrong way.

2. Type HOME and press return; then type POKE 33,33 and
press return.

3. LIST the program, hit esc, walk the cursor to line 20, and
press esc again.

4. Now retrace the line, and make the same repairs you did
the first time. Run the program and notice how the line is
now correctly formatted. The TEXT statement in line 10 re-
sets the text window to its full size. If there were no TEXT
statement in line 10, the lines would extend only part of the
way. Generally speaking, whenever you are editing lines—
especially with longer lines to repair—use POKE 33,33 first.

More Editing

As long as you are in the edit mode (after you have hit esc
and before you press any key other than the arrow keys), the
cursor, which is solid and has a + on it, can be moved with-
out affecting anything on the screen. To get used to it, LIST a
program, press esc, and walk around the screen using the ar-
row keys. None of the characters on the screen will be af-
fected. Now, try out the editor on something a little trickier,
but very useful. Suppose you have already typed in a program
and run it when you realize that you left out a word in the
middle of a line. Even with the tricks you’ve learned so far,
you would need a long time to insert a single word since
you’'d have to retype the entire line. Here’s how you can use
the editor to do insertions. Try the following little program:

10 TEXT : HOME

20 PRINT “NOW IS THE TIME FOR ALL GOOD MEN TO COME
TO THE AID OF THEIR COUNTRY”

30 END

So far, so good. But you meant to include women as well
as men in line 20. You could retype the entire line, but all you
really need to add is AND WOMEN after MEN. Do the fol-
lowing to make the change with the editor:

1. Enter
HOME : POKE 33,33 : LIST Q0

44

4 3

-1

3

N -

-

A

B D

]

Getting Started

. Press esc, walk the cursor up to the beginning of line 20;

then press esc again.

. Trace over the line to the point where you want to insert

AND WOMEN (right after the word MEN).

. At the point of insertion, press esc and then the up-arrow

key. This will take the cursor right above the line you're
fixing.

. Once you are above the line, press the space bar to release

you from the editor, type in a space, and then enter AND
WOMEN.

. Now, press esc again to get back into the editor. Press the

down-arrow to take you down into the line and the left-
arrow key to take you back to the point where you want the
insertion. Once at the insertion point, press the space bar to
get out of the editor. Then retrace the remainder of line 20
with the right-arrow key.

The diagram illustrates the above steps:

...GOOD MEN " TO COME ... (" indicates point of insertion—
when cursor is here, press esc
and up-arrow)

AND WOMEN
...GOOD MEN TO COME...

AND WOMEN

...GOOD MEN " TO COME ... (" points to exit the editor and
begin retracing line with right-
arrow key)

Now enter
TEXT : HOME : LIST 20

When you press return, you will find that line 20 now
reads

20 PRINT “NOW IS THE TIME FOR ALL GOOD MEN AND
WOMEN TO COME TO THE AID OF THEIR COUNTRY”

You will save yourself a great deal of time if you use the

editor instead of retyping every mistake you make. (You'll save
even more time if you use a commercial editor). For practice,
there are a several pairs of lines below that need repair. The
first line in each pair shows the wrong way and the second
line shows the correct way. Since seemingly little things can
make a big difference, there are a number of small changes to

45

CHAPTER 2

be made. However, as you will soon see, those little glitches
are the ones that are most likely to cause snags. Practice on
these examples until you feel comfortable with the editor—
time spent now will save you a great deal later.

Note: Once you have entered POKE 33,33, strange things
will sometimes happen on your screen when you LIST a pro-

gram. To set everything back to normal, enter the statement
TEXT.

Editor Practice

50 PRINT NOBODY EVER WENT BROKE UNDERESTIMATING
THE TASTE OF THE AMERICAN PUBLIC.”

60 PRINT “NOBODY EVER WENT BROKE UNDERESTIMATING
THE TASTE OF THE AMERICAN PUBLIC.”

10 TEXT HOME
10 TEXT : HOME

80 PRINT ‘“A GOOD MAN IS HARD TO FIND”
80 PRINT ‘“A GOOD PERSON IS HARD TO FIND”

HOME : TEXT PRINT ‘“We’re off
40 TEXT : HOME : PRINT ‘“We’re offl”’

If you can fix those lines, you can repair just about any-
thing. Once you get the hang of it, it’s quite simple.

Elementary Math Operations

So far, all we have done is to print out text, but that’s not very
different from having a fancy typewriter. Now, let’s do some
simple math operations to show that your computer can com-
pute. Enter the following:

HOME
PRINT R + R

This is what your screen should look like now:

PRINT 2 + 2
4

Big deal. So the computer can add (so can my five-dollar cal-
culator and my 12-year-old kid). Who said computers are
smart? The programmer (you) is the one who’s smart. Okay,
let’s give it a little tougher problem.

HOME
PRINT 7.87 * 183.85

46

-

S I

-

.

Getting Started

Still nothing your calculator can’t do, but it'd be a little
rough on the 12-year-old.

As you progress, you can work with more aspects of
mathematical problems. In the next chapter, you will learn
how to store values in variables as well as several other things
that would choke your calculator. For now, though, we'll just
introduce the format of mathematical manipulations. The plus
and minus signs work just as they do in regular math. For
multiplication, the X is replaced by the asterisk (*), and for di-
vision, =+ is replaced by the slash (/).

When you deal with more complex math, you will need to
observe a certain order, called precedence, in which problems
are executed. Depending on the operations used and the re-
sults you are attempting to obtain, you will use one order or
another. For example, let’s suppose you want to multiply the
sum of two numbers by a third number—say, the sum of 15
and 20, multiplied by 3. If you enter

3*15 + 20

you will get 3 multiplied by 15 with 20 added on. That’s not
what you want. The reason for that is precedence: Multiplica-
tion precedes addition. To help you remember the precedence,
here’s a little program that you can run. With it you can refer
to a sort of precedence chart on the screen and practice some
math problems in the immediate mode to see the results. (This
program is quite handy; you might want save it to disk to use
later.)

10 TEXT : HOME

20 PRINT ‘1. — (MINTUS SIGNS FOR NEGATIVE NUMBERS —
NOT SUBTRACTION)”

30 PRINT “2. " (EXPONENTIATIONS)”

40 PRINT “3. * / (MULTIPLICATION AND DIVISION)”

50 PRINT “4. + — (ADDITIONS AND SUBTRACTIONS)”

60 PRINT “NOTE: ALL PRECEDENCE IS FROM LEFT TO
RIGHT”

70 PRINT “YOUR COMPUTER FIRST EXECUTES THE
NUMBERS IN PARENTHESES, WORKING ITS WAY FROM
THE INSIDE OUT IN MULTIPLE PARENTHESES.”

80 POKE 34,10 : END : REM THE POKE STATEMENT RESETS
YOUR TEXT WINDOW

90 REM SO THAT YOU CAN DO MATH OPERATIONS

95 REM AND KEEP YOUR PRECEDENCE CHART ON THE
SCREEN

Try some different problems and see if you can get what
you want.

47

CHAPTER 2

Reordering Precedence

Once you get the knack of the order in which math operations
work, there is a way to simplify organizing math problems. By
placing two or more numbers in parentheses, you can move
them up in priority. Go back to the example of adding 15 and
20 and then multiplying by 3, but this time use parentheses:

PRINT 3 * (15 + 20)

Since the multiplication sign has precedence over the addition
sign, without the parentheses, you would get 3 times 15 plus
20. However, since all operations inside parentheses are exe-
cuted first, your computer adds 15 and 20 and then multiplies
the sum by 3. If more than a single set of parentheses is used
in an equation, then the innermost is executed first, with the
computer working its way out.

The parentheses dungeon. To help you remember the or-
der in which math operations are executed within parentheses,
think of the operations as being locked up in a multi-layer
dungeon. Each cell represents the innermost operation, and
the cells are lined up from left to right. Each operation is a
prisoner enclosed by walls of parentheses. To escape the dun-
geon, the prisoner must first get out of the innermost cell.
Then the prisoner goes to the right and releases any other
prisoners in their cells. Then they break out of the cell block
and finally out into the open. Unfortunately, since operations
are “executed,” this analogy is lethal for our poor escaping
prisoners. Try some of the examples and see if you can come
up with a better analogy.

The following examples show you some operations with
parentheses:

PRINT 20 + (10 * (8 — 4))

PRINT (12.43 + 92) / (3~ (11 — 3))
PRINT (22 * 3.1415) * (22 * 3.1418)
PRINT ((18 /4) * (3 + B)) / 18
PRINT 19 + 2 * (61 / 3) — (100 / 14)

Three Exercises
Now, try some of these problems in the proper format ex-
pected by your computer:

1. Multiply the sum of 4, 9, and 20 by 15.
2. Multiply 3.14159265 by 35; then multiply the result by it-
self. (This will compute the area of a circle with a radius of

48

S5 R B

-

A

.

1

5 I B Bl

Getting Started

35. To find the area of any other circle, just change 35 to
another value.)

3. Add up the charges on your long-distance calls and divide
the sum by the number of calls you made. This will give
you the average expense of your calls. Remember, though,
you have to do this in one set of statements in a single line.
Do the same thing with your checkbook for a month to see
the average (mean) amount for your checks.

Summary

This chapter has covered the most basic aspects of program-
ming. At this point you should be able to use the editor in
your IIGS, and write statements in the immediate and program
(deferred) modes. Also, you should be able to manipulate
basic math operations. However, we have just begun to un-
cover the power of the IIGS, and at this stage it is being
treated more as a glorified calculator than as a computer. Nev-
ertheless, this chapter is extremely important, for it is the
foundation upon which your understanding of programming
will be built.

If you do not understand something, review it before con-
tinuing. If you still do not understand certain operations after
a review, don’t worry; you will be able to pick them up later,
but it is still important that you first try to get everything to do
what it is supposed to do and what you want it to do. Chapter
3 will take you into the realm of computer programming and
increase your understanding of the IIGS considerably. If you
proceed one step at a time, you will be amazed at the power
you have at your fingertips, and will discover how easy it is to
program. You'll be leaving the realm of calculator-like state-
ments and getting down to some honest-to-goodness computer
work—where the fun really begins.

49

i

Moving Along

In the last chapter you learned how to execute statements in
both the immediate and program modes. From now on, we
will concentrate on the program mode, tying various statements
together within a program. We'll still use the immediate mode
to provide simple examples of how certain statements work.

As you learn more about statements, it would be a good
idea to start saving the example programs on your disk. You
can use them for review or for a quick lookup of examples.
Use filenames that you can recognize, such as VARIABLE EX-
AMPLE or HOW-TO SUBROUTINES. Remember that each
file must have a different name; be sure to number example
filenames (for example, ARRAYS 1, ARRAYS 2).

Variables

Perhaps the single most important function of the computer is
its use of variables. Basically, a variable is a symbol that can
have more than a single value. If you say, for example, X = 10,
you assign the value of 10 to the variable called X. Try this:

X =10
PRINT X

Your computer’s response will be 10. Now type in

X=56.7
PRINT X

This time you'll get 55.7.

Each time you assign a value to a variable, the computer
will respond with the last assigned value when you PRINT
that variable. Now try the following:

X =10
Y =18
PRINTX + Y

The IIGS will respond with 25.
As you see, variables can be treated in the same way as
math problems using numbers. However, instead of using the

53

CHAPTER 3

numbers, you use the variables. Now try this short program
that uses variables to calculate the area of a circle.

Area of a Circle

10 TEXT : HOME

20 PI = 3.14159266

26 REM YOU REMEMBER THE VALUE OF PI FROM YOUR
GEOMETRY CLASS

30 R = 15 : REM R IS THE RADIUS OF CIRCLE

40 PRINT (PI * R) * (PI * R)

45 REM THIS GIVES THE SQUARE OF PI TIMES THE RADIUS

50 END

When you run the program, you will get the area of a cir-
cle with a radius of 15. By changing the value of R in line 30,
you'll find that it’s a simple matter to quickly calculate the
area of any circle you want. Since the example squares a re-
sult, you can use the exponential sign—". Change line 40 to

40 PRINT (PI* R) " 2

That saves typing, doesn’t it? Run the program again and see
if you get the same results. You should. Also, try changing the
value of R to see the different areas of circles.

Variable Names

When you name a variable, the computer looks at only the
first two characters. For example, if you name a variable
NUMBER, all your computer is interested in is NU. Try this:

NUMBER = 63
PRINT NU

You get 63 even though you entered only the first two charac-
ters of the variable called NUMBER. Now try this one:

NUMBER = 123
PRINT NUTTY

The value 123 is printed because the only characters of inter-
est to the computer are still the first two.

You may think that the best thing to do is to use variable
names of only two characters. While you're getting used to
variables, that’s probably not a bad idea. However, as you ad-
vance into more sophisticated programs, you'll find it helpful
to use descriptive variable names. For example, the following
program uses MEAN as a descriptive variable name:

54

0 NS R R

0 IS R

.

Moving Along

10 TEXT : HOME
ROA=16:B=23:C = 38
SOMEAN=CA+B+C)/3
40 PRINT MEAN

60 END

Even if the program were a hundred lines or more, you
would know what the variable MEAN does—it calculates a
mean. Of course, you'd have to be careful not to have another
variable named MEATBALL, or some other name beginning
with ME. But assigning a meaningful name certainly makes it
easier to understand what a variable does. There are two other
considerations in naming variables: Don’t use reserved words
(commands, statements, and other keywords), and begin vari-
able names with an uppercase letter. Table 3-1 gives some ex-
amples of valid and invalid variable names:

Table 3-1. Naming Variables

TEXTURE = 987 Invalid TEXT, a reserved word, is
part of the variable name
TE = 99 Valid Even though reserved

word TEXT begins with
TE, only part of the re-
served word is used in

variable name

R1 = 321 Valid First character is an upper-
case letter

1R = 55 Invalid First character is not an
uppercase letter

HOMEWORK = 222 Invalid Variable name contains re-
served word HOME

TO = 983 Invalid TO is a reserved two-

character word
ADFTDCVRRWDAF = 10 Valid But really dumb

It’s also possible to give values to variables with other
variables or a combination of variables and numbers. In the
example above, the variable MEAN is defined with other vari-
ables. Here are some more examples:

T=A*B+ O
N=N+1
SUM=X+Y+ Z

55

CHAPTER 3

Types of Variables

There are three types of variables: real, integer, and string.
Let’s look at how they are used.

Real variables. So far, we have used only real or floating-
point variables in our examples. Any variable that begins with
an uppercase letter and does not end with a dollar sign or per-
cent sign is a real variable. The value for a real variable can
range from 0 to +9.99999999E+37. The E is scientific nota-
tion for very large numbers. (For the time being, don’t worry
about it, but if you get a result with such a letter in a numeric
result, get in touch with a math instructor.) Think of real vari-
ables as being able to hold just about any number you would
need, including the decimal fractions.

Integer variables. Integer variables contain only integers,
or whole numbers (without fractions). Here are some examples:

AB% = 345
K% = R% + N% ,
ADDY% = ADD% + NUMY%

WXY% = 88 + LR%

The values of integer variables can range from —32767 to
+ 32767, and, as with real variables, only the first two charac-
ters are read. However, the % is always read, no matter how
many characters are used. So, a variable named WA% is the
same as WAX%. Yet a variable named ABC is different from
one named ABC%. Therefore, you could use both variables in
the same program, and each would be considered unique.

Since their range is smaller than that of real variables,
integer variables have limited applications. However, because
integer variables take up less memory and execute faster than
real variables, they are often useful. You can use them in
mathematical operations in the same way you use real vari-
ables, but integers don’t store fractions—a factor you must
take into account when using operations that involve division
and similar fraction operations. Try some of the following op-
erations from the immediate mode to see how they work:

A% = 15:B% = 281 : C% = B% + A% : PRINT C%

36

LL% = 17 :JJ% = LL% /B : PRINT JJ%
3

Z% = —11 :XY% = Z% + 51 : PRINT XY%
40

56

- |

Moving Along

String variables. String variables are extremely useful in
formatting what you will see on the screen. Like real and inte-
ger variables, they are sent to the screen by the PRINT state-
ment. However, rather than printing numbers only, string
variables send all kinds of characters, called strings, to the
screen. String variables are indicated by a dollar sign at the
end of a variable. For example, A$, BAD$, and PULLS$ are all
legitimate string variables. (In computer parlance, we say
string instead of dollar sign. Thus, our examples are called A
string, BAD string, and PULL string.)

String variables are defined by placing the string inside
quotation marks, just as we did with the other messages that
were printed out. Let’s try a few examples from the immediate
mode:

ABC$ = “ABC” : PRINT ABC$

KAT$ = “CAT” : PRINT KAT$

NUMBER$ = “123456789" : PRINT NUMBER$
B1$ = “5 + 10 + R0” : PRINT B1$

Like real and integer variables, string variables use only
the first two characters, and must begin with an uppercase let-
ter and use nonreserved words. More important, you may
have noticed in the examples that numbers in string variables
are not treated as numbers, but as words or messages. For ex-
ample, you probably noticed that when you printed B1$, in-
stead of printing 35 (the sum of 5, 10, and 20), B1$ printed
out exactly what you put inside the quotation marks: 5 + 10
+ 20. Don’t attempt to do math with string variables. (In later
chapters, you'll see some tricks for converting string variables
to numeric variables, but for now just treat them as messages.)

Starting a Checkbook Program

Let’s put your accumulated knowledge together and write a
program that uses variables. We will begin writing a program
that subtracts the amount of a check from your checkbook bal-
ance and prints the new balance. This program will be the ba-
sis for a check-balancer to be developed later.

10 TEXT : HOME

20 BALANCE = 571.88

&5 REM ANY FIGURE WILL DO

27 REM BALANCE (BA) IS A REAL VARIABLE

30 CHECK = R29.95

35 REM WHAT YOU LAST SPENT IN THE COMPUTER STORE
37 REM CHECK (CH) IS A REAL VARIABLE

57

CHAPTER 3

40 B$ = “YOUR BEGINNING BALANCE IS $”

50 C$ = “YOUR CHECK IS FOR $§”

60 NB$ = “YOUR NEW BALANCE IS $”

656 REM B$, C$, AND NB$ ARE STRING VARIABLES
70 PRINT B$;BALANCE

80 PRINT C$;CHECK

90 N = BALANCE — CHECK

100 PRINT NB§; N

110 END

Since this is a fairly long program, make sure you type
everything in correctly. It is critical that you distinguish be-
tween commas, semicolons, and periods. Save the program to
disk. To play with it, you can change the values in lines 20
and 30. Here’s a quick review of what the program includes:

Step 1. First, we define the real variables BALANCE and
CHECK (which your IIGS reads as BA and CH since it cares
about only the first two characters).

Step 2. Next, we define string variables B$, C$, and NB$
to use as labels in screen formatting (lines 40-60).

Step 3. Finally, we print out all the information using our
variables, with one new variable, N, defined as the difference
between BALANCE and CHECK.

Note how we format the output (what you see on your
screen) of the PRINT statements. The semicolon between the
variables accomplishes two things: It tells the computer where
one variable ends and the next begins, and it tells the com-
puter to print the second variable right after the first one.
Thus, it takes the string variable NB$ (YOUR NEW BALANCE
IS $#) and places the value of the real variable N right after
the dollar sign (exactly where we placed the pound sign, #).

Formatting Output with Punctuation

Later, there will be more detail about formatting output, but
for now here’s a brief look at using punctuation to format text.
We'll use the comma and semicolon and “new lines” to illus-
trate basic formatting. Enter the following program:

NEW

10 TEXT : HOME

20 A$ = “HERE” : B$ = “THERE” : C$ = “WHERE”

30 PRINT A$; : PRINT B$; : PRINT C$; : REM SEMICOLONS
35 PRINT

40 PRINT A$, : PRINT B$, : PRINT C$,: REM COMMAS

45 PRINT : REM A PRINT BY ITSELF

58

Moving Along

47 REM GIVES A VERTICAL SPACE IN FORMATTING
50 PRINT A$: PRINT B$: PRINT C$: REM ‘NEW LINES’
60 END

When you run the program, you can see that the little dif-
ferences in lines 30, 40, and 50 make big differences on the
screen. The first set is all crammed together, the second set is
spaced evenly across the screen, and the third set is stacked
one on top of the other. As you saw in the previous program,
semicolons put numbers and strings right next to one another.
However, using commas after a PRINTed variable will space
output in groups of three across the screen; using colons or
new line numbers will make the output start on a new line. A
PRINT statement used alone will put a vertical line feed be-
tween statements. Try the following program to see how
PRINT statements can be used by themselves.

NEW

10 TEXT : HOME

20 PRINT “WHENEVER YOU PUT IN A PRINT STATEMENT"’;
25 REM NOTE PLACEMENT OF SEMICOLON

30 PRINT “ALL BY ITSELF, IT GIVES A LINE FEED.”

40 PRINT

50 PRINT “SEE WHAT I MEAN?”

60 END

Play with commas, semicolons, and colons with variables
and string variables until you get the hang of using them. They
are very important and are often the source of program bugs.

Bugs and bombs. We've mentioned bugs and bombs in
programs, but have never explained what they are. These
terms are computer lingo. Bugs are simply errors in programs
that either create ?SYNTAX ERRORs or prevent your program
from doing what you want it to do. Debugging is the process
of removing bugs. Bombing is what your program does when it
encounters a bug.

Input/Output
Input and output, often referred to as I/O, are ways of putting
something into your computer and getting it out again. Gener-
ally, you put in information from the keyboard, save it to disk
or tape, and then later put it in again from the disk drive or
cassette recorder. When you want information out of the com-
puter, you want it to go to the screen or printer.

Until now you have entered information into the com-
puter from the keyboard, either in the program or immediate

59

CHAPTER 3

mode. Using the PRINT statement, you have sent information
out to the screen. There are other ways in which you can IN-
PUT information with a combination of programming and
keyboard statements. Let’s look at some of them and make the
checkbook program a lot simpler to use.

INPUT Statements

When the INPUT statement is placed in a program, it expects
a response from the keyboard and then a RETURN. It must be
part of a program and cannot be used from the immediate
mode. Here’s a simple example:

NEW

10 TEXT : HOME

R0 INPUT X : REM X IS A NUMERIC VARIABLE SO ENTER A
NUMBER

30 PRINT X

40 END

Run the program. Your screen will go blank, and a ques-
tion mark and blinking cursor will sit there until you enter a
number. Then the computer will print the number you just en-
tered. Now let’s try INPUTting the same information, but this
time using a slightly different format. The nice thing about IN-
PUT statements is that they have some of the same features as
PRINT statements for getting messages on the screen. Look at
this program:

NEW

10 TEXT : HOME

R0 INPUT “ENTER YOUR AGE ”; X
30 HOME : PRINT : PRINT : PRINT
40 PRINT “YOUR AGE IS ; X

When you run the program, you will see that the presen-
tation is a little more interesting. Also notice that there is no
END statement at the end of the program. Applesoft BASIC
does not require an END statement, though usually it’s a good
idea to add one. As you get into more advanced topics, you'll
see that a program can jump around. You may want it to end
in the middle, and an END statement will be necessary to pre-
vent your program from crashing into an area where it
shouldn’t go. Using an END statement has not really been
necessary at this point, but it’s a good habit to develop.

Let’s use the INPUT statement to soup up the program a
little more.

60

-

N

Moving Along

NEW

10 TEXT : HOME

20 INPUT “ENTER YOUR NAME -> "; NA$

30 PRINT

40 INPUT “ENTER YOUR AGE -> "; AG%

50 PRINT

60 INPUT “PRESS <RETURN> TO CONTINUE ”’; RT$

7OHOME : ?:?:?:?:?: REM USING “?” AS SUBSTITUTES
FOR PRINT

80 PRINT NAS$; ¢ I8 ”; AG% ; “ YEARS OLD.”

90 REM BE CAREFUL WHERE YOU PUT QUOTATION MARKS

95 REM AND SEMICOLONS IN LINE 80

100 END

Now you're making progress. You can enter information
as numeric or string variables, and the output will be format-
ted so that you know what’s going on. As your programs be-
come larger and more complicated, it’s very important to
connect your string variables and numeric variables in such a
way that you can easily see what the numbers on the screen
mean. A computer wouldn’t be very helpful if it filled the
screen with numbers, but you didn’t know what they meant.

Line 60 in the program is the format for a pause in the
program. RT$ doesn’t hold any information, but INPUT state-
ments expect something from the keyboard. A variable, RT$
(for RETURN), is as good as any.

GETting Information

The GET statement is something like the INPUT statement,
except it accepts only a single key and doesn’t require that you
press return. To see how it works, try this program:

NEW
10 TEXT : HOME
RQR0?:92:2:°

30 PRINT “ ENTER A NUMBER FROM 0-9 ”; : GET N
409 :°

50 PRINT “ HIT ANY KEY TO CONTINUE ”’; : GET K$
B0HOME :?:92:92:°

70 PRINT ‘“YOUR NUMBER IS —>"” ; N

80 END

As soon as you hit a key, the GET statement records the
key value and the program proceeds. With an INPUT state-
ment, you first enter information and then press the return
key before the program executes. The good thing about the
GET statement is that it provides a faster way to enter and

61

CHAPTER 3

execute from the keyboard. The problem is that you can enter
only a single character before the program takes off again. If
you press the wrong key, you'll have no chance to correct
your error before pressing the return key as you do with the
INPUT statement.

READing In DATA

A third way to enter data into a program is with READ and
DATA statements. However, instead of being entered through
the keyboard, DATA in one part of the program is READ in
from another part. Each READ statement looks at elements in
DATA statements sequentially.

The READ statement is associated with a variable that
looks at the next DATA statement and places the numeric
value or string in the variable. Look at the following example:

NEW

10 TEXT : HOME

20 READ NA$: REM READS NAME

30 READ OC$: REM READS OCCUPATION

40 READ SN : REM READS STREET NUMBER

50 READ ST$: REM READS STREET NAME

60 READ CT$: REM READS CITY

70 READ SA$: REM READS STATE

80 READ ZIP : REM READS ZIP CODE

90 PRINT : PRINT : PRINT

100 REM BEGIN PRINTING OUT WHAT ‘READ’ READ IN

1056 REM BE CAREFUL TO PUT IN EVERYTHING EXACTLY AS
IT IS LISTED

110 PRINT NA$

120 PRINT OC$

130 PRINT SN; “ ** ; ST$
140 PRINT CT$; *, ” ; SA$; ”; ZIP
150 END

1000 DATA Sam Spade, Detective, 112, Post Street
1010 DATA San Francisco, California, 92929

In the DATA statements, a comma separates the various
elements, unless the DATA statement is at the end of a line. If
one of the elements is out of place or if a comma is omitted,
strange things can happen. For example, if a READ statement
is expecting a numeric variable (such as the street address) and
runs into a string (such as the street name), you will get an er-
ror message.

Think of DATA statements as a stack of strings and num-
bers. Each time a READ statement is encountered in the pro-
gram, the first element of the DATA is removed from the

62

.

-4

Moving Along

stack. The next READ statement looks at the element on top
of the stack, moving from left to right.

Go ahead and save the program, and let’s put an error in
it. (Save it first, though, so you will have a correct listing of
how READ and DATA statements work.) LIST the program to
make sure it’s in memory. Then enter the following line:

85 READ EX$

Now run the program. You should get an OUT OF DATA
ERROR. This means that you have a READ statement without
enough DATA statements (or elements). Be sure that your
DATA statements contain enough elements to take care of the
READ statements, and that the variables in your READ state-
ments are compatible with the elements of the DATA state-
ments. (In other words, numeric variables must read numbers
and string variables must read strings.) To repair the program,
simply enter

1020 DATA WORD

This will give it something to READ. (Of course, you could
delete line 85.)

If an element in a DATA statement is enclosed by quota-
tion marks, all the characters inside the quotation marks are
considered to be a single string element. For example, make
the following changes in your program and run it:

145 PRINT EX$
1020 DATA ‘10 DOWNING ST, LONDON, 45, ENGLAND”

Both numbers and commas will happily be accepted by a
READ statement with a string variable since everything is en-
closed within quotation marks.

Now remove the quotation marks and run it again. This
time it will print only up to the first comma, 10 DOWNING
ST, but the string variable EX$ has no problem accepting a
numeric character. (However, since 10 is read as a string, you
cannot use it in a mathematical operation.) Experiment with
different elements in the DATA statements to see what hap-
pens. Also, just for fun, put the DATA statements at different
places in the program. You'll quickly discover that they can go
anywhere and are READ in their order of placement within
the program.

63

CHAPTER 3

Looping with FOR-NEXT

The FOR-NEXT loop is one of the most useful operations in
BASIC programming. With it, you can instruct the computer to
go through a determined number of steps, at variable incre-
ments if desired, and execute them until the total number of
steps is completed. Here’s a simple example to get started:

NEW

10 TEXT : HOME

20 NA$ = “<YOUR NAME>"

30 FOR X = 1 TO 10 : REM BEGINNING OF LOOP
40 PRINT NA$

50 NEXT X : REM LOOP TERMINAL

60 END

When you run the program, you will see your name
printed ten times along the left side of the screen. Okay, not
very impressive, but you’ll see how useful this can be. But,
first, here’s another simple illustration that shows what’s hap-
pening to X as the loop is executed:

NEW

10 TEXT : HOME
RQ0OFORX = 1TO 10
30 PRINT X

40 NEXT X

When you run the program, you'll see that the value of X
changes each time the program proceeds through the loop.
Think of a loop as a child on a merry-go-round. Each time the
merry-go-round completes a revolution, the child gets a gold
ring, beginning with 1 and, in our example, ending with 10.

A Practical Use for Loops

You can do something practical with a loop: You can fix up
the checkbook program. But, first, you should become ac-
quainted with some fancy output statements:

INVERSE

FLASH
NORMAL

Until now, your output has been in NORMAL mode, the
default mode. However, you can also make text INVERSE or
FLASH if you want, and then reset it with a NORMAL state-
ment. Here’s a quick look at how these output statements work:

64

.

NS D B

Moving Along

NEW

10 TEXT : HOME

20 INVERSE : PRINT ‘ INVERSE ”

30 FLASH : PRINT : PRINT ‘ FLASH ”
40 NORMAL : PRINT : PRINT ‘“NORMAL”

These statements help highlight output to make it easier to see
what you're supposed to do. Now back to work.

In the souped-up checkbook program, we’ll use variables
in several ways. First, the FOR-NEXT loop will use a variable;
let’s stick with tradition and use I. Second, a variable will indi-
cate the number of loops to be executed. We’ll use N%, an
integer variable. Finally, variables will be used for the balance,
the amount of the check, and the new balance.

NEW

10 TEXT : HOME

R0 CB$ = ‘“CHECKBOOK”

30 PRINT : PRINT : FLASH : PRINT CB$: NORMAL

40 INPUT “HOW MANY CHECKS? —>" ; N%

50 INPUT “WHAT IS YOUR CURRENT BALANCE? ->"" ;BA

60 REM BEGIN LOOP

70FOR X = 1 TO N%

80 PRINT “YOUR BALANCE IS NOW $”;BA

90 INVERSE : PRINT ‘“ AMOUNT OF CHECK #°*;X; “~> *; :

NORMAL

100 INPUT CK : REM VARIABLE FOR CHECK

110 BA = BA — CK : REM KEEPS A RUNNING BALANCE

120 NEXT X : REM LOOP TERMINAL

130 HOME : REM CLEAR SCREEN WHEN ALL CHECKS ARE
ENTERED

140 PRINT : PRINT : PRINT

160 PRINT ‘“YOU NOW HAVE $”; BA ; “ IN YOUR ACCOUNT”

180 PRINT : FLASH : PRINT “ THANK YOU AND COME AGAIN
” : NORMAL

170 END

The checkbook program is becoming easier to use; and
that, after all, is the purpose of computers. Now, let’s look at
some more loops.

Nested Loops

With certain applications, you must have one or more FOR-
NEXT loops working inside each other. Here’s a simple appli-
cation: Suppose you have two teams with ten members on
each team. You want to make a team roster indicating the
team number (1 or 2) and member number (1-10). Using a
nested loop, you can do this in the following program:

65

CHAPTER 3

NEW

10 TEXT : HOME

Q0OFORT = 1TOR: REM T FOR TEAM #

30 FORM = 1TO 10: REM M FOR MEMBER #
40 PRINT “TEAM #”; T ; “PLAYER #”; M

50 NEXT M

60 NEXT T

70 END

It’s important to keep the loops straight when you use
nested loops. The innermost loop (the M loop in the example)
must not have any other FOR or NEXT statement inside it.
Think of nested loops as a series of fish eating one another,
the largest fish’s mouth encompassing the next largest, and so
forth, down to the smallest fish.

This is the structure of nested loops:

FORA =1TON

FORB=1TON
FORC=1TON
FORD =1TON
NEXT D
NEXT C

NEXT B

NEXT A

Each loop begins (a FOR statement is executed) and is ter-
minated (a NEXT statement is encountered) in a nested se-
quence. If you have ever stacked a set of different-sized cooking
bowls, you've seen how each one fits inside the other; this is
because the outer edge of one is larger than the next one.
Likewise, in nested loops, the “edge” of each loop is “larger”
than the one inside it and “smaller”” than the one it is inside.

Stepping Forward and Backward

Loops can go one step at a time, as we have seen, or they can
step at different increments. For example, this program steps
by ten:

NEW

10 TEXT : HOME

Q0 FOR X = 10 TO 100 STEP 10
30 PRINT X

40 NEXT X

You can increment the count by whatever amount you
want. You can use variables or anything else that has a nu-
meric value. For example,

66

S0 I D

Moving Along

NEW

10 TEXT : HOME
ROK=5:N=25b

30 FOR X = K TO N STEP K
40 PRINT X

50 NEXT

Go ahead and run the program. But, wait. In line 50, you
detect a bug—a typo and a big mistake. After the word NEXT,
there should be an X, but there is none, right? Actually, in
Applesoft BASIC you really don’t need it, and you can save a
little memory if you use NEXT statements without the variable
name. Even in nested loops, as long as you put in enough
NEXT statements, you can run your program without variable
names after NEXT statements. However, it's good program-
ming practice to use variable names after NEXT statements,
especially in nested loops, so that you can keep everything
straight. It’s also possible to go backward. Try this program:

NEW

10FOR X = 4 TO 1 STEP —1

20 PRINT “FINISHING POSITION IN RACE =";X
30 NEXT X

As you get into more sophisticated (and useful) programs,
you'll begin to see how these different features of Applesoft
BASIC can be very convenient. Often, at first, you may not
see the practicality of a statement, but when you need it later,
you'll wonder how you could program without it.

What happened to the indentions? You may have no-
ticed that the program lines inside the loops are indented. If
you tried indenting on your IIGS, you probably found that as
soon as you LISTed your program, all the indentions were
gone. Unfortunately, that will happen, and without special
utilities, there’s nothing you can do about it. However, don't
worry. Indenting loops is a programming convention to make
clearer what the program is doing, but indentions have no ef-
fect at all on your programs.

Counters

Sometimes, in your programs, you'll need to count the num-
ber of times a loop is executed and keep a record of it for later
use. For example, if you run a program that loops with a STEP
of 3, you may not know exactly how many times the loop will
execute. To find out, programmers use counters, variables that
are incremented, usually by one, each time a loop is executed.

67

CHAPTER 3

This next program illustrates the use of a counter:

NEW

10 TEXT : HOME

{0 FOR X = 3 TO 99 STEP 3

30 PRINT X

40 N =N + 1:REM THIS IS THE COUNTER

50 NEXT X

60 PRINT : PRINT “YOUR LOOP EXECUTED "; N ; “ TIMES.”

The first time the loop is entered, the value of N is 0.
When the program gets to line 40, the value of 1 is added to
N to make it 1 (0 + 1 = 1). The second time through the
loop, the value of N begins at 1, then 1 is added, and at the
top of the loop (line 50), the value of N is 2. This continues
until the program exits the loop. After all the looping is fin-
ished, presto—your N tells you how many times the loop has
been executed. Of course, counters are not restricted to count-
ing loops, and they can be incremented by any value you need,
including other variables. For example, change line 40 to read

ON=N+(X*2)

Then run the program again, and your counter total will be a
good deal higher.

Summary

This chapter has begun to show you the power of your com-
puter, and you have started to learn real programming. One of
the most important concepts is that of the variable. The sig-
nificant feature of variables is that they vary (they change de-
pending on what your program does). This is true not only of
numeric variables, but also of string variables. The various in-
put statements show how you enter values or strings into vari-
ables depending on what you want the computer to compute.

Finally, you have learned how to use loops. You can, with
minimal effort, tell the computer to go through a process sev-
eral times with a single set of instructions. With loops, you can
set the parameters of an operation at any increment you want,
and then sit back and let the IIGS go to work.

However, you have only just begun programming. In the
next chapter you'll be introduced to more statements and op-
erations that allow you to delve deeper into the capabilities of
the Apple IIGS and that make programming jobs easier. The
more statements you know, the less work it takes to write a
program.

68

1

-

N

Branching Ou

In this chapter we'll begin exploring new programming tech-
niques that will geometrically increase your programming abil-
ity. You'll be learning more sophisticated techniques, but by
taking each a step at a time, you will be able to use them with
ease. Later, when you're developing your own programs, be
bold and try out new commands. One problem new program-
mers have is a tendency to stick with the simple commands
they have already mastered to get a job done. After all, why
use “complicated” commands to do what simpler ones can do?

The answer to that is simplicity. If one complicated com-
mand can do the work of ten simple commands, which one is
simpler? As you advance into more sophisticated applications,
your programs will become longer and subject to more bugs.
The more commands you have to sift through, the more diffi-
cult it will be to find the bugs. While you're learning it is per-
fectly okay to write a long program that uses many simple
commands, but you should begin thinking about shortcuts that
come through the use of more advanced commands.

As well as maximizing your knowledge of various com-
mands, let your IIGS perform the computing. This may sound
strange, but novices often will figure everything out for the
computer and use it as a glorified calculator. In Chapter 3, we
set up a counter that counted the number of times a loop was
executed when a STEP 3 loop was used. We could have fig-
ured out how many loops were executed instead of letting the
computer do it with the counter, but that would have defeated
the purpose of programming. As you learn new commands,
think about how you can use them to perform the calculations
you have had to work out yourself.

Branching

So far, with the exception of loops, our programs have gone
straight from the top to the bottom. However, if the IIGS is to
do any real decision making, you must be able to give it op-
tions. When a program leaves a straight path, it is either loop-
ing or branching. You already know the purpose of a loop, so

71

CHAPTER 4

let’s turn our attention to branching, using IF-THEN and
GOTO commands.

Consider the following program (by now you know to
clear memory with NEW, so they’ll no longer appear at the
beginning of each program):

10 TEXT : HOME

R0 PRINT ‘“CHOOSE ONE OF THE FOLLOWING BY NUMBER:
30 PRINT

40 PRINT “1. APPLES”

80 PRINT ‘3. ORANGES”

60 PRINT “3. PEACHES”

70 PRINT ‘‘4. WATERMELONS”

80 PRINT

90 INPUT “WHICH? ; X

100 HOME

110 IF X = 1 THEN GOTO 200

120 IF X = 8 THEN GOTO 300

130 IF X = 3 THEN GOTO 400

140 IF X = 4 THEN GOTO 500

150 GOTO 10

160 REM THIS IS A TRAP

165 REM TO MAKE SURE THE USER CHOOSES 1, &, 3, OR 4
200 PRINT “APPLES” : END

300 PRINT ‘“ORANGES” : END

400 PRINT “PEACHES” : END

500 PRINT “WATERMELONS” : END

As you can see, the IIGS branches to the appropriate
place, does what it has been told, and ends. Not very inspir-
ing, admittedly, but it is a clear example. Now, try something
a little more practical for your kids to play with in their math
homework:

Addition Game

10 TEXT : HOME

20 TI$=* ADDITION GAME ”’: INVERSE : PRINT TI$:
NORMAL

30 PRINT : PRINT

40 INPUT “ENTER FIRST NUMBER ->" ; A

50 PRINT

60 INPUT “ENTER SECOND NUMBER ->""; B

70 PRINT

80 PRINT “WHAT IS ”; A; “+”; B;: INPUTC

90 IF C = A + B THEN GOTO 200

100 PRINT : INVERSE : PRINT “THAT’S NOT QUITE IT. TRY

AGAIN.”
110 NORMAL : PRINT

72

Branching Out

120 GOTO 80

‘200 FLASH : PRINT “ THAT’S RIGHT! VERY GOOD " :

NORMAL

210 PRINT

220 PRINT “WOULD YOU LIKE TO DO MORE? (Y/N): ’; :
GET
ANS

230 IF AN$ = “Y” THEN HOME : GOTO 30

240 HOME : PRINT : PRINT : PRINT

280 PRINT ‘“HOPE TO SEE YOU AGAIN SOON” : END

As you see, the more commands you learn, the more inter-
esting programs you can have. Just for fun, change the program
so that it will handle multiplication, division, and subtraction.

What's your name? Children of all ages like to have their
names displayed. See if you can change the “Addition Game”
so that it asks the child’s name. When the program responds
to an input with either a correction or affirmation, it will men-
tion the child’s name (for example, THAT’S RIGHT! VERY
GOOD, SAM). Use NA$ as the name variable.

Look carefully at the program to learn something about
IF-THEN statements. First, note in line 230 that the branch is
to clear the screen (HOME) if AN$ = “Y”. If any other re-
sponse is encountered, the program ends. You may wonder
why the program does not branch to line 30, regardless of the
response, since GOTO 30 comes after a colon, making it a
new line. The reason is that after an IF statement for which
the specified condition is not met, the program immediately
drops to the next line number. That is, any statements after a
colon in a line that begins with an IF statement will be exe-
cuted only if the condition of the IF statement is met.

Second, ANS$ is tested against “Y”, and not simply a Y
without quotation marks. Remember that AN$ is a string and
not a numeric variable. In setting the conditional, you must re-
member what kind of variable is used. On the other hand, if
you use a numeric variable, such as AN or AN%, you could
use a line such as

IF AN = 1 THEN....

Relationals

So far, we have used only the equal condition (=) to deter-
mine whether or not a program should branch. There are
other states, referred to as relationals, that can also be used.
This is a complete list of the relationals:

73

CHAPTER 4

Symbol Meaning

= Equal to

< Less than

> Greater than

<> Not equal to

>= Greater than or equal to

<= Less than or equal to

Let’s try some of these out and then examine them for
their full power. Here are three quick programs:

10 TEXT : HOME

20 INPUT “NUMBER 1->"";A

30 INPUT ‘“NUMBER 2->"";B

40 IF A > B THEN GOTO 100

50 IF A < B THEN GOTO 200

60 IF A = B THEN GOTO 300

100 PRINT “NUMBER 1 IS GREATER THAN NUMBER &” : END
200 PRINT “NUMBER 1 IS LESS THAN NUMBER 2" : END

300 PRINT “NUMBER 1 IS EQUAL TO NUMBER 8”

10 TEXT : HOME

20 INPUT “DO YOU WANT TO CONTINUE? (Y/N)”’; AN$
30 IF AN$ <> “Y” THEN END

40 GOTO 10

10 TEXT : HOME

20 INPUT “HOW OLD ARE YOU? ”; AG%

30 IF AG% >= 21 THEN GOTO 100

40 HOME : PRINT : PRINT ‘“‘Sorry, you must be 21 or older to
come in here.”

50 END

100 HOME : PRINT

110 PRINT “Welcome to the adult programming center!”’

Now you have an idea of how relationals can be used with
IF-THEN statements. Note that they work with strings as well
as with numeric variables. However, there is still another way
to use relationals. Try the following from the immediate mode:

A =10:B=R20:PRINTA =B
Your computer should respond with 0. This is a logical opera-

tion: If a condition is false, your IIGS responds with 0; if it is
true, it responds with 1. Now try the following:

10 TEXT : HOME

Q0 A =10
30B =20
40C=A>B
50 PRINT C

74

B

)

Branching Out

When you run the program, you again get 0. This is be-
cause the variable C is defined as the result of the test of A
being greater than B. Since A is less than B, the variable C is
0, or false. Now, take it a step further:

10 TEXT : HOME

Q0 A =10
30B = 20
40C=A>B

50 IF C = O THEN PRINT ‘A IS LESS THAN B” : END
60 IF C = 1 THEN PRINT ‘“A IS GREATER THAN B”

Later, you will see further applications of these logical op-
erations. For now, though, it’s important to understand that a
true condition is represented by 1 and a false condition by 0.

AND, OR, and NOT

Sometimes, you'll need to set up more than a single relational.
Suppose, for example, that you are organizing your finances
into three categories of expenses: those under $10, those be-
tween $10 and $100, and those over $100.

With relationals, it is simple to compare input under $10
and over $100. But what if you want to do something in be-
tween? In this case you might have some difficulty without
additional commands. The AND, OR, and NOT statements
permit you to set ranges with relationals.

AND If all conditions are met, then true
OR If one condition is met, then true
NOT If condition is not met, then true

Here’s an example:

10 TEXT : HOME

20 INPUT “ENTER AMOUNT ->$"; A

30 IF A < 10 THEN 100

40 IF A >= 10 AND A <= 100 THEN 200

50 IF A > 100 THEN 300

100 PRINT ‘ PETTY CASH ' : GOTO 400

Q00 INVERSE : PRINT ‘ GENERAL EXPENSES ’ : NORMAL :

GOTO 400

300 FLASH : PRINT “ BIG BUCKS " : NORMAL

400 PRINT ‘““ DO YOU WISH TO CONTINUE? ’;

410 GET AN$

420 IF AN$ < > “Y” AND AN$ < > “N” THEN PRINT
“ANSWER ‘Y’ OR ‘N’ PLEASE *’ : GOTO 400

430 IF AN$ = “Y” THEN 10

440 HOME : PRINT ‘“GOODBYE”

75

CHAPTER 4

In line 40, the conditional branch is set to be both greater
than 10 and equal to or less than 100. The variable A has to
meet both conditions to branch. Similarly, in line 420, again
using the AND statement, the response must be either Y or N.

If you look carefully, you may wonder about some dubi-
ous formatting in the program. There are several conditional
IF-THEN lines that simply say THEN 100, THEN 200, and so
forth. Shouldn’t there be GOTO statements as well? This
brings up another feature of Applesoft BASIC. When you use
IF-THEN statements and want to branch to another line if the
comparison is true, you can drop the GOTO and simply put in
the line number. Until you become more familiar with pro-
gramming, you might want to continue using GOTO state-
ments after IF-THEN statements, but they are not required.

You may also have a question about the AND statement
in line 420. When we say, in English, if something is Y or N,
we mean that it must be one or the other. However, in pro-
gramming, if we use OR, we are telling the program to branch
if either condition is met. Thus, if line 420 is written as

IF AN$ <> “Y” OR AN$ < > “N” THEN PRINT “ANSWER ‘Y’
OR ‘N’ PLEASE ”
GOTO 400

the program will branch if AN$ is not equal to either Y or N.
For example, if you respond with Y, that Y will not be equal
to N; and so the program will branch to “ANSWER ‘Y’ OR ‘N’
PLEASE”—not what was intended. To check this, change the
AND to OR in line 420, and run the program again.

Now, let’s use OR and NOT statements in a program:

10 TEXT : HOME

20 READ A

30 READ B

40 READ C

50 DATA 10,20,30
60IFA+B=CORA<BORA — B = CTHEN 100
70 END

100 HOME : PRINT “ONE OF ‘EM MUST BE TRUE”

Looking at line 60, you can see that A — B does not equal
C. However, A + B does equal C, and A is less than B. When
the OR statement is used, only one statement must be true to
cause a branch. Now, try the following program:

10 TEXT : HOME
20 READ A : READ B: READC
30 DATA 10,20,30

76

S R

1

-

Branching Out

40Z=A—-B=C

50 IF NOT Z THEN 100

60 END

100 PRINT ‘ THAT’S RIGHT! A — B = C IS NOT RIGHT! DID I
SAY THAT RIGHT?”

As you can see from the example, it’s possible to use the
negation of a formula to calculate a branch condition. In most
cases, you will use < > (not equal) or the positive case, but at
other times, it will be simpler to employ NOT.

Subroutines

Frequently, you'll want your computer to perform an opera-
tion at several different places in a program. You can repeat
the instructions again and again, or you can sprinkle GOTOs
to return to the original spot after a branch to the operation.

On the other hand, you can set up subroutines and jump
to them by using GOSUB, and then get back to the starting
point by using RETURN. Up to a point, GOSUB works much
like GOTO since it sends a program bouncing off to a line out
of sequence. The RETURN command also is something like
GOTO since it sends your program to an out-of-sequence line.
However, the GOSUB-RETURN pair is unique in what it
does. This simple example illustrates how it works:

10 TEXT : HOME

20 A$ = “HELLO” : GOSUB 100

30 A$ = “HOW ARE YOU TODAY?” : GOSUB 100
40 A$ = “I’'M FINE” : GOSUB 100

50 END

100 PRINT A$

110 RETURN

The example shows that a GOSUB statement works ex-
actly like a command on the line itself except that it is exe-
cuted elsewhere in the program. The RETURN statement
brings it back to the next statement after the GOSUB state-
ment. Using the GOSUB-RETURN pair makes it much easier
to weave in and out of a program than using GOTO, since the
RETURN automatically takes you back to the jump-off point.

To better illustrate the usefulness of GOSUB, change line
100 to something more elaborate. (This is getting a bit ahead,
but the example illustrates something very useful.) Try the
following:

100 HTAB 20 — LEN (A$)/2 : PRINT A$

77

CHAPTER 4

Now when you run the program, all of the strings will be
centered. A single routine handles the centering. Instead of
your having to rewrite the routine every time you want a
string centered, just use a GOSUB to line 100.

Block it. We've not discussed program structure very
much—in part, because it’s not been necessary. However, as
the instruction set grows, so too does the possibility for errors.
By now if you haven’t made an error, you haven’t been enter-
ing the programs. One way to minimize errors, especially in-
volving GOSUBs, is to organize them into coherent blocks.
Basically, a block is a subroutine within a range of lines. For
example, you might block subroutines by hundreds or thou-
sands, depending on how long the subroutines are. You might
have subroutines beginning at lines 500, 600, and 700. It doesn’t
matter whether a subroutine is one line or ten lines. As long
as it’s confined to a particular block, it will be easier to debug,
easier for you and others to understand what is happening in
the program, and generally, good programming practice.

Computed GOTO and GOSUB

Now we’re going to get a little fancier, with some additions
that will result in clearer and simpler programming. As you
have seen, you can GOTO or GOSUB on a conditional (for ex-
ample, IF A = 1 THEN GOTO 200). The easier way to make
a conditional jump is to use computed branches using the ON
statement. For example,

10 TEXT : HOME

R0 INPUT “ENTER A NUMBER FROM 1 TOB " ; A

30IF A <1OR A > 5THEN 20 : REM TRAP

40 ON A GOSUB 100,200,300,400,500 : REM COMPUTED GOSUB

50 PRINT “DO YOU WISH TO CONTINUE? (Y/N)” ; : GET AN$
: IF AN$ < > “Y” THEN END

60 GOTO 10

100 PRINT “ONE” : PRINT : RETURN

200 PRINT “TWO” : PRINT : RETURN

300 PRINT “THREE” : PRINT : RETURN

400 PRINT “FOUR” : PRINT : RETURN

8500 PRINT “FIVE” : PRINT : RETURN

The format for a computed GOSUB or GOTO is for a
variable to be entered after the ON command. The program
will then jump the number of commas to the appropriate line
number. If a 1 is entered, it takes the first line number; a 2,
the second; and so forth. It's much easier than using a series
of IF statements:

78

1

o

.

Branching Out

IF A = 1 THEN GOSUB 100
IF A = 23 THEN GOSUB 200 : etc. “

However, computed GOTOs and GOSUBs become diffi-
cult to use if you have many options. If your program is com-
puting large numbers, all you have to do is to convert the
larger numbers into smaller ones by changing the variables.
For example,

10 TEXT : HOME

Q0 INPUT “ENTER ANY NUMBER > "; A

30IF A<100THEN B = 1

40 IF A >= 100 AND A < 200 THEN B = &

BO0IF A>= Q00 THEN B = 3

60 ON B GOSUB 100, 200, 300

65 REM COMPUTED GOSUB ON ‘B’ VARIABLE

70 PRINT “DO YOU WISH TO CONTINUE? (Y/N)”; : GET AN$:
IF AN$ < > “Y” THEN END

80 GOTO 10

100 PRINT “LESS THAN 100” : RETURN

200 PRINT ‘“MORE THAN 100 BUT LESS THAN 200" : RETURN

300 PRINT “MORE THAN 200 : RETURN

Run the program and enter any number you want. Since
the program is branching on the variable B, and not on A (the
INPUT variable), you will not get an error since the greatest
value of B can only be 3.

Relationals and Computed GOSUBs

Now, let’s go back to relationals and see how they can be
used with computed GOSUBs. Remember, in using relationals,
the only numbers you get are zeros and ones (for false and
true, respectively). However, you can use these zeros and ones
just like regular numbers. Try the following;:

10 TEXT : HOME

X=1:Y=2:2=3
30A =X<2

40B=Y>7Z

B0OC=2%2>X

60 PRINT “A + A =" ;A + A

70 PRINT : PRINT “A + B=";A + B

80 PRINT : PRINT “A + B+ C=";A + B+ C
90 END

Before you run the program, see if you can determine
what will be printed by lines 60, 70, and 80. Then run the
program and see what happens. Let’s go over it step by step:

79

CHAPTER 4

1. Since X is less than Z, A will be true with a value of 1.
Therefore A + A (or 1 + 1) will equal 2.

2. Since Y is not less than Z (remember, Y = 2 and Z = 3), B
will be false with a value of 0. Therefore, A + B (or 1 + 0)
will total 1.

3. Since Z is greater than X, C will be true with a value of 1.
Therefore A + B + C (or 1 + 0 + 1) will equal 2.

Congratulations if you got it right. If not, go over it again.
Remember, very simple things are happening, so don’t look
for a complicated explanation.

Now that you see how you can get numbers by manipu-
lating relationals, try using them in computed GOSUBs. This
program shows how:

10 TEXT : HOME

20 INPUT “HOW BIG WAS THE HOME CROWD?"; HC

B0 R = 1 + (HC => 500) + (HC >= 1000)

40 ON R GOSUB 100,200,300

50 PRINT : PRINT ‘DO YOU WISH TO CONTINUE? (Y/N) *; :

GET AN$

80 IF AN$ < > “Y” THEN END

70 GOTO 10

100 HOME : PRINT “THE HOME CROWD WAS NOT VERY BIG
— LESS THAN 500" : RETURN

200 HOME : PRINT “THE HOME CROWD WAS A PRETTY GOOD
SIZE — BETWEEN 500 AND 1000.” : RETURN

300 HOME : PRINT ‘“THE HOME CROWD WAS VERY BIG —

1000 OR OVER ” : RETURN

This program hinges on the formula, or algorithm, in line
30. Here’s how it works:

1. There are three conditions:

HC (home crowd) is less than 500
HC is between 500 and 1000
HC is greater than 1000

2. If the first condition exists, both HC >= 500 and HC >=
1000 are false. Thus, 1 + 0 + 0 = 1. Therefore, R = 1.

3. If HC is >= 500, but less than 1000, then HC >= 500 is
true, but HC >= 1000 is false. Thus, 1 + 1 + 0 = 2.
Therefore, R = 2.

4. Finally, if HC is both >= 500 and >=1000, the formula re-
sultsin 1 + 1 + 1 = 3. Therefore, R = 3.

How to program and not worry. In programming, there
is no such thing as the right way and the wrong way. Certain

80

4

Branching Out

programs are more efficient, faster, or take less code and mem-
ory than others, but the computer makes no judgments. If a
program does what you want, no matter how slowly or how
long it takes you to write it, it is right.

In the example above an algorithm was used with
relationals to do something that could have been done with
more code. Don’t expect to use such formulas right off the bat
unless you have a strong background in math. If you're not
used to using algorithms, don’t expect to understand their full
potential right away. The one we used is relatively simple, and
you will find far more elaborate ones as you begin looking at
more programs. The main point is to keep plugging ahead.
With practice, you'll learn all kinds of shortcuts and formulas,
but if you get stuck along the way, just keep going. As long as
you can get your program running the way you want it to,
you're doing the “right” thing.

Strings and Relationals

Before leaving computed GOTOs and GOSUBs with
relationals, let’s see how relationals handle strings. Try the
following:

A$ = “A” : B$ = “B” : PRINT B$ > A$

Surprised? As well as comparing numeric variables,
relationals can compare alphabetic string variables with A be-
ing the lowest and Z the highest. So if you ask whether B$ is
greater than A$, you get a 1 (true) since B$ is a B and A$ is an
A. In sorting strings (as in alphabetizing names) such an oper-
ation is crucial. Later, you'll find a routine for sorting strings,
but for now, let’s make a simple string sorter for sorting two
strings.

10 TEXT : HOME

20 INPUT “WORD #1 -> " ; A$

30 INPUT “WORD #2 -> ** ; B$

40 PRINT : PRINT : PRINT

BO IF A$ < B$ THEN PRINT A$: PRINT B$
60 IF A$ > B$ THEN PRINT B$: PRINT A$

(Just what you need—a program that will put two words in al-
phabetical order.)

Arrays .
The best way to think about arrays is to regard them as a kind
of variable. As you've seen, you can name variables A, D$,

81

CHAPTER 4

KK%, X1, and so forth. An array uses a single name with a
number to differentiate variables. Consider the following two

lists, one using regular string variables and the other using a
string array:

String Variable String Array

P$ = “PIG” AMS$(1) = “PIG”

C$ = “CHICKEN” AM$(2) = “CHICKEN"
D$ = “DOG” AM$(3) = “DOG”

H$ = “HORSE” AM$(4) = “HORSE”

If you PRINT HS$, you'll get HORSE; if you PRINT
AMS$(4), you'll also get HORSE. Likewise, you can use arrays
for numeric variables:

A =1
AQ2) =2
AB)=3
A@4) =14
and so on

You may wonder why not just use regular numeric or
string variables instead of arrays. Arrays help you organize
your information, they make the computer do the work of
generating unique variable names, and they are more efficient
in certain types of applications. To illustrate a useful applica-
tion, the following program INPUTs a list of ten names using
a string array.

10 TEXT : HOME

Q0FORX =1TO 10

30 PRINT “NAME #”; X ;

40 INPUT NA$X)

50 NEXT X

100 REM Aok ko ok ok

110 REM OUTPUT

120 REM seokokok ok ok

130 FOR X = 1 TO 10 : PRINT NA$(X)
140 NEXT X

Now, try writing a program that does the same thing
using nonarray variables. The program will be much longer.
Use the variables N0$-N9$ for the names just to see what it
will take.

If you rewrite the program, you see how much time arrays
can save. But before continuing, let’s look more closely at how
the program works with the FOR-NEXT loop and array variable:

82

A

S -

-

Branching Out

1. The FOR-NEXT loop generates the numbers sequentially, so
the array will look like this:

FORX =1TO 10

NA$(1) First time through loop
NA$(2) Second time through loop
NA$(3) Third time through loop
NA$(4)

NA$(5)

NA$(6)

NA$(7)

NAS$(8)

NAS$(9)

NA$(10) Tenth time through loop
NEXT X

2. Each string INPUT by the user is stored in a sequentially
numbered array variable.

3. Output, using the PRINT statement, is generated by the
FOR-NEXT loop sequentially supplying numbers to be en-
tered into array variables.

To get used to the idea that an array variable is a variable,
enter the following:

A(10) = 432 : PRINT A(10)

XYZ(9) = 2.432 : PRINT XYZ(9)

R2D2$(1) = “BEEP!” + CHR$(7) : PRINT R2D2%$(1)
J%(8) = 321 : PRINT J%(5)

The DIMension of an Array

We’ve not gone over the number 10 in any of the array exam-
ples. The reason is that, once an array is larger than 10, it’s
necessary to use the DIM (DIMension) statement to reserve
space for the array. (You actually get 11 “free” array slots—0
through 10.) This is an example of the format for DIMension-
ing an array:

10 TEXT : HOME

20 DIM AB(150) : REM DIMENSION OF ARRAY VARIABLE ‘AB’
30 FORI = 1 TO 180

40 ABQ) =1

50 NEXT I

60 FOR I = 1 TO 180

70 PRINT AB(D),

80 NEXT I

Run the program as it is written. It should work fine. Now
delete line 20 by simply entering 20. (Remember how you

83

CHAPTER 4

learned to delete single line numbers by entering that num-
ber?) Now run the program, and you will get an error for not
DIMming the array. Whenever your arrays will have more
than 11 values from 0 through 10, be sure to DIM them.

Better safe than sorry. Many programmers always DIM
arrays, regardless of the number in the array. It is perfectly all
right to do so, and statements such as DIM X$(3) or DIM
N%(5) are valid. Often, when copying programs from books
or magazines, you may run across these lower-level DIM state-
ments, not because they are necessary, but because the pro-
grammer thinks it’s a good idea to DIM all arrays as part of
programming style and clarity. This practice will save some
memory space, and if you program in other versions of
BASIC, they may require it.

Multidimensional Ari‘ays

It is possible to have arrays with two or more dimensions.
Let’s begin with two-dimensional arrays and learn how to use
arrays with more than a single dimension. The best way to
think of a two-dimensional array is as a matrix. For example, if
an array ranges from 1 to 3 on two dimensions, the entire set
will include A(1,1), A(1,2), A(1,3), A(2,1), A(2,2), A(2,3),
A(3,1), A(3,2), and A(3,3). By laying it out on a matrix, you
can think of the first number as a row and the second as a col-
umn. This diagram will make it clearer:

Col 1 Col2 Col3
Row1l A(1,1) A(1,2) A(Q1,3)
Row 2 A(2,1) A(2,2) AQ23)
Row 3 A(3,1) A(3,2) A(33)

Again, it's important to remember that each element in
the array is simply a type of variable. To make this easier to
keep in mind, do the following:

XV$(3,1) = “I'M A VARIABLE” : PRINT XV$(3,1)
JK%(2,2) = 21 : PRINT JK%
MM (1,1) = 3.212 : PRINT MM(1,1)

Remember, arrays must be envisioned as an orderly set of
variables. Now, let’s use a two-dimensional array in a pro-
gram. The purpose of the program is to line up people in a
nine-member marching band:

10 TEXT : HOME
20 DIM BA$(3,3) : REM MAKE 3 ‘ROWS’ AND 3 ‘COLUMNS’
30 FORI = 1 TO 3 : REM ROWS

84

‘@

3

1

Branching Out

40 FORJ = 1 TO 3 : REM COLUMNS

50 READ BA$Q,J)

80 NEXTJ

70 NEXT I

80 DATA MARY, TOM, SUE, PETE, JACK, NANCY, BETTY,

BILL, RALPH

100 REM OUTPUT BLOCK

110 FORI = 1 TO 3 : REM ROWS

120 FORJ = 1 TO 3 : REM COLUMNS

130 PRINT BA$(IJ) , : REM COMMA WILL FORMAT
OUTPUT 3 ACROSS

140 NEXTJ

150 NEXT I

When you run this program, all of the band members will
be lined up. However, you could do the same thing with a sin-
gle-dimensional array since all that lines them up is the use of
the comma to format the PRINT statement in line 130. So,
what’s the big deal about a two-dimensional array? To see,
add some lines to the program:

160 PRINT : PRINT “HIT ANY KEY TO CONTINUE ”; : GET
AN$

170 HOME : PRINT “WHAT ROW & COLUMN WOULD YOU
LIKE TO SEE? " : INPUT “ROW #-> ;R :INPUT ‘‘COL #->
”;C

180 PRINT : PRINT BA$(R,C); ‘“ IS IN ROW *; R; ‘“ COLUMN ”’;
C

190 PRINT : INVERSE : PRINT “MORE? (Y/N) ”’; : NORMAL :
GET M$

200 IF M$ = “Y” THEN 170

Now you can locate the value, or contents, of a specific
array on two dimensions. In the example, if you know the row
number and column number, you can find the band member
in that position. The use of two-dimensional arrays in prob-
lems dealing with matrices is an important addition to your
programming commands.

It’s also possible to have several more dimensions in an
array variable. As you add more and more dimensions, you
must be careful not to confuse the different aspects of a single
array. Sometimes, when a multidimensional array becomes
difficult to manage (or use), you'll do better to break it down
into several one- or two-dimensional arrays. But just for fun,
see what you might want to do with a three-dimensional array
with the following program.

85

CHAPTER 4

10 TEXT : HOME

20 INVERSE : PRINT “FILE CABINET LOCATOR” : NORMAL

30 PRINT : PRINT “HOW MANY CABINETS, DRAWERS,

FOLDERS?”

35 INPUT ‘“‘(ENTER EACH SEPARATED BY A COMMA)";X,Y,Z

40 DIM FC$(X,Y,Z)

42FORI=1TOX: FORJ = 1TOY: FORK = 1 to0 2

44 FC$(Q,J,K) = “EMPTY”

46 NEXT K,J,I

60 INPUT “HOW MAY ITEMS WOULD YOU LIKE TO FILE?

";N%

60 PRINT : FOR I = 1 TO N%

70 INPUT “CABINET #-> *;C

80 INPUT “DRAWER #-> ;D

90 INPUT “FOLDER #-> ";F

100 INVERSE : INPUT “NAME OF ITEM TO FILE : ”;NI$:
NORMAL

110 FC$(C,D,F) = NI$

120 NEXT I

200 REM ROUTINE FOR CHECKING CONTENTS OF CABINET

210 HOME : INPUT “WHICH CABINET # WOULD YOU LIKE TO
CHECK? ;W

220 FORI = 1 TO X

230 FORJ = 1TOY

250 PRINT “CABINET #";W;* DRAWER #",I;* FOLDER #";J;*

CONTAINS ";FC$(W,LJ)

260 NEXT J

270 NEXT I

280 PRINT : PRINT : PRINT “CHECK MORE CABINETS?
(Y/N)”: GET AN$: PRINT AN$

290 IF AN$ = “Y” OR AN$ = “y” THEN GOTO 210

300 END

That's a fairly long program; go over it carefully to make
sure you understand what it is doing. Again, let me remind
you that the three-dimensional array is a variable with a lot of
numbers in parentheses. Also, note on line 35 how several
values are INPUT with a single INPUT statement. The format
is

INPUT A, B, C

As long as the program user is told to enter the appropriate
number of responses and separate each with a comma, every-
thing will work fine. You might want to save this program on
a disk as an example of a multidimensional array.

86

1

.

A

.

3 1

3

Branching Out

Summary

This chapter has covered a lot of ground, and if you under-
stand everything, excellent! If not, don’t worry; it will all be-
come clear with practice. Whatever your understanding of the
material, though, experiment with all the statements. Be bold
and daring with your computer’s commands. As long as you
have stored your programs, the worst that can happen is that
you will have to reboot.

You've learned that your IIGS can indeed compute. By
using IF-THEN and relationals, you can give the computer the
power of decision making. The use of subroutines makes it
possible to branch at decision points to anywhere you want
within a program. Computed GOTOs and GOSUBs allow the
execution to move appropriately with a minimal amount of
programming,.

Finally, you've been introduced to array variables. Arrays
allow you to enter values into sequentially arranged variables
(or elements). Using FOR-NEXT loops makes it possible to
quickly program multiple variables up to the limits of the
DIMensions. Arrays not only assist you in keeping variables
orderly, but they save a good deal of work as well. In Chapter
5, you'll begin to work with commands that help arrange ev-
erything. As your programs become more sophisticated, you
will need to keep better track of what you're doing. By or-
ganizing programs into small, manageable chunks, you can
create clear, useful programs.

87

ST

.

L

=)

Organizing the Parts

In programming, as with most other tasks, good organization
allows you to handle larger and more complex problems. As you
learn more commands, you can do more things, but the more
you do, the more likely you are to get tangled up and lost.

An area that is likely to be among the first to suffer from
overflow is that of formatting output. Variables get mixed up,
arrays are misnumbered, and the screen is a mess. In order to
handle this kind of problem, this book will deal extensively with
text and string formatting. Not only will you be able to put
things where you want them, but you'll learn to do it with style.

The second major area prone to disorganization is
input/output (I/O). Some of the problem comes from format-
ting, but even more elementary is the problem of organizing
the input and output so that data is properly analyzed. Data
must be connected to the proper variables and must be subject
to the correct computations. Thus, in addition to examining
string formatting, you will also get a careful look at organizing
data manipulation.

Formatting Text

Chapter 1 pointed out that in many ways the IIGS keyboard
works like a typewriter. One feature of a typewriter is its abil-
ity to set tabs so that text can automatically be placed a given
number of spaces from the left margin. With your IIGS, not
only can you TAB horizontally, but you can also HTAB,
VTAB, and SPC. Let’s look at what each of these means:

Command Meaning

TAB(N) Used within PRINT statement to place next char-
acter N spaces from left margin

HTAB Sets horizontal placement of next output character

VTAB Sets vertical placement of next output character

SPC(N) Used within PRINT statement to create a specified
number of spaces
(SPC starts printing nonspace characters one space
after N)

91

CHAPTER 5

To see how these commands format text output, try them
out:

10 TEXT : HOME

{0 PRINT TAB (R0);“TAB TO HERE”

30 HTAB 20 : PRINT ‘“HTAB TO HERE”

35 REM NOTE DIFFERENT FORMAT BETWEEN TAB & HTAB
40 VTAB 18 : PRINT “VTAB DOWN HERE”

50 PRINT SPC(R0);‘‘SPC TO HERE”

Now, have some fun with the commands. This little pro-
gram will have a strange effect on your cursor.

10 TEXT : HOME : VTAB 20

RQO0FORI =38TO 1 STEP —1

30 FORJ = 1 TO 100 : NEXT : REM DELAY LOOP

40 HTAB I: PRINT * J’; SPC(1);

50 NEXT I

60 HTAB 2 : PRINT “HIT ANY KEY TO CONTINUE OR ‘Q’ TO
QUIT-> ’;: GET A$

70 IF A$ <> “Q"” THEN 10

Here’s another one to play with:

10 TEXT : HOME : VTAB 4

20 INPUT “ENTER MESSAGE-> "’; MS$

30 PRINT : INPUT “HORIZONTAL PLACEMENT (1-40) -> ; H

40 PRINT : INPUT ‘“VERTICAL PLACEMENT (1-R4) —> ", V

50 HOME

60 HTAB H : VTAB V : PRINT MS$

70 PRINT : PRINT “HIT ANY KEY TO CONTINUE OR ‘Q’ TO
QUIT ”; : GET A$

80 IF A$ <> “Q” THEN 10

90 END

As you can see, variables can be used with formatting
statements. Thus, HTAB H is read in the same way as HTAB
10 or HTAB 15 or any other number between 1 and 40. In the
above program, what do you think will happen if you enter
“THIS IS A LONG STRING”, and specify a horizontal place-
ment of 39, and a vertical placement of 24? Since the maxi-
mum HTAB is 40 and the maximum VTAB is 24, the string
(MS$) will go over the boundaries. Go ahead and try it to see
what happens. In fact, it would be a good idea to test the lim-
its of HTAB and VTAB with this program to get a clearer un-
derstanding of their parameters.

92

-4

N DR R

]

1

Organizing the Parts

Paddle Formatting
If you do not have game paddles, skip this section.

In some applications, you may want to use your game paddles
to output numbers or text. By turning the paddle wheel, you
can change the value of variables. Later, in the discussion of
graphics, you will see how to use the paddles to develop inter-
esting graphics effects and even games. But for now, we will
simply look at some commands that will show you how your
paddles can be used with a program. Try the following program:

10 TEXT : HOME

20 X = PDL(0)

30 HTAB 10 : VTAB 10

40 PRINT X; SPC(R)

BO FORI = 1 TO 15 : NEXT I : REM PADDLE ‘REFRESH’ LOOP
60 GOTO 20 : REM ENDLESS LOOP

Note the FOR-NEXT loop in line 50. For some reason, the
IIGs paddle readings need to be “refreshed” with a little loop.
Anyway, run the program and turn the dial on your paddle to
see the effect.

Unraveling Strings

Our discussion of strings up to this point has involved whole
strings. That is, whatever you define a string to be—no matter
how long or short—can be considered a whole string. For ex-
ample, if you define R$ as WALK, you can consider WALK to
be the whole of R$. Likewise, if you define R$ as A VERY
LONG AND WORDY MESSAGE, then A VERY LONG AND
WORDY MESSAGE will be the whole string of R$. There will
be occasions, however, when you’ll want to use only part of a
string or tie several strings together. (When we get into data-
base programs, this will be very important.) Also, in some
applications you will need to know the length of strings, find
the numeric values of strings, and even change strings into
numeric variables and back again.

When I first learned about all the commands we are about
to discuss, I thought, “Boy, what a waste of time.” It was
enough to get the simple material straight, but why would
anyone want to chop up strings and put them back together
again? If you want only a certain segment of a string, why not
simply define it in terms of that segment? And if you want a
longer string, then just define it to be longer.

Those were my thoughts on string formatting. Now, how-
ever, I find it difficult even to conceive of programming with-

93

CHAPTER 5

out these powerful commands. So, trust me. String formatting
commands are terrific little devices to have, and if you don't
see their applicability right away, you will as you begin writ-
ing more programs.

String Formatting
We'll divide our discussion of string formatting into four parts:

* Calculating the length of a string

* Locating parts of strings

* Changing strings to numeric variables and back again
* Tying strings together (concatenation)

Calculating the LENgth of Strings

Sometimes it’s necessary to calculate the length of a string for
formatting output. Happily, your IIGS is very good at telling
you the length of a particular string. By issuing the command
PRINT LEN (A$), you will be given the number of characters
(including spaces) that your string contains. Try the following
program to see how this works:

10 TEXT : HOME

20 INPUT “NAME OF STRING —> ”; A$

30 PRINT A$; “ HAS ”’; LEN(A$); ‘“ CHARACTERS”

40 PRINT : INVERSE : PRINT ¢ MORE? (Y/N) ”;: NORMAL :GET
ANS$

50 IF AN$ = “Y” THEN 20

Now, to see a more practical application, look at a modi-
fied version of the centering routine we used in the last
chapter:

10 TEXT : HOME

20 INPUT “40- OR 80-COLUMN SCREEN? ”*; CS

30 PRINT “ENTER A STRING OF FEWER THAN *’; CS ;*
CHARACTERS” : INPUT“~> ”; 8%

40 HTAB (CS/2) — LEN(S$)/2 : PRINT S$

50 VTAB 22 : PRINT “HIT ANY KEY TO CONTINUE OR ‘Q’ TO
QUIT ”;: GET AN$

60 IF AN$ < > “Q” THEN HOME : GOTO 30

70 END

Now that you can see how to compute the LENgth of a
string and then use that LENgth to compute the tabbing, let’s
look at how you can control the input with the LEN command.

94

N R

Organizing the Parts

Suppose you want to write a program that will print out mail-
ing labels, but your labels will hold only 30 characters. You
want to make sure that none of your entries is over 30 charac-
ters in length, including spaces. To do this, we will write a
program that checks the LENgth of a string before it is
accepted:

10 TEXT : HOME
R0 PRINT “ENTER A NAME FEWER THAN 30 CHARACTERS
INCLUDING
SPACES” : INPUT ‘“DO NOT USE COMMAS -> **;
NA$
30 IF LEN (WA$) > 30 THEN GOTO 100 : REM TRAP
40 PRINT : INVERSE : PRINT NA$: NORMAL
50 PRINT : PRINT “ANOTHER NAME? (Y/N) ’; : GET AN$
60 IF AN$ < > “Y"” THEN END
70 GOTO 10
100 HOME : FLASH
110 PRINT “PLEASE USE 30 CHARACTERS OR FEWER " :
NORMAL
120 PRINT : GOTO R0

The first thing you should do is break the rule. Enter a
string of more than 30 characters to see what happens. If the
program has been entered properly, you'll find that it’s impos-
sible to enter a string with more than 30 characters.

From these examples, you can see that LEN can be useful
in several ways. The key to understanding its usefulness is to
experiment with it and see how other programmers use the
same command. You'll find that there are many other ways in
which you can employ such commands to reduce program-
ming time, clarify output, and compute information.

Finding the MID$, LEFTS, and RIGHTS$ of a String

Suppose you want to use a single string variable to describe
three different conditions, such as POOR, FAIR, or GOOD,
but you want to use only part of that string to describe an out-
come. By using MID$, LEFT$, and RIGHTS$, you can print
only the part of the string that you want. For example, the
next program lets you use a single string to describe three dif-
ferent conditions:

95

CHAPTER 5

10 TEXT : HOME
20 X$ =“POOR FAIR GOOD”

30 PRINT ‘“HOW DO YOU FEEL TODAY? (<P>OO0R, <F>AIR, OR

<G>00D) *’; : GET F$
40 IF F$ = “P” THEN PRINT LEFT$(X$,4)
80 IF F$ = “F” THEN PRINT MID$(X$,6,4)
60 IF F$ = “@’” THEN PRINT RIGHT$(X$,4)
70 VTAB 22 : PRINT “ANOTHER GO? (Y/N) ’; : GET AN$
80 IF AN$ = “Y” THEN 10

Let’s face it; it would be easier simply to branch to a
PRINT GOOD, FAIR, or POOR, and no less efficient. But, no
matter; let’s see what the new commands do.

Statement Meaning

MID$(A$,N,L) Finds the portion of A$, beginning at Nth
character, L characters long

LEFT$(A$,L) Finds the portion of A$, L characters long,
starting at the left side of the string

RIGHT$(A$,L) Finds the portion of A$, L characters long,
starting at the right side of the string

To get some immediate experience with these commands,
try the following:

W$=“WHAT A MESS” : PRINT LEFT$(W$,4)

G$="BURLESQUE” : PRINT MID$(G#$,4,3)

X$="A PLACE IN SPACE” : PRINT RIGHT$(X$,6) : PRINT
RIGHT$(X$,3)

Another trick with partial strings is to assign parts of one
string to another string. For example,

10 TEXT : HOME

20 BIG$ = “LONG LONG AGO AND FAR FAR AWAY”

30 LITTLE$ = MID$(BIG$,11,3)

40 AWY$ = RIGHT$(BIGS,4)

BO LG$ = LEFT$(BIGS,4)

60 VTAB 10 : PRINT AWY$;" ";LG$;" ";LITTLE$

70 REM BEFORE YOU RUN IT, SEE IF YOU CAN GUESS THE
MESSAGE.

For an interesting effect, try this little program:

10 TEXT : HOME : VTAB 10

20 INPUT “YOUR NAME-> *; NA$

30 INVERSE : FOR I = LENQNA$) TO 1 STEP —1 : PRINT
MID$(NA$,I,1); : NEXT I

40 NORMAL : FOR I = 1 TO 1000 : NEXT I : REM DELAY LOOP

96

B I

3

S

-3

Organizing the Parts

BOHTAB1:VTAB1ll: FORI = 1 TO LEN(NA$) : PRINT
MID$(NA$, 1,1); : FOR K = 1 TO 60 : NEXT K : NEXT I

6556 REM ‘K LOOP’ SLOWS IT DOWN FOR SLOW-MOTION EFFECT

60 HTAB 7 : VTAB 20 : PRINT “WANNA DO IT AGAIN? (Y/N)
", . GET AN$:

IF AN$ = “Y” THEN 10

You've probably been wondering ever since you got your
IIGS how to make it print your name backward. Now you
know. (If your name is Bob, you probably didn’t notice it was
printed backward—try Robert.) Actually, the above exercise
does a couple of things besides goofing off. First, it demon-
strates how loops and partial strings (or substrings) can be
used together for formatting output. Second, it shows how
output can be slowed down for either an interesting effect or
simply to give the user time to see what’s happening.

Since we're on the topic of speed, this would be a good
time to learn the SPEED command. SPEED can be from 0 to
255; the default is 255. We have been operating at a speed of
255 from the outset. Let’s try some SPEED tests:

10 TEXT : HOME : SPEED = 255 : REM RESETS SPEED

20 K$ =“ONCE UPON A TIME IN THE KINGDOM OF SNEW...”

30 INPUT “WHAT SPEED WOULD YOU LIKE? (0-288) ; 8

40 SPEED = 8

BO FOR X = 1 TO LEN(K$) : VTAB 10 : HTAB X : PRINT
MID$(K$,X,1) : NEXT X

60 VTAB 20 : FLASH : PRINT “AGAIN? (Y/N) ”; : NORMAL :
GET AN$: IF AN$ =*“Y” THEN 10

70 SPEED = 285 : END

80 REM WHEN YOU CHANGE THE SPEED, IT IS ALWAYS A
GOOD IDEA

90 REM TO RESET IT TO 288 AT THE END OF THE PROGRAM

Here’s a program that will do all kinds of things with
strings:

10 TEXT : HOME : GOTO 20

20 PRINT CHR$ (7): VTAB 10: INPUT “STRING > ";8$: IF 8% =
“” THEN GOTO 90

30 L = LEN (8$): IF L > 10 THEN PRINT : PRINT ‘“TEN OR
FEWER CHARACTERS PLEASE!”: GOTO 20

40 HOME : PRINT 8%;: INVERSE : HTAB 20 — LEN (8%) / &:
PRINT S$;: FLASH : HTAB 41 — LEN (S$): PRINT 8$:
NORMAL : PRINT

5O FOR I — 1 TO LEN (8$): VTAB I + 2: PRINT MID$ (8$,1,1):
HTAB 19: VTAB I + 2: INVERSE : PRINT MID$ (88,1,1):
HTAB 40: VTAB I + R2: FLASH : PRINT MID$ (S$,I,1):
NORMAL : NEXT I

97

CHAPTER 5

60 FOR I = 1 TO LEN (8$): HTAB I: PRINT MID$ (8$,I,1):
NEXT I

70 FLASH : FOR I = 1 TO LEN (S$): VTAB LEN (S§) + 3 + I:
HTAB 41 — I: PRINT MID$ (S$,I,1): NEXT : INVERSE

80 FOR I = 1 TO LEN (S$): HTAB 19: VTAB LEN (8$) + 3 + I:
PRINT MID$ (S$,1 + LEN (8$) — I,1): NEXT : NORMAL :
GET A$: PRINT A$: GOTO 10

90 HOME : END

Strings to Numbers and Back Again

Now we’re going to learn about changing strings to numbers
and numbers to strings. When I first found out about these
commands, I thought they were pretty useless. After all, I
thought, if you want a string, use a string variable, and if you
want a number, use a numeric variable. Simple enough, but
again, once you understand the value of these commands,
you’ll wonder how you did without them. To get started, run
this program:

10 TEXT : HOME

20 FORI = 1 TO 5 : READ NA$(D) : NEXT I

B0FORI = 1TO5

40 X(@) = VALRIGHT$(NA$Q),1))

50 NEXT I

60 FORI = 1 TO 5 : PRINT “OVERTIME PAY= $”; X(I) * (1.5 *
?7) : NEXT I

70 DATA SMITH 7, JONES 8, MCKNAP 68, JOHNSON 2, KELLY
3

By using DATA elements that were originally in a string
format, you can change a portion of that string array to a nu-
meric array. By making such a conversion, you are able to use
mathematical operations in line 60 to figure out the overtime
pay for someone receiving time and a half at seven dollars an
hour. Well, that’s pretty interesting, but there’s no list of who
got what and the total overtime paid. Why don’t you try add-
ing those features yourself? Change the program so that ev-
eryone’s name appears with the amount of overtime received
and a total for overtime paid is given. Hint: You are looking
for the substring LEFT$ (NA$(I), LEN (NA$(I)—2)) since you
want to drop the number and space after each name.

With a new statement it’s always helpful to do a few ex-
ercises immediately to get the right feel:

A$ = “123” : PRINT VAL(A$) + 11
Q$ = “99.5” : PRINT VAL(Q$) * 7
SALE$ = “44.95” : PRINT “ON SALE AT HALF PRICE —>§ *;

98

[IS R [

-

I3

Organizing the Parts

VAL(SALES$) / 2
DO$ = “$103.88” : DN$ = “$18.34” : PRINT VAL
(RIGHT$(D0$,6)) + VAL (RIGHT$(DN$,5))

If you want to save the examples on disk, just add line
numbers and save them as programs.

From Numbers to Strings

Now let’s go the other way. You saw why you might want to
change strings to numbers, but you might also want to change
numbers to strings. To make the conversion, use the STR$
function. For example, look at the following program:

10 TEXT : HOME

20 INPUT “ENTER A NUMBER WITH 5 NUMBERS AFTER THE
DECIMAL POINT ” ; A

30 A$ = STR$(A)

40 PRINT : PRINT LEFT$ (A$,4)

The number is truncated to four characters. Now,
some examples in the immediate mode to set the idea firmly
into your mind. A little later you'll see how to do something
very practical with these statements.

A = B.00 : A$ = STR$(A) : PRINT A$

V = 2345 : V$ = STR$(V) : PRINT V$

BUCKS = 22.36 : BUCKS$ = STR$(BUCKS) : PRINT
LEFT$(BUCKS$,2)

Remember these statements. When you're dealing with
decimal points, you will often find them convenient.

Concatenation: Tying Strings Together

You have seen how to take a portion of a string and print it to
the screen. Now, we will tie strings together. This is called
concatenation and is accomplished by using the plus sign with
strings. For example,

10 TEXT : HOME

20 INPUT ‘“YOUR FIRST NAME —> ”’; NF$
30 INPUT ‘“YOUR LAST NAME —> ’; NL$
40 NA$ = NF$ + NL$

50 PRINT NA$

A little messy, perhaps? However, you can see how NF$
and NL$ are tied together into a single larger string. Now,
change line 40 to read

40 NA$ = NF$ + “” + NL$
99

CHAPTER §

This time when you run the program, your name will turn out
fine. Not only did you concatenate string variables, but you
also concatenated strings themselves. For example, it is per-
fectly all right to do this:

PRINT “ONE” + ‘(ONE”

There’s not much you can do with ONEONE, but you see the
principle behind concatenating strings.

One of the problems with the way the Apple IIGS formats
numbers is that it drops zeros from the end. For example, try
the following:

PRINT 19.80
PRINT 5.00

When you're dealing with dollars and cents, this can be a
real problem, and it doesn’t look very good. So, by using con-
catenation and the VAL and STR$ functions, let’s see if we
can find a solution:

10 TEXT : HOME

20 INVERSE : PRINT “BE SURE TO INCLUDE ALL CENTS!":
NORMAL : PRINT : PRINT

30 INPUT “HOW MUCH SPENT?-> $”; 8

40T=T+S8

BO T$ = STR$(T)

60 T$ = ““000” + T$

65 REM LINE 60 IS TO INSURE THAT LEN(T$) IS LONG
NOUGH

70 IF MID$ ('I‘$, (I.EN (T$) - 1)’1) = ¢« " PHEN T$. T$ + «0”
: GOTO 100

80 IF MID$ (T$, (LEN (T$) —3),1) <> “." THEN T$ = T$ +
“.00”

90 PRINT : PRINT
100 PRINT ‘“YOU NOW HAVE SPENT $”; RIGHT$(T$, LEN(T$)

This program looks complicated until it’s broken down.

This program may seem somewhat complicated just to
get the zeros back, but the entire process is done in five lines
(50-90). Save the program, and when you need those zeros in
your output, just include those lines. (Be careful, though; this
procedure will not work with subtraction when you get below
$1.00).

100

~1

B

1

Organizing the Parts

Lines Result
Lines 30-40 Numeric variables are entered in line 30, and their sum
is computed in line 40.

Line 50 The sum represented by T is then converted into a
string variable T$.

Line 60 T$ is padded with three zeros to give it a minimum
length needed in lines 70 and 80.

Line 70 The second from the last character in T$ is examined. If

that character is a decimal point, the value in the string
must be a figure that dropped off the last cent digit (for
example, 5.4, 19.5, and so forth). In this case an addi-
tional zero is tacked on, and we jump to line 100.

Line 80 The third from the last character is computed. If it is
not a decimal point, the value in the string has no cents
digits—thus, it is an even dollar number. In this case,
we tack on the decimal point and two zeros (.00).

Lines 90-100 Line 90 prints two blank lines. Finally, the results are
printed out in line 100, but first we use RIGHT$ to
drop the extra padding characters we added in line 60.

Setting Up Data Entry

Now that you have a firm grip on several statements, it’s time
to begin thinking seriously about program organization. The
first step is to arrange your data entry in a manner easily un-
derstood by yourself and others. This involves blocking ele-
ments of a program and deciding what variables and arrays
you will use. Also, when you enter data, make sure that you
are entering the correct type of data. You'll need to set traps
so that any input that is over a certain length or amount can
be checked against your parameters.

One of the easiest ways to set traps is with the ONERR
statement. This statement will set certain conditions when an
error occurs. Try the following program (that’s right—there is
an error if you follow instructions):

10 TEXT : HOME

20 ONERR GOTO 100

30 INPUT “ENTER A LETTER FROM A-Z —>'; LE

40 PRINT : PRINT : PRINT “SEE WHAT’'D I TELL YOU” : END

100 HOME : PRINT : PRINT : FLASH :

110 PRINT ‘ THERE IS AN ERROR! ” : NORMAL

120 PRINT : PRINT “TRY AGAIN USING A NUMBER SINCE
‘LE’ISA”

101

CHAPTER 5

130 PRINT “NUMERIC VARIABLE”

140 VTAB R0 : INVERSE : PRINT “PRESS ANY KEY TO
CONTINUE”

160 CLEAR : GET A$: GOTO 10

Trapping yourself. The error messages built into your
Apple IIGS are very useful for debugging programs. The mes-
sages tell you what kind of error occurred and which line they
occurred on. ONERR statements used within programs can cause
difficulties since they will jump to your error routine no matter
what error they encounter—even if the error is one your pro-
gram isn’t expecting. To avoid this and still use the handy
ONERR statement, put a temporary GOTO statement around
the ONERR statement while you’re developing a program and
remove it when your program is complete. For example,

R5 GOTO 40

30 ONERR GOTO 100

40 INPUT “ENTER NAME ”; NA$
Ete.

Now, all you have to do is to delete line 25 when you're
finished, and your ONERR statement can work the way it’s
supposed to.

The most common—and useful—type of ONERR trap-
ping occurs with 20UT OF DATA errors. Sometimes, when
you're setting up data entry, you'll have an unknown amount
of data to be READ into a program. For example, say you
want a menu program that reads in files on your disk from
DATA statements. Since you will be adding filenames all the
time, you don’t want to bother with having to count them
each time you add a new DATA element. To read in all the
DATA with an unknown number of elements, you can use a
FOR-NEXT loop that reads 100 array elements before exiting
the loop. Since you are unlikely to have that many files on a
single disk side, you will run out of data before exiting the
loop. Since it is generally not a good idea to jump out of a
loop, you will have to take another precaution that will satisfy
the loop count as well. Finally, if the expected error is not an
?0UT OF DATA error, you will want your program to do
something else. Look at this example:

10 REM MENU PROGRAM

20 TEXT : HOME

30 ONERR GOTO 200: REM BEGIN ERROR TRAP
40 DIM NA$(100)

50 FOR I = 1 TO 100: READ NA$(D)

102

-1

U IS R

3

0 I R

Organizing the Parts

80 N = N + 1: REM COUNTER

70 NEXT I

80 I = 100: REM RESET RESISTERS IN FOR-NEXT LOOP

90 FORI = 1 TON

100 PRINT I;“.”;NA$(I): NEXT

110 PRINT : PRINT “CHOOSE PROGRAM BY NUMBER”: INPUT
“ AND PRESS <RETURN>";C

120 D$ = CHR$ (4): PRINT

130 PRINT D$;"“RUN"’;NA$(C)

140 END

150 DATA FILE A, FILE B, FILE C, FILE D, FILE E : REM
ENTER THE FILES ON YOUR DISK

200 ER = PEEK (222): REM ADDRESS OF ERROR ROUTINES

220 IF ER = 42 THEN 80: REM 42 IS THE CODE FOR ?0UT OF
DATA

230 PRINT “THERE WAS AN ERROR IN YOUR CHOICE OR IN
THE PROGRAM,”: PRINT “ TRY AGAIN-> HIT ANY KEY
TO RETURN TO PROGRAM OR ‘Q’ TO QUIT ;: GET A$

240 IF A$ < > “Q” THEN GOTO 10

This program uses a PEEK statement that looks into the
location where the error statement codes are stored. (PEEK
and POKE statements will be discussed in Chapter 6.) If the
correct code is located, the program branches to where you
want it. Otherwise, it stops and gives you another chance to
INPUT a choice or to quit.

Give yourself an out. People like to have the option of
exiting a program—even at the beginning. You can usually hit
the reset button or control-C to exit a program, but those are
inelegant solutions—like exiting through a wall instead of a
door. Therefore, in setting up your program, always leave an
option for exiting gracefully.

Now back to setting up data entry. Let’s look at a way to
make strings a certain length (no shorter or longer than the
length you want). We've already discussed how to keep
strings to a maximum length; now let’s see how to keep them
to a minimum. This new process is called padding.

10 TEXT : HOME

20 VTAB 8 : INPUT “YOUR COMPANY->’; CO$

30 IF LEN(CO$) > 10 THEN PRINT “10 OR FEWER
CHARACTERS PLEASE” : PRINT “HIT ANY KEY TO
CONTINUE-> ";:GET A$: HOME : GOTO 0

40 IF LEN(CO$) < 10 THEN CO$ = CO$ + “X” : GOTO 40 : REM
PADDING

50 VTAB 10 : PRINT “THE COMPUTER HAS DECIDED THAT ”’

60 PRINT CO$; ‘“ SHOULD GIVE YOU A RAISE”

103

CHAPTER §

If YOUR COMPANY (CO$) contains fewer than ten char-
acters, you will see some X’s stuck on the end. They were put
there to show you how padding works. Now in line 40 change
the X to “ ”’ (a space) and see what happens. The second time
you run the program, if your company’s name contains fewer
than ten characters, there will be several blank spaces after the
company name. To remove the spaces, enter this line:

60 IF MID$(CO$,LEN(CO$),1) = * THEN CO$ =
LEFT$(CO$,(LEN(CO$)—1): GOTO 60

Setting Up Data Manipulation
Once you have organized your input, the next major step is

performing computations on your data. There are essentially
two kinds of data manipulation:

Numeric Manipulating numeric data with mathematical operations
String Manipulating strings with concatenation and substring
statements

Most of the string manipulations are for setting up input
or output, so we will concentrate on manipulating numeric
data. We will use a simple example that keeps track of three
manipulations: additions, subtractions, and running balance.
This is the checkbook program we started earlier:

10 TEXT : HOME
{0 REM ### BEGIN INPUT & HEADER BLOCK ###

30 CB$ = “ =COMPUTER CHECKBOOK= "": HTAB 20 — LEN
(CB$) / 2: INVERSE : PRINT CB$: NORMAL : REM
=HEADER=

40 VTAB 4: INPUT “ENTER YOUR CURRENT BALANCE->
$”;B A
50 VTAB 6: PRINT “1. ENTER DEPOSITS”: PRINT : PRINT “2.
DEDUCT CHECKS": PRINT : PRINT “3. EXIT”
60 VTAB 20: INVERSE : PRINT “ CHOOSE BY NUMBER **;:
NORMAL : GET A
70 ON A * (A<4) GOTO 100,200,400
80 GOTO 60: REM TRAP
90 REM END OF INPUT BLOCK
100 REM ### DATA MANIPULATION ROUTINE NO. 1
HHH
110 HOME : VTAB 8: INPUT “ENTER AMOUNT OF DEPOSIT
$";DP
120 BA = BA + DP: REM RUNNING BALANCE
130 VTAB 8: PRINT ‘“YOU NOW HAVE § ";BA;* IN YOUR
ACCOUNT”
140 PRINT : VTAB 10: PRINT “MORE DEPOSITS? (Y/N) ”’;: GET

104

-3 3

_3

.

Organizing the Parts

AN$

150 IF AN$ = “Y” THEN 110

160 PRINT : VTAB 10: PRINT “WOULD YOU LIKE TO DEDUCT
CHECKS? (Y, ».. GET AN$

170 IF AN$ = “N” THEN GOTO 400

180 IF AN$ = “Y"” THEN GOTO 200

190 HOME : GOTO 160: REM TRAP & END OF DATA
MANIPULATION ROUTINE NO. 1

200 REM ### DATA MANIPULATION ROUTINE NO. 2 ###

210 HOME : VTAB 6: INPUT “ENTER AMOUNT OF CHECK
$”,CK

220 BA = BA — CK: REM RUNNING BALANCE

230 PRINT : PRINT “YOU NOW HAVE $”;BA;*“ IN YOUR
ACCOUNT”

240 PRINT : VTAB 10: PRINT “MORE CHECKS? (Y/N) — ‘Q’ TO
QUIT ”;: GET AN$

60 IF AN$ = ¢“Y” THEN 210

260 IF AN$ = “Q” THEN 400

270 PRINT : PRINT “ANY DEPOSITS? (Y/N) ;: GET AD$

280 IF AD$ = “Y” THEN 100

290 GOTO 240: REM TRAP & END OF DATA MANIPULATION
BLOCK NO. 2

400 REM ### TERMINATION BLOCK ###

410 HOME : FOR I = 1 TO 400: PRINT “$”;: NEXT

420 PRINT “YOU NOW HAVE A BALANCE OF $";BA

This program provides a simple illustration of how to
block data manipulation. However, there are some problems
with it in the output. You will not get the zeros on the end of
the balance. This is an output problem that will be discussed
in the next section, but before continuing, be sure that you un-
derstand how the data manipulation was blocked. Only three
variables were used:

BA = BALANCE
CK = CHECK
DP = DEPOSIT

When you subtract a check, you simply subtract CK from
BA, and when you enter a deposit, you add DP to BA. In this
way you can keep a running balance, and at the very end BA
will be the total of all deposits and checks. By keeping it sim-
ple and in blocks, you will be able to jump around and still
keep everything straight.

Organizing Output
Let’s return to the checkbook program and repair it so that
the balance will show the zeros where they belong. This is es-

105

CHAPTER 5

sentially an output problem: All of the computations have
been done, and they correctly tell the balance, but it just
doesn’t look right with the missing zeros. However, you don’t
want to have to enter the lines for converting the balance into
a string variable every time the running balance is printed.
Therefore, put the subroutine for the conversion into a block.
Looking at the checkbook program, you see that a block is
available in the 300s. Luck is with you. You can use that block
to format the output.

300 REM ### FORMAT OUTPUT ###

310 BA = BA + .001:PLACE = 1:BA$ = STR$ (BA): IF BA <
.01 THEN BA$ = “0.00”: GOTO 340

320 IF MID$ (BA$,PLACE,1) <> “.” THEN PLACE = PLACE +
1: GOTO 320

330 BA$ = LEFT$ (BA$,PLACE + ?)

340 RETURN

350 REM END OF OUTPUT BLOCK

Now, just change a few lines in the program so that when
there is an output of the balance, it will jump to the subroutine
between lines 300 and 350, and then RETURN to output BAS.
The following lines in the program should be changed or added:

1235 GOSUB 300

130 VTAB 8 : PRINT “YOU NOW HAVE $”; BA$; “IN YOUR
ACCOUNT”

225 GOSUB 300

230 PRINT : PRINT ‘“YOU NOW HAVE $”’; BA$; *“ IN YOUR
ACCOUNT”

415 GOSUB 300

420 PRINT “YOU NOW HAVE A BALANCE OF $”’; BA$

If you put everything together properly, you should have
a handy program for working with your checkbook. Just to
make sure you have everything, here’s the complete program
with all the subroutines and changes incorporated:

Checkbook Program

10 TEXT : HOME : REM COMPLETE CHECKBOOK PROGRAM
20 REM ### BEGIN INPUT & HEADER BLOCK ###

30 CB$ = ‘“ =COMPUTER CHECKBOOK= "’: HTAB 20 — LEN
(CB$) / 2: INVERSE : PRINT CB$: NORMAL : REM
=HEADER=

40 VTAB 4: INPUT “ENTER YOUR CURRENT BALANCE->
$";B.A.

50 VTAB 6: PRINT ‘1. ENTER DEPOSITS’’: PRINT : PRINT ‘2.
DEDUCT CHECKS”: PRINT : PRINT “3. EXIT”

106

-

-

S DR DU B

Organizing the Parts

60 VTAB 20: INVERSE : PRINT ‘ CHOOSE BY NUMBER ’’;:
NORMAL : GET A

70 ON A * (A< 4) GOTO 100,200,400

80 GOTO 60: REM TRAP

90 REM END OF INPUT BLOCK

100 REM ### DATA MANIPULATION ROUTINE NO. 1 ###

110 HOME : VTAB 6: INPUT “ENTER AMOUNT OF DEPOSIT
$H;DP

120 BA = BA + DP: REM RUNNING BALANCE

125 GOSUB 300

130 VTAB 8: PRINT “YOU NOW HAVE $";BA$;* IN YOUR
ACCOUNT”

140 PRINT : VTAB 10: PRINT “MORE DEPOSITS? (Y/N) ’;: GET
ANS$

150 IF AN$ = “Y” THEN 110

160 PRINT : VTAB 10: PRINT “WOULD YOU LIKE TO DEDUCT
CHECKS? (Y/N) ”;: GET AN$

170 IF AN$ = “N” THEN GOTO 400

180 IF AN$ = “Y”’ THEN GOTO 200

190 HOME : GOTO 160: REM TRAP & END OF DATA
MANIPULATION ROUTINE NO. 1

200 REM ### DATA MANIPULATION ROUTINE NO. 2 ###

210 HOME : VTAB 6: INPUT “ENTER AMOUNT OF CHECK
$”,CK

220 BA = BA — CK: REM RUNNING BALANCE

2258 GOSUB 300

230 PRINT : PRINT “YOU NOW HAVE $"";BA$; IN YOUR
ACCOUNT”

240 PRINT : VTAB 10: PRINT “MORE CHECKS? (Y/N) — ‘Q’ TO
QUIT ”;: GET AN$

250 IF AN$ = “Y” THEN 210

260 IF AN$ = “Q” THEN 400

270 PRINT : PRINT “ANY DEPOSITS? (Y/N) ”;: GET AD$

280 IF AD$ = “Y” THEN 100

290 GOTO 240: REM TRAP & END OF DATA MANIPULATION
BLOCK NO. 2

300 REM ### FORMAT OUTPUT ###

310 BA = BA + .001:PLACE = 1:BA$ = STR$ (BA): IF BA <
.01 THEN BA$ = “0.00’’: GOTO 340

320 IF MID$ (BA$,PLACE,]l) < > ‘.” THEN PLACE = PLACE +
1: GOTO 320

330 BA$ = LEFT$ (BA$,PLACE + 2)

340 RETURN

350 REM END OF OUTPUT BLOCK

400 REM ### TERMINATION BLOCK ###

410 HOME : FOR I = 1 TO 400: PRINT “$”’;: NEXT

415 GOSUB 300

420 PRINT “YOU NOW HAVE A BALANCE OF $’’;BA$

107

CHAPTER §

Scroll Control

One of the big problems in output occurs when you have long
lists that will scroll right off the screen. For example, the out-
put of the following program will kick the output right off the
top of the screen:

10 TEXT : HOME
Q0 FOR X = 1 TO 100 : PRINT X : NEXT

Instead of numbers, suppose you have a list of names you
have sorted or some other type of output that you want to see
before it zips off the top of the screen. There are several ways
to control the scroll, depending on the desired output, screen
format, and so forth. Consider the following:

10 TEXT : HOME

Q0 FORI = 1 TO 100

30 IF I = 20 THEN GOSUB 100

40 IF I = 40 THEN GOSUB 100

60 IF I = 60 THEN GOSUB 100

60 IF I = 80 THEN GOSUB 100

70 PRINT I : NEXT I

80 END

100 VTAB Q3 : INVERSE : PRINT ‘ HIT ANY KEY TO
CONTINUE ” ; : GET A$: PRINT A$

110 HOME : RETURN

Remember that you, and not the computer, are in control.
You can have your output any way you want it. To use more
of the screen, you could have the output tabbed to another
column after the vertical screen is filled. For example,

10 TEXT : HOME

R0 FOR X = 1 TO 40

30 IF X > 80 THEN GOSUB 100
40 PRINT X : NEXT X

50 END

100 HTAB 10: VTAB X — R0
110 RETURN

You get the idea. Format your ouput in a manner that
best uses the screen and your needs, and get that scroll under
control.

Summary

The way a program is formatted makes the difference between
a useful and not-so-useful computer application. The extent to
which your program is well organized and clear determines
your chances for simple, yet effective programming. Formatting
108

A

1

-

_1

5 D D

LJ

3

3

Organizing the Parts

is more than an exercise in making your input/output fancy or
interesting. It is a matter of communication between your Ap-
ple IIGS and yourself. After all, if you can’t make heads or
tails of what your computer has computed, the best calcula-
tions in the world are of absolutely no use.

It is equally important to write your programs so that you
and others can understand what is happening. By using
blocks, you'll find it easier to organize and later understand
exactly what each part of your program does. Obviously, you
can write programs sequentially so that each statement and
subroutine is in ascending order of line numbers, but this
means that you must repeat simple and/or complex operations
that would better be handled as subroutines. Also, locating
bugs and making appropriate corrections will be considerably
more difficult. In other words, by using a structured approach
to programming, you make it simpler, not more difficult.

Finally, you should begin to see why there are statements
for substrings, and why all the fuss is made about tabs. These
are handy tools for organizing the various parts in a manner
that gives you complete control over your computer’s output.
What may at first seem like a trivial, even silly statement in
Applesoft BASIC, given a useful application, can be appreci-
ated as an excellent tool. As you delve deeper into the Apple
IIGS, look at the variety of statements as mechanisms of more
efficient and ultimately simpler control, not as a gobbledegook
of computerese meant for geniuses. If you've come this far,
you should realize that what you know now looked like the
work of computer whizzes when you began.

109

FE P E S L -

Some Advanced
Topics

The topics in this chapter are more codelike than the ones
you've learned before and contain statements that can look
scary. Many of the functions can be done with statements you
already know. Others can better be accomplished with some
of the new statements. Like so much else, what may at first
appear to be impossible is really quite simple once you get the
idea. More important, by playing with the statements, you can
quickly learn their use.

The first thing to learn about is the ASCII code. ASCII
(pronounced AS-KEY) stands for the American Standard Code
for Information Interchange. Essentially, ASCII is a set of
numbers that have been standardized to represent certain
characters. In Applesoft, the CHR$ (character string) function
ties into ASCII and can be used to directly output ASCII. The
CHRS$ function is very useful not only in disk statements, but
also for outputting special characters.

The next statements concern direct access of locations in
your computer’s memory. The first, POKE, puts values into
memory, and the second, PEEK, looks into memory addresses
and returns the values there. We will examine several different
uses of these two statements.

The third statement discussed here, CALL, executes
machine-level routines in memory. The CALL statement can
be used to execute such routines from within a BASIC pro-
gram. In addition, you will learn how to use the BSAVE state-
ment to save binary files to the disk, and to BLOAD and
BRUN them. Finally, you will see the uses of the WAIT state-
ment for conditional pauses within Applesoft programs.

The ASCII Code and CHRS

In some programs, you might see something that looks like
this:

PRINT “ ’: REM CONTROL-D
113

CHAPTER 6

This means that you should enter the control-D between the
quotation marks. Unfortunately, you cannot see the control-D
when you list the program to printer or screen, so you must
use a REM statement to let you know what’s there.

Another way to access any characters you want, including
control characters, is to use CHR$ functions and the ASCII
code. In Appendix B is a complete listing of ASCII, from 0 to
255, in both decimal and hexadecimal. Whenever you want to
access a character, all you have to do is to enter the CHR$ and
the decimal value of the character. For example, enter the
following:

PRINT CHR$(65)

You'll get an A. That’s simple enough, but not very interest-
ing. On the other hand, try this program, which you can’t do
without using CHR$:

10 TEXT : HOME
20 QU$ = CHR$(34) : REM USES ASCII VALUE FOR QUOTE
MARKS

30 VTAB 20 : PRINT “HIT ANY KEY TO CONTINUE OR ”’; QU$
; “Q" ; QU$; 13 TO QUIT n;

40 GET AN$

50 IF AN$ = “Q” THEN END

60 PRINT CHR$(?) : GOTO 10

Run the program, and look and listen carefully. Look at
the quotation marks around the Q. If you try to print a quota-
tion mark, the computer will think it has received a statement
to begin printing a string. But by defining QU$ as CHR$(34),
you'll be able to slip in the quotation marks and not confuse
the output. Also, did you notice the bell? Until now, if you
wanted to ring the bell, you had to include an invisible con-
trol-G. Since the ASCII value of control-G is 7, by PRINTing
CHR$(7) you can ring the bell and see the function that makes
it ring.

,150 see the different characters that are available, run the
following program:

10 TEXT : HOME
R0 FOR I = 32 TO 1’7
30 PRINT CHR$(); : NEXT

Voila. There are all your symbols. Now, to watch funny
things happen to your screen, run the following program:

114

1

.

R

Some Advanced Topics

10 TEXT : HOME
20 FOR X = 0 TO 31
30 PRINT CHR$(X) ; : NEXT

You'll get a ?SYNTAX ERROR IN 30 with that routine.
You smack into a lot of control characters in that range, and
while some, such as CHR$(7), cause no problems, others do.
There are important codes in this range that you will use, but
be careful when exploring them.

Try the following programs to become accustomed to
your increased power over your computer.

10 TEXT : HOME

20 LB$ = CHRS$ (93) : RB$ = CHR$(91)

30 APPLE$ — “APPLE” + CHR$(32) + LB$ + RB$
40 HTAB 20 — LEN (APPLE$)/2 : PRINT APPLE$
45 REM FOR 80 COLUMNS USE HTAB 40

50 VTAB 23

10 TEXT : HOME

20 FOR I = 1 TO 4 : PRINT CHR$(7);: NEXT

30 VTAB 10: PRINT CHR$(34);“WAS THAT THE PHONE OR
DOORBELL?”;CHR$(34)

10 TEXT : HOME
20 FOR X = 65 TO 90

30 PRINT CHR$(X);CHR$(X +32)
40 NEXT X

In the last instruction, you should have discovered that by
using an offset of 32, you can get the lowercase equivalent of
the uppercase character.

Printing CHR$ Values

The next program is a handy device for printing out all of the
CHRS$ values to screen. The inverse " (caret) indicates that the
character is a control character. Notice how ““negative offsets”
are used to print control-character representations. This is be-
cause, if you attempt to use the CHR$ function to print actual
control characters, they will have an unusual effect on your
output. Save this program so that you can quickly look up
CHRS$ values. In Chapter 11 you'll find a program that will
print all of these characters to your printer.

10 TEXT : HOME

ROF =0

30 FORI = 1 TO 3: PRINT “CHR$/S”,: NEXT

40 FOR I = 1 TO 40: PRINT ‘“=";: NEXT : POKE 34,2
B0 FOR I = 64 TO 98

|1

115

 CHAPTER 6

60 IF I < 74 THEN PRINT “ ;I — 64;‘. *’;: INVERSE : PRINT
“™.: NORMAL: PRINT CHR$ (I):F = F + 1: GOTO 80

70 PRINT I — 64;*. ”’;: INVERSE : PRINT ‘*”;: NORMAL :
PRINT CHR$ I):F = F + 1:

80 IF F > 19 AND F < 40 THEN GOSUB 600

90 IF F > 39 THEN GOSUB 700

100 NEXT

110 FORI = 32 TO 187: PRINTL;“.” + CHR§ ():F =F + 1

120 IF F > 19 AND F < 40 THEN GOSUB 800

130 IF F > 39 THEN GOSUB 700

140 IF F = 60 THEN GOSUB 500

150 NEXT I

160 VTAB R1: HTAB 1: PRINT “HIT ANY KEY TO RESTART OR

” + CHR$ (34) + “Q” + CHR$ (34)* TO QUIT ”;: GET AN$
170 IF AN$ < > “Q” THEN GOTO 10
180 VTAB RR: TEXT : END
500 F = O0: INVERSE : HTAB 1: VTAB R4: PRINT “HIT ANY
KEY TO CONTINUE OR ‘Q’ TO QUIT”;: GET A$: NORMAL
610 IF A$ = “Q” THEN 180
520 HOME
830 RETURN
600 HTAB 17: VTABF — 17
610 RETURN
700 HTAB 40 — 7: VTAB F — 37
710 RETURN

Using CHRS$ with ProDOS

An important control character that you should become ac-
quainted with is control-D accessed by CHR$(4). By printing

this character from within a program, you can access your disk

system. For example, try the following program:

10 TEXT : HOME

20 D§ = CHR$(4)
30 PRINT D$; “CAT"
40 END

Your program CATaloged your disk. Now let’s see how
you can do more with CHR$ and your disk system:

10 TEXT : HOME

20 D$ = CHR$(4)

30 PRINT D$; “CAT”

40 INVERSE : INPUT “ WHICH PROGRAM WOULD YOU LIKE
TO RUN? ”; PG$: NORMAL

B0 PRINT D$; “RUN"; PG$

10 TEXT : HOME : HD$ = * FILE FIXER ": HTAB 20 —
LEN(HD$) / 2 : INVERSE : PRINT HD$: NORMAL

116

R

.

Some Advanced Topics

15 REM USE HTAB 40 FOR 80-COLUMN SCREENS

20 D$ = CHR$(4)

30 VTAB 8: PRINT “1. LOCK” : PRINT : PRINT “2. UNLOCK” :

PRINT : PRINT “3. DELETE” : PRINT : PRINT “4. EXIT ”

40 VTAB 20 : PRINT “CHOOSE BY NUMBER ” ; : GET A

50 ON A GOSUB 100, 200, 300, 400

60 GOTO 10

100 HOME

110 PRINT D$; “CAT”

120 INVERSE : INPUT “LOCK WHICH FILE?”; L$: NORMAL

130 PRINT D$; “LOCK”; L$

140 RETURN

200 HOME

210 PRINT D$; “CAT”

220 INVERSE : INPUT “UNLOCK WHICH FILE? ";U$:
NORMAL

230 PRINT D$; “UNLOCK”’; U$

240 RETURN

300 HOME

310 PRINT D$; “CAT”

320 INVERSE : INPUT “DELETE WHICH FILE? ”; DE$:
NORMAL

330 FLASH : PRINT “ ARE YOU SURE? (Y/N) ”;: GET AN$:
NORMAL

340 IF AN$ < > “Y” THEN RETURN

350 PRINT D$; “DELETE” ; DE$

360 RETURN

400 HOME : END

POKEs and PEEKs: Inside Memory

At first you won'’t find many uses for POKEs and PEEKs, but
as you begin exploring the full range of your IIGS, you'll use
them more and more. Basically, a POKE statement places a
value into a given memory location, and a PEEK function re-
turns the value stored in that location. For example, try the
following;:

POKE 768, 255 : PRINT PEEK (768)

You should get 255 since the POKE statement entered that
value into location 768. That’s relatively simple, but more is
happening than number storage.

The key importance of POKE and PEEK involves what oc-
curs in a given memory location when a given value is entered.
In some locations nothing other than the storage of the num-
ber will happen, as in the example above. However, with some
memory locations, very precise events occur. For example,

117

CHAPTER 6

PRINT PEEK (222) was used to find the type of error that oc-
curred when the ONERR statement was used. So if you POKE
memory location 222, it will not be the same as POKEing lo-
cations that are ““free space” available for the programs you
write. In the remainder of this section, we’ll examine some of
the more useful locations for POKEing and PEEKing in your
IIGs. We will not, however, get into the more complex ele-
ments of POKEs and PEEKSs.

A Tale of Two Number Systems

When working with POKEs and PEEKSs, you'll use decimal
numbers for accessing memory locations. However, much of
what is written about special locations in the computer’s mem-
ory is written in hexadecimal, generally referred to as hex.
Since we’ve used decimal notations all our lives for counting,
it seems to be a natural way of doing things. However, deci-
mal is simply a base-10 counting method, and we could use a
base of anything we wanted. For reasons we won't get into
here, base 16, called hexadecimal, is an easier way to think
about using a computer’s memory, and that’s why so much of
the notation is in hex.

Hex is counted in the same way as decimal, except it is
done in groups of 16, and it uses alphanumeric characters in-
stead of just numeric ones. You can usually tell whether a
number is hex since it is typically preceded by a dollar sign
(for example, $45 is not the same as decimal 45), and often al-
phabetic characters are mixed in with numbers (for example,
FC58, AAB, 12C). The following is a list of decimal and hexa-
decimal numbers.

Dec Hex Dec Hex
0 $0 9 $9
1 $1 10 $A
2 $2 11 $B
3 $3 12 $C
4 $4 13 $D
5 $5 14 $E
6 $6 15 $F
7 $7 16 $10
8 $8

Instead of beginning with double-digit numbers at 10,
hexadecimal begins using double digits at decimal 16 with
$10. In the major memory locations of interest in your IIGS,
both the decimal and hexadecimal numbers are given.

Now let’s look at some places to POKE. We will begin
with your text screen. In the program, above, that gives the

118

-

N R

4

Some Advanced Topics

different CHR$ values, you used a POKE to set the text screen
so that you could keep a portion of it above the new infor-
mation appearing on the screen. Using POKEs, you can set the
left margin, width, top, and bottom of your text window. The
following program is an example of setting the text window
and scrolling “under” the defined “window.”

10 TEXT : HOME

20 PRINT ‘‘This is the protected part of the screen’’;

30 POKE 34,4 : REM SET THE TOP OF YOUR WINDOW TO
VERTICAL POSITION 4

S50 FOR X = 1 TO 100 : PRINT X : NEXT

The message and first three numbers from the loop in line
50 are in a window “on top”’ of the bottom window. The
characters scroll under the top window since they think the
window ends at vertical position 4. To get to the top window,
add the following line:

60 VTAB 2 : PRINT “Back up here!”

The following four POKEs are for window dressing. To
reset everything to normal, use the TEXT statement:

POKE 32,N Left edge of window (0-39/79)
POKE 33,N Width of text window (1-40/80)
POKE 34,N Top edge of window (0, 22)
POKE 35N Bottom of text window (1-24)

If you are in the 40-column mode and POKE a window,
your window will disappear as soon as you enter the 80-column
mode. The same is true with windows POKEd in the 80-column
mode when you switch to 40 columns. If you make this switch
several times, you'll get some very strange results.

Try the following programs to get an idea of some differ-
ent windows and their effects:

10 TEXT : HOME

20 POKE 32, 10 : REM SET LEFT EDGE TO 10

30 POKE 33, 12 : REM SET WIDTH TO 12

40 POKE 34, 8 : REM SET TOP EDGE TO 8

50 POKE 35, 15 : REM SET BOTTOM EDGE TO VERTICAL
POSITION 15

60 VTAB 9 : INVERSE : FORI = 1 TO 6 : PRINT SPC (12); :
NEXT

65 REM FILL UP WINDOW WITH INVERSE SPACES

70 FOR I = 1 TO 2000 : NEXT : REM DELAY LOOP TO LOOK AT
WINDOW

80 HOME : PRINT ‘‘THIS LITTLE WINDOW IS YOUR TEXT
WINDOW — NOT MUCH ROOM, IS IT?”

119

CHAPTER 6

90 FOR PAUSE = 1 TO 3000 : NEXT : REM DELAY
100 NORMAL : LIST

10 TEXT : HOME

20 FOR I = 1 TO 11: INVERSE : PRINT SPC(40) : NEXT I :
NORMAL

30 POKE 35,11

40 T$="TOP” : B$="BOTTOM"

50 VTAB 5 : HTAB 20 — LEN(T$)/2 : PRINT T$

60 INVERSE : VTAB 17 : HTAB 20 — LEN (B$)/2 : PRINT B$:
NORMAL

70 VTAB 23 : END

When you first started this book, it was suggested that be-
ginning programs with TEXT : HOME was a good idea.
You've seen the advantage of having HOME at the beginning
of a program since it clears the screen. Now, you can see the
advantage of having TEXT since it is used to reset the text
window to its full size. So, after you have changed the text
window, as you did in this section, you'll find it convenient to
run other programs with different-sized windows and know
that TEXT is waiting at the beginning to put everything right.

Another Tip

When you're developing programs that use POKEs to change
the text window, put a TEXT at the very end of the program
to reset it to full size before LISTing and editing. In fact, if you
want to be all set for editing, add the following line:

62000 GET A$: PRINT A$: TEXT : HOME : POKE 33,33 : LIST

This is a way to automatically reset your text window,
clear the screen, set the screen width to the width of program
lines, and LIST your program. The GET statement simply
holds whatever you have on the screen until you are ready to
edit it. When the program is completed, remember to delete
line 62000. The TEXT statement at the beginning of your pro-
gram will reset the POKE 33,33.

POKEing the Text Screen

Another use of POKEs is to enter a character to a location on
your text screen. Each character has a different value between
0 and 255. Unlike the CHR$ values, values POKEd into mem-
ory and displayed on the screen are inverse, normal, upper-
case, and lowercase, plus some symbols you have not yet
seen. What is an ASCII A with the CHR$ function 65 is a
hollow-apple icon, while a normal A is 193. You can envision

120

-

-

.

-3

Some Advanced Topics

your screen as a set of addresses on a 40 (or 80) X 24 grid,
beginning with decimal location 1024. To get an idea of what
you'll see, try this program:

10 TEXT : HOME

20 POKE 49167,0 : REM Char Set 1
30 FOR X= 1024 TO (1024 + 254)
40 POKE X,V

B0 V=V+1

60 NEXT X

70 GET A$: REM Hold for pause
80 POKE 49166,0 : REM Char Set 2

When you run the program, you will see several different
characters printed on your screen. When the program stops,
hit a key, and you will see some of the characters start flash-
ing. What you're seeing is two different character sets in your
IIGs. Just POKE 49166 or 49167 to get the set you want.

For another interesting phenomenon, run this next pro-
gram from the 40-column mode:

10 HOME : POKE 49167,0
R0 FOR X=1 TO 40

30 POKE 1023 + X, 65
40 NEXT X

That will put a line of apples across the top of your
screen. Press esc-8 to get into the 80-column mode. You'll see
the same apples lined up, but in the smaller 80-column size,
taking up only half the screen. Run the same program again in
the 80-column mode. This time, the 40 apples are spaced
across the screen so that only every other space is used, but
the entire horizontal line is taken up. Go back to the 40-
column mode, and you’ll get another surprise. Instead of lin-
ing up all together, the apples are still spaced in every other
horizontal position, and half of them are missing. Keep the
different columns in mind when you POKE in characters on
your screen.

Now, since you know how to use the HTAB and VTAB
statements, as well as FLASH, INVERSE, and NORMAL, this
may seem a difficult way to display text to the screen. You're
absolutely right; it is much simpler and just as efficient to use
the statements you alreay know for displaying text. Rarely will
you need to use POKEs to display information to the screen—
and you can really lock things up with POKEs to the screen.
However, it is interesting to know, and if you like to encode

121

CHAPTER 6

secret messages within your programs and amaze your friends,
POKEing the text screen can be amusing.

The following program will give you a handy little utility
for determining the values for all the different characters:

10 TEXT : HOME

20 X = PDL(0)

25 REM PADDLE 0. IF YOU DO NOT HAVE PADDLES, CHANGE
LINE 20

26 REM TO -> VTAB 2 : HTAB 1 : CALL —868 : INPUT
“ENTER A

27 REM NUMBER FROM O TO 285-> ”; X : IF X > 255 THEN
20

30 HTAB 5 : VTAB 10

40 IF X < 10 THEN PRINT “POKE <1024 TO 2047>,”; X;'= " :
GOTO 70

45 REM 2 SPACES AFTER “=

B0 IF X < 100 THEN PRINT “POKE <1024 TO 2047>,”; X ; “=
» . GOTO 70

55 REM 1 SPACE AFTER “=

60 PRINT “POKE <1024 TO 2047>,” ; X ; “="

70 POKE 1220, X

80 GOTO 20

Use Your Labeler

If you do have paddles, it’s a good idea to label them paddle 0
and paddle 1 (and paddle 2 and 3 if you have four paddles). If
you don’t know which is which, simply run the above pro-
gram. If the numbers change, you have paddle 0.

While you're at it, use labels as reminders for all kinds of
POKEs and PEEKs as well. Use one of those label makers that
produce little plastic strips with adhesive on them to punch in
handy POKEs and PEEKSs and stick them on your computer.
Don’t overdo it, but if you find yourself constantly looking up
POKE and PEEK numbers, save yourself some time by making
a label.

Tweaking the Sound Chip

Another point of interest involving PEEKs and POKE:s is your
Apple’s speaker. By using a series of PEEKs and POKEs, you
can produce entire tunes. Here, however, we will simply look
at some fundamental ways to make your speaker produce
sounds.

The most elementary way of kicking on your speaker is
with PEEK (—16336). Try this:

122

N

Some Advanced Topics

FOR X = 1 TO 10 : 88 = PEEK (—16336) : NEXT

You should have heard a little buzz. Now enter the following
program and listen carefully as the sounds change.

10 TEXT : HOME

20 N =—16336

30 FORI = 1 TO 100 : S = PEEK(N) : NEXT

40 FORI = 1 TO 100 : 8 = PEEK(N) + PEEK(N)

BOFORI = 1 TO 100 : S = PEEK(N) — PEEK(N) + PEEK(N)

By experimenting with adding and subtracting combina-
tions of PEEK(N), you can arrive at a limited set of sound sub-
routines. The following program, however, will provide an
even fuller range of sounds:

10 TEXT : HOME

R0 FOR I = 768 TO 795: READ J: POKE I,J: NEXT

30 POKE 1013,76: POKE 1014,0: POKE 1015,3

40 VTAB 5: HTAB 1: PRINT “ENTER TWO NUMBERS LESS
THAN 256”’: CALL — 868: INPUT “SEPARATED BY A
COMMA -> ;LK

50 VTAB 10: HTAB 1: CALL — 868: PRINT “TONE VALUE: =
”;K

60 VTAB 12: HTAB 1: CALL — 868: PRINT “DURATION = ;I

70 & I,K: GOTO 40

80 DATA 38,70,231,134,81,164,80,158,170,20%,208,253,44,48,
198,69,81,170,R0R,208,2563,44,48,198,136,208,236,96

This program contains material that you don’t know
about yet. It was included to show you the tones that can be
produced on the IIGS. The ampersand (&) in line 70 calls a
machine-level subroutine that was POKEd in with the loop on
line 20 and data on line 80.

Calling a Monitor Subroutine

You've probably noticed that CALL statements have been
used in various programs. For example, in the last program
there was a CALL —868. A CALL “runs” a machine-level
subroutine in your monitor (not your television, but the sys-
tem monitor within your computer) or another machine pro-
gram in memory.

When you examine the contents of memory using the
built-in machine language monitor in your Apple, along the
far left side, you will see the starting addresses of the various
subroutines that can be CALLed from your Applesoft program.
The problem is that the listing is in hexadecimal and you have
to make the CALLs with decimal values. There are many pro-

123

CHAPTER 6

grams and charts available for converting hexadecimal to deci-
mal. However, for the beginner, it is probably more confusing
than enlightening to go into either the conversion process or
to explain the monitor listing. Instead, Table 6-1 is a list of
some handy CALLs. When you are more advanced, you can
see how these CALLs jump to a machine-level subroutine.

Table 6-1. Mini Call Chart

CALL Effect

—151 Enters the monitor

—936 Same as HOME

—868 Clears from cursor to end of line
—958 Clears from cursor to end of screen
—1184 Puts IIGS message at top of screen
—1401 Boots system and resets pointers
—912 Scrolls up a line

—756 Waits for keypress

—678 Waits for return key to be pressed

Try some of the above CALLs in your programs to see
their effect. If you CALL —151, use control-C or type in 3D0G
to get back to Applesoft BASIC. Here are some programs to
practice with CALL:

10 TEXT : HOME : FORI = 1 TO 800 : PRINT “X”’; : NEXT

15 REM SOMETHING TO FILL THE SCREEN

QO0FORI =1TOR4: HTABR0: VTABI: CALL —868 : FOR J
= 1TO B0 : NEXT J : NEXT I

S0FORI =1TOR4: HTAB1: VITIABR5 — I:CALL —868:
FORJ = 1 TO B0 : NEXT J : NEXT I

10 TEXT : CALL —936

20 FOR I = 1024 TO 2039 : POKE I, 102 : NEXT

30 FOR PAUSE = 1 TO 2000 : NEXT PAUSE : REM PAUSE
LOOP

40 FORI = 1 TO 24 STEP 2 : VTAB I : CALL —868 : NEXT :
PRINT : CALL —868

50 FOR PAUSE = 1 TO 2000 : NEXT PAUSE

60 FOR J = 2 TO 23 STEP 2 : HTAB 1 : VTAB J : INVERSE :
PRINT SPC(40): NORMAL : NEXT J

70 FOR PAUSE = 1 TO 2000 : NEXT PAUSE

80 FOR K = 1 TO 24 : CALL —912 : NEXT

BSAVEing a Binary File
We won't be writing any machine- or assembly-level pro-
grams, but frequently you will want to load and save a binary

124

B R

(=

Some Advanced Topics

file. Unlike Applesoft files, binary files must be BSAVEd with
the starting address and length of the program. For example,
you might have a program named SUPER.JET that begins at
hex $300 and is hex $1A5 long. (Remember, the dollar sign
indicates that the number is in hexadecimal.) To save the pro-
gram, you would write in

BSAVE SUPER JET, A$300, L§1A5

The problem is finding the beginning address and length
of the file. Fortunately, the process is relatively simple. Here’s
how:

1. BLOAD a binary file.

2. Get into the monitor with CALL —151. When you arrive,
you will get the asterisk (*) prompt.

3. Enter: AATR.AAT3 AAG0.AA6B1

4. You will get two sets of numbers looking something like
this:
AAT2- 03 08
AAB0- 4E 12

5. Reverse the pairs of bits:

03 08 to —> 08 03
4E 12 to —> 12 4E

6. Now you have the starting address, $0803 (or simply $803),
and the length, $124E.
7. On another disk:

BSAVE BFILENAME, A$803, L§124E

8. Use control-C or 3D0G (that’s 3-D-zero-G) to return to
Applesoft.

You might want to make a label with AA72.AA73 and
AAG60.AA61 on it as a reminder. There will be many times
when you’ll want to transfer a binary file without having to
BRUN FID or some other file copy program, and this will be
very handy information.

WAITing Without a Cursor

The final statement we’ll examine is the WAIT statement. Es-
sentially, WAIT halts execution of your program until a given
key or keys are hit. Unlike the GET statement, it will not pro-
duce a cursor on your screen, and it makes your program that
much cleverer. For example, try the following two programs to
compare the differences in using GET and WAIT:

125

CHAPTER 6

10 TEXT : HOME

Q0 FOR I = 1 TO 800 : PRINT “#”’; : NEXT

30 PP$= “HIT ANY KEY TO CONTINUE” : HTAB 20 —
LEN(PP$) / R : PRINT PP$

40 GET A$: HOME

Now change line 40 to
40 WAIT —16384,128 : HOME

That’s relatively simple, but you can see the difference be-
tween using GET and WAIT. Sometimes you’ll want to use
GET in order to “get” a value for a variable, or the program
will look better with a flashing cursor to remind the user that
input is required. It’s also a good idea to clear the keyboard
buffer when you use WAIT. Here’s how:

10 TEXT : HOME

20 VTAB 10 : PRINT “HIT ANY KEY TO CONTINUE: » : WAIT
—16384, 128 :

30 POKE —16368,0 : REM POKE TO CLEAR KEYBOARD.

40 HOME : HTAB 1 : VTAB 10 : PRINT “THANKS, I NEEDED
THAT.”

If you want to use the WAIT statement with a selected key
input, think of WAIT as a special kind of POKE. That is, when
you press a key, the ASCII screen value of that key is put into
the address of —16384, almost in the same way as a POKE.
Now, since we’ve been using WAIT —16384,128, it would
seem that the value (128) is stored in location —16384. How-
ever, the 128 refers to an ASCII value greater than 128 when
used with WAIT. If you look at the ASCII screen values, you
will find that 128 is the beginning value of characters that can
be entered from the keyboard—the control and normal charac-
ters. (To test this, try entering a control character on the above
program using WAIT —16384,128.) Now to see that WAIT can
be used with a selected character, try the following program:

10 TEXT : HOME

20 W = —16384 : P = —16368

25 REM USE VARIABLES INSTEAD OF WRITING IN VALUES
EACH TIME

30 VTAB 10 : PRINT “HIT ANY KEY TO CONTINUE OR ‘Q’ TO
QUIT->"

40 WAIT W,128 : IF PEEK (W) = 209 THEN POKE P,0 : END

45 REM 209 IS THE ASCII SCREEN VALUE OF ‘Q’

50 POKE P, O : HOME : FOR I = 1 TO 800 : PRINT “*”*; : NEXT

80 GOTO 10

126

3

33

1

Some Advanced Topics

Remember, PEEK simply looks into an address and sees
what value is stored there. The address —16384 is the key-
board data location, and —16368 is the clear-keyboard strobe.
By PEEKing into the keyboard data address, you can find what
key was pressed last. By POKEing —16368,0, you clear the
keyboard so that nothing is on the screen or in memory once
you have finished using it. Also, be sure that if you enter Q, it
is an uppercase Q, or the trap will not recognize that the exit
letter has been hit. Alternatively, if you can trap the value for
g which is 241. (In Appendix B is an ASCII screen chart with
the values to be POKEd in for the different ASCII characters.)

Summary

This chapter has ventured into the IIGS’s memory. Don’t ex-
pect to understand all the nuances, but you should have a
general idea of how ASCII values work, and you should know
a little about addresses and locations. Most important is that
you experiment with the statements introduced here and at-
tempt to use them in your programs. The more you use differ-
ent statements, the more you’ll begin to understand.

The CHRS$ function introduced ASCII values. CHR$ al-
lows you to access characters not available directly from the
keyboard. You can also use CHR$ to visually write control
characters within a program. This is especially useful in writ-
ing disk statements from within a program.

The POKE statement enters a value to a decimal address,
and the PEEK function retrieves a value from an address. Spe-
cial locations in your IIGS’s memory have special functions,
such as the screen window setting and ASCII screen values.
More advanced uses of POKE and PEEK can provide a way of
virtually writing machine-level subroutines from Applesoft
BASIC.

By using the CALL statement, you can run a machine pro-
gram or subroutine from within an Applesoft program. Many
of the CALL statements can be written with Applesoft state-
ments, but others are accessible only with the CALL function.
You have also learned how to locate the beginning address
and length of binary files and to use them with BSAVE and
BLOAD statements.

Finally, you saw how to stop a program with WAIT,
branch on a keyboard character with PEEK, and clear the key-
board strobe with POKE. These instructions perform functions
similar to earlier statements, but these new statements increase
your understanding and control over the computer.

127

Using Graphics

One of the nicest features of the Apple IIGS is its graphics ca-
pability. With Applesoft BASIC, you can access two kinds of
graphics: low resolution and high resolution (referred to as lo-
res and hi-res). Double- and quadruple-resolution graphics are
also accessible, but they require a few more tricks.

Parts of the IIGS’s memory are set up to provide graphics
in several different combinations of lo-res, hi-res, and text.
The statement that accesses lo-res graphics is GR; it gives you
the lo-res graphics screen with four lines of text at the bottom.
The HGR statement does the same for hi-res graphics, and the
HGR2 statement accesses page 2 of hi-res. In order to get to
the other screens of graphics and graphics/text, you must use
POKEs. Later, we’ll discuss the POKEs required to access other
screens, but to get started, we will concentrate on using GR
and HGR and the statements for using graphics.

Low Resolution

Low-resolution graphics are produced by little blocks on the
screen. The term low resolution comes from the fact that the
blocks can produce only rough figures due to the size of the
blocks in relation to the screen size. Think of lo-res graphics
as a mosaic picture. You can represent a wide variety of two-
dimensional shapes, but they’ll have a mosaic texture to
them—hence, a low resolution.

The main advantage of lo-res graphics is the variety of
colors available. There are 16 colors, numbered 0-15. To get
the color you want, use the statement

COLOR = N

with N representing the color number you want. Here are the
color values:

131

CHAPTER 7

0 Black 8 Brown

1 Magenta 9 Orange

2 Dark blue 10 Gray

3 Purple 11 Pink

4 Dark green 12 Green

5 Gray 13 Yellow

6 Blue 14 Aqua

7 Light blue 15 White

If you don’t have a color TV or monitor, the colors will
appear as different shades of black and white (or green or am-
ber if you have a green or amber screen monitor). The differ-
ent color patterns will create different density in the lines and
figures you create. If you have something other than a color
TV or monitor, it is best to experiment with white (COLOR =
15) until you get used to the statements. Later, when you get
used to the line patterns created on a noncolor screen, you can
mix them for different effects.

Good graphics and bad text. One of the problems that
you’ll often run into when using graphics involves the inten-
sity of the color and the quality of the text. When program-
ming with color graphics, users tend to intensify the color to
get the best results. This is as it should be. But notice, how-
ever, that when you go from graphics back to text the intensi-
fied color results in blurred text. To solve this problem, once
you have set your colors properly, change only the “color”
dial, not the “tint” dial. By turning the color dial up when
using graphics and turning it down when using text (for ex-
ample, when writing programs), you can keep your color
settings correct and have clear text as well.

When you've got the color set, let’s look at some state-
ments and write a program that will produce some color bars.
First, we will set the computer for lo-res graphics with a GR
statement. Then, using a FOR-NEXT loop, we will generate
the different colors and positions on the screen for the color
bars. The statement VLIN will provide a vertical line that be-
gins at a given starting point and terminates at an ending
point at a given horizonal position.

10 TEXT : HOME

R0 GR

30 FOR X = 0 TO 15

40 COLOR = X

50 VLIN5,358ATX + 3
60 NEXT X

132

-1 1

-

-

Using Graphics

Look more closely at what’s been done. The FOR-NEXT
loop produces the different colors by changing the value of
COLOR from 0 to 15. That’s simple enough. The VLIN state-
ment draws a line from vertical position 5 to vertical position
35 at horizontal position X + 3. This will be horizontal posi-
tions 3-18 on your screen. That’s what causes the bars to line
up neatly. (We use an offset of 3 so that the bars will not be
jammed up against the left side of the screen.)

You can do the same thing with horizontal lines by using
the statement HLIN. Let’s stack the bars on top of one
another:

10 TEXT : HOME

{0 GR

30 FOR X = 0 TO 156

40 COLOR =1

50 HLIN 5,35 ATX + 10
60 NEXT X

You've probably figured out that HLIN works exactly like
VLIN, except the lines are horizontal rather than vertical.
Now, try drawing a frame around the screen in white using
both HLIN and VLIN:

10 TEXT : HOME

20 GR : COLOR = 15

30 HLIN 0,39 AT O : REM HORIZONTAL LINE AT TOP OF
SCREEN

40 HLIN 0,39 AT 39 : REM HORIZONTAL LINE JUST ABOVE
TEXT PORTION

50 VLIN 0,39 AT O : REM VERTICAL LINE DOWN LEFT SIDE

60 VLIN 0,39 AT 39 : REM VERTICAL LINE DOWN RIGHT SIDE

Before continuing, let’s look at something that you may
not have expected. Get your screen into the 80-column mode
by pressing the esc key and 8; then run this program:

10 TEXT : HOME

20 GR

30 COLOR = 15

40 HLIN 0,39 AT 10

50 VTAB 23

60 FOR X= 0 TO 79

70 PRINT “X”;

80 NEXT X

90 GET A$: TEXT : LIST

While the Apple IIGS is in the 80-column mode, the line
of 80 X’s extends across the screen in a single line that fills a

133

CHAPTER 7

horizontal block. However, it takes only 40 low-resolution
blocks to do the same thing. Now, press the esc key and 4 to
go into the 40-column mode, and run the same program. The
low-resolution line is the same, but this time there are two
lines of X’s across the bottom of the screen. That’s to be ex-
pected, since in the 40-column mode, after 40 characters have
been printed, your IIGS starts over down one row. What
you've learned is that low-resolution graphics are not affected
by the 40/80-column modes. However, you can have 40 or 80
columns in the four rows of text at the bottom on the screen.
Now, back to some more drawing.

It's easy to make good-looking, clear horizontal and verti-
cal lines, but what about diagonal lines? Since there is no
statement to draw diagonal lines, you'll need to use another
statement, PLOT, to put a little box, or plot, at a series of
points. Add the following statements to the last program:

70 FOR X = 0 TO 39 : PLOT X, X : NEXT

76 REM DRAWS DIAGONAL LINE FROM UPPER LEFT TO
LOWER LEFT

80 FOR X = 39 TO O STEP —1 : PLOT X, 39 — X : NEXT

85 REM DRAWS DIAGONAL LINE FROM UPPER RIGHT TO
LOWER LEFT

Making a Bar Graph

So far, so good. You have made straight and diagonal lines,
but other than providing an exercise, what practical applica-
tions do lo-res graphics have? Besides games, which we’ll get
to in a bit, you can easily make graphs and charts. We’ll make
a simple bar graph by using a combination of lo-res graphics
and the text we have at the bottom of the screen:

10 TEXT : HOME

20 VTAB 10: INPUT “NAME OF PLOT-> ”;NP$: HOME

30 VTAB 10: PRINT ‘“HOW MANY PLOTS?(1-7) ”’;: GET P%:
PRINT P%: PRINT

40 PRINT : FORI = 1 TO P%

80 PRINT “PLOT VALUE (0-39) FOR PLOT ;I;* —>";: INPUT
“ "y@: IF VQ) > 39 THEN PRINT CHR$ (7): GOTO 80

60 NEXT

70 GR : COLOR= 10

80 VLIN 0,39 AT O: HLIN 0,39 AT 39

90 FOR I = O TO 39 STEP 4: PLOT 1,I: NEXT

100 COLOR= 15: FORI = 1 TO P%: VLIN 39,39 — V(D) AT I *

5): NEXT

134

1

41 1

U R B

-

Using Graphics

110 HOME : FOR I = 1 TO P%: VTAB 21: HTAB (I * B) + 1:
PRINT I: NEXT I

120 PRINT : HTAB 20 — LEN (NP$) / 2: PRINT NP$

130 WAIT — 16384,128: TEXT : HOME : END

140 REM HOLDS GRAPH ONSCREEN UNTIL KEY IS HIT THEN

150 REM CLEARS SCREEN AND GOES BACK TO TEXT

Run the program and see how nicely you can present data
graphically. The program is severely limited in that it does
only a maximum of seven plots using values from 0 through
39. It’s simple to change the number of plots above seven,
however. All you have to do is to change the trap value to a
higher number and the offset in line 80 to less than I * 5. You
can go as low as the values of I, but then all the bars will be
adjacent. Changing the values to above 39 requires more so-
phisticated manipulations because 39 represents the maximum
length of a vertical plot. Using a two-bar plot, we will examine
how to enter any range of numbers we want.

10 TEXT : HOME
20 INPUT ‘“MAX VALUE->";MV

30 R = 39.9/MV : REM R=RATIO

40FORX =1TOR2

B0 INPUT “PLOT VALUE-> ";PV(X)

80 PV(X) = INT (PV(X) * R)

70 NEXT X

80 GR

90 COLOR= 15

100 VLIN 0,39 AT O: HLIN 0,39 AT 39

110 FOR X = O TO 39 STEP 4: PLOT 1,X: NEXT

120 FOR X = 1 TO 3: VLIN 39,(39 - PV(1)) AT 10 + X: NEXT
130 FOR X = 1 TO 3: VLIN 39,(39 - PV(2)) AT 20 + X: NEXT
140 WAIT —16384,128 : TEXT : HOME

We'll go over the significant lines and explain what has
happened. In line 30 the program establishes a ratio using the
maximum value (MV) entered in line 20. The value 39.9 repre-
sents the upper limits on the vertical screen to be used.

Two values for PV(X) are entered in lines 40-70, and in
line 60, PV(X) is multiplied by R, the ratio established in line
30. The INT statement is introduced to provide an integer
(whole) number for charting.

In lines 100-120 the chart outline is set up. Finally, in line
130, the charts are plotted, using three vertical lines to con-
struct each bar. This is done by using a FOR-NEXT loop of 3,
incrementing the horizontal placement by 1 each time through
the loop.

135

CHAPTER 7

Animation

We’ve spent a good deal of time working on charts in lo-res
graphics, but it is important to see the practical applications.
Often, users see lo-res graphics simply as a way to draw mo-
saic pictures and nothing else, but it is possible to make very
good practical use of them as well. Now, let’s have a little fun
before going on to hi-res graphics.

You can use animation in lo-res in games and for special
effects. However, we will touch upon only some elementary
examples to provide you with the concepts of how animation
works. Basically, you plot a position in any color except black,
and then plot a new position and cover up the old position in
black. This gives the appearance of a block moving, since it is
plotted from one adjacent position to another, its previous po-
sition being erased with a black plot. For example, from the
immediate mode, enter the following line:

TEXT : GR : COLOR = 15 : PLOT R0, Q0
Next, type in
COLOR = 0 : PLOT 20, 20 : COLOR = 15 : PLOT R1, R0

If you watch carefully, you will see what appears to be a
moving block. However, you can see from what you entered
that it is really a matter of plotting a block in one position,
erasing it, and drawing it in an adjacent position. For a more
dramatic example, the following program will start in the up-
per right-hand corner of your screen and bounce a white block
around the screen:

10 TEXT : HOME : GR

Q0 FORI = 1TO 38: PLOT I,I: COLOR = 15: PLOTI + 1,I +
1: COLOR = O : NEXT

30 COLOR = O : PLOT 39,39 : REM CLEAR THE BLOCK IN THE
CORNER

40 FORI = 39 TO 1 STEP —1 : PLOT I, 38 : COLOR = 15: PLOT
I-1,38:COLOR = O: NEXT

50 COLOR = O : PLOT 0,38

60FORI =1TO39:PLOTI, 39 — I: COLOR = O : PLOT I,39
— I:COLOR = 18 : NEXT

70 COLOR = O : PLOT 39, O

80 FORI =39 TO 1 STEP —1 : PLOT I,0 : COLOR = 15 : PLOT I
— 1,0 : COLOR = 0O: NEXT

By experimenting with different algorithms, you can do
anything from making letters and numbers to creating ani-
mated games.

136

R

.

. |

U -

-

-

Using Graphics

High-Resolution Graphics

Once you understand lo-res graphics, you will understand
most of the concepts of hi-res graphics, though there are some
important differences:

Lo-Res Hi-Res

16 colors 8 colors

40 X 48 matrix 80 X 192 matrix

Line statements HPLOT statements only

Those three are the main differences, but there are others
that are not so easily summarized. One of the differences con-
cerns the preservation of a graphics screen. If you exit a lo-res
drawing and enter TEXT and HOME, you will destroy the
graphics you have drawn. You can test this by drawing a sim-
ple lo-res graphic and then returning to the graphics “page”
with POKEs. For example, the following program will draw a
simple lo-res graphic, clear back to the text page, and then re-
turn to the graphic with POKEs:

10 TEXT : HOME

20 GR : COLOR = 15

30FORI =0TO39:PLOTI, I: NEXT

35 REM LINE 30 DRAWS A DIAGONAL LINE

40 PRINT “HIT ANY KEY TO CONTINUE”;: WAIT —16384,128
: POKE —16368,0

50 TEXT : HOME : LIST : REM SHOW YOU ARE BACK IN THE
TEXT SCREEN

60 POKE —16304,0 : POKE —16300,0 : POKE —16298,0

65 REM POKES TO RETURN TO LO-RES GRAPHICS WITHOUT
DESTROYING

67 REM WHAT IS CURRENTLY THERE

70 PRINT “HIT ANY KEY TO CONTINUE”;: WAIT —16384,128
: POKE —16368,0 : TEXT : END

As you can see when you run the program, the diagonal
line is no longer there after you switch back to the text screen.
However, if you do the same thing with hi-res graphics, you
will find the graphics there waiting for you. Run the following
program:

10 TEXT : HOME

20 HGR : HCOLOR = 3 : REM HI-RES COLOR FOR WHITE

30 HPLOT 0,0 TO 279,156 : REM DRAWS DIAGONAL LINE

40 VTAB 2R : PRINT “HIT ANY KEY TO CONTINUE’’;: WAIT
—16384,128 : POKE —16368,0

60 TEXT : HOME : LIST

60 HTAB 1 : VTAB Q2 : PRINT “HIT ANY KEY TO
CONTINUE”;: WAIT —16384,128 : POKE —16368,0

137

CHAPTER 7

70 POKE —16304,0 : POKE —16301,0 : POKE —16300,0 : POKE
—16R297,0 '

75 REM LINE 70 POKES FOR HI-RES PAGE 1 WITHOUT

77 REM DESTROYING CURRENT GRAPHICS

80 HTAB 1 : VTAB 22 : PRINT “HIT ANY KEY TO
CONTINUE”;: WAIT —16384,128 : POKE —16368,0

90 TEXT : END

This time you see the diagonal line. For most applications,
as long as you do not enter HGR, your graphics will remain
on the graphics page. In larger programs, it is possible for
Applesoft to crash into the hi-res memory area and destroy or
distort your graphics. Normally, however, you can put up a
hi-res graphics picture and it will stay there, even if you type
in NEW or FP. To see for yourself, type the POKEs in line 70.
Your hi-res graphics should still be there. We'll return to the
POKEs in more detail later.

Drawing in Hi-Res

Now that you've seen an important difference between hi-res
and lo-res in terms of keeping graphics in memory, let’s try
some drawing. The HPLOT statement will put a dot (called a
pixel) in the coordinates you specify in a range of 0 to 279 hor-
izontally and 0 to 191 vertically. The syntax is

HPLOT XY

with X the horizonal position and Y the vertical. We'll start
with a dot in the upper left corner. From the immediate mode,
enter

HGR : HCOLOR = 3 : HPLOT 0,0 : VTAB 223

You should see a little white dot. To draw lines, you HPLOT
from X1,Y1 to X2,Y2. For example,

HGR : HCOLOR = 3 : HPLOT 0,0 TO 279,0 : VTAB 22

This draws a line across the top of your screen. You may
be wondering why there is a VTAB 22 at the end of the line.
That’s because only the bottom four lines are in text; if you
don’t include VTAB 22, you will not be able to see your
cursor. It will be “behind” the graphics screen.

With HPLOT you can begin at a point and draw all over
the screen with a single HPLOT statement and several TO
statements. For example, try the following program:

138

U

-

-

-

-3

-

-

Using Graphics

10 TEXT : HOME

20 HGR : HCOLOR = 3

30 HPLOT 0,0 TO 279,0 TO 0,150 TO 279, 150

40 Z$ =“THE MARK OF ZORRO!": VTAB 22: HTAB 20 —
LEN(Z$)/2 : PRINT Z$

50 WAIT —16384,128 : TEXT : HOME

Experiment with different plots and colors until you're
comfortable with them.

Random Numbers

We have not yet explored the RND function, which generates
a range of random numbers. This is a good place to introduce
it since it’s fun to use with graphics. The basic syntax is

RND (N)

with N a number less than 1 but greater than 0. Usually,
you'll be looking for a range of numbers greater than 1 and
for numbers that have no fractional parts. The following is a
handy little formula that generates a range of numbers from 1
to N, with N being the upper limit of random numbers to be
generated:

INT(RND 1) *(N) + 1)
To see how it works, enter the following program:

10 TEXT : HOME

20 FORI = 1 TO 68

30 PRINT INT (RND (1) * (10) + 1),

35 REM LINE 30 GENERATES RANDOM NUMBERS FROM 1 TO
10

40 NEXT

Now, let’s use the random number generator in a pro-
gram with hi-res graphics. The random number generator will
be used to make the computer create a picture, using different
colors and lines. In other words, we will have a program that
does the graphics drawing, with each one different.

10 TEXT : HOME

20 REM HI-RES RANDOM GRAPHIC GENERATOR **
STARBURST **

30N =0

40X = 100:Y = 100 : REM X,Y AXIS FOR CENTER OF
‘STARBURST

50 HGR

80 RC = INT (7 * RND (1)) + 1 : REM GENERATES RANDOM
COLOR VALUES

139

CHAPTER 7

70 REM GENERATE RANDOM MAXIMUM X AND Y AXIS
POINTS

80 X2 = INT (279 * RND (1))

90 Y2 = INT (1568 * RND (1))

100 HCOLOR = RC

110 HPLOT X,Y TO X2,Y2

120N = N + 1: IF N = 100 THEN 140

130 GOTO 60

140 A$ = “STAR BURST” : VTAB 22 : FLASH : HTAB 20 —
LEN (A$) / 2: PRINT A$: NORMAL : WAIT —16384,128 :
TEXT : HOME

Colored Backgrounds

By now you should be able to see the different ways in which
lines can be drawn on the hi-res screen. Sometimes, though,
you may want to draw on a background other than black.
Wouldn't it be nice to draw on a blue or green background?
That’s what we’ll do now.

To clear the screen to the most recent HCOLOR that’s
been used to plot lines, use the CALL 62454 command, which
CALLSs a monitor subroutine that will flood the screen with
the most recent HCOLOR. The next program draws a rough
hourglass (actually an X with horizontal lines on the top and
bottom) in the color of your choice and then clears the screen
to that color. Notice that instead of CALL 62454 being used,
the variable C is defined to 62454 and then CALL C is used.
This is done to show you that in programs where you will be
using CALL 62454 in several different places, it’s a lot easier
simply to write CALL C. (It's used only once in this program,
but you get the idea.)

10 TEXT : HOME : REM **CLEAR TO COLOR**

20 HGR

30 VTAB 21 : PRINT “ENTER COLOR (0 TO 7)” : INPUT
““(COLORS O AND 4 ARE BLACK) ” ; HC

40 HCOLOR = HC

50 HPLOT 0,0 TO 279, 1656 TO 0,166 TO 879,0 TO 0,0

60 VTAB 22 : CALL —8%75 : PRINT “HIT ANY KEY TO
CONTINUE”

656 REM CALL —875 CLEARS THE LINE OF PREVIOUS TEXT

70 WAIT —16384,128 : POKE —16368,0

80 C = 62454

85 REM ADDRESS FOR CLEARING SCREEN TO MOST RECENT
HCOLOR

90 CALL C

100 WAIT —16384,138 : TEXT : HOME : LIST

140

1

0 U

1

=

N [N R

1

Using Graphics

Drawing Board Program

The graphics power of the Apple IIGS is considerable. Several
commercial programs are available that allow you to write in
hi-res fonts, draw several different figures, and generally use
your computer as an artist would use a canvas or a drafter a
drafting board. Of course, you can write such a program your-
self. To give you an idea of how graphics programs work, here
is the “Very, Very Poor Person’s Drawing Board.” Enter it in
and play with it.

10 TEXT : HOME
20 ONERR GOTO 10
30 HOME : HGR : HCOLOR= 3: VTAB 23
40 PRINT “LINES OR FIGURES? (L/F)"’: INVERSE : PRINT
«@,. NORMAL : PRINT “ TO CLEAR”;: VTAB 23: HTAB 38:
GET AZ$: IF AZ$ = “F” THEN 130
BO IF AZ$ = “C” THEN 30
60 HOME : VTAB 23: INPUT “HOR PLOT, VERT PLOT BEGIN->
));H,V
70 INPUT “HOR PLOT, VERT PLOT END —> "’;HE,VE
80 HPLOT H,V TO HE,VE
90 HOME : VTAB 23: PRINT “ANOTHER? (Y/N) ”;: GET AN$
100 IF AN$ = “N” THEN INVERSE : PRINT “ CLEAR SCREEN?
(Y/N)? ”; : NORMAL : GET CL$: IF CL$ = “Y”’ THEN
TEXT :
HOME : END
110 IF CL$ = “N” THEN END
120 GOTO 40
130 HOME : VTAB 21: PRINT ‘‘(S)QUARE,(T)RIANGLE”: PRINT
“(R)ECTANGLE,(P)ARALLELOGRAM”: PRINT “CHOOSE BY
LETTER-> ";: GET L$:
140 IF L$ = “S” THEN HPLOT 0,0 TO 255,0 TO 255,150 TO
0,180 TO 0,0
150 IF L$ = “T” THEN HPLOT 127,0 TO 255,150 TO 0,150 TO
127,0
160 IF L$ = “R” THEN HPLOT 0,20 TO 255,20 TO 255,90 TO
0,90 TO 0,20
170 IF L$ = “P” THEN HPLOT 20,20 TO 200,20 TO 180,80 TO
0,80 TO 20,20
180 GOTO 90

As you can see, the Very, Very Poor Person’s Drawing
Board allows you to enter different figures simply by going to
subroutines. This saves a lot of HPLOTting every time you
want a simple figure. However, wouldn't it be nice if you could
INPUT the size of the figure you wanted and the computer
would do everything else? As you saw in the above program,

141

CHAPTER 7

you can INPUT different line sizes and angles, but you're
stuck with a single figure size.

The next program shows you how to INPUT a figure of
different sizes. Again, it is relatively simple and always begins
the figure in the upper left corner and draws only a square,

but it will give you an idea of how such graphics can be done.

10 TEXT : HOME : REM *INPUT SQUARE**

20 INPUT ‘‘SIZE OF SQUARE (1 TO 185)-> ’’;S8

30 HGR : HCOLOR = 3

40 HPLOT 0,0 TO 88,0 TO 88,88 TO 0,88 TO 0,0

45 REM HPLOTS A SQUARE TO YOUR SPECIFICATIONS

50 HTAB 1: VTAB 2R: CALL—875 : PRINT “ANOTHER
SQUARE? (Y/N) "”;: GET AN$: IF AN$=“N" THEN TEXT :
HOME :END

60 IF AN$ = “Y” THEN 10

70 GOTO 80 : REM A TRAP FOR NOT GETTING A ‘Y’ OR ‘N’

Adding Circles

So far you’ve worked only with straight-lined figures,
HPLOTting the sides of the figures, which is limiting. But
when you start making curves and circles, you make a quan-
tum leap in programming. Using the SIN function, which
gives a sine value, and the COS (cosine) function, you can
make curves and even circles. If you have a good math back-
ground, you probably understand how these calculations can
be used. However, if you do not, simply make a note of the
algorithm and use it whenever you need a circle. Since there
are several calculations occurring, it will take a while for the
circle to be completely drawn. Be patient, though; your IIGS
will draw it before your eyes.

10 TEXT : HOME : HGR : HCOLOR = 3 : REM **HGR CIRCLE**

20 FOR I = O TO 8.3 STEP .01

30 R = 40 : XPLACE = 100 : YPLACE = 76 : REM R =
RADIUS — XPLACE = HOR START — YPLACE = VERT
START

40 X = R*COS (I) + XPLACE

BOY = (R/4) *SIN @) /.3 + YPLACE

60 HPLOT X,Y

70 HPLOT TO X,Y

80 NEXT

90 VTAB 22 : HTAB 1 : PRINT “HIT ANY KEY TO CLEAR”; :
WAIT —16384,128 : TEXT : HOME

100 REM TRY CHANGING THE VALUE OF R, XPLACE AND

YPLACE.

142

—

|

.

-

-

3

|

Using Graphics

It’s important that you experiment—even with functions
such as SIN and COS that you may not understand. Also, you
might want to want to skim an old geometry or trigonometry
book to brush up on what sine and cosine do. Just for fun, of
course.

Keeping Graphics Together

Suppose you spend a lot of time with a graphics drawing,
made with a program you've struggled over. As you develop
your graphics, you may not want to wait while it slowly
draws circles and puts your masterpiece on the screen every
time you edit your program. However, with so little room at
the bottom of the hi-res screen for you to examine your list-
ing, you need to TEXT the screen to see your listing. To get
back to the hi-res screen, you have to HGR, and, as you know
by now, that will blast anything on the screen.

To keep your drawing intact after you have left hi-res,
you will need to POKE in certain values that put you on the
hi-res screen(s). As you saw earlier in the comparison of hi-res
and lo-res, pictures can be kept in memory. The following
POKE:s are handy for doing this:

POKE Result

—16304,0 Goes to graphics
—16302,0 Full graphics
—16301,0 Text and graphics
—16300,0 Page 1

—16299,0 Page 2

—16298,0 Lo-res

—16297,0 Hi-res

To use these POKEs, you can either enter them from the
immediate mode or from within a program. It’s better to have
them somewhere in a program since it is necessary to enter at
least four POKEs to access a hi-res screen. The following pro-
gram shows how they can be used to draw on the hi-res
screen, enter the TEXT mode, and then reenter the hi-res
screen without destroying the graphics there.

10 TEXT : HOME : HGR : HCOLOR = 3

R0 HPLOT 0, 70 TO 279, 70

30 HPLOT 140, O TO 140, 166 : REM DRAWS A CROSS

40 HTAB 1 : VTAB 22 : PRINT “HIT ANY KEY FOR TEXT-> ";
: WAIT —16384,138 : POKE —168368,0

50 TEXT : HOME : VTAB 10 : PRINT “THIS IS THE TEXT
SCREEN!”

143

CHAPTER 7

60 VTAB 22 : INVERSE : PRINT “HIT ANY KEY TO RETURN
TO YOUR PICTURE-> ”’;: NORMAL : WAIT —16384,128 :
POKE —16368,0

70 POKE —16304,0 : POKE —16301,0 : POKE —16300, O :
POKE —16R297,0

76 REM POKES TO RETURN TO PAGE 1 HI-RES GRAPHICS

77 REM WITH TEXT AT BOTTOM

80 HOME : VTAB 22 : HTAB 1 : PRINT “WE’RE BACK TO
GRAPHICSII”

When you run this program, you will first see the cross,
then the text in the middle of the screen, and finally the cross
again.

In the discussion of lo-res graphics, you saw how to cre-
ate animation by first PLOTting a block, drawing over it with
black, and then PLOTting another point. You can do the same
in hi-res to create animation. However, there is something else
that you can do with hi-res and animation that we didn’t do
in lo-res. You can toggle the two hi-res screens. So far, we've
used only hi-res screen 1 (or page 1). By using both screens 1
and 2 of hi-res, you can draw images on both. Then by using
POKE —16300,0 (page 1) and POKE —16299,0 (page 2), you
can alternate the graphics. The following program illustrates
how this is done:

10 TEXT : HOME : HGRR : HGR : HCOLOR= 3: REM CLEARS
EVERYTHING

20 HPLOT 50,70 TO 100,70

30 HPLOT 55,70 TO 95,580 TO 95,70

40 HGRR

50 HPLOT 50,70 TO 100,70

60 HPLOT 55,70 TO 95,60 TO 95,70

70FORI = 1TO 30: FOR J = 1 TO 100: NEXT J: POKE —
16300,0: FOR K = 1 TO 100: NEXT K: POKE — 16299,0:
NEXT

80 REM TOGGLES HI-RES PAGES 1 AND 2 1000 WAIT —
18384,128: TEXT : LIST

Line 70 contains three loops. The I loop sets the number
of times the screens will be toggled at 30. The J and K loops
simply delay the screen toggles long enough so that it does
not appear that a single combined picture of HGR and HGR2
images is on the screen by itself. By changing the HPLOTSs in
lines 20 and 30, and in 50 and 60, you can create your own
animations.

144

-

W IRV

37

3

Using Graphics

BSAVEing Your Graphics

In Chapter 6, we discussed BSAVEing binary files. Graphics
screen images can also be saved to the disk as 34-sector binary
files. However, rather than having to determine the starting
address and length of your binary graphics file, you can just
remember two simple addresses and lengths:

Hi-res page 1 A$2000,L$2000
Hi-res page 2 A$4000,L$2000

Graphics on page 1 start at hex address $2000 and have a
length of $2000, while those on page 2 start at $4000 and
have a length of $2000. Therefore, all you have to remember
are $2000 and $4000. If you don’t want to do that, this pro-
gram will do it for you:

10 TEXT : HOME : REM **PICTURE CAPTURE**

20 D$ = CHR$(13) + CHR$(4)

30 HOME : VTAB 4 : INPUT “WHAT NAME DO YOU WANT FOR
THIS PICTURE? ”’; NA$

40 HOME : VTAB 4 : INPUT “WHAT DRIVE? ; R%

50 HOME : VTAB 4: INPUT “PAGE 1 OR PAGE 22 ’; PG%

60 IF PG% = 2 THEN PRINT D$; “BSAVE " NA$ “,A$4000,
L$2000,D” R%

70 IF PG% < > 1 THEN GOTO 50

80 PRINT D$ “BSAVE”; NA$; “,A$2000, L$2000,D” R%

90 INPUT * DO YOU WANT TO CONTINUE? ”; AN$: IF AN$ =
«“y» THEN GOTO 10

100 HOME : VTAB 10: PRINT “DONE FOR NOW” : END

To use the above program, draw your graphics on the
screen, TEXT back to the text screen, and run the program. It
will save your graphics on disk.

Now, to get your graphics back. You can simply BLOAD
your picture (for example, BLOAD FILENAME), or you can
BLOAD your graphics to page 1 or page 2. Since a picture
BSAVEd from page 1 or 2 will automatically BLOAD to the
appropriate screen, you do not have to include an address (for
example, A$2000 or A$4000), but if you want to load a picture
to a screen other than the one to which it was BSAVEd, you
must include the loading address. For example, if you BSAVEd
a file named PICTURE from hi-res screen 1 and wanted to
bring it up on HGR2, you would have to

BLOAD PICTURE, A$4000

To view your pictures, you can either POKE in the appro-
priate addresses after the picture is loaded, or use HGR or
HGR2 and BLOAD them “in the dark.”

145

CHAPTER 7

That’s simple enough, but the following program will do
it all for you. You will be able to see your picture as it is
loaded to either hi-res screen.

10 TEXT : HOME : D$ = CHR$ (13) + CHR$(4)

15 REM **PICTURE LOADER**

R0 L$ =
VTAB 20 : PRINT L$: VTAB 22 : PRINT L$: VTAB 21 :
INPUT “NAME OF PICTURE-> ”; PIC$

30 VTAB Q3 : PRINT “PAGE 1 ORR " ; : GET P%

40 IF P% = @ THEN 110

100 POKE —16304,0 : POKE —16308,0: POKE —16300,0: POKE
—16R97,0

102 REM PAGE 1 POKES

105 GOTO 200

110 POKE —16304,0 : POKE —1630%,0: POKE —16299,0: POKE
—16R97,0

115 REM PAGE Q@ POKES

120 GOTO R10

200 PRINT D$;* “BLOAD” PIC$ *,A$2000”

208 GOTO 300

210 PRINT D#$;“BLOAD” PIC$ ‘,A$4000”

300 END

Shapes: Bitmapped Graphics

There are two ways to produce shapes—an easy way and a
hard way. The easy way is to get a shape editor program, such
as Apple Mechanic (Beagle Bros.) and spend your time creating
interesting shapes for animation. The hard way is what we're
going to do now: map every single bit in memory. If you don't
want to take on this project, that's fine; it’s a large task. If you
prefer, go on to the summary or the next chapter.

For those of you who enjoy delving into the abyss of your
computer’s memory, welcome aboard. This will be an interest-
ing project and worth the effort. To get started, we’ll be using
eight bits, but it is useful to think of the eight bits as sets of 2,
3, and 3. The first two bits are generally unused, and so for
the most part we're actually dealing with two 3-bit sets. The
shape table we will build is based on entering codes into a se-
ries of bytes using binary and hexadecimal codes. All of these,
of course, must be translated further into decimal codes that
can be used from a BASIC program. You should be able at
least to begin understanding shapes and see what they can do.

First of all, think of a shape as something you draw in
memory in three-bit increments, with an occasional two-bit

146

N S

.

-3

-4

-

Using Graphics

move thrown in if you happen to be in the right place. You
can move up, down, left, or right. And you can choose to
move, or move and draw. If you'll think about that for a sec-
ond, that gives eight choices, and, as you will see, there are
eight values that represent those moves.

The procedure is very much like what you do when you
draw with paper and pencil, but there you don’t have to think
about it. With shapes, you can first draw what you want, gen-
erally on graph paper, and then plot it in your IIGS’s memory.
We will first use a combination of binary and hexadecimal
numbers. Once we have our hex values, we’ll translate them
into decimal numbers to be used in a BASIC program. To kick
things off, here are the moves you have available and their
values:

Right Yes 101
Down Yes 110
Left Yes 111

Move Plot Binary Hex
Up No 000 0
Right* No 001 or 01 1
Down* No 010 or 10 2
Left* No 011 or 11 3
Up Yes 100 4
5
6
7

Each move or move/plot is recorded in a three-bit seg-
ment of a byte, or a two-bit segment if appropriate. Notice the
moves marked with an asterisk and their binary values. If, in
the sequence of plotting and moving, one of those moves is to
be recorded and there is a two-bit segment as the next avail-
able segment, it can be recorded as a two-bit value. Let’s look
at an example.

Shape A = a move/plot to the left, move/plot up, and
move to the left:

Move/plot left = 111
Move/plot up = 100
Move left = 011or 11

The three segments of the byte will be numbered from 1 to 3 so that
we can keep the sequence in order:

Segment 1 = 111
Segment 2 = 100
Segment 3 = 11
Segment 3 Segment 2 Segment 1
Bit 7 6 | 5 4 3 | 2 1 o0
1 1 1 0 0 1 1 1

147

CHAPTER 7

Now, that was pretty simple. If you get organized, it is
simple. However, consider what would be required if we had
the following, just slightly different sequence of moves and
plots.

Shape B = a move/plot to the left, move/plot up,
move/plot up, and move to the left:

Move/plot left = 111
Move/plot up = 100
Move/plot up = 100

Move left = 011 or 11

Since the third action involves a three-bit operation, you
cannot use segment 3. So, all you do is go to the next byte.
The diagram shows what shape B will look like when mapped:

Segment 3 Segment 2 Segment 1
Bit _7 6 | 5 4 3 | 2 1 0 Byte#l
0 0 1 0 0 1 1 1
™ (2 1)
Bit _7 6 | 5 4 3 | 2 1 0 Byte#2
0 1 1 1 0 0
4 3

The numbers in parentheses show the sequence from one
byte to the next where the values are placed. To draw any
shape you can place in memory, you do the same thing, ex-
cept shapes will take more steps than the little examples
shown so far.

Now, you're ready to draw something you can see on
your IIGS. Figure 7-1 is an arrow drawn on graph paper. Be-
ginning with the tail of the arrow, you move/plot 16 to the
right, move/plot to make the head, and end up at the tip of
the arrow. Then you move 11 spaces without plotting to the
left to start on the tail of the arrow, doing first the top and
then the bottom.

The final step is translating the binary into hexadecimal
and the hexadecimal into decimal. To do that you will have to
rearrange the byte breakdown. Instead of treating it as sets of
2, 3, and 3 bits, you will now treat it as 4 and 4 bits. Let’s
look at the example of byte 1 in the diagram above.

148

e

A

Using Graphics

Figure 7-1. Arrow

Instead of segments 1, 2, and 3, you now have a high and
low nybble. (Nybble is the jargon term for a four-bit group—
half a byte.) The binary values in the bits are the same, but to
translate the byte into a hexadecimal value, you'll find that it's
easier to break it into nybbles.

High Nybble Low Nybble

7 6 5 411 3 2 1 0 Bytel
0 01 0 01 1 1

Once you've broken them into nybbles, translating the
byte into hex is very easy since you just substitute the four-bit
nybble for a single-digit hex value. In the following chart no-
tice that the full range of four binary digits (000-1111) ex-
hausts the single-digit range of hexadecimal numbers (0-A).
That is also a clue as to why hexadecimal values are used with
computers.

Binary Hex Binary Hex
0000 0 1000 8
0001 1 1001 9
0010 2 1010 A
0011 3 1011 B
0100 4 1100 C
0101 5 1101 D
0110 6 1110 E
0111 7 1111 F

149

CHAPTER 7

To translate byte 1 into a hex value, you see that

High nybble: 0010 = $2
Low nybble: 0111 = $7
Byte 1 = $27

Now, turning to a hexadecimal-to-decimal translation ta-
ble, you find the decimal value of $27, which is 39 (see Ap-
pendix C). That was a lot of effort to change a single byte, but
once everything is organized, it is relatively simple. Table 7-1
is a complete shape table depicting the arrow.

Now that the shape has been translated into decimal val-
ues, let’s create a program that will use those decimal num-
bers. This involves two things:

* Placing the shape somewhere in memory where it won't
clash with other information
* Telling your IIGS where to find the shape information

First of all, there’s a special register at locations $E8 and
$E9 (232 and 233) where you store the starting address of
your shape. We will store the shape information beginning at
address $300 (decimal 768) since that is a location with some
free memory. In locations $E8 and $E9, the starting address
will be stored as

$ES: 00
$E9: 03

Thus, it’s necessary to break up $300 into two parts and
POKE the decimal equivalent into those locations. Fortunately,
you can make a direct translation from hex to decimal:

Hex Decimal
00 00
03 03

Since the low byte is stored in the first address and the high
byte in the second, we will POKE 232,0 and 233,3.

Finally, you must provide a little more information at the
beginning and end of the shape data:

First byte Total number of shape definitions
Second byte Unused
Third and fourth bytes Relative offset for beginning of shape

In the example, we’re using only one shape, and we will
begin the shape data right after the relative offset information.
That will be in the fifth byte, but the value will be 4 since the
first byte is considered 0.

150

[o—

-

A

N N R

Using Graphics

Table 7-1. Arrow Shape Table

Byte Segment3 Segment2 Segmentl Hex Decimal
0 00 101 101 2D 45
1 00 101 101 2D 45
2 00 101 101 2D 45
3 00 101 101 2D 45
4 00 101 101 2D 45
5 00 101 101 2D 45
6 00 101 101 2D 45
7 00 101 101 2D 45
8 00 111 100 3C 60
9 00 111 100 3C 60

10 00 111 100 3C 60
11 00 110 110 36 54
12 00 110 110 36 54
13 00 110 110 36 54
14 00 100 101 25 37
15 00 100 101 25 37
16 00 100 101 25 37
17 11 011 011 DB 219
18 11 011 011 DB 219
19 11 011 011 DB 219
20 11 011 011 DB 219
21 00 111 100 3C 60
22 00 111 100 3C 60
23 00 111 100 3C 60
24 00 111 100 3C 60
25 10 010 010 92 146
26 10 010 010 92 146
27 00 010 010 12 18
28 00 100 101 25 37
29 00 100 101 25 37
30 00 100 101 25 37
31 00 100 101 25 37

Byte 0 = 01 Number of shapes

Byte 1 = 00 Unused

Byte 2 = 04 Low byte of offset

Byte 3 = 00 High byte of offset

Byte 4 = 45 First value of shape

Bytes 5-N N = Last value of shape table

Byte N+1 = 00 Indicates end of shape table

151

CHAPTER 7

After you've made these determinations, you are all set to
write a program to stuff the shape information into memory
and use the shapes. There are a total of 32 shape table values.
Four values go at the beginning of the shape table, and one
value goes at the end, giving 37 shape values to POKE in be-
ginning at $300 (768). So you will use the following loop:

FOR X = 768 TO (768 + 36)

To make it easy, just put all the information into DATA
statements; then have the loop read the data and sequentially
stick it into the assigned addresses. Before that, though, you'll
have to remember to indicate where the shape information is
stored. Thus, $E8 and $E9 (232 and 233) will be POKEd:

POKE 232,0 : POKE 33,3

The following program does that for you:

10 REM $E8=232

20 POKE 232,0: POKE 233,3

30 REM $300="768

40 TEXT : HOME

80 FOR X = 768 TO (768 + 36)
60 READ S

70 POKE X,S

80 NEXT

90 DATA 1,0,4,0

100 REM 3R shape values

110 DATA 45,45,45,45,45,45,45,45
120 DATA 60,60,60,54,54,64

130 DATA 37,37,37,219,219,219,219
140 DATA 60,60,60,60,146,146
150 DATA 18,37,37,37,37

160 DATA O : REM end of shape

When you run the program, nothing that you can see on
your screen will occur. You need more statements and com-
mands to see the shape. The rest of the program is given
below.

Shape Manipulation

After all of that work to create a shape, it had better be worth
it, right? If you like animating the figures you create, it should
be. Let’s look now at the special shape statements:

152

N R R

-

Using Graphics

SCALE. The SCALE statement sets the size of your shape.
A SCALE value 1 uses the single-pixel plot resolution that you
used to create your shape. Higher-value scales create larger
shapes with lower resolution.

ROT. The ROT value will rotate your shape in one of
eight angles. ROT recognizes values 0, 8, 16, 24, 32, 40, 48,
and 56. Any other ROT values will be dropped to the next
lower value (for example, 12 will be treated as 8). At angles
other than 0, 90, 180, or 360, the shapes are distorted.

DRAW. Using the high-resolution pixel matrix, you plot
the X and Y coordinates using the following format:

DRAW N% AT XY

where N% is the shape number and X and Y are the horizon-
tal and vertical coordinates on your high-resolution screen.
XDRAW. XDRAW has the same format as DRAW, except
it draws the complement of the color existing on the screen. In
animation, XDRAW is preferable to DRAW.
By adding the following lines to the program, you can see
the shape perform for you.

170 REM Aok ofe e ok ok ok ok ok ok

180 REM DRAW SHAPE
190 REM seakokok ook sk ok ok

200 HGR

210 HCOLOR= 3

{20 SCALE=1

{30 ROT=1

240 DRAW 1 AT 100,50
250 GOSUB 600

260 REM ****

{70 REM MOVE

Q80 REM ****

290 FOR X = 1 TO 279
300 XDRAW 1 AT X,80
310 XDRAW 1 AT X,80
320 NEXT

330 GOSUB 600

340 REM eaeokok ok

350 REM FASTER

360 REM Aeokokokkk

370 FOR X = 1 TO 379 STEP 3

153

CHAPTER 7

380 XDRAW 1 AT X,80
390 XDRAW 1 AT X,80
400 NEXT

410 GOSUB 600

420 REM Aok okokok

430 REM ROTATION

440 REM skeofeofe e ofe ok ok

450 FOR X = 1 TO 64 STEP 8
460 ROT= X

470 XDRAW 1 AT 100,80
480 NEXT

490 GOSUB 600

500 REM *****

510 REM SCALE

520 REM Aokokokok

830 ROT= 1

B4OFORX = 1TO 6

550 SCALE= X

560 DRAW 1 AT 140,80
870 GOSUB 600

580 NEXT

590 TEXT : LIST : END
600 VTAB 2R%: PRINT ‘‘Hit any key”
610 GET A$

620 HGR : RETURN

The more you experiment, the more you can do with
shapes. However, if you are lost or confused at this point,
don’t worry. This section has dealt with some fairly advanced
aspects of programming with shapes.

Summary

In this chapter you have explored the many different graphics
capabilities of the IIGS. Beginning with low-resolution graph-
ics, you saw that it is possible to program mosaic-like images
on the screen in 16 colors. Using the four lines of text at the
bottom of the screen, you learned to create crisp bar charts
with labels. Also, you saw how animation is possible by using
black to erase images.

154

R |

~J

A

n_,mvj

1

o

Using Graphics

High-resolution graphics, while decreasing your choice of
colors, increases the choice of shapes you can make. The
HPLOT statement was used to create lines, figures, and even
circles. The RND function was introduced to add random
drawings (or anything else) to your storehouse of statements.
You also saw how to use special POKEs to switch from HGR
to HGR2 without erasing your graphics, and then create ani-
mation by switching the two screens. Finally, you learned how
to BLOAD and BSAVE graphics from, and to, the disk. All in
all, graphics can be fun, and there are numerous practical
applications as well.

155

I I el

Text Files and the
Disk System

In this chapter you're going to learn more about working with
the disk system and creating data files. Three types of files
will be covered: EXEC files, sequential text files, and random
access files. All of the files to be discussed are one type of text
file or another, but while they are similar, they do different
things in somewhat different ways. What we are calling EXEC
files are actually text files that we want to access or execute.
Sequential files and random access files are types of data stor-
age systems.

You will find the functions in this chapter to be extremely
practical. First, you will see how an EXEC file can be used to
automatically “type”” commands for you, and save programs
and subroutines in text files. It’s like having a robot at the
keyboard. Second, you are going to make simple sequential
text and random access files. These files are very useful for
storing information you have entered. Rather than having to
enter the data all over again, you simply OPEN the data file
and READ it. Finally, to show how these files work, you'll
write a simple program for keeping and updating names, cit-
ies, and states.

Create EXEC Files (and Leave the Driving

to Them)

EXEC files are text files that you can EXECute with the DOS
command EXEC. Depending on what’s in the files, you can
either put a program into memory or have your computer
“type” several commands as though the computer has taken
over the keyboard. First, let’s examine how to put a program
into a text file and then how to have the program enter
commands.

159

CHAPTER 8

Converting BAS Files to TXT Files

The purpose of this section is to show how to change a BASIC
program or subroutine into a text (TXT) file. Now, you may
well ask yourself, Why you would want to do that? After all,
it’s a lot simpler to save a program to the disk. That’s a good
point, except that whenever you load or run a program what-
ever program is in memory will be wiped out. However, by
using text files and the EXEC command, you can load one
program and then merge another program with it by EXECing
its text file.

As an example, enter the following two partial programs
and save them both to disk. Use the filename
ENTER.STRINGS for this one:

10 TEXT : HOME : REM ENTER.STRINGS
20 VTAB 10 : INPUT “HOW MANY STRINGS TO ENTER (1-20)
”; No%

30 DIM S$(NN%)
40 HOME: FOR I = 1 TO N%
50 PRINT “STRING #”; I; “ ==>"; :INPUT “ ”; 8$(D)

60 NEXT I : HOME

70 FOR J = 1 TO N% : GOSUB 1000
80 NEXT J

90 END

After you've saved the above lines as a program called
ENTER.STRINGS, enter NEW to clear it from memory. Next,
enter the following two lines:

1000 HTAB 20 — LEN(S$(J)) / 2 : PRINT 8$(J)
1010 RETURN

Now save lines 1000 and 1010 to the disk as
CENTER.STRINGS. If you want to put these two pieces to-
gether, you will find it impossible without a special program
or without reentering the lines by keying them in. However, if
one part or the other is written as a text file, it’s a simple mat-
ter to load one part and EXEC the other. So let’s do that.

To create a text file, use the commands OPEN, WRITE,
and CLOSE. First, issue OPEN and WRITE commands, which
must be preceded by CHR$(4). Then, enter the contents of text
files, and finally, close the text file using CLOSE, again pre-
ceded by CHR$(4). D$ has been defined to equal CHR$(4).

- Now LOAD CENTER.STRINGS. Next DELETE
CENTER.STRINGS. This will delete CENTER.STRINGS as a
BAS file, but you will see that CENTER.STRINGS is still in
memory. Write in the following, but do not type in NEW:

160

R

5 -

U R

-3

Text Files and the Disk System

1 TEXT : HOME

2 D$ = CHR$4)

3 PRINT D$ “OPEN CENTER.STRINGS”
4 PRINT D$ “WRITE CENTER.STRINGS”
5 POKE 33,30

6 LIST 1000,1010

7 PRINT D$ “CLOSE CENTER.STRINGS”
8 END

When you LIST the program now, it should look like this:

1 TEXT : HOME
2 D$ = CHR$(4)

3 PRINT D$ “OPEN CENTER.STRINGS”

4 PRINT D$ “WRITE CENTER.STRINGS”

5 POKE 33,30

6 LIST 1000,1010

7 PRINT D$ “CLOSE CENTER.STRINGS”

8 END

1000 HTAB 20 — LEN(S$(J)) / 2 : PRINT 8$(J)
1010 RETURN

Run the program. You will hear your disk whirling. It is
writing a TXT file called CENTER.STRINGS. When the disk
stops, CATALOG your disk and you will now see the file
CENTER.STRINGS.

Now, write in NEW to make sure everything is cleared
from memory. First, LOAD the program ENTER.STRINGS.
LIST the program to make sure it does not have lines 1000
and 1010 (if it does, DEL 1000,1010). Type in

EXEC CENTER.STRINGS

Your disk should whirl and soon stop. LIST your program,
and voila—there is your complete program. Lines 1000 and
1010 have been placed into a text file and are then “released”
with an EXEC statement. This is a very handy way to store
subroutines that are frequently used in your programs. Rather
than having to rewrite common or lengthy subroutines every
time you want them, all you have to do is EXEC them into the
program portion you have keyed in. However, you must be
careful as to what line numbers you use. If you have two sub-
routines in text files with the same range of line numbers,
you'll get strange results. By blocking your important subrou-
tines within thousand-range blocks (1000-1999, 2000-2999,
for example) and keeping track of what subroutines are in
what blocks, you will not have conflicts when you EXEC them.

161

CHAPTER 8

Chaining Programs
Another way to get two (or more) programs working together
is with the CHAIN command. This command does not merge
two programs together as EXEC does, but it allows one to be
run from another. As soon as the second program has been
chained, the first one is removed.

To see how CHAIN works, we’ll use another string-
centering example. The first program will place strings in
an array, and the second one will print them centrally on a
40-column screen. Save the first program under the name
STRINGI and the second as STRING2. Be sure to put them on
the same disk. When you run STRING1, you will be prompted
to enter from 1 to 20 strings. After you have done that,
STRING2 will automatically be chained and proceed to print
the strings on the screen. After it has finished, LIST the pro-
gram, and you will see that only STRING2 is still in memory.

STRING1

10 TEXT : HOME

20 VTAB 10

30 INPUT “HOW MANY STRINGS TO ENTER (1-20) "’;N%
40 DIM S$(N%)

50 HOME

60 FOR X = 1 TO N%

70 PRINT “STRING #'";X

80 INPUT “ ” ;88(X)

90 NEXT X

100 D$ = CHR$ (4)

110 PRINT D$‘‘CHAIN STRINGR”

STRING2

10 FORJ = 1 TO N%

20 GOSUB 100

30 NEXT J

40 END

100 HTAB 20 — LEN (8$()) / 2
110 PRINT 8$(J)

120 RETURN

The important feature of using the CHAIN command is
that, when the second program is loaded into memory, all the
values in the variables and array are preserved from the first

program. Try deleting line 110 in STRINGI1, and then running

STRING2 after having typed in some words in the STRING1
program. You won't get anything printed on the screen since
the variables and arrays have been reset to zero.

162

1

(e

Text Files and the Disk System

You can organize all kinds of useful subroutines in this
way. Instead of having to rewrite the routines every time
they’re needed in a program, you can chain them. Of course,
you will have to be careful about keeping variable and array
names the same, but if you spend a little time arranging the
routines, you can save a lot of time later. What’s more, as you
can see with the above examples, when you use CHAIN, you
don’t have to worry about line numbers from one program
chained to another.

Automatic EXECs

Another important use of EXEC files comes from their ability
to issue commands as though they were coming from the key-
board. You've seen how to issue DOS commands by using
control-D or CHR$(4) from within a program. You can also
use EXEC files to do the same thing and much more. To make
an EXEC file that will take over the keyboard, you must set up
special formats, using PRINT statements to issue the correct
commands. For example, this little EXEC file will catalog your
disk:

10 TEXT : HOME

20 D$ = CHR$ (4)

30 PRINT D$‘‘OPEN CAT”
40 PRINT D$“WRITE CAT”
50 PRINT “CAT”

80 PRINT D$‘‘CLOSE CAT”

Run the program to create a text file called CAT. Now
type in

EXEC CAT

Your disk drive should spin and CATalog your disk. When it
does, notice that the file CAT is there.

In some programs it’s necessary to load different “’sup-
porting” files to get the program to work properly. Using an
EXEC file is useful since, rather than having to type in all the
LOADs, BLOADs, and EXECs yourself, you can have an EXEC
file do it for you. For example, let’s create an EXEC file to put
ENTER.STRINGS and CENTER.STRINGS together for us, and
LIST and RUN the combination as well.

163

CHAPTER 8

10 TEXT : HOME

20 D$ =CHR$(4)

30 PRINT D$ “OPEN COMBINE”

35 PRINT D$ “WRITE COMBINE”

50 PRINT “LOAD ENTER.STRINGS”
60 PRINT “EXEC CENTER.STRINGS”
70 PRINT “LIST”

90 PRINT “RUN"

100 PRINT D$ “CLOSE COMBINE”

First, run the above program to create the file COMBINE.
Make sure your disk has the Applesoft file ENTER.STRINGS
and the text file CENTER.STRINGS on it. Then EXEC COM-
BINE. Watch what happens as the EXEC file takes control of
your computer.

As a final demonstration of using EXEC files, we will
reach back to Chapter 6 where you learned to locate the start-
ing address and length of the most recently BLOADed or
BRUN binary file. You had to have the starting address in or-
der to BSAVE a binary file. Now, instead of having to remem-
ber all the steps in doing that, we will create an EXEC file that
will do it for us. Here’s how:

10 TEXT : HOME

20 D$ =CHR$(4)

30 PRINT D$ “OPEN BINARY.FINDER”
40 PRINT D$ “WRITE BINARY.FINDER”
50 PRINT “HOME"”

60 PRINT “CALL —151”

70 PRINT “AA72.AA73 AABO.AABL”

80 PRINT “3DOG”

90 PRINT D$ “CLOSE BINARY.FINDER”

First, run the program to set up the text file BINARY.FINDER.

Then BLOAD a binary program and EXEC BINARY.FINDER to
see the beginning address and length of the program. (Remem-
ber to reverse the two-digit sets to get the correct addresses. See
Chapter 6 if you've forgotten.) As you become more experi-
enced, you will find BINARY.FINDER to be extremely useful.

Sequential Text Files

Of the two kinds of text files that we will discuss, sequential
text files are simpler to work with and use less memory. Ran-
dom access files, discussed in the next section, are a little trick-
ier, but they can be accessed faster than sequential files. Using
sequential and random access text files, you can enter data

164

S D R -

Text Files and the Disk System

from a program and store it as a text file. You can add to the
file, change it, and retrieve data from it.

Creating Sequential Text Files

The first step is to write a formatting program, a program that
will create a sequential text file. Essentially, the program will
look almost identical to the programs that were written to cre-
ate EXEC files. There’s a good reason for this: EXEC files are a
type of sequential text file. To create a file, use

OPEN

WRITE

PRINT *****(PORTION THAT GOES IN TEXT FILE)****
CLOSE

These commands take care of everything that’s needed in
a sequential text file.

Now, to begin using sequential text files, we will write a
formatting program for our text file. Let’s begin with a simple
example that will store the names of a known number of peo-
ple who sent us Christmas cards:

10 TEXT : HOME
20 REM
30 REM SEQUENTIAL FILE WRITER
40 REM
50 D$ = CHR$ (@)

60 VTAB 10: HTAB 1: INPUT ‘“How many entries? ’’;N%
70 DIM NAS$(N%)

80 VTAB 10: HTAB 1: CALL — 868

90 FOR X = 1 TO N%

100 VTAB 10: HTAB 1: CALL — 868

110 PRINT ‘“‘Name #;X;*“=>";

120 INPUT NA$(X)

130 NEXT X

200 REM e 3 o ofe o o o e ok o o ok o o ok

210 REM CREATE SEQ FILE

220 REM e 3 3 o o ofe o o o e o o o ok ok

230 PRINT D$‘‘OPEN XMAS.CARDS”

240 PRINT D$“WRITE XMAS.CARDS”

Q50 FOR X = 1 TO N%

260 PRINT NA$(X)

R70 NEXT X

280 PRINT D$‘‘CLOSE XMAS.CARDS”

290 END

After you've entered the program, run it. Remember the
number of names that you have entered. Save the program

165

CHAPTER 8

under the name CC.WRITER, for you will return to it later.

CATALOG your disk and make sure there is a file called

XMAS.CARDS that was created by the CC.WRITER program.
The next step is to READ the files using

OPEN
READ
INPUT ** TAKES DATA OUT OF FILE **
CLOSE

The following program will OPEN XMAS.CARDS, READ
the file, CLOSE the file, and then PRINT out the contents to
the screen. Notice the similarities and differences between it
and the program for writing files.

10 TEXT : HOME
20 REM
30 REM SEQUENTIAL FILE READER
40 REM
50 D$ = CHR$ (4

60 VTAB 10: HTAB 1: INPUT “How many entries? ’;N%
70 DIM NA$(WN%)

80 PRINT D$‘‘OPEN XMAS.CARDS”

90 PRINT D$‘“‘READ XMAS.CARDS"”

100 FOR X = 1 TO N%

110 INPUT NA$X)

120 NEXT X

130 PRINT D$‘‘CLOSE XMAS.CARDS”

140 FOR X = 1 TO N%

160 PRINT NA$(X)

160 NEXT X

After you've run the program, save it under the filename
CC.READER. If you forgot the number of names you put in
the XMAS.CARDS file, you might get an OUT OF DATA ER-
ROR. By entering too many names to be read, you went be-
yond the limits of the file. Later, you will learn a way to make
sure this doesn’t happen.

So far, so good. You have a program that will WRITE a
list of names in a data file and one that will READ those names
back. What happens, though, if you want to add some names
to your file? You could make a new file under another name,
but a better way is to APPEND your current XMAS.CARDS
file. Using the APPEND command, write your additional files
to the bottom of the data list you have in your existing file. It
is important to remember, when using APPEND, that there is
an existing file to which you can APPEND your data. To do
that, use the following format:

166

-

) 1

-

3

Text Files and the Disk System

APPEND

WRITE

PRINT **ENTER APPENDED DATA **
CLOSE

Since you will need a program only slightly different from
CC.WRITER, simply LOAD CC.WRITER, make some changes,
and save the program under the name CC.APPENDER.

Look at the following program carefully, and note the
changes made from CC.WRITER.

10 TEXT : HOME
20 REM
30 REM SEQUENTIAL FILE APPEND
40 REM
50 D$ = CHR$ (4)

60 VTAB 10: HTAB 1: INPUT “How many entries? ’;N%
70 DIM NA$(N%)

80 VTAB 10: HTAB 1: CALL — 868

80 FOR X = 1 TO N%

100 VTAB 10: HTAB 1: CALL — 868

110 PRINT “Name #";X;*“=>";

120 INPUT NA$X)

130 NEXT X

200 REM ook ook ok ok ok ok ok ok ok

210 REM APPEND SEQ FILE

220 REM ek o ofe a o o e o o o e ok o o

230 PRINT D$“APPEND XMAS.CARDS”

240 PRINT D$“WRITE XMAS.CARDS”

QB0 FOR X = 1 TO N%

260 PRINT NA$(X)

270 NEXT X

280 PRINT D$‘‘CLOSE XMAS.CARDS”

290 END

That doesn’t take much. All you have to do is change
WRITE to APPEND. Once you've saved the program as
CC.APPENDER, you'll have programs that will WRITE,
READ, and APPEND sequential text files.

Finally, you may want to examine only one entry or
record in your sequential text file. To do this, use the POSI-
TION command, which will allow you to go to a certain
record and examine it. Since POSITION recognizes only num-
bers, you will have to inspect any entry by its number. The
general format for POSITION is

POSITION FILE.NAME F#

167

CHAPTER 8

Note in line 60, below, the format for POSITION in a program
that uses a variable for the position number. The ,F must fol-
low the POSITION command, which is then followed by the
position number (here, the variable N) of the record to be ex-
amined. This program will let you examine any of the entries
you have in your XMAS.CARDS text file:

10 TEXT : HOME

20 D$ = CHRS$ (4)

30 VTAB 10: HTAB 1

40 INPUT “WHICH ENTRY #=> "N

50 PRINT D$“OPEN XMAS.CARDS”

60 PRINT D$“POSITION XMAS.CARDS,F"’;N
70 PRINT D$“READ XMAS.CARDS"

80 INPUT NA$

90 PRINT D$“CLOSE XMAS.CARDS"

100 PRINT : PRINT NA$

The first position is position 0, not 1. Thus, if there are
five records, they will occupy positions 0-4.

File Manager

Now you’ve seen how to WRITE, APPEND, READ, and POSI-
TION elements of a single text file. However, since text
filenames are essentially nothing but strings, you could use
variables to do much of the work automatically. Remember, if
you can write a program that will do most of the work for
you, you can save a lot of time that would have been spent
writing several little programs. The following program,
FILE.MANAGER, will create, append, read, and position any
file you want. It handles only a single string element, but you
can change that if you want. Its main purpose is to provide an
example of a program that deals with all the basic aspects of
sequential text file handling in one place.

10 TEXT : HOME

20 REM e ok o e o 2 o o e e o ok

30 REM FILE MANAGER

40 REM e ok e o o o e o o o ok ok

50 D$ = CHR$ (4

60 L = 200: DIM NA$)

80 GOTO 1000

100 REM

110 REM CREATE/APPEND FILE

120 REM

130 HOME : VTAB 10: INPUT “HOW MANY NAMES TO ENTER
=>"N%

168

S IS R R

Text Files and the Disk System

140 HOME : PRINT : PRINT

150 FOR X = 1 TO N%

160 INPUT “ENTER NAME=> ";NA$(X)
170 NEXT X

180 HOME : VTAB 10: INPUT “NAME OF FILE ";CF$
190 PRINT D$TASK$CF$

200 PRINT D$““WRITE”CF$

210 FOR X = 1 TO N%

220 PRINT NA$(X)

230 NEXT X

240 PRINT D$“‘CLOSE"CF$

250 GOTO 1000

500 REM e ke ofe ofe o o ok o o

310 REM READ FILE

320 REM e ke o o o o e o o

330 ONERR GOTO 400

340 HOME : VTAB 10: INPUT “FILE TO READ => ";RF$
350 PRINT D$“OPEN"RF$

360 PRINT D$* “READ”RF$

370 INPUT NA$: PRINT NA$

380 GOTO 370

390 PRINT D$“CLOSE"RF$

400 IF ER = 0 THEN ER = 1: GOTO 390
410 GOTO 810

500 REM 4 o e o o o o ofe o e ok e ok

510 REM POSITION FILE

520 REM e o o o o o 2 ofe o e ok e ok

530 HOME : VTAB 10: INPUT “NAME OF FILE=> ”;PF$
540 VTAB 12: INPUT ‘“POSITION # ;X%
550 PRINT D$“‘OPEN"PF$

560 PRINT D$“POSITION"PF$* F""X%

570 PRINT D$“READ”PF$

580 INPUT NA$

590 PRINT D$‘‘CLOSE"PF$

600 PRINT NA$

810 VTAB 24: INVERSE

620 PRINT “HIT ANY KEY TO CONTINUE";: NORMAL
630 GET A$: PRINT A$

1000 REM ****

1010 REM MENU

1020 REM ****

1030 HOME :FM$ = “ FILE MANAGER ”
1040 INVERSE : HTAB 20 — LEN (FM$) / 2
1050 PRINT FM$: NORMAL : RESTORE
1060 FOR X = 1 TO 5: READ M$(X): NEXT
1070 VTAB 8

1080 FOR X = 1 TO 5: PRINT X;“.”;M$(X)
1090 PRINT : NEXT X

169

CHAPTER 8 !

-

1100 PRINT : PRINT : INVERSE : PRINT ‘ CHOOSE BY ‘
NUMBER ”;

1110 NORMAL : GET A%: IF A% < 1 OR A% > 6 THEN PRINT =
CHR$ (7): GOTO 1000 :

1120 IF A% = 1 OR A% = 2 THEN GOSUB 1500

1130 ON A% GOTO 100,100,300,500,1600 =

1500 REM e 3 o e e o o e o o o e e o o o }

1510 REM CREATE OR APPEND

1520 REM ook ke ook e ok ok ok o e o o ke ok ok

1525 HOME : VTAB 10

1830 PRINT “(C)reate or (A)ppend ”;: GET AN$: PRINT AN$

1640 IF AN$ < > “C” AND AN$ < > “A” THEN 1525

1550 IF AN$ = “C” THEN TASK$ = ‘“OPEN”’

1560 IF AN$ = “A” THEN TASK$ = “APPEND”

1570 RETURN

1600 TEXT : HOME : END

2000 DATA CREATE FILE,APPEND FILE,READ FILE,POSITION
FILE,EXIT

Before moving on to random access files, you should be
reminded that there are several more aspects to sequential
data files, and you can do much more with them than the
simple applications covered in this section. There are several
good books that go into detail on text file applications. If you
want to go beyond the elementary stage in this very important
aspect of the Apple IIGS computer, it is strongly recommended
that you look at one of these other sources.

Random Access Files

Random access files are like containers of equal size into
which you store data. If you're familiar with the standardized
boxes that are used as shipping containers, you have some
idea of how random access files work. Basically, you must first
decide how big a container you will need, based on the maxi-
mum size of the material you'll be entering. Since all you can
put into a random access file is either numbers or strings, the
problem is greatly simplified. Each character in a number or
string takes one byte. Therefore, if your maximum for a given
string is 10, it will be necessary to allocate a total of ten bytes:
one for each of the ten characters. (As you know, a byte is a
unit of measurement in the IIGS’s memory.) With numbers,
everything—including the decimal point—counts. For ex-
ample, 99.95 takes five bytes: one for each of the four num-
bers and one for the decimal point. Even carriage returns
count. Remember CHR$(13) in our discussion of ASCII?

N DU R I

170

Text Files and the Disk System

For the most part, the activities involved in creating and
reading random access files look very similar to those for se-
quential text files, but there are important differences as well.
First, when you OPEN a random access file, you must include
the (L)ength of the file. Then, as was done with sequential text
files, PRINT D$—composed of CHR$(4)—and then place the
OPEN command and the name of the file inside quotation
marks. However, then it is necessary to put a comma and an L
along with the maximum length of the file. The following ex-
ample shows the format for OPENing a random access file:

PRINT D$ “OPEN NAME.FILE, 1L40”

The next step in creating a random access file is to enter
the WRITE command, but you must include the (R)ecord
number with it, such as

PRINT D$ “WRITE NAME.FILE, R1”

Using Random Access Files

To illustrate the use of random access files, we will create a
series of programs that store the names, cities, and states of
people. We will call the file we create HOMETOWN, using

three strings:

NA$ Person’s name
CT$ City
SC$ State’s mailing code

Since people and cities have names of different lengths,
you must decide on a maximum size. Any name longer than
the maximum will simply be truncated. This process is ex-
tremely important in working with random acess files since
you are limited to the number of bytes specfied when you
OPEN a file. If your entries go over the length, they will spill
over into the next record. Therefore, limit the length of a per-
son’s name to 20, a city to 10, and a state’s mailing code to
the 2-character abbreviation employed by the post office. If a
string is longer than the specified length, convert the string by
using LEFT$. If that is not done, the number of characters may
be too large, causing the string to flow over into the next
record. Now calculate the (L)ength to OPEN the file:

NAS$S = 20
CT$ =10
SC$ = 2
TOTAL = 32

171

CHAPTER 8

Using these values, we will write a program that will en-
ter a single record into a random access file:

10 TEXT : HOME
20 REM
30 REM RANDOM ACCESS FILE
40 REM
50 D$ = CHR$ (4)

60 VTAB 4: HTAB 1

70 INPUT “NAME => ";NA$

80 IF LEN (NA$) > 20 THEN NA$ = LEFT$ (NA$,20)

90 REM NAME USES 20 BYTES

100 REM IF LONGER THAN 20

110 REM IT IS TRUNCATED

120 PRINT : INPUT “CITY => ";CT$

130 IF LEN (CT$) > 10 THEN CT$ = LEFT$ (CT$,10)

140 REM CITY USES 10 BYTES

150 PRINT : INPUT “STATE CODE => ";9C$

160 IF LEN (SC$) < > 2 THEN VTAB 7: GOTO 150

170 FOR X = 1 TO 27: PRINT “—";: NEXT X

180 PRINT : PRINT “TOTAL BYTES = 32"

190 PRINT : PRINT : INVERSE : PRINT “HIT ANY KEY TO
CONTINUE ”;; NORMAL : WAIT — 16384,128: POKE —
16368,0

200 REM

210 REM CREATE SINGLE RECORD

220 REM

230 PRINT D$*“OPEN HOMETOWN,L32"

240 PRINT D$*“WRITE HOMETOWN,R1”

2650 PRINT NA$

260 PRINT CT$

270 PRINT SC$

280 PRINT D$‘‘CLOSE HOMETOWN"’

That was a lot of work to enter a single record, but be pa-
tient. We will do more. Now, we will READ a record from a
random access file. As in WRITEing random access files, we
must OPEN them with a specified (L)ength and READ them
in terms of a specified (R)ecord. The following program will
read the HOMETOWN file:

10 TEXT : HOME
20 REM
30 REM READ SINGLE RECORD
40 REM
50 D§ = CHR$ (4)

60 PRINT D$*‘OPEN HOMETOWN,L32”
70 PRINT D$“READ HOMETOWN,R1”
80 INPUT NA$

172

-

0 I |

-

Text Files and the Disk System

90 INPUT CT$

100 INPUT SC$

110 PRINT D$*“CLOSE HOMETOWN"’
120 HOME : VTAB 7

130 PRINT NA$

140 PRINT CT$;*, ";SC$

Again, that was a lot of work just to READ a single
record. However, you can see how random access files oper-
ate. Now, we will examine how to deal with multiple records.
We will stick with our HOMETOWN example, though, since
dealing with multiple random access records is a bit more in-
volved than dealing with sequential text files. We will even
begin the program with a reminder of the number of bytes we
are using and the strings.

Multiple Records

In the program that follows, lines 10-150 are very much like
the original program used to create a file, but notice the
“counter”” variable RN in line 70. The counter will be used to
keep track of the number of records in the file HOMETOWN.
By storing the value of the counter (renamed RZ in line 200,
once you have entered all the records) in RO (record 0), you
will have a way of knowing how many records there are in
the file. Then, when you READ the files, you will first read RO
and then make a FOR-NEXT loop with the value of RZ as the
maximum number of records to read. Also notice that D$ has
been PRINTed in line 170. This is to leave the WRITE mode
to ask whether the user wants to enter another record. An
empty PRINT CHR$(4) will allow you to leave a WRITE or
READ in ProDOS.

10 TEXT : HOME
20 REM
30 REM MULTIPLE RANDOM RECORDS
40 REM
50 D$ = CHR$ (4)

60 PRINT D$‘‘OPEN HOMETOWN,L32"

70 RN = O

80 RN = RN + 1: VTAB 4: HTAB 1

90 INPUT “NAME => ";NA$

100 IF LEN (NA$) > 20 THEN NA$ = LEFT$ (NA$,20)
110 PRINT : INPUT “CITY => ";CT$

120 IF LEN (CT$) > 10 THEN CT$ = LEFT$ (CT$,10)
130 PRINT : INPUT “STATE CODE ";SC$

140 IF LEN (SC$) < > 2 THEN VTAB 7: GOTO 130

1580 PRINT D$*“WRITE HOMETOWN,R";RN

173

CHAPTER 8

160 PRINT NA$: PRINT CT$: PRINT SC$

170 PRINT D$

180 INVERSE : PRINT ‘“ ANOTHER RECORD (Y/N) ”’;: NORMAL
190 GET AN$: PRINT AN$: IF AN$ = “Y” THEN 80

Q00 RZ = RN

210 PRINT D$“WRITE HOMETOWN,RO"”

20 PRINT RZ

230 PRINT D$‘CLOSE HOMETOWN”

Now that you have several records in your file, you will
need to get them out again. Here’s where the counter vari-
able RZ, stored in RO, comes in handy. First, read RO to see
how many records there are, and then loop through the
records to READ them all. Notice that in line 70 we first read
HOMETOWN,RO0. After it's INPUT into memory, it is used in
the FOR-NEXT loop in line 100 to pull all the records out.

10 TEXT : HOME
20 REM
30 REM MULTIPLE RECORD READER
40 REM
50 D§ = CHR$ (4)

60 PRINT D$“OPEN HOMETOWN,L32”
70 PRINT D$“READ HOMETOWN,RO”
80 INPUT RZ

90 PRINT D$

100 FOR G = 1 TO RZ

110 PRINT D$“READ HOMETOWN,R"G
120 INPUT NA$

130 INPUT CT$

140 INPUT SC$

150 PRINT D$

160 PRINT NA$

170 PRINT CT$;*,”";9C$

180 PRINT : NEXT

190 PRINT D$“CLOSE HOMETOWN”

Now that you have seen how to build a random access
file, here’s a little problem to work out. By adding a few lines
and calculating a few more bytes, you can create a very useful
address list program. You already have a program that enters
names, cities, and states. All you have to add are address and
zip code, and there you have it. By attaching a subroutine to
kick it out to your printer (which will be discussed in Chapter
9), you can generate your own mailing list program.

174

-

A L)

-

1

3

1

Text Files and the Disk System

Summary

This chapter began by examining ways in which you can cap-
ture a program in a text file, and it ended by creating individ-
ual records in random access files. Most of the material
covered here has been rudimentary. Several tricks and tech-
niques are needed before you can fully use text files. Never-
theless, you've made a start. By refining and extending what
you have learned, you can vastly extend your knowledge.

First, you saw how to “catch” a program or subroutine in
a text file that can be brought into memory with EXEC. This
allows you to load several programs simultaneously or to at-
tach useful subroutines onto programs. Then, using CHAIN,
you learned how to have one program use another program
without losing variable values that were entered in the first
program. Also, you found that you can create ROBOT EXEC
files that take over the keyboard. These are handy when a se-
ries of operations are needed to execute a program.

Second, you learned how to OPEN, WRITE, APPEND,
POSITION, and CLOSE sequential text files to store data.
These files are very useful for storing data in the form of num-
bers or strings to be accessed for later use by programs that
READ data from text files.

Finally, you began using random access files. These files,
while taking up more memory and being trickier to deal with
than sequential text files, have advantages in their speed of
operation and uses for multiple record handling that make
them practical for certain applications. With more advanced
understanding of these files, you can create just about any
database program.

175

N s sl sul sl sl

You and Your Printer

Until recently, when an Apple owner bought a printer, he or
she was lucky to find a manual that would give the slightest
hint on how to use it. Some printer manufacturers would de-
cide upon a certain brand of computer other than Apple, and
explain the use of their printer with that brand. Other manuals
were written for people with high-level understanding of
printer operations, and simply provided the hardware speci-
fications to be applied to any computer. Needless to say, there
were many frustrated Apple owners, and printers were used
only to their minimum capacity.

Things have improved somewhat, and Apple’s Image-
Writer manual is a clear exception to the general rule of fuzzy
explanations. Furthermore, good printer manuals are available
now, either supplied free with the printer or from independent
sources. However, just in case your manual does not tell you
how to work it specifically with the Apple IIGS, there are some
things you should know.

We will discuss printers both generally and in terms of
specific popular printers. The general discussion will cover
how your IIGS communicates with a printer. This will give you
a chance to decipher some of the manuals that came with your
printer, allowing you to enter the correct code in BASIC that
will get your printer to do your bidding. Once you have the
idea of how printers work, you'll find them really quite simple
to operate. But until you learn a few secrets, you'll generally
find them difficult to use to their full capacity.

Why bad printer manuals? So many beginners are frus-
trated with printer manuals that provide only vague hints as
to their operation. Here’s an explanation of why the manuals
are, in general, so bad. Only ten years ago, computers in the
home were a rarity. Printers developed for businesses came
with technical manuals designed for the company technicians
who set up the printers. Likewise, many printers were simply
hooked up to a dedicated word processor that had all the code
for printer operation already installed in the program. Further-
more, the small, inexpensive printers that came on the market

179

CHAPTER 9

at the beginning of the 1980s, and were intended for home or
small-business use, were designed to be used with any num-
ber of different computers. After all, if you were selling a
printer, you would not want to market it for a single brand of
computer. Rather than producing separate manuals for differ-
ent computers, the companies wrote manuals for the techni-
cians who could get them to work on any computer. Currently,
some printer companies are providing manuals that explain
their use on several different computers, including the Apple,
but others do not.

Printing Text

In Chapter 1 is a simple example of how to print something
out to your printer. As you remember, by entering PR#1 and a
PRINT statement, you are able to print text to your printer. To
return to your screen, you simply enter PR#0. This will “dis-
connect” your printer. However, your printer will not always
be in slot 1, and when you're writing programs for the IIGS,
there should be a choice of which slot the printer will be con-
nected to. (PR#0 will always disconnect your printer, no mat-
ter what slot it is in—except slot 0, where it should never be.)
The following little program allows you to enter text and print
it to the printer in any slot used by the printer or to the screen
(slot 0):

10 TEXT : HOME : D$ = CHR$(4)

20 VTAB 10 : INPUT “ENTER STRING —> "; MS$

30 GOSUB 1000

40 PRINT MS$

50 PRINT D§$; ‘“PR#0”

60 VTAB 2R : INVERSE : PRINT ‘“ ANOTHER ENTRY? (Y/N) ”’; :
NORMAL : GET AN$: PRINT AN$

70 IF AN$ = “N” OR AN$ = “n” THEN END

80 GOTO 10

1000 REM

1010 REM PRINTER SLOT ROUTINE

1020 REM

1030 HOME : VTAB 10 : PRINT “PRINTER SLOT # (O TO PRINT

TO SCREEN): ’; : GET 8% : PRINT 8%

1410 IF 8% > 7 THEN PRINT CHR$(?) : GOTO 1000

1050 PRINT D$; “PR#;8%

1060 RETURN

The printer slot subroutine in lines 1000-1060 is handy to
have. You might want to save it as a text file and EXEC it into
programs that require the printer.

180

-

N I B

You and Your Printer

Program-Listing Utility

Listing programs to a printer is a good way to debug a pro-
gram or to send it to a friend by mail. It would be convenient
to have a utility program that enables you to do just that. It's
a nuisance to enter the six-liner above, so let’s make an EXEC
file that can handle the chore automatically. To create the
EXEC file, type in the program below and then enter RUN 10.
The program will create a new file named PRG.LISTER on the
disk. If you run the program from line 0 (the beginning), the
EXEC file will not be created. (If you save the EXEC file gen-
erator program, do not use the name PRG.LISTER.)

0 HOME : INPUT “PRINTER SLOT #=>";PR%

1 HOME : VTAB 10: INPUT “PROGRAM NAME=> ";PG$

2 D$ = CHR$ (4)

3 PRINT D$“PR#"PR%: PRINT PG$: FOR X = 1 TO LEN (PG$):
PRINT “*”;: NEXT : PRINT

4 LIST 6,

5 PRINT D$*“PR#0"": END

10 REM e afe 2 e o e o o o o ok ok ok ok

20 REM PROGRAM LISTER

50 REM e e 2 e 2 e o o o o ofe o ofe ok

40 D$ = CHR$ (4)

50 PRINT D$*‘OPEN PRG.LISTER”

60 PRINT D$*“WRITE PRG.LISTER”

70 LIST 0,4

80 PRINT “RUN”

90 PRINT D$*‘CLOSE PRG.LISTER”

To test the EXEC file, load one of your programs, make
sure your printer is turned on and is online, and enter EXEC
PRG.LISTER. Enter the slot number of your printer and then
the program’s name. Your printer should chug out a listing of
your program with a neat-looking title.

Special Printer Characteristics

We mentioned in Chapter 1 that there are several kinds of
printers. Our focus here will be on dot-matrix printers, since
they are the most popular. However, much of the information
also applies as well to daisywheel printers. Finally, we will
briefly discuss using a language called PostScript to control
most laser printers, such as Apple’s LaserWriter.

CHRS to the Rescue

The secret to using printers is in understanding what their
control codes mean and how to use those codes. For example,

181

CHAPTER 9

Table 9-1 is a partial list of codes provided with an Epson
printer:

Table 9-1. Epson Printer Codes

Code Action
8 Back space
10 Line feed
12 Form feed
13 Carriage return
14 Double width
15 Condensed
18 Turn off condensed
20 Turn off double width
27 Escape key used in conjunction with the following:
Emphasized printing
Turn off emphasized
Double-strike printing
Turn off double-strike printing
Normal-density printing
Dual-density printing
Set column width

orRTOTMHM

For most first-time computer owners, that list of codes
could have been written by a visitor from another planet for
all the good it does. However, there is important information
there, and once you get to know how to use the codes, you'll
find that they are relatively easy to understand.

To tell your printer you want emphasized print, for ex-
ample, you use CHR$(27) + “E”. To kick that into your
printer, you do the following:

PR#1 (or whatever slot your printer is in)
PRINT CHR$(R?) + “E” + “MESSAGE”

If you have an Epson printer, the word MESSAGE is printed
in an emphasized typeface. Emphasized printing will remain
in effect until you send the right sequence of code or turn off
your printer. We’d better turn it off with

PRINT CHR$(R?) +“F”
assuming you haven’t done anything since your message was
printed in the emphasized face.

For condensed printing you use CHR$(15) without the es-
cape code tacked on the front and CHR$(18) to turn it off.

182

]

S B

-1 1

-

8

You and Your Printer

Once you get the decimal code, all you have to do is to
enter that code to the printer. It will do anything from chang-
ing the typeface to performing a backspace function.

ImageWriter Codes

Let’s look at another printer, the ImageWriter, and some of its
control codes. However, rather than keying in all of the codes,
we will write a program that will give us different typefaces,
an underlining feature, and some other tricks. The first thing
we will do is to define string variables as printer codes and
then enter messages we want to go to the printer.

10 TEXT : HOME

20 ESC$ = CHR$ (R7): REM ESC

30 EXT$ = CHR$ (110): REM n

40 PICA$ = CHR$ (78): REM N

80 ELITE$ = CHR$ (69): REM E

60 SQUISH$ = CHR$ (113): REM q

70 UN$ = CHR$ (88): REM X

80 UU$ = CHR$ (89): REM Y

90 BOLD$ = CHR$ (33): REM |

100 NOBOLD$ = CHR$ (34): REM *

110 RESET$ = CHR$ (99): REM ¢

120 D$ = CHR$ (4)

200 REM e o o e ke o o e e o o e ok

210 REM TYPEFACE MENU

220 REM e o o o o e o e o e o 3 o

QRBOFORX =1TO9

240 READ M$

250 PRINT X;*.”;M$

260 PRINT : NEXT X

270 PRINT : RESTORE

280 PRINT ‘‘Choose by number:’’;

290 GET N

300 ON N GOSUB 1100,1200,1300,1400,1500,1600,1700,
1800,1900

310 DATA Extended,Pica,Elite,Condensed,Underline

320 DATA Stop Underline,Bold,Stop Bold,Reset All

330 HOME

340 INPUT ‘“‘Printer slot number ’;SN%

350 PRINT D$‘‘PR#’SN%

360 PRINT PT$ + ‘This is your typeface Bucko!’’;

370 PRINT

380 PRINT D$‘“PR#0"

390 PRINT ‘‘Another go Sport? (Y/N) *’;

400 GET AN$

410 IF AN$ = “Y”’ OR AN$ = “y” THEN 10

183

CHAPTER 9

The Zero Character

There is an extremely important switch on many models of
dot-matrix printers. It is the switch that prints out the zero
character with a slash through it. When you use your printer
to make program listings, you'll often find it essential to be
able to easily differentiate between zeros and letter O’s. For
example, if you have a variable O, and you want to have a
FOR-NEXT LOOP from the variable O to 255, you would enter

FOR X = O TO 255

Most people reading that line would assume that the O was a
zero and would enter the wrong character. By flipping the ap-
propriate switch on your printer, you can be sure that all zeros
are differentiated from the letter O. On Epson MX-100 print-
ers, for example, when switch SW1-7 is in the on position, the
zeros have slashes through them, and when it is off, the zeros
have no slashes.

Don’t use O as a variable name. Since there are enough
problems in getting programs correctly copied from printed
listings in the first place, there is no reason to make it more
difficult by using the O character as a variable anyway. Even if
your zeros have slashes through them, if you have an O for a
variable, when it comes time to PRINT O, chances are, you
will enter “PRINT 0” (slash and all). Use other characters—
you have plenty available.

Multiple Address Labels

Before going on to examine printer graphics, look at the fol-
lowing program, designed to give you single or multiple ad-
dress labels. Use it to experiment with your printer’s special
characteristics. See if you can rewrite portions of it to get in-
teresting effects on your printout.

10 TEXT : HOME
20 REM
30 REM MULTIPLE LABEL MAKER
40 REM
50 D$ = CHR$ (4)

60 RESTORE

P7OFORX =1TO S5

80 READ LB$

90 VTAB X + 7: PRINT LB$

100 NEXT X

110 DATA Name,Address,City,State,Zip
120FORX = 1TO 5

184

-

W I B

-

N I B

You and Your Printer

130 HTAB 11: VTAB X + 7

140 INVERSE : PRINT SPC(R5)

150 NEXT : NORMAL

160 HTAB 11: VTAB 8: INPUT “ ”";NA$

170 HTAB 11: INPUT “ ’;AD$

180 HTAB 11: INPUT “ ’;CT$

190 HTAB 11: INPUT * ”;SA$

200 HTAB 11: INPUT * ";ZIP$

500 REM e e o e ok o o ok o o ok

310 REM Check Label

520 REM Ao ofe e o o e o o o ok

330 VTAB 22: PRINT ‘Is this correct (Y/N)? **;
340 GET A$

350 IF A$ = “N” OR A$ = “n” THEN 10

360 PRINT

370 INPUT “How many labels would you like ’;N%
400 REM 0 3 e e o o e e o o e ae o o e sk

410 REM Print the Labels

420 REM sttt ok ook ok ok ok ok ok skok ok

430 PRINT D$“PR#1”

440 FORP = 1 TO N%

450 PRINT : REM Adjust to label size

460 PRINT NA$

470 PRINT AD$

480 PRINT CT$;*, ;8A$; SPC(1);ZIP$

490 PRINT : REM Adjust to label size

500 NEXT P

510 PRINT D$‘“PR#0”

600 HOME

610 INPUT ‘“Would you like more labels printed? ’;AN$
620 IF AN$ = “Y” OR AN$ = “y” THEN 10
630 VTAB 10: PRINT ‘‘See you when you need more labels.”
640 END

Look at this next program for sending information to your
printer. Use it to make disk labels, and note the format used.

10 POKE 49167,0

20 TEXT : HOME

30 L$ = * Label Maker ”:S8 = LEN (L$)
358=20—8/23

40 FOR X = 1 TO LEN (L$)

50 K$ = MID$ (L$,X,1)

60 K = ASC (K$)

65 IF K = 32 THEN POKE 1024 + 8 + X,K: NEXT
67 IF X = > S THEN 100

70 IF K < 97 THEN POKE 1024 + S + X,K — 64
80 IF K = > 97 THEN POKE 1024 + 8 + X,K
90 NEXT

185

CHAPTER 9

100 VTAB 8: INPUT ‘““Message: "’;M$
110 INPUT “How many labels’’;N%
120 D$ = CHR$ (4)

130 INPUT “Printer slot #'’;PN%
140 PRINT D$“PR#”’PN%

150 FOR X = 1 TO N%

160 PRINT M$

170 NEXT

180 PRINT D$“PR#0”

Printer Graphics

It’s important to understand that not all printers do graphics,
and while daisywheel printers can print graphics, they are
very slow. Furthermore, printing graphics on most printers re-
quires special programs (or hardware) beyond the program-
ming skill of novices. Therefore, we will discuss programs and
interfaces that you can purchase to get your printer to do all
kinds of tricks with graphics. Some printers come with the
software /hardware so that it is unnecessary to buy additional
or special devices. Likewise, some “graphics dump’” programs
operate only with certain printers and not with others. We'll
try to use illustrations of graphics programs that work on most
popular printers and provide some insight into what you can
do with them.

Dumping Your High-Resolution Screen

When you print out graphics, your computer sends a series of
bytes to your printer reflecting the pixels on your hi-res
screen. Since most printers print graphics only in black and
white (black on white paper), the colors may seem not to mat-
ter. Different colors, however, give different textures on the
printer.

By using different colors, you can get interesting effects
and shading on your printer, even though all your printer is
doing is printing dots in black ink. Unfortunately, you cannot
do this with the same ease with which you can print out text.

One graphics printing program that works well on every
printer tested, including daisywheel printers, is The Print-
ographer (Roger Wagner Publishing). For ease of use, cropping,
different magnification, and horizontal and vertical printing, it
is excellent. Triple-Dump (Beagle Bros.) is another outstanding
program for sending graphics to your printer. There are others
as well, and I suggest that you examine any one you intend to
purchase first and consider the following points:

186

-

3

You and Your Printer

. Will it work on my printer?

. Will it crop pictures easily?

. Is it easy to use?

. Will it magnify graphics?

. Will it place graphics in different horizontal locations on the
printout?

. Will it condense graphic files on the disk?

. Will it access either drive?

. Will it print both inverse and normal?

. Can it be used within a program?

O N> Gk W=

You might also consider whether it will work with color
printers since some really good ones are now available at rea-
sonable prices.

Laser Printing: Using PostScript

The Apple LaserWriter printer has a computer inside it that
understands a language called PostScript. PostScript is a spe-
cial “page description” language that reads instruction sets just
as BASIC reads the instructions you give it when you write a
program. The best thing about the LaserWriter, and other laser
printers with PostScript interpreters, is that you can write the
programs on your Apple IIGS and send them to the laser
printer, using all of the laser printer’s high-quality capabilities.

To accomplish this, all you do is to write the programs
and save them as sequential text files. Then, you send the text
files to the LaserWriter, and it prints them out. Most people
probably cannot afford a laser printer, but for a small charge
many copy shops make laser printers available.

The following quick tutorial will show how to print laser
text and provide a program for writing PostScript programs,
automatically setting up the desired laser font and font size.
For a full description of how to program in PostScript, see
PostScript: Language Tutorial and Cookbook (Adobe Systems,
Addison-Wesley, 1985).

Like BASIC, PostScript has strings and the equivalent of a
PRINT statement (the PRINT statement is show instead of
PRINT). To create a string, just put the message you want
printed inside parentheses. Finally, you have to tell the printer
where on the page you want the message to go. There are 72
printing dots per inch on the LaserWriter, and the first printing
position is in the lower left corner of the page. The horizontal
axis (x-axis) increases to the right and decreases to the left, and
the vertical axis (y-axis) increases as you go up and decreases

187

CHAPTER 9

as you go down—exactly the way Cartesian coordinates work.
Since the starting point is 0,0, the top right corner of an 8%2-
by-11-inch page then would be X = 612 (72 * 8.5), Y=792
(72 * 11), or coordinates 612,792,

To get to a given spot, use the PostScript statement
moveto. For example, suppose you want to print your name
and address in the upper left corner of a page for a letterhead,
with one-inch margins from the top and left side. This pro-
gram will do that:

%= =Letterheader==
/Times-Roman findfont 12 scalefont setfont
72 720 moveto

(Your Namse) show

7R 707 moveto

(Your Address) show

72 694 moveto

(Your City, State and Zip Code) show
72 681 moveto

(Your phone number) show
showpage

The first line is like a REM statement in BASIC. Any line
with the percent sign (%) as the first character is ignored by
the PostScript interpreter, just as any lines in BASIC ignore
everything after REM. The second line chooses the font and
font size—in this case, Times Roman in 12-point font. Also
notice that all of the statements are in lowercase letters. This is
not an option. The moveto statement takes the format

x y moveto

expecting to be preceded by two numbers—separated by a
space—that specify the horizontal and vertical positions for
the next printing position on the page. Finally, the statement
showpage issues a command to the printer to actually print the
age.
P There’s a great deal more in the PostScript language, in-
cluding graphic statements. You might want to look at Post-
Script: Language Tutorial and Cookbook, and use the following
program to try your hand at creating laser pages and graphics:

10 TEXT : HOME : RESTORE
20 D$ = CHR$ (4)

30 REM
40 REM SIMPLE POSTSCRIPT WRITER
50 REM
80 DIM PS$(264)

188

S5 R B

S R R

A

You and Your Printer

TOFORX =1TO 4

80 READ F$(X)

90 PRINT X;*. ";F$(X): PRINT

100 NEXT

110 INVERSE : PRINT ** Choose font by number ’;

120 GET A: NORMAL

130 DATA Times,Helvetica,Courier,Symbol

140 FT$ = F$(A)

150 PRINT : PRINT : INPUT “Font point size ’’;FZ$

200 REM

210 REM Enter PostScript Program

220 REM

30 HOME

240 PRINT “When you are ready, begin typing in your
PostScript”

260 PRINT ‘“‘program. Keep the lines short, and press return

at the

260 PRINT ‘‘end of each line. Press ‘Q-return’ to quit.”

270 INVERSE : PRINT : PRINT SPC(79);

280 NORMAL

290 PRINT : PRINT

300 INPUT ““=> ";PS$(V)

310 IF PS$(V) = “Q’” OR PS$(V) = “q@” THEN 500

3230V =V + 1: IF V > 250 THEN GOSUB 400

330 GOTO 300

400 REM akogeokokokokok

410 REM Warning

420 REM Aeokogokokok ok

430 PRINT CHR$ (7)

440 INVERSE

450 PRINT “You are about to run out of array space: finish
up now.”

460 NORMAL : RETURN

800 IF FT$ = “Times” THEN FT$ = “Times-Roman”

510 FT$ = ¢/’ + FT$

B20 F8$ = FT$ + * findfont " + FZ$ + * scalefont setfont”

530 HOME

640 INPUT “Program name=> ";P$

550 PRINT D$‘“OPEN’’P$

560 PRINT D$‘“WRITE”P$

870 PRINT FS$

BBOFORX =0TOV — 1

590 PRINT PS$(X)

600 NEXT

610 PRINT D$‘‘CLOSE”’P$

By the way, if you have a 1200-baud modem, and there’s
one attached to a friend’s laser printer, you can send your files
over the modem and have them printed at a remote location.

189

CHAPTER 9

Printing Fonts

One of the more useful (and just plain fun) aspects of printing
graphics on dot-matrix printers is the special graphics fonts.
They are not in the same league as laser fonts, but they give
you a big variety of typefaces to use for everything from post-
ers to Christmas cards. .

To use these fonts, first load a font, and then with PRINT
statements from within a program, print out various messages.
Apple Mechanic (Beagle Bros.) has an “Xtyper” program that
works something like a little word processor for hi-res fonts.
Also, hi-res fonts are useful for labeling hi-res graphics.

Printing Photographs

A final use of hi-res printing is in computer photographs.
However, instead of using photographic paper and chemicals
to reproduce your pictures, you use your printer dump pro-
gram and regular paper. Using a video camera and digitizer,
you can put high-resolution graphic photographs on your
computer screen and save them to disk. They can be printed
on regular printer paper just like any other high-resolution
graphic.

Summary

In this chapter, we have covered many aspects of working
with your printer. We’ve touched upon only a few of the print-
ers that work with the Apple IIGS; and some printers are far
more flexible than others. However, you should now have a
good idea of how your computer sends messages to your
printer to get it to print with different typefaces, as well as to
access other special features available on your particular ma-
chine and interface card.

Since printer manuals are often too technical for begin-
ning users, it is important to know how to translate them so
that you can use all their special features. Basically, all that’s
required is a chart in the manual that provides the decimal
codes necessary for turning on the various printer devices—
from typefaces to linefeed. If you can find these codes in your
manual, it will be a relatively simple matter to encase them in
CHR$ functions to communicate your desires to the printer.
Sometimes this will involve using hexadecimal code, but that

190

S I |

A

-

B IR

1

3

3

You and Your Printer

too is simply a matter of knowing what the code is for a par-
ticular feature.

For printing graphics, you will need to purchase a special
program, hardware interface, or learn a higher level of pro-
gramming than is covered in this book. However, with many
software and hardware packages available for the Apple IIGS
and printer graphics, it is easiest to begin with a commercial
graphics dump routine. With a printer capable of doing graph-
ics, you can print out anything on your hi-res screen. You can
even print near-typeset-quality text and graphics with Post-
Script programs on a LaserWriter. The versatility of your Ap-
ple’s printing ability is outstanding, and it will serve you for
years to come.

191

E Gl I i i i I

B T I s |l I A

Super High-Res
Graphics and Sound

Your IIGS has made a quantum leap over the other Apple IIs
when it comes to graphics and sound. The reason is that it can
place pixels on a 640 X 200-dot matrix for four-color pro-
grams to gain the highest resolution on an Apple II yet. And it
has an Ensoniq sound chip for creating unsurpassed digitized
sound. There are some excellent programs available for
accessing these new features, but you cannot easily work with
them directly from Applesoft BASIC. Applesoft BASIC remains
the same as it has always been, so the thousands of programs
written in it can also run on the IIGS.

Apple has made it simple for advanced programmers to
use the super high-resolution graphics and sound. However,
because of the advanced skills required for accessing the “tool-
boxes,” we’ll introduce just the concepts here so that you can
get an idea of whether you're interested in pursuing the ad-
vanced programming levels required to access the IIGS’s super
high resolution and sound. Remember, there are application
programs available for you to do all of this without any pro-
gramming skills at all. However, you might find doing the
programming yourself to be a real adventure.

The QuickDraw II Toolbox: Super Hi-Res Graphics

The collective set of the subroutines built into the IIGS ROM
have been named QuickDraw II. By making calls to these
routines, you can create lines, rectangles, polygons, arcs, and
other figures. In Chapter 7 you saw how involved it is to cre-
ate shapes. However, with the toolbox routines in QuickDraw
II, much of the work has been done for you.

The basic building block of the routines is the pixel matrix
made up of points and associated pixels. Each point referenced
through the toolbox routines has an associated pixel above
and to the left of the point. A pattern is composed of an 8 X 8
matrix of points and pixels (Figure 10-1).

195

CHAPTER 10

Figure 10-1. Pixel Matrix

socessee
>j>J>\/\><></)/)
000006606
()> >\/\>\f\>)>)

NA A A MNNMNAN

f)/ (J/)f\/\/)f\
00000006
S
\J\ /Q\)\J\)\J\D

Point

Pixel Associated
With Point

Depending on the values associated with a given pixel
matrix, different patterns, shapes, and figures can be created.
The boundaries of the drawings created in QuickDraw II are
(—16384,—16384) and (16383,16383) on a Cartesian matrix
with memory space of 32768 X 32768 pixels. Various calls
made in assembly language, C, or another language that can
easily access the QuickDraw II tools are used. The calls are
given various names associated with addresses in memory.
Let’s look at some of these calls to get an idea of what is
available in the graphics toolbox inside your IIGS.

QuickDraw II Calls

The first set of functions in the QuickDraw II toolbox is in-
tended for housekeeping purposes. These functions set up the

196

A

-

N U B

Super High-Res Graphics and Sound

various registers and pointers to allow access to the graphics
tools. They include QDBootInit, which initializes the Quick-
Draw II tools when the system is booted; QDStartup, which
initializes QuickDraw II and sets the standard port and clears
the screen; and QDShutDown, which turns QuickDraw II off
and frees the buffers. QDVersion and QDStatus, respectively,
provide information on the version of QuickDraw II and spec-
ify whether or not it is active.

A second set of Quickdraw routines allows you to control
the characteristics of the screen display. Each of the 200 hori-
zontal scan lines that make make up the display has its own
scan-line control byte (SCB), so the characteristics of each line
can be specified independently. The GetStandardSCB routine
returns information about the SCB. The first four bits (0-3) are
used for color table 0; bit 4 is reserved; bit 5 controls the fill
option; bit 6 specifies whether an interrupt can occur; and bit
7 controls the color mode (320 pixels or 640 pixels). The call
SetMasterSCB sets the low byte of the master SCB, and
GetMasterSCB returns the same information. SetSCB, GetSCB,
and SetAlISCBs are further scan-line control-byte calls. For
setting the color table, either in the 320 or 640 mode, the
InitColorTable call is used. Table 10-1 lists the values (in
hexadecimal) for the two modes:

Table 10-1. Hexadecimal Values for Setting Color Table

320 Mode 640 Mode
Pixel Color Code Pixel Color Code
$0 Black 000 $0 Black 000
$1 Dark gray 777 $1 Red FO0O
$2 Brown 8 41 $2 Green 0 FO
$3 Purple 72C $3 White F F F
$4 Blue 0 0 F $4 Black 00O
$5 Dark green 0 80 $5 Blue 0 0 F
$6 Orange F70 $6 Yellow F F 0
$7 Red DO O $7 White F FF
$8 Flesh F A9 $8 Black 000
$9 Yellow FFO $9 Red FooO
$A Green 0 EO $A Green 0 FO
$B Light blue 4 DF $B White F F F
$C Lilac D AF $C Black 000
$D Periwinkle blue 7 8 F $D Blue 0 0 F
$E Light gray ccc $E Yellow F F 0
$F White F F F

197

CHAPTER 10

Calls to SetColorTable, GetColorTable, SetColorEntry,
and GetColorEntry all access the routines to set and get infor-
mation about the colors.

The other global calls deal with the fonts, clearing the

screen, and turning the super hi-res graphics mode on and off.

The calls include SetSysFont, GetSysFont, ClearScreen,
GrafOn, and GrafOff. The functions of the calls are fairly self-
explanatory, making it easier to use the graphics than to use
more obtuse codes.

Port of Calls

Now you have some idea of a few of the functions and how
the name of the call is connected to the functions. For the rest
of the QuickDraw II functions, refer to Table 10-2, just to see
the extent of the toolbox. Further description here would do
little good, since you do not yet have the programming skills
necessary to use the calls.

Table 10-2. GrafPort Calls

OpenPort InitPort ClosePort SetPort GetPort
SetPortLoc GetPortLoc SetPortRect GetPortRect SetPortSize
MovePortTo SetOrigin SetClip GetClip ClipRect
HidePen ShowPen GetPen SetPenState GetPenState
SetPenSize GetPensize SetPenMode GetPenMode SetPenPat
GetPenPat SetSolidPenPat SetPenMask GetPenMask SetBackPat
GetBackPat SetSolidBackPat SolidPattern PenNormal MoveTo
Move SetFont GetFont SetFontID GetFontID
GetFontInfo GetFGSize GetFontGlobals SetFontFlags GetFontFlags
SetTextFace GetTextFace SetTextMode GetTextMode SetSpaceExtra

GetSpaceExtra SetCharExtra GetSpaceExtra SetForeColor GetForeColor
SetBackColor GetBackColor SetBufDims ForceBufDims SaveBufDims
RestoreBufDims SetClipHandle = GetClipHandle SetVisRgn GetVisRgn
SetVisHandle GetVisHandle SetPicSave GetPicSave SetRgnSave
GetRgnSave SetPolySave GetPolySave SetGrafProcs GetGrafProcs
SetUserField GetUserField SetSysField GetSysField

Drawing Calls

This section will give you a better idea of what kinds of draw-
ing shapes are supported by the QuickDraw II toolbox. This
set of calls is what most programmers will use often when
they’re creating graphics directly or when they’re writing a
graphics drawing program.

Lines

LineTo Line

Rectangles

FrameRect PaintRect EraseRect InvertRect FillRect

198

3

S R

1

Super High-Res Graphics and Sound

Regions

FrameRgn PaintRgn EraseRgn InvertRgn FillRgn

Polygons

FramePoly PaintPoly ErasePoly InvertPoly FillPoly
Ovals

FrameOval PaintOval EraseOval InvertOval FillOval

Rounded-Corner Rectangles
FrameRRect PaintRRect EraseRRect InvertRRect FillRRect

Arcs
FrameArc PaintArc EraseArc InvertArc FillArc

Pixel Transfers
ScrollRect PaintPixels PPToPort

Text Drawing and Measuring

DrawChar DrawText DrawString DrawCString CharWidth
TextWidth StringWidth ~ CStringWidth CharBounds TextBounds
StringBounds CStringBounds

Mapping and Scaling Utilities

MapPt MapRect MapRgn MapPoly ScalePt

Miscellaneous Utilities
Rectangle Calculations

SetRect OffsetRect InsetRect SectRect UnionRect
PtInRect Pt2Rect EqualRect EmptyRect
Point Calculations

AddPt SubPt SetPt EqualPt
LocalToGlobal

GlobalToLocal

Region Calculations

NewRgn DisposeRgn CopyRgn SetEmptyRgn
SetRectRgn RectRgn OpenRgn CloseRgn
OffsetRgn

InsetRgn SectRgn UnionRgn DiffRgn
XorRgn

PtInRgn RectinRgn ~ EqualRgn EmptyRgn
Polygon Calculations

OpenPoly ClosePoly KillPoly OffsetPoly
Other

Random SetRandSeed GetPixel

By looking over these calls from the QuickDraw II tool-
box, you can become acquainted with what is available and
get a clue as to the graphics power of your Apple IIGS computer.

The Sound of the IIGS

In Chapter 6 you saw an example of sound produced with
your computer, but that was simply a little routine for tweak-
ing the speaker. That technique works on all the versions of

199

CHAPTER 10

the Apple II, but doesn’t take advantage of the 5503 Ensoniq
Digital Oscillator Chip (DOC). The DOC has 32 digital oscil-
lators that give you everything from beeps and buzzes to a
talking computer and symphonic orchestra. However, as with
the super high-resolution graphics, you must use the DOC
toolbox to take full advantage of this feature.

To get started, let’s look quickly at the registers used to
control the sounds in DOC.

Frequency control (low and high). Two registers control
frequency; joined together they form a 16-bit value used for
the 24-bit accumulator. The value of this register pair is added
to the current value stored in the 24-bit accumulator.

Address: $00-$1F (low)
$20-$3F (high)

Volume. This register set controls the volume level of the
sound created.

Address: $40-$5F

Waveform data sample. This reads the last value from
the waveform table.

Address: $60-$7F

Address pointer. These registers are used to determine
where in RAM the waveform tables are located. Each wave-
form table begins with the first address of a page and must
continue upward through RAM and cannot wrap around over
64K. The register keeps track of where the table ends.

Address: $80-9F

Control register. Channel assignment, oscillator mode,
and halt bit are all controlled by this register. Bits 4-7 make
up the channel assignment. Those four bits can assign up to
16 channels for sound. Bit 3 is the interrupt enable used for
ordering output when more than a single oscillator has gener-
ated output. It helps keep all the different sounds organized.
Bits 1 and 2 set the oscillating mode for each oscillator, and bit
0 is the halt bit indicating when an oscillator has been stopped
by the microprocessor or DOC.

Address: $A0-$BF

Bank select/resolution/waveform registers. Each regis-
ter uses seven bits for controlling three major functions (bit 7
is not used). Bit 6 determines whether the DOC address range
is 0-64K (0) or 65-128K (1). Bits 3-5 specify the size of the

200

3

3

Super High-Res Graphics and Sound

waveform table, ranging from 256 bytes to 32K bytes. Finally,
bits 0-2, called the resolution determination bits, actually deter-
mine the final address for the waveform table.

Address: $C0-$DF

Oscillator interrupt, oscillator enable, and A/D con-
verter registers. These three registers (not bits) control the os-
cillators and analog-to-digital conversion.

Address: $E0-$E2.

Sound Tools

From the above brief description of the sound registers and
the digital oscillator chip, you can see that it’s not simple to
crank up the kinds of sound heard in musical demonstrations
on the IIGS. As an aid to programmers, the sound tools have
been provided. There are 18 sound function calls and six low-
level routines for accessing the power of DOC. The sound
toolkit works through a sound tool set with a specified num-
ber. The tool locator finds this number in order to use the
sound tools. Again, this requires a higher level of program-
ming skills than you now possess, but to give you an idea of
what’s in the sound tool set, the calls in Table 10-3 are available:

Table 10-3. Sound Tool Calls
Function Calls

SoundBootInit SoundStartup
SoundShutdonw Sound Version
SoundReset SoundToolStatus
WriteRamBlock ReadRamBlock

GetTableAddress GetSoundVolume
SetSoundVolume FFStartSound
FFStopSound FFSoundStatus
FFGeneratorStatus SetSoundMIRQV
SetUserSoundIRQV FFSoundDoneStatus

Low-Level Routines

Read Register Write Register
Read Ram Write Ram
Read Next Write Next

For some of you, it may be frustrating not to be able to

- program sound and super high-resolution graphics on your

IIGs with what you now know about programming, but be pa-
tient. You will learn the more advanced techniques in time.
Books and programming utilities will be available in the future
to help you.

201

3

Utility Programs,
Hints, and Help

By now most of the commands used for programming in
Applesoft on the IIGS and many tricks of the trade have been
covered. However, if you are seriously interested in learning
more about your computer and using it to its full capacity,
there’s more to learn. In fact, the purpose of this chapter is to
give you some direction beyond the scope of the book.

First, you will be introduced to the best thing since sili-
con—Apple IIGS user groups. These are groups of people that
are interested in maximizing their computer’s use. Second, I
want to suggest some periodicals that will help you learn more
about your IIGS. Third, you'll become acquainted with some
languages other than BASIC that can be used on your IIGs.
BASIC has many advantages, but like all computer languages
it has limitations, and you should know what else is available.

Next, you'll be able to examine some more programs that
you may find useful, enjoyable, or both. These program list-
ings were chosen to show you some applications of what
you've learned in the previous ten chapters, enhancing what
you already know.

Then we’ll focus on some of the different types of pro-
grams that you can purchase. These are programs written by
professional programmers that do everything from making
your own programming simpler to keeping track of your taxes.
Finally, we’ll examine some hardware peripherals.

Apple User Groups

Of all of the things I did when I bought my Apple, the most
helpful, economical, and useful was joining an Apple user
group. Not only did I meet a wonderful group of people, but I
was,taught how to program and generally what to do and not
to do. Each month my club, the Apple Corps of San Diego,
has a “disk-of-the-month,” with programs from all over the
world on both sides of the disk. The programs are contributed

205

CHAPTER 11

by members in the International Apple Core. At monthly gen-
eral meetings, speakers inform us about everything from new
peripherals available for the Apple IIGS to programming tech-
niques. A beginner’s group meets monthly to teach novices
how to program, and several other special interest groups
meet to discuss hardware, various programming languages,
and anything else people want to learn more about. We re-
ceive a monthly magazine with club news, tutorials, and pro-
grams. The club also makes group buys on various supplies,
programs, and hardware for the Apple IIGS, saving members a
good deal of money.

Usually, the easiest way to contact your nearest Apple
user group is through local computer stores. Often, stores that
sell Apple computers will have application forms; some even
serve as the meeting site for the clubs. You can also call Ap-
ple’s toll-free user group referral number—800-538-9696, ext.
500—and you will be given the name and contact information
for the nearest Apple user group. To start your own user
group, post a notice, giving meeting time and site, in your lo-
cal computer store, and call the user group referral number
and give them the information about the person to contact and
the time and location of meetings.

Apple Magazines

There are several periodicals with information about the Ap-
ple. Some microcomputer magazines are general and others
are for the Apple only.

COMPUTE! and COMPUTE!'s Apple Applications Special
(800-247-5470; in Iowa, 800-532-1272) are two magazines of
interest to IIGS owners. The monthly COMPUTE! magazine
contains several articles and programs for the Apple. Some
programs are written for several computers, among which you
will find one for your IIGS. There is a special semiannual issue
of COMPUTE!'s Apple Applications Special dedicated to the Ap-
ple computer. In these issues you can get an in-depth look at
the features of your computer, plus reviews, programs, tips,
and lots of other information to maximize your computer’s
utility.

();ALL-A.P.P.L.E. (800-426-3667; in Washington state, 206-
251-5222) contains some very good articles and programs.
This monthly magazine is a professionally produced club mag-
azine with over 10,000 members nationwide. Next to the ex-
cellent articles, programs, and tips, the best aspect of
belonging to CALL-A.P.P.L.E. Co-op (Apple Puget Sound Pro-

206

-

-

Utility Programs, Hints and Help

gram Library Exchange) is the savings on software and hard-
ware. In addition, CALL-A.P.P.L.E. Co-op provides a hotline
which you can call for help with your Apple, and a free bulle-
tin board service.

A+: The Independent Guide for Apple Computers; Nibble;
and In-Cider are three more excellent resources for information
on your Apple IIGS. Each has a mix of reviews, program list-
ings, program-use articles, and do-it-yourself hardware
projects. There’s so much to do with a IIGS that the source of
interesting material is almost unlimited.

Additionally, there are computer magazines for special-
ized applications such as education, publishing, robotics, and
business that may have general articles that you can apply to
your IIGS. Again, just go to your local book or computer store
and browse through the table of contents of the various publi-
cations to see whether there is something of interest to you.

Apple Speaks Many Languages

Besides BASIC, your IIGS can be programmed and can run
programs in several other languages. In some cases special
hardware devices are required to run the languages, and spe-
cial software will be required as well. Here is a brief look at
some of these other languages.

Assembly language. Assembly language is a low-level
language, close to the heart of your computer. It is quite a bit
faster than BASIC and virtually every other language dis-
cussed here. To write in assembly language, you must have an
assembler to enter code. Your Apple IIGS has a built-in
miniassembler that you can use to get started in assembly lan-
guage. However, you're going to need something a bit more
powerful to do any serious assembly language programming.
This language gives you far more control over your Apple
than does BASIC, but it is more difficult to learn, and a pro-
gram takes more instructions to operate than BASIC. By hav-
ing a good editor/assembler package, you can do a lot more
and do it better. Two popular assemblers are:

Merlin 16 (Roger Wagner Publishing). This is the IIGS ver-
sion of the popular Merlin assembler used for years by Apple
programmers. The new version works with the 65816
microprocessor in both the native and emulation (6502)
modes. It has an outstanding editor and comes with
“Sourceor,” a utility that transforms binary code into source
listings. ’

207

CHAPTER 11

ProDOS ORCA /M (Byteworks). This assembler is another
popular assembler for 65816 programming.

High, Low, and Intermediate Languages

When you hear computer people talk of high- and low-level
languages, think of high-level being close to talking in normal
English and low-level in terms of machine language—binary
and hexadecimal. The intermediate-level languages are used
extensively by developers, giving them access to both the low-
level control and high-level speed of writing programs. (An-
other way to think of them is to remember that the lower-
level the language, the harder it is to learn.)

Pascal. Pascal is a high-level language originally devel-
oped for teaching students structured programming. It is faster
than BASIC, but is not as difficult to master as assembly lan-
guage. Apple markets a version of U.C.S.D. Pascal, along with
manuals on how to use it. However, other versions of Pascal
are available. The following are good beginner’s books:

Apple Pascal: A Hands-On Approach, by Arthur
Luehrmann and Herbert Peckham (McGraw-Hill, 1982). This
is a step-by-step introduction to Apple Pascal, showing how to
program in Pascal using a single disk drive (many books as-
sume the user has two drives).

Elementary Pascal: Learning to Program in Pascal with Sher-
lock Holmes, by Henry Ledgard and Andrew Singer (Vintage
Books, 1982). This is an enjoyable way to learn Pascal since
the authors use Sherlock Holmes-type mysteries to be solved
with Pascal. It is based on the draft standard version for Pas-
cal called X3]J9/81-003 and may be slightly different from the
version you have, but only slightly so.

Pascal from BASIC, by Peter Brown (Addison-Wesley,
1982). If you understand BASIC, this book will help you make
the transition from BASIC to Pascal. It is written with the Pas-
cal novice in mind, but assumes the reader understands BASIC.

Forth. Forth is a very fast intermediate-level language, de-
veloped to create programs that are almost as fast as assembly
language but take less time to program. Faster than Pascal,
BASIC, FORTRAN, COBOL, and virtually every other high-
level language, Forth is programmed by defining words that
execute routines. New words incorporate previously defined
words into Forth programs.

The best part of Forth is that several versions are in the
public domain. Many Apple clubs have a Forth language sys-

208

1

.3

1 3

Utility Programs, Hints and Help

tem in their disk libraries based on George Lyons’ fig (Forth
Interest Group) Forth. No special hardware is required to run
it since it is an extremely compact language. Several good
books on learning Forth are available:

Mastering Forth, by Anita Anderson and Martin Tracy
(Brady, 1984). This book covers the latest version of Forth,
called Forth-83. It is clearly written and has lots of good
examples.

Starting Forth, by Leo Bodie (Prentice-Hall, 1982). Well-
written and well-illustrated work on Forth for beginners. Uses
a combination of words from fig, 79-Standard, and polyForth.

Forth Dimensions: Journal of Forth Interest Group (P.O. Box
1105, San Carlos, CA 94070). This periodical has numerous
articles on Forth and tutorial columns for people seriously in-
terested in learning the language.

The C language. Many of the applications used on the
Apple IIGS are written in C. This intermediate-level language
is highly structured and very transportable (transportability re-
fers to having a single language’s code work on different com-
puters and microprocessors). Like Forth, C provides speed to
the finished product and the process of programming. Here
are two good books on learning C:

From BASIC to C, by Harley M. Templeton (COMPUTE!
Books, 1986). This book provides a simple bridge from BASIC
to C. Once you understand BASIC, you can quickly apply the
same logic to C.

C Made Easy, by Herbert Schildt (Osborne/McGraw-Hill,
1985). This is clear and simple with lots of good examples.

PostScript. The PostScript language is built into several
laser printers, including Apple’s LaserWriter. With it, you can
write programs on your word processor and send them over to
a laser printer with a PostScript interpreter and do all kinds of
things with text and graphics. The language looks something
like Forth, C, and Logo combined. For a good introduction to
the language, see PostScript Language: Tutorial and Cookbook,
by Adobe Systems Incorporated (Addison-Wesley).

Miscellaneous languages and compilers. Besides the lan-
guages discussed above, you can get disks with COBOL, FOR-
TRAN, Logo, and other languages for specialized and general
applications. Before you spend time, money, and effort on an-
other language, however, it is highly recommended that you
carefully examine your needs. If your main interest is in devel-
oping your own programs, first learn BASIC thoroughly and
see what you can do with it. If BASIC fits your requirements

209

CHAPTER 11

and its relatively slow speed is sufficient for your uses, your
time will be better spent improving your BASIC programming
skills. If your main interest is in using application programs,
the language capability will depend on the programs you are
using.

%inally, if you determine that BASIC programming is best
suited to your needs, but you want to speed up your pro-
grams, a compiler provides a simple way. Essentially, a com-
piler is a program that transforms your code into a binary file
that will run four to five times faster than Applesoft. All you
do is write the program in BASIC, compile it, and then BSAVE
the compiled program. From then on, you will BRUN your
compiled program.

Some Useful and Enjoyable Programs

This section consists of programs that contain many of the
programming practices we have discussed throughout this
book. The ones that are included here do something useful
either in terms of applications or in demonstrating something
about your computer.

Quick Apple-Betize

This program sorts a list of strings (words) for you. It uses the
quick-sort 2 algorithm for the sort. It is fairly limited in that it
accepts only single strings and you cannot enter commas, but
if you ever want to sort a list of names, recipes, or anything
else, you will find it handy.

18 D$ = CHR$ (4)
20 Z = @:F = @
3@ TEXT : HOME
49 DIM A% (1900)

59 =N+ 1

&F INPUT "ENTER WORD "3A%(N)
7¢ IF A$(N) = "/" THEN 199
88 Z =7 + 1

99 GOTO S9

189 REM QUICKSORT 2

119 HOME :MS$ = "ALPHABETIZING": FLASH : VTAB 9: HT
AB 26 — LEN (M%) / 2: PRINT MS$: NORMAL

128 S1 =

139 L(1) = 1

140 R(1) = N

150 L1 = L(S1)

210

B R

-

-

U I R

A

Utility Programs, Hints and Help

162
179
189
199
200
219
229
239
249
259
269
279
2890
299
329
319
320
339
349
350
369
379
389
399
499
410
429
433
449
459
460
470
489
499
SoD
Sig
520
530

1900 INVERSE : PRINT "HIT ANY KEY TO CONTINUE

R1 = R(S1)

81 =81 -1

L2 = L1

R2 = R1

X$ = A$(INT ((L1 + R1) /7 2))
C=C+1

IF A$(L2) > = X$ THEN 25¢
L2 =12 + 1

GOTO 219

cC=2cC1

IF X$ > = A$(R2) THEN 299
R2 = R2 - 1

GOTO 259

IF L2 > R2 THEN 369
§S§=8+1

Te = AE(L2)

A (L2) = A$(R2)

AS(R2) = T$

L2 = L2 + 1

R2 = R2 - 1

IF L2 < = R2 THEN 21¢

IF L2 > = R1 THEN 419

St = 81 + 1

L(S1) = L2

R(S1) = R1

R1 = R2

IF L1 < R1 THEN 189

IF 81 > 9 THEN 150

REM SORT COMPLETE

HOME

GOSUB 9900

FORN=2TO0Z + 1

F=F + 1

IF F > 22 THEN GOSUB 1999
PRINT A$(N)

NEXT N

PRINT D%; "PR#32"

END

ET AN$: NORMAL

1965 F = @
1919 RETURN

999@ HOME : PRINT "ENTER PRINTER SLOT (@ FOR SCREEN

Y": INPUT " ";PR

9918 IF NOT PR THEN RETURN
9928 IF PR > 2 THEN RETURN

939

PRINT D%; "PR#";PR: RETURN

CHAPTER 11

Sort Menu

This menu program uses the Shell-sort algorithm instead of
the quick sort. To use it, you must enter the files on your disk
as DATA statements within the program. It will automatically
run any Applesoft program, but not binary or text files. Of
course, with your newly acquired programming skills, you can
fix that.

19 TEXT : HOME

20 MUs = " SORTING MENU ": VTAB 10: HTAB 20 - LEN (
MU$) / 2: FLASH : PRINT MUs$

3% DIM A%E(40):L$ = CHR$ (?1):R$ = CHR® (93)

49 ONERR "GOTO 79

S8 FOR I = 1 TO 49: READ A$(I)

68 N =N + 1: NEXT

70 I = 40

168 REM SHELL SORT

116 L = (2 ~ INT (LOG (N) /7 LOG (2))) - 1
120 L = INT (L /7 2)

136 IF L < 1 THEN 268

146 FOR J = 1 TO L

1560 FOR K = J + L TO N STEP L

160 1 = K

178 T¢ = As(I)

180 IF A$(I - L) < = T$ THEN 22¢

199 A$(I) = A$(I - L)

200 1 =1 - L

219 IF I > L THEN 189

220 AE(I) = TS

238 NEXT K

249 NEXT J

250 GOTO 120

268 NORMAL : REM SORT DONE

27¢ ONERR GOTO 310

319 HOME FOR I =1 TON

320 IF I 16 THEN INVERSE : PRINT L$;" ";I;R$;: NO
RMAL PRINT " ";A$(I): NEXT

325 IF N 186 THEN 360

338 IF I 29 THEN GOTO 352

348 INVERSE : PRINT L#3;I3R$3;: NORMAL : PRINT " ";A$
(I): NEXT

345 IF N < 20 THEN 360

358 VTAB (1 - 20): HTAB 20: PRINT " "3;: INVERSE : P
RINT L$3;I3R%;: NORMAL : PRINT " ";A$(I): NEXT

369 GOSUB &09

379 IF C = 99 THEN END

380 PRINT CHR$ (4);"RUN";A%(C)

385 END

400 REM XXEXXIXALEXAXEXALXLEAARALRANER

419 REM ENTER FILENAMES HERE, SEPARATED BY A COMMA.

420 REM XXXEXXXXXBXXARERNAEERRAASKERRL

439 REM FOR EXAMPLE, SEE LINE 449

212

VA A

N I B

Utility Programs, Hints and Help

449 DATA FILE PROGRAM,MUSIC GENERATOR, GRAPHIC DRAW

» SORT PROGRAM

S99 REM BY ADDING FILENAMES TO YOUR DATA LIST, YOU

CAN AUTOMATICALLY
519 REM UPDATE YOUR FILE MENU.

S2¢ REM THIS WORKS ONLY WITH 49 OR FEWER BAS FILES.
6008 VTAB 22: INVERSE : PRINT " ENTER 99 TO EXIT ":

NORMAL

619 VTAB 23: FOR W = 1 TO S@@: NEXT : FOR I = 38 TO

1 STEP - 1: FOR J = 1 TO 19: NEXT : HTAB I:

PR

INT " "3: NEXT : HTAB 2: INPUT "CHOOSE FILE BY

NUMBER-> ";C: RETURN
Disk Locator

This program incorporates the Shell sort again, but it does so

with a sequential text file. When you begin to accumulate

disks, you may find it sometimes difficult to remember where
everything is, but using “Disk Locator,” you can keep track of

everything on both sides of your disk.
Note: You must first create a file before READing or
APPENDing a file.

19 TEXT = HOME : VTAB 7
20 HD$ = " DISK LOCATOR "

30 FOR I = LEN (HD$) TO 1 STEP - 1: PRINT MID$ (HD$

s I,1)3: NEXT

49 INVERSE : FOR W = 1 TO 1984: NEXT : VTAB 7: HTAB
1: FOR I = 1 TO LEN (HD$): PRINT MID$ (HD$,I,1)

52 NEXT : NORMAL
S50 D$ = CHR$ (4):8¢ = "/"
68 DIM DI14(200),D14$(200) ,D2%(299) ,5T$ (209)
79 PRINT VTAB 19
80 FOR R 1 TO 4: READ R$(R): NEXT
99 FOR R
sRE(R): PRINT : NEXT

1 TO 4: PRINT CHR$ (91)3;R; CHR$ (93);"

160 FOR I = 38 TO 1 STEP — 1: FOR J = 1 TO 16: NEXT

: HTAB I: PRINT " "3: NEXT : HTAB 2: PRINT
0O0SE BY NUMBER->"3;: GET A%Z: PRINT A%Z

n CH

114 IF AZ = 3 THEN PRINT "DO YOU WANT THIS ON THE P

RINTER? (Y/N) "3;: GET AA$: PRINT AA$
120 IF AZ = 3 THEN 450
139 IF AZ = 4 THEN END
14¢ TEXT : HOME : REM DISK STORAGE DATABASE
150 N = @
168 FOR I 1 70 299
189 HOME : VTAB 18: INVERSE

PRINT "FILE #";N + 13

: NORMAL : PRINT SPC(5);3;: INVERSE : PRINT "ENT

ER *XX* TO QUIT"”: NORMAL : PRINT

199 INPUT "SIDE 1 => "3D1$(I)
208 IF D1$(I) = "XX" THEN I = 2gdg: GOTO 279
21¢ INPUT "SIDE 2 => "3;D2%(1)

213

CHAPTER 11

220
239
249

259
2690
279
289
299

308
319
320
325
33¢
349
359
369
379
380
385
399
499
419
429
439

449

4590
435
468
479
489
499
595
Sig
S2¢9

53¢

540
S50
S6¢
579
S8¢
S99
&P
619
&20
639
6490
650

214

INPUT "LOCATION -> ";STH(I)

DI$(I) = D1$(I) + S$ + D2%(I) + S% + STH(I)
PRINT : PRINT DI$(I): INVERSE : PRINT : PRINT "
CORRECT? (Y/N)"3;: NORMAL : GET ANS$

IF AN% = "N" THEN 189

N=N+1

NEXT I

I = 200:1 =0

HOME :=MS$ = " SORTING ": FLASH : VTAB 19: HTAB
20 - LEN (MS$) / 2: PRINT MS$

GOSUB 619

IF A% = 2 THEN 389

PRINT D$"OPEN DISK.FILES"

PRINT D$"WRITE DISK.FILES"

FOR I =1 TO N

PRINT DI%(I)

NEXT I

PRINT D$"CLOSE DISK.FILES"

G60TO 439

PRINT D$"APPEND DISK.FILES"

PRINT D$"WRITE DISK.FILES"

FOR I =1 TO N

PRINT DI$(I)

NEXT I

PRINT D$"CLOSE DISK.FILES"

HOME : VTAB 1g: PRINT "DISK FILES CLOSED": VTAB
23: END

DATA "CREATE DISK FILES","APPEND DISK FILES","R
EAD DISK FILES","EXIT"

PRINT D$; "OPEN DISK.FILES"

PRINT D$"READ DISK.FILES"

N=g

ONERR GOTO 529

FOR I = 1 TO 200

INPUT DIS(I)

N=N+1

NEXT I

ER = PEEK (222): IF ER = § THEN I = 20@: 60TO S
19

HOME : FLASH : VTAB 10:MS$ = " SORTING ": HTAB
20 - LEN (MS$) / 2: PRINT MS$

GOSUB 619

HOME

IF AA$ = "Y" THEN GOSUB 819

FOR I = 1 TO N: PRINT I3;". "3;DI$(I): NEXT
IF AR$ = "Y" THEN PRINT D%; "PR#8"

PRINT D$"CLOSE DISK.FILES"

END

REM SHELL SORT

L= (2~ INT (LOG (N) /v LOG (2))) - 1

L = INT (L 7 2)

IF L < 1 THEN 799

FOR =1 TO L

-

S RS [|

A

3

Utility Programs, Hints and Help

660
679
&89
699
709
719
720
739
7490
758
760
779
780
790
899
819
815

829
83¢
849

Q
na

K=J+ L TON STEP L
K

¢ = DI$(I)

- T

ne

$(I - L) < = T4 THEN 750
) = DI&$(I — L)

O~ ==
]

| +
T o»

IF I > L THEN &99
DIS(I) = T4

NEXT K

NEXT J

GOTO 630

NORMAL : REM SORT DONE
RETURN

PRINT D$"CLOSE DISK.FILES"
PR# ©: HOME : PRINT "PRINTER SLOT(# FOR SCREEN)
"s: INPUT PR

IF NOT PR THEN RETURN

IF PR > 7 THEN RETURN

PRINT D$;"PR#";PR: RETURN

Program Header

This program is given simply for fun and for adding a little in-
terest to your program (or disk) headers. After playing with it
awhile, rather than INPUTing the title of your program, sim-
ply define YP$ as the title of your program and GOSUB to it
as a subroutine at the beginning of your own program. It will
put an end to boring program headers. It’s set up for 40-column
programs. If you want it for 80 columns, just change the values.

19998 TEXT : HOME :F$ = "=": PRINT "ENTER PROGRAM N
AME:": PRINT "(MUST BE EVEN # OF CHARACTERS.)

19095 INPUT "==> ";YP$:YP$ = "%X" + YP$ + "XXx":P =
LEN (YP$)

10919 HOME :LM = 20 - LEN (YP$) / 2

19920 IF LEN (F$) < > 40 THEN F$ = F$ + "=": GOTO 1
oB20

19930 PRINT F$3: FOR I = 1 TO 1S: PRINT "I"; SPC(3

8);"I";: NEXT : PRINT Fs$

18940 INVERSE : FOR I = 2 TO 16: HTAB 2: VTAB I: PR

INT SPC(¢ 38): NEXT : NORMAL : FOR PAUSE = 1 T
0 1098: NEXT

19650 FOR K = 2 TO 16: FOR W = 20 TO 21: VTAB K: HT

AB W: PRINT SPC(1): NEXT = NEXT : FOR I = 2
TO LEN (YP$) /7 2

18066 FOR J = 2 TO 16: VTAB J: HTAB I + 29: PRINT S

PC(1): VTAB J: HTAB 21 - I: PRINT SPC(1): N
EXT = NEXT

215

CHAPTER 11

19976 VTAB 22
19988 SS$ = "x"
1909¢ 1IF LEN (SS$) < 49 THEN SS$ = SS$ + "x": GOTO

191
121
191
191
191
191

191
191

191
191

10090

99 FLASH : HTAB 1: VTAB 18: PRINT SS%: NORMAL

19 SPEED= 159

20 L$s = LEFTS (YP$, LEN (YP$) / 2)

39 R$ = RIGHT® (YP$, LEN (YP$) / 2)

460 FOR V = 1 TO (LEN (YP%$) / 2)

S8 VTAB 9: HTAB 29 + V: PRINT MID$ (R$,V,1): GOS
UB 16239

68 IF V = (LEN (L%)) + 1 THEN 190189

79 VTAB 9: HTAB 21 - V: PRINT MID$ (L$, LEN (L$)
- (v -1),1): GOSUB 19239

83 NEXT : SPEED= 255

98 INVERSE : VTAB 22:H$ = " <HIT ANY KEY TO CONT
INUE> ": HTAB 20 — LEN (H$) / 2: PRINT H$: NO
RMAL : WAIT - 16384,128: POKE — 16348,90

19200 VTAB 16: HTAB LM: POKE 32,LM: POKE 35,16: POK

E 33,P: POKE 34,2

19219 FOR I = 1 7O 16: FOR J = 1 TO S@: NEXT J: CAL

L = 912: NEXT

19220 VTAB 22: TEXT : FOR I =1 TO 24: FOR J = 1 TO

S@: NEXT J: CALL - 912: NEXT : END

19239 BZ = 49200: FOR I =1 TO 15: FOR J =1 TO I x

(J = 1): NEXT :B PEEK (BZ): NEXT

19249 RETURN

Calendar Plot

This program is an extension of what you learned in Chapter
7 about using lo-res graphics for plotting. It will translate the
data you enter so that the graph will fit on the 40-column
screen, regardless of the range of input values. You can begin
and end with any month you wish, but you are limited to a

single year.

19 TEXT : HOME

20 VTAB 8: INPUT "MAXIMUM VALUE TO BE ENTERED -> "3
MV

30 N = 1:NN = MV: FLASH : PRINT "CALCULATING ": NOR
MAL

40 IF NN > 39 THEN N = N + .1:NN = MV / N: GOTO 49

56 HOME : VTAB 19: INPUT "NAME OF PLOT-> ";NP$

&0 HTAB 1: VTAB 19: CALL — 848: INPUT "YEAR-> "3Y

76 VTAB 1: HTAB 20 - LEN (NP$) / 2: INVERSE : PRINT

NP$: NORMAL : POKE 34,2

80 HTAB 1: VTAB 19: CALL — 868: INPUT "BEGIN WITH W
HAT MONTH? (1-12) ";B%:: PRINT

99 HTAB 1: VTAB 18: CALL - 868: INPUT "END WITH WHA

T MONTH? (1-12) ";P%Z: HOME

196 DIM V(PZ)

216

1

S

1

N .

-

Utility Programs, Hints and Help

119
129

139
149
159
160
179

189

190
2090

210
229
239

249
259
269
279
280
299
309
319
320
330
349
350
3608

CA$ = "JFMAMJJASOND"
FOR I = B%Z TO P%: PRINT "PLOT VALUE (MAX= ";MV;
") FOR "3: GOSUB 23@: INPUT “ ";V(I): PRINT
V(I) = INT (VCI) 7/ N): NEXT

GR : COLOR= 1@

VLIN 8,39 AT 9: HLIN 9,39 AT 39

FOR I = @ TO 39 STEP 4: PLOT 1,I: NEXT

COLOR= 15: FOR I = B% TO P%Z: VLIN 39, (39 — V(I)
) AT (I % 3): NEXT

HOME : FOR I = B% TO P%: VTAB 21: HTAB (I % 3)
+ 1: PRINT MID$ (CAS$,I,1): NEXT I

PRINT "HATCH MARKS="3;MV / 18

HTAB 20 - LEN (NP$) / 2: PRINT NP$;: PRINT " ;
: INVERSE : PRINT SPC(1)3Y; SPC(1): NORMAL
WAIT - 16384,128

TEXT : HOME : END

INVERSE : ON I GOSUB 259,249,270, 280,299, 300, 31
9,320,330, 340, 350, 360

NORMAL ¢ RETURN

PRINT "JANUARY";: RETURN

PRINT "FEBRUARY";: RETURN

PRINT "MARCH";: RETURN

PRINT "APRIL"3;: RETURN

PRINT "MAY";: RETURN

PRINT "JUNE";: RETURN

PRINT "JULY";: RETURN

PRINT "AUBUST";: RETURN

PRINT "SEPTEMBER";: RETURN

PRINT "OCTOBER";: RETURN

PRINT "NOVEMBER"j;: RETURN

PRINT "DECEMBER";: RETURN

ASCII Hexadecimal/Decimal

This program lists ASCII in both hexadecimal and decimal,
either to your printer or to the screen. It lists only the first 128
(0-127) codes, but it is handy for looking up CHR$ codes, and
it will give you an idea of one way to translate decimal into
hexadecimal.

a5
99

TEXT : HOME

GOSUB 499

HOME = PRINT

GOSUB 399

DIM H$(127)

FOR H = &8 TO 126

READ HE(H): NEXT H

FOR I = @ TO 63

IF PEEK (- 16384) > 128 THEN GOSUB S99
J = I:K =1 + 64

190 IF I < 27 THEN J = I + 64

217

CHAPTER 11
195 IF I < 16 THEN PRINT "$8";H$(I);: HTAB (5): PRI
NT " ";I;: HTAB 11: PRINT CHR$ (J); CHR$ (99);:

129

139
149
159

1468
179
189
200

220

300
319
320

339
349

409

419
429
439
449
459
So9

GOTO 150
IF I < 27 THEN PRINT "$"3;H$(I);: HTAB (5): PRIN
T I3: HTAB 11: PRINT CHR$ (J); CHR$ (99);: GOTO
15@
PRINT "$"3;H$(I)3: HTAB (5): PRINT I3: HTAB (11)
: IF I > 26 AND I < 32 THEN PRINT "ESC";: GOTO
150
IF I = 32 THEN PRINT "SPACE";: GOTO 150
HTAB (11): PRINT CHR$ (J)3
HTAB (17): PRINT “"$";H$(K)3;: HTAB (23): PRINT K
5: HTAB (29): PRINT CHR$ (K)
NEXT
PRINT CHR$ (4);"PR#&"
END
DATA ©,1,2,3,4,5,6,7,8,9,0A,90B,9C, @D, 9E,8F, 16, 1
1,12,13,14,15,16,17,18,19, 1A, 1B, 1C, 1D, 1E, 1F, 28,
21,22,23,24,25, 26,27, 28, 29, 2A, 2B, 2C, 2D, 2E, 2F , 30
,31,32, 33, 34, 35, 36, 37, 38, 39, 3A, 3B, 3C, 3D, 3E, 3F, 4
g,41,42,43,44,45,46,47,48,49
DATA 4A, 4B, 4C, 4E, 4F, 50
DATA S51,52,53,54,55,56,57,58,59, 54,58, 5C, 5D, 5E,
5F, 60,61,62,63,64,65,66,67,68,69,6A, 6B, 6C, 6D, 6E
,6F,78,71,72,73,74,75,76,77,78,79,7R,78,7C,7D,7
E,7F
HEX$ = "HEX":DEC$ = "DEC":CH$ = "CHAR"
Ls = ”n ”
PRINT HEX$; SPC(1)3;DEC$; SPC(2)3CH®&;" "3: INV
ERSE : PRINT "/";: NORMAL : PRINT " "3;HEX$; SPC
(3);DEC$; SPC(2)3;CH$: PRINT L%
POKE 34,3: IF PR < > @ THEN RETURN
VTAB 18: HTAB 33: PRINT "HIT": HTAB 33: PRINT "
ANY": HTAB 33: PRINT "KEY": HTAB 33: PRINT "TO
STOP": HTAB 33: PRINT "OR START": POKE 33,32: V
TAB 4: RETURN
HOME : PRINT "ENTER PRINTER SLOT (@ DISPLAYS TO
SCREEN) "": INPUT "";PR
IF NOT PR THEN RETURN
IF PR > 7 THEN RETURN
D$ = CHR$ (4)
PRINT D$;"PR#";PR
RETURN
GET A%$: GET B$: RETURN

Utility Programs

-

4

J

Programs that help you write other programs more efficiently
are called utility programs. In this section we will discuss
some of the more useful ones that come under this category.
One of the handiest utilities you will find is Program Line
Editor or Global Program Line Editor (Beagle Bros.), better

218

1

Utility Programs, Hints and Help

known simply as PLE. The built-in editor in your IIGS is fine
for simple editing, but it’s not very powerful compared with
PLE. For example, to change a mistake with PLE, all you have
to do is to press control-E and the line number with the error.
That line will then pop up on your screen, ready to be edited.
There are dozens of features to recommend PLE to someone
interested in programming in Applesoft BASIC.

Another clever utility that can get your Applesoft pro-
grams up to near-professional quality is the Toolbox series of
utilities (Roger Wagner Publishing). The Toolboxes consist of
machine language subroutines that you can append to your
BASIC programs. Instead of having to learn machine lan-
guage, you can get machine language speed, plus improved
BASIC routines, just with BASIC and the Toolbox utilities.
(This series is not the same as the built-in toolbox utilities in
your IIGS, which were described in Chapter 10; they are a lot
easier to access and use than the built-in toolbox.)

Many more utilities are expected to be available for the
Apple IIGS soon. In the meantime, take a look at those avail-
able for Apple II-series machines. Remember, the best source
of information is your Apple user group.

Word Processors

Your Apple computer can be turned into a first-class word
processor with a program designed for that use. Word proces-
sors turn your computer into a super typewriter. They can do
everything from moving blocks of text to finding spelling mis-
takes. Editing and making changes are simple, and once you
get used to writing with a word processor, you'll never go
back to a typewriter again. This book was written with a word
processor, and it took a fraction of the time a typewriter would
have taken.

Before we suggest some word processing packages, here’s
a word of caution. If you meet other Apple users who have a
certain type of word processor they have worked with for a
while, they will swear it is the best available. Never argue
about politics, religion, or word processors with Apple users.
This is because word processors are fairly sophisticated pro-
grams, and it takes a while to become accustomed to their
strengths and weaknesses. By the time a person does, he or
she has invested a good deal of time and has become quite
skilled in the program’s use. Thus, users are convinced that
their own word processor is the best there is, and it can be dif-
ficult to determine which one is best for you. To give you

219

CHAPTER 11

some help in making up your mind, Table 11-1 lists some of
the more important features you might want to look for in a
word processing program.

Generally, the more a word processor can do, the more it
will cost. If you want only to write letters and short docu-
ments, there is little need to buy an expensive word processor.
However, if you are writing longer and more complex docu-
ments or a wider variety of documents, the investment in a
more sophisticated word processor is worth the added cost. If
you have specialized needs (for example, producing billing
forms), you will want to look for those features in a word pro-
cessor that meet those needs. While a word processor may not
do certain things, it may be just what you want for your spe-
cial applications. As with other software, get a thorough dem-
onstration of any word processor on a IIGS before laying out
your hard-earned cash.

Of the word processors actually available and written spe-
cifically for the Apple IIGS, MouseWrite (Roger Wagner Pub-
lishing) has all of the above features and more. It makes
excellent use of the RAM disk available either with the 256K
RAM that comes with your IIGS or additional RAM you can
add later. It is easy to learn how to use, yet very powerful.

Database Programs

When you want a program for creating and storing infor-
mation, a database program is what’s needed. Essentially, pro-
fessionally designed database programs are either sequential
or random access files. When you use one, all you have to do
is to use the predefined fields provided or create your own
fields. For example, a user may want to keep a database of
customers. In addition to having fields for name and address,
the user may want fields for the specific type of product the
customer buys, date of last purchase, how much money is
owed, date of last payment, and so forth.

Probably more than most other packages, database pro-
grams should be examined carefully before you make a pur-
chase. Some of the more expensive databases can be used
with virtually any kind of application, but if you're going to be
using your database only to keep a list of names and ad-
dresses to print out mailing labels, for example, a database
program designed to do that one thing will usually do it better
and for a lot less money. Some word processors, such as
MouseWrite, can be used as mailing-list database systems as
well as word processors, so you may not even need a database

220

A

S

3

-J

U R

Utility Programs, Hints and Help

Table 11-1. Word Processing Options

Find/replace

Block moves
Link files
Line-/screen-

oriented editing

Automatic page
numbering
Imbedded code

Spelling checker

Communications

Printer spooling

Mail merge

Downloadable fonts

Mouse interface

Finds any string in your text and/or finds and replaces
any one string with another string. Good for correcting
spelling errors and locating sections of text to be
repaired.

Moves blocks of text from one place to another (for ex-
ample, moves a paragraph from the middle to the end of
a document). An extremely valuable editing tool.
Automatically links files on disks. Very important for
longer documents and for linking standardized shorter
documents.

Line-oriented editing requires locating the beginning of a
line of text and then editing from that point. Screen-
oriented editing allows you to begin editing anywhere on
the screen. Screen-oriented editing is important for large
documents and where extensive editing is normally
required.

Pages are automatically numbered without your having
to determine page breaks in writing text.

In word processors, this enables the user to send special
instructions directly to the printer for changing tabs, en-
abling special characters on the printer, and doing other
things to the printed text without having to set the pa-
rameters beforehand and/or without having the capabil-
ity of overriding set parameters.

More and more word processors have spelling checkers.
The size of the dictionary determines the number of
words they will check against.

Now that we’re in the Communications Age, having a
built-in communications package in your word processor
makes it more convenient to send material back and
forth. For example, instead of sending a letter through
the post office, you can easily send it over your modem
if your word processor has a communications program
built into it.

While your printer is printing out a file, this feature al-
lows you to work on other things.

With this feature you can easily create form letters and
then automatically print out different names and
addresses.

This allows you to get different fonts, including graphics
fonts, for your printer. If you use your IIGS for doing
newsletters, this is an important feature.

When I first started using a mouse on a word processor,
I was not impressed. Now, I don’t know how I worked
without it. It is far easier to use the intuitive “mouse
arm” to grab text than it is to bip the cursor around with
the keys.

221

CHAPTER 11

program if your word processor can handle your needs. On
the other hand, if your needs are varied and involve sophisti-
cated report generation and require changing record fields,
then don’t expect a simple, specialized program to do the job.
Several database programs, including some public domain
ones, are available through your user group.

Business Programs

Business programs have such a wide variety of functions that
it is best to start with a specific business need and see whether
there is a program that will meet that need. On the other
hand, there are general business programs that are applicable
to many different businesses. Specific business programs in-
clude ones that deal only with real estate, stock transactions,
or nutritional planning. More general programs include elec-
tronic spreadsheets, financial planning, and, as discussed
above, database programs.

Unfortunately, business people often spend far too much
for systems that do not work. There’s a common belief that if
you spend a lot of money on software and hardware, you'll
get a better system than a less expensive, simpler setup would
provide. This thinking is based upon a “you get what you pay
for” mentality, and it can lead to systems that are not used at
all. Here is where a good dealer or consultant is necessary.
Since computers are getting more sophisticated and less ex-
pensive, often you do not “get what you pay for” when you
purchase a big, expensive one. Frequently, all the business
person ends up with is a dinosaur system that is outmoded,
too big, and too expensive for the needs.

Some computer dealers specialize in helping business
people. They will set up a system in your place of business,
help train personnel, and provide ongoing support. These
dealers will charge top dollar for your system and supporting
software, as opposed to the discount dealers and mail-order
firms. However, if you have any problems, someone will be
available to help you. Since the Apple IIGS is comparatively
inexpensive to begin with, the extra money spent buying from
a supportive dealer is worth the extra cost.

Alternatively, there are consultants available for setting up
your system. If you use a consultant, get one who is an inde-
pendent, with no connection to a vested interest in selling
computers. Contact one through your phone book. Say that
you want to set up an Apple IIGS system in your office and
describe exactly what your needs are. If the consultant is fa-

222

-

-3

-J

Utility Programs, Hints and Help

miliar with your system, he or she will know the available
software and peripherals you need. If the consultant tries to
sell you another computer, that’s probably an indication of un-
familiarity with your system, and you might want to try an-
other consultant.

However, if several consultants tell you that your needs
cannot be met by an Apple IIGS, you may indeed need a
larger system. I have encountered many unhappy business
people who bought the wrong system for their needs. One
man said he paid $14,000 for a computer system that never
did work for his requirements, and he finally bought a micro-
computer system for about one-tenth that price and everything
worked out fine. This does not mean that a business may not
require an expensive system to handle certain business func-
tions, and the IIGS certainly has limitations.

However, before you buy any system, make sure it does
what you want and have it shown to you working the way
you expect it to work. You will often find that the less expen-
sive new micros like the IIGS actually work better than do
larger machines. With the addition of a relatively low-cost
hard disk and increased RAM, the IIGS can handle a lot of big
business files.

Many small and individual businesses can use integrated
programs such as AppleWorks (Apple Computer) or VIP Profes-
sional (VIP Technologies) to keep track of everything in a sin-
gle program—from their customers to spreadsheet analysis.
Integrated programs gained popularity with the famous Lotus
1-2-3 (Lotus Development) on the IBM PC. Several programs
were melded together; instead of existing as a number of sepa-
rate programs for different tasks, such as spreadsheet and
database, these were integrated so that different parts could be
used together.

Graphics Programs

Chapter 7 discussed some of the Apple IIGS’s capabilities with
graphics. However, certain uses require either highly advanced
programming skills or a good graphics package. For example,
it is possible to draw on the screen in super high-resolution
graphics, just as you would with a palette. The pictures pro-
duced can then be saved to disk or printed out to your printer.
These programs allow you to concentrate on the graphics
themselves rather than on the programming techniques neces-
sary to produce them.

223

CHAPTER 11

DeluxePaint (Electronic Arts) is a good example of a
graphics drawing program. You can “mix” the 16 colors into a
combination of 4096 colors available on the Apple IIGS. Using
the mouse as a super paintbrush, you can create incredible
paintings with DeluxePaint. This is a tremendous leap over
previous versions of the Apple II.

Hardware

The Apple IIGS is expandable, which means you can add vari-
ous attachments to it to make it do more than it does nor-
mally. In the back and inside of your IIGS there are a number
of ports where hardware extensions can be attached. Joysticks
are used for games as well as other programs. For games, they
guide rockets, spaceships, and characters against the forces of
evil. However, they are also used for drawing graphics and for
input in other programs. Of course, your mouse will probably
be used as the input device for most such input. Other hard-
ware attachments include interfaces for various peripherals.

Another important peripheral that you may want to con-
sider is a hard disk. Since your IIGS has a built-in hard disk
controller, the price for one is far below what is normally
charged on microcomputer systems. A hard disk will greatly
increase your storage capacity and significantly speed up a lot
of your work with large programs and files.

Music buffs may want to look at Deluxe Music Construc-
tion Set (Electronic Arts). The IIGS has a fabulous music chip,
but it is not easily programmed from Applesoft. Thus, to con-
centrate on the score and composition, you will need a good
music program, and Deluxe Music Construction Set is highly
recommended.

Modems and Communications

One of the most exciting things you can do with your com-
puter is to communicate with another computer. Not only can
you communicate with another IIGS, but you can access other
micros and even tie into big mainframes. The Apple Personal
Modem, made by Apple, plugs easily into the wall, and a ca-
ble plugs into your computer’s serial port. However, with the
IIGS you are in luck, for if you get the right cable, you can
hook up just about any modem to the serial port and inexpen-
sively have modem communications. You will have no prob-
lems communicating between the IIGS and other computers.

224

-

.

2

3

Utility Programs, Hints and Help

A good deal. Currently, some modem packages include
free membership in CompuServe and Dow Jones News/
Retrieval, plus one free hour of use. This is a good way to
check out these services to see whether they are of interest to
you. If they’re not, you're not out the cost of membership.
This deal may not still be available when you buy your mo-
dem or communication package, but it's worth checking before
you purchase a modem.

Summary

The most important thing to understand from this chapter is
that you have just scratched the surface of what is available
for the Apple IIGS. There is much more than a single chapter
could possibly cover. As you come to know your Apple, you
will find that the choice of software and peripherals is limited
only by the confusion in making up your mind. The software
and hardware suggested here are based on personal prefer-
ences, and I suggest that you choose on the basis of your own
needs and preferences, not mine. Think of the items men-
tioned as a random sampling of what one user has found to
be of interest. Then, after your own sampling, examination,
and testing, get exactly what you need.

You should now have a beginning-level understanding of
your computer’s ability. Whether you use it for a single func-
tion or are a dedicated hacker, it is important that you under-
stand the scope of its capacity to help you in your work,
education, and recreation. It is not a monstrous electronic mys-
tery, but rather a tool to help you in various ways. You may
not understand exactly how it operates, but you probably
don’t understand everything about how your car’s engine
works either, and that has never prevented you from driving.
Think of your computer, like your car, as a vehicle that will
take you where you want to go. Never again consider it a ma-
chine that you must follow.

225

=l B A - I T =

Appendix A

Applesoft BASIC
Token Chart

The following chart shows the tokens for each Applesoft
BASIC keyword, along with the address of the routine called
to execute that statement. Values are given in both hexadeci-
mal and in decimal. When you examine an Applesoft program
with the monitor, a value of 136($88) will indicate a GR state-
ment or a value of 221($DD) will indicate the EXP function.
To use one of these commands from the monitor, type the ad-
dress corresponding to the proper token, followed by G. For
example, use F390G to execute the GR statement.

Note: Some functions and the error messages do not have
the jump routines.

Token Values Jump Addresses
$80 128 END $D870 55408
$81 129 FOR $D766 55142
$82 130 NEXT $DCF9 56569
$83 131 DATA $D995 55701
$84 132 INPUT $DBB2 56242
$85 133 DEL $F331 62257
$86 134 DIM $DFD9 57305
$87 135 READ $DBE2 56290
$88 136 GR $F390 62352
$89 137 TEXT $F399 62361
$8A 138 PR# $F1E5 61925
$8B 139 IN# $FIDE 61918
$8C 140 CALL $FID5 61909
$8D 141 PLOT $F225 61989
$8E 142 HLIN $F232 62002
$8F 143 VLIN $F241 62017
$90 144 HGR2 $F3D8 62424
$91 145 HGR $F3E2 62434

$92 146 HCOLOR= S$F6E9 63209
$93 147 HPLOT $F6FE 63230

229

APPENDIX A

Token Values

$94
$95
$96
$97
$98
$99
$9A
$9B
$9C
$9D
$9E
$9F
$A0
$A1
$A2
$A3
$A4
$A5
$A6
$A7
$A8
$A9

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

$AA 170

$AB

171

$AC 172
$AD 173

$AE
$AF
$BO
$B1
$B2
$B3
$B4
$B5
$B6
$B7
$B8
$B9
$BA
$BB
$BC
$BD
$BE
$BF
$CO

230

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

DRAW
XDRAW
HTAB
HOME
ROT=
SCALE=
SHLOAD
TRACE
NOTRACE
NORMAL
INVERSE
FLASH
COLOR=
POP
VTAB
HIMEM:
LOMEM:
ONERR
RESUME
RECALL
STORE
SPEED=
LET
GOTO
RUN

IF
RESTORE
&
GOSUB
RETURN
REM
STOP
ON
WAIT
LOAD
SAVE
DEF
POKE
PRINT
CONT
LIST
CLEAR
GET
NEW
TAB(

Jump Addresses

$F769
$F76F
$F7E7
$FC58
$F721
$F727
$03F5
$F26D
$F26F
$F273
$F277
$F280
$F24F
$D96B
$F256
$F286
$F2A6
$F2CB
$F318
$03F5
$03F5
$F262
$DA46
$D93E
$D912
$D9C9
$D849
$03F5
$D921
$D96B
$D9DC
$D86E
$D9EC
$E784
$03F5
$03F5
$E313
$E77B
$DAD5
$D896
$D6A5
$D66A
$DBA0O
$D649

63337
63343
63463
64600
63265
63271
1013

62061
62063
62067
62071
62080
62031
55659
62038
62086
62118
62155
62232
1013

1013

62050
55878
55614
55570
55753
55369
1013

55585
55659
55772
55406
55788
59768
1013

1013

58131
59259
56021
55446
54949
54890
56224
54857

-3 1

.

-3 1 1

Applesoft BASIC Token Chart

Token Values

$C1
$C2
$C3
$C4
$C5
$C6
$C7
$C8
$C9

193
194
195
196
197
198
199
200
201

$CA 202

$CB

203

$CC 204
$CD 205

$CE
$CF
$D0
$D1
$D2
$D3
$D4
$D5
$D6
$D7
$D8
$D9

206
207
208
209
210
211
212
213
214
215
216
217

$DA 218

$DB

219

$DC 220
$DD 221

$DE
$DF
$EO
$E1
$E2
$E3
$E4
$E5
$E6
$E7
$E8
$E9
$EA

222
223
224
225
226
227
228
229
230
231
232
233
234

TO
FN
SPC(
THEN
AT
NOT
STEP

SCRN(

PEEK

STR$
VAL
ASC
CHRS$
LEFT$
RIGHT$
MID$

Jump Addresses

$EB90
$EC23
$EBAF
$000A
$E2DE
$D412
$DFCD
$E2FF
$EESD
$EFAE
$E941
$EF09
$EFEA
$EFF1
$F03A
$FO9E
$E764
$E6D6
$E3C5
$E707
$E6ES5
$E646
$E65A
$E686
$E691

60304
60451
60335

58078
54290
57293
58111
61069
61358
59713
61193
61418
61425
61498
61598
59236
59094
58309
59143
59109
58950
58970
59014
59025

231

APPENDIX A

Error Message Tokens

$EB

235

$EC 236
$ED 237

$EE
$EF
$F0
$F1
$F2
$F3
$F4
$F5
$F6
$F7
$F8
$F9
$FA
$FB
$FC

232

238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

NEXT WITHOUT FOR
SYNTAX

RETURN WITHOUT GOSUB
OUT OF DATA

ILLEGAL QUANTITY
OVERFLOW

OUT OF MEMORY
UNDEFD STATEMENT
BAD SUBSCRIPT

REDIM'D ARRAY
DIVISION BY ZERO
ILLEGAL DIRECT

TYPE MISMATCH

STRING TOO LONG
FORMULA TOO COMPLEX
CAN’'T CONTINUE
UNDEFD FUNCTION
ERROR IN

-3 1

o |

-

Appendix B

ASCII Characters

Characters preceded by carets (°) are control characters.

0 '@ 32 (space) 64 @ 96
1°A 33 ! 65 A 97 a
2B 34 66 B 98 b
3 °C 35 # 67 C 929 ¢
4 D 36 $ 68 D 100 d
5 E 37 % 69 E 101 e
6 F 38 & 70 F 102 f
7 °G 39 71 G 103 g
8 "H 40 (72 H 104 h
9 1 41) 73 1 105 i
10 7] 42 * 74] 106 j
11 K 43 + 75 K 107 k
12 "L 44 76 L 108 1
13 "M 45 — 77 M 109 m
14 °N 46 . 78 N 110 n
15 O 47 / 79 O 111 o
16 ‘P 48 0 80 P 112 p
17 "Q 49 1 81 Q 113 q
18 "R 50 2 82 R 114 r
19 S 51 3 83 S 115 s
20 °T 52 4 84 T 116 t
21 U 53 5 85 U 117 u
22 °V 54 6 86 V 118 v
23 "W 55 7 87 W 119 w
24 °X 56 8 88 X 120 x
25 Y 57 9 89 Y 121 y
26 “Z 58 : 90 Z 122 2z
27 1 59 ; 91 [123 {
28 “\ 60 < 92 \ 124 |
29 7] 61 = 93] 125 }
30 ~ 62 > 9 -~ 126 ~
31 " 63 ? 95 _ 127 DEL

7

S S S

Appendix C
Hex-to-Decimal and

Decimal-to-Hex Conversion

Decimal-to-Hex Conversion

VOO WN=RO

$22
$23
$24
$25
$26
$27
$28
$29
$2A
$2B
$2C
$2D
$2E
$2F
$30
$31
$32
$33
$34
$35
$36
$37
$38
$39
$3A
$3B
$3C
$3D
$3E
$3F
$40
$41
$42
$43

$44
$45
$46
$47
$48
$49
$4A
$4B
$4C
$4D
$4E
$4F
$50
$51
$52
$53
$54
$55
$56
$57
$58
$59
$5A
$5B
$5C
$5D
$5E
$5F
$60
$61
$62
$63
$64
$65

235

APPENDIX C

102 $66 147 $93 192 $CO
103 $67 148 $94 193 $C1
104 $68 149 $95 194 $C2
105 $69 150 $96 195 $C3
106 $6A 151 $97 196 $C4
107 $6B 152 $98 197 $C5
108 $6C 153 $99 198 $Cé6
109 $6D 154 $9A 199 $C7
110 $6E 155 $9B 200 $C8
111 $6F 156 $9C 201 $C9
112 $70 157 $9D 202 $CA
113 $71 158 $9E 203 $CB
114 $72 159 $9F 204 $CC
115 $73 160 $A0 205 $CD
116 $74 161 $A1 206 $CE
117 $75 162 $A2 207 $CF
118 $76 163 $A3 208 $DO
119 $77 164 $A4 209 $D1
120 $78 165 $A5 210 $D2
121 $79 166 $A6 211 $D3
122 $7A 167 $A7 212 $D4
123 $7B 168 $A8 213 $D5
124 $7C 169 $A9 214 $D6
125 $7D 170 $AA 215 $D7
126 $7E 171 $AB 216 $D8
127 $7F 172 $AC 217 $D9
128 $80 173 $AD 218 $DA
129 $81 174 $AE 219 $DB
130 $82 175 $AF 220 $DC
131 $83 176 $BO 221 $DD
132 $84 177 $B1 222 $DE
133 $85 178 $B2 223 $DF
134 $86 179 $B3 224 $EO

135 $87 180 $B4 225 $E1

136 $88 181 $B5 226 $E2

137 $89 182 $B6 227 $E3

138 $8A 183 $B7 228 $E4

139 $8B 184 $B8 229 $E5

140 $8C 185 $B9 230 $E6

141 $8D 186 $BA 231 $E7

142 $8E 187 $BB 232 $E8

143 $8F 188 $BC 233 $E9

144 $90 189 $BD 234 $EA
145 $91 190 $BE 235 $EB

146 $92 191 $BF 236 $EC

236

-

-1

W R

Hex-Decimal Conversion

237
238
239
240
241
242
243

$ED
$EE
$EF
$F0
$F1
$F2
$F3

244
245
246
247
248
249
250

$F4
$F5
$F6
$F7
$F8
$F9
$FA

Hex-to-Decimal Conversion

$00
$01
$02
$03
$04
$05
$06
$07
$08
$09
$0A
$0B
$0C
$0D
$0E
$0F
$10
$11
$12
$13
$14
$15
$16
$17
$18
$19
$1A
$1B
$1C
$1D
$1E
$1F
$20
$21
$22

0

O OJAUT > WN =

$23
$24
$25
$26
$27
$28
$29
$2A
$2B
$2C
$2D
$2E
$2F
$30
$31
$32
$33
$34
$35
$36
$37
$38
$39
$3A
$3B
$3C
$3D
$3E
$3F
$40
$41
$42
$43
$44
$45

251
252
253
254
255

$46
$47
$48
$49
$4A
$4B
$4C
$4D
$4E
$4F
$50
$51
$52
$53
$54
$55
$56
$57
$58
$59
$5A
$5B
$5C
$5D
$5E
$5F
$60

$61

$62
$63
$64
$65
$66
$67
$68

237

APPENDIX C
$69 105 $96 150 $C3 195
$6A 106 $97 151 $C4 196
$6B 107 $98 152 $C5 197
$6C 108 $99 153 $C6 198
$6D 109 $9A 154 $C7 199
$6E 110 $9B 155 $C8 200
$6F 111 $9C 156 $C9 201
$70 112 $9D 157 $CA 202
$71 113 $9E 158 $CB 203
$72 114 $9F 159 $CC 204
$73 115 $A0 160 $CD 205
$74 116 $A1 161 $CE 206
$75 117 $A2 162 $CF 207
$76 118 $A3 163 $D0 208
$77 119 $A4 164 $D1 209
$78 120 $A5 165 $D2 210
$79 121 $A6 166 $D3 211
$7A 122 $A7 167 $D4 212
$7B 123 $A8 168 $D5 213
$7C 124 $A9 169 $D6 214
$7D 125 $AA 170 $D7 215
$7E 126 $AB 171 $D8 216
$7F 127 $AC 172 $D9 217
$80 128 $AD 173 $DA 218
$81 129 $AE 174 $DB 219
$82 130 $AF 175 $DC 220
$83 131 $B0 176 $DD 221
$84 132 $B1 177 $DE 222
$85 133 $B2 178 $DF 223
$86 134 $B3 179 $E0 224
$87 135 $B4 180 $E1 225
$88 136 $B5 181 $E2 226
$89 137 $B6 182 $E3 227
$8A 138 $B7 183 $F4 228
$8B 139 $B8 184 $E5 229
$8C 140 $B9 185 $E6 230
$8D 141 $BA 186 $E7 231
$8E 142 $BB 187 $E8 232
$8F 143 $BC 188 $E9 233
$90 144 $BD 189 $EA 234
$91 145 $BE 190 $EB 235
$92 146 $BF 191 $EC 236
$93 147 $C0 192 $ED 237
$94 148 $C1 193 $EE 238
$95 149 $C2 194 $EF 239

238

-3

\J

Hex-Decimal Conversion

$FO
$F1
$F2
$F3
$F4
$F5

240
241
242
243
244
245

$F6
$F7
$F8
$F9
$FA
$FB

246
247
248
249
250
251

$FC 252
$FD 253
$FE 254
$FF 255

239

[

Appendix D
Error Messages

Here are the codes for the error messages that you'll encounter
on your Apple IIGS. Whenever you have an error-handling
routine using ONERR and PEEK (222), you will be given a
code representing an error. For example, error 42 means that
you are OUT OF DATA when a READ statement has tried to
read more than the available number of DATA statements.

The error messages are divided into four sections: DOS
3.3 and Applesoft error messages, ProDOS 8 error messages,
ProDOS 16 messages (though you may not encounter them
with Applesoft programs), and finally, four fatal errors.

Applesoft and DOS 3.3 Error Messages

NEXT WITHOUT FOR
LANGUAGE NOT AVAILABLE
RANGE ERROR

WRITE PROTECTED

END OF DATA

FILE NOT FOUND
VOLUME MISMATCH

1/0 ERROR

DISK FULL

10 FILE LOCKED

11 DOS SYNTAX ERROR

12 NO BUFFERS AVAILABLE
13 FILE MISMATCH

14 PROGRAM TOO LARGE

15 NOT DIRECT COMMAND
16 PROGRAM SYNTAX ERROR
22 RETURN WITHOUT GOSUB
42 OUT OF DATA

53 ILLEGAL QUANTITY

69 OVERFLOW

77 OUT OF MEMORY

90 UNDEFINED STATEMENT
107 BAD SUBSCRIPT

120 REDIM'D ARRAY

CONRUBNRO
W

241

APPENDIX D

133 DIVISION BY ZERO

163 TYPE MISMATCH

176 STRING TOO LONG

191 FORMULA TOO COMPLEX
224 UNDEFINED FUNCTION
254 BAD INPUT RESPONSE
255 CONTROL-C INTERRUPT

ProDOS 8 Error Messages

RANGE ERROR

NO DEVICE CONNECTED
WRITE PROTECTED

END OF DATA

PATH NOT FOUND
PATH NOT FOUND

1/0 ERROR

DISK FULL

10 FILE LOCKED

11 INVALID OPTION

12 NO BUFFERS AVAILABLE
13 FILE TYPE MISMATCH

14 PROGRAM TOO LARGE
15 NOT DIRECT COMMAND
16 SYNTAX ERROR

17 DIRECTORY FULL

18 FILE NOT OPEN

19 DUPLICATE FILENAME
20 FILE BUSY

21 FILE(S) STILL OPEN

VOB WN

ProDOS 16 Error Messages

$1 Invalid call number

$5 Call pointer out of bounds

$6 Invalid caller identification

$10 Device not found

$11 Invalid device ref number

B20 Invalid request code

$25 Interrupt table full

$26 Invalid operation

$27 1/0 Error (Note: different code number from DOS 3.3
above)

$28 No device connected

$2B Write protected

$2E Disk switched

-

-3

-

[

Error Messages

$30-$3F Device-specific errors

$40 Invalid pathname syntax
$42 FCB full

$43 Invalid file reference number
$44 Path not found

$45 Volume not found

$47 Duplicate filename

$48 Volume full

$49 Directory full

$4A Version error

$4B Unsupported storage type
$4C End of file encountered (EOF)
$4D Position out of range

$4E Access not allowed

$50 File is open

$51 Directory structure damaged
$52 Unsupported volume type
$53 Parameter out of range

$54 Out of memory

$55 VCB full

$57 Duplicate volume

$58 Not a block device

$59 Invalid level

$5A Block number out of range
Fatal Errors

$1 Unclaimed interrupt

$A VCB unusable

$B

FCB unusable

$C Block zero allocated illegally

243

i sl O S

Appendix E

Glossary

The glossary contains Applesoft as well as DOS 3.3 and
ProDOS statements, functions, and commands; it is arranged
alphabetically. (DOS indicates either DOS 3.3 or ProDOS.)
The examples have been set up to show you how to use the
keywords with their proper syntax. In some cases, when a
command can be used in different contexts, more than a single
example has been given. Some examples are shown in the im-
mediate mode, some in the program mode (those with line
numbers), and some in both modes. The more advanced com-
mands listed here were not covered in the text, but they’re
provided here to give you a complete reference.

ABS()

Gives the absolute value of a number or variable.
PRINT ABS(123.45)

AND

Logical operator.

140 IF A8 < > “Y” AND A$ <> “N” THEN GOTO 100
APPEND

Adds data to end of existing sequential text file (DOS).
200 PRINT CHR$(4); ‘“APPEND NAMES”

ASC()

Returns ASCII value of first character in string.
PRINT ASC (“W”)

or

A$ = “APPLE” : PRINT ASC(A$)

ATN()

Returns arctangent of number or variable.

PRINT ATN (123)

245

APPENDIX E

BLOAD

Loads binary file into memory. Does not need address to load,
but can be included (DOS).

Immediate mode: BLOAD GRAPHICS FILE or BLOAD GRAPHICS
FILE, A$4000

Program mode: 100 PRINT CHR$(4); “BLOAD GRAPHICS
FILE”

BRUN

Runs binary file from disk (DOS).

Immediate mode: BRUN SPACE APES

Program mode: 100 PRINT CHR$(4); “BRUN SPACE APES”

BSAVE

Saves binary file to disk. Must include both starting address
and length in either hexadecimal or decimal (DOS).

Hexadecimal: BSAVE ZOOM BLAST, A$300, L$3DF
Decimal: BSAVE SPACE SHIP, A801, L1234

CALL

Goes to machine language subroutine at a given decimal
address.

CALL -936.

CAT

Shows the files in a given directory. The prefix directory is
shown if you do not specify a directory (ProDOS).

CAT
CAT /SORTS

CATALOG
Prints the contents of disk to screen or printer (DOS).

CATALOG,D1

CHRS$()

Returns the character with a given decimal value.
PRINT CHR$(65)

CLEAR

All variables are reset to zero.

120 CLEAR

246

-

3)

1

]

U U I

Glossary

CLOSE
Closes text file.

210 PRINT CHR$(4); ‘“CLOSE NAME LIST”

COLOR=

Sets color in lo-res graphics in values from 0 through 15.
30 COLOR = 9

CONT

Continues program after a STOP, END, or CTRL-C
CONT or CONT 300

COS()

Returns the cosine of variable or number.

PRINT COS(123)

CREATE

Used primarily to make directory files, but it can be used to
create any kind of file (ProDOS).

Directory file CREATE /SORTS
BASIC file CREATE SPOTS.BAS

DATA
Strings or numbers to be read.

1000 DATA 2, 345, HELLO, “WALK”
DEF FN()

Defines a function for real variable.
DEF FN A(X) = X * X

PRINT FN A(4) (Result = 16)

DEL

Deletes range of line numbers.

DEL 120,200

DELETE

Deletes file from disk (DOS).
DELETE ADDING MACHINE

247

APPENDIX E

DIM
Allocates memory for array.

130 DIM A$ (100)
DRAW AT

Draws a hi-res shape table on hi-res screen at (x,y) coordinates.

50 DRAW 5 AT 100,40

END
Terminates running of program.

200 END

EXEC

Executes the contents of a text file without removing program
in memory (DOS).

EXEC PROGRAM SETUP

EXP()
Returns ¢(2.718289) to indicated power.

PRINT EXP (3)

FLASH

Turns on flashing mode.

30 FLASH : PRINT ‘“HELLO”

FLUSH
Takes all data in buffers and writes data to file (ProDOS).

FLUSH NAMES/CUSTOMERS (Writes all data in buffers to file
CUSTOMERS)

FOR

Sets up beginning and limit of FOR-NEXT loop.

40 FORI = 1 TO 100

FP

Sets to floating point or Applesoft language. Also clears mem-
ory (DOS 3.3).

FP

248

3

Glossary

FRE()
Returns available memory.

PRINT FRE(O)

GET

Halts execution until single entry received from keyboard.
30 GET A$ or GET A or GET A%

GOSUB

Branches to subroutine at given line number.
100 GOSUB Q00

GOTO

Branches to given line number.

100 GOTO 200

GR

Sets lo-res graphics mode.

120 GR

HCOLOR=

Set hi-res color to values of 0-7.

40 HCOLOR= 3

HGR

Sets page 1 hi-res graphics mode and clears hi-res screen 1.

120 HGR
HGR2

Sets page 2 hi-res graphics mode and clears hi-res screen 2.

130 HGRR

HIMEM

Sets memory to highest available location for a program
within a range of —65535 to 65535, depending on RAM
memory.

10 HIMEM: 40123

249

APPENDIX E

HLIN AT

Draws a horizontal line in lo-res graphics at a given vertical
position.

40 HLIN 10,20 AT 11

HOME

Clears screen and places cursor in upper right corner of text
window.

HOME

HPLOT TO

Plots single point or points on hi-res screen at given (x,y) co-
ordinates to another set of (x,y) coordinates.

40 HPLOT 10,50 : REM SINGLE POINT
50 HPLOT 0,0 TO 879,151 : REM RANGE OF POINTS

HTAB
Horizontal tab position set.

50 HTAB 30 : PRINT “HERE”

IF-THEN
Sets up conditional logic for execution.

60 IF A$ = “Q” THEN END

INIT
Initializes disk (DOS 3.3).

INIT HELLO

IN#
Takes input from indicated slot number (DOS).

IN#6

INPUT

Halts program execution until strings or numbers are entered
and the return key has been pressed. May enter message
within INPUT statement.

90 INPUT “ENTER WORD-—> ; W§(D)

100 INPUT “ENTER NUMBER -> *’; A

110 INPUT “ENTER INTEGER NUMBER -> ”’; N%
120 PRINT ““HIT ‘RETURN’ TO CONTINUE ",

130 INPUT R$

250

S D B

-

U I B

.4

Glossary

INT
Sets to Integer BASIC language and clears memory (DOS 3.3).

INT

INT()
Returns the integer value of a real variable or number.

PRINT INT (123.45)

INVERSE
Turns on inverse mode.

50 INVERSE : PRINT “APPLE”

LEFT$()

Returns specifed number of characters from a given string be-
ginning with character at far left.

10 A$ = “GOODBYE”
20 PRINT LEFT$ (A$,4) (Results = GOOD)

LEN

Returns the length in terms of number of characters of a speci-
fied string.

PRINT LEN(A$)

LIST

Lists program currently in memory.

LIST

LOAD

Loads Applesoft or integer program specified (DOS).
LOAD CALENDAR PLOT

LOCK

Prevents file from being overwritten or deleted (DOS).
LOCK CALENDAR PLOT

LOG()

Returns logarithm of specifed number or variable.
PRINT LOG (15) or PRINT LOG (G)

251

APPENDIX E

LOMEM

Sets memory to lowest location available for a program within
a range from —65535 through 65535, depending on RAM
memory.

LOMEM: 1234

MAXFILES

Reserves specified number of buffers for files within a range of
1 through 16 (DOS 3.3).

MAXFILES 10

MID$() A

Returns a portion of a string beginning with the nth number
from the left to the length of the second number.

10 A$ = “WONDERFUL”
20 PRINT MID$(A$,4,3) (Results = DER)

MON

Turns on screen display of computer-disk communication
(DOS 3.3).

MONCIO or MON C,I,0

NEW
Clears program in memory.

NEW

NEXT
Sets the top of the loop begun with FOR statement.

I10FORI = 1TO 100
20 PRINT “THIS”
30 NEXT I

NOMON

Turns off screen display of computer-disk communication
(DOS 3.3).

NOMONCIO or NOMON C,I,0

NORMAL

Returns screen to standard display from INVERSE or FLASH
modes.

10 FLASH : PRINT “FLASHING MODE”
20 NORMAL: PRINT “NORMAL MODE”

252

-

-

Glossary

NOT
Logical negation in IF-THEN statement.

60 IF NOT B THEN GOTO 100

NOTRACE
Turns off TRACE mode.

NOTRACE

ON
Sets up computed GOTO and GOSUB.

190 ON A GOSUB 1000,2000,3000

ONERR
Branches to specified line when error is encountered.

40 ONERR GOTO 1000

OPEN
Creates or starts new text file (DOS).

500 PRINT CHR$(4); “OPEN NAME LIST”

OR
Logical OR in IF-THEN statement.

130 IF A=10 OR B = 20 THEN GOTO 190
PDI()

Returns value of specified paddle number 0-3.
PRINT PDL(0)

PEEK
Returns memory contents of given decimal location.

170 PRINT PEEK (768)
180 IF PEEK(?68) = 56 THEN GOTO 200

PLOT
Plots point in lo-res graphics in (x,y) coordinates, visible in col-
ors other than black.

PLOT 10,15

POKE
Inserts given value in specified memory location.

POKE 768,10 (Sets memory location 768 to decimal

value 10) 253

APPENDIX E

POP
Used in GOSUB context, it removes top line number in the

stack and makes the second-to-last line number the ““return’”’

point when the next RETURN will be encountered.

10 GOSUB 100

20 END

100 GOSUB 200

200 PRINT “HELLO”

210 POP

220 RETURN

(Results = HELLO; without POP, it would be HELLO HELLO.)

POS()

Gives the current horizontal position of the cursor.
10 PRINT “THIS LINE”;: PRINT POS(0)

POSITION

Used in sequential text files to begin reading files at specified

position rather than at the beginning of the file (DOS).

10 D$=CHR$(13) + CHR$(4)
20 PRINT D$ “OPEN NAME FILE” : PRINT D$ “POSITION
NAME FILE,R9” : PRINT D$ “READ NAME FILE”

PREFIX
Sets a directory as the current (prefix) one (ProDOS).

PREFIX /SORTS/SAMPLES/
CAT (Shows the files in SAMPLES
now if directory is not specified)

PRINT

Outputs string, number, or variable to the screen or printer.
PRINT 1;2;3; “GO”; F$; A; N%

PR#

Sends output to specified slot number.

PR#1

READ

Enters DATA contents into variable.

10 READ A : READ B$
20 DATA B, “BATS”

254

Glossary

READ
Reads contents of text file (DOS).

40 PRINT CHR$(4) “READ NAME FILE”

RECALL
Loads array from tape that has been recorded with STORE.

RECALL Z

REM
Nonexecutable command. Allows remarks in program lines.

10 BELL$ = CHR$(7): REM RINGS BELL

RENAME
Renames files on disk (DOS).

RENAME FAST SORT, SHELL SORT

RESTORE

Resets position of READ to first DATA statement.
10 FORI = 1 TO 5 : READ A$(I) : NEXT

20 RESTORE

RESTORE

Places the contents of a VAR file into the variable in memory
in Applesoft programs (ProDOS).

RESTORE /FRIENDS/ADDRESSES

RESUME
Goes to statement where error has occurred in error-handling
routine.

10 ONERR GOTO 50

R0 INPUT V%

30 END

50 PRINT “ENTER ONLY INTEGER NUMBERS!” : RESUME

RETURN
Returns program to next line after GOSUB command.

800 RETURN

RIGHTS ()
Returns the rightmost n characters of given string.
10 A$= “DATAMOST” : PRINT RIGHT$(A$,4) (Results =

MOST)
255

APPENDIX E

RND()
Generates a random number less than 1 and greater than or
equal to 0.

PRINT RND(8), INT (RND (1) * W) + 1) (Generates whole ran-
dom numbers from 1 to
N, with N being the up-
per limit of desired
numbers)

ROT=
Used to rotate shapes on hi-res screen. Can be set to angles

between 0 and 255. Number of angular positions recognized
depends on SCALE value of shape.

60 ROT= 64

RUN

Executes program in memory, or if filename is included, exe-
cutes program from disk.

RUN FLYING MACHINE (Executes disk file)

RUN (Executes program in memory)
180 PRINT CHR$(4); “RUN FLYING MACHINE” (Program

mode)
SAVE

Records program on disk.
SAVE GRAPH PLOT

SCALE=
Specifies size or scale of shape on hi-res screen.

40 SCALE= B

SCRN()

Returns the color code (0-15) in lo-res graphics of plot at (x,y)
coordinates.

30 PRINT SCRN (10,20)

SHLOAD

Command for loading shape table from tape (DOS 3.3).
SHLOAD

256

1

-

U IS [

Glossary

SIN()
Returns the sine of a variable or number.

PRINT SIN(123)

SPC()

Prints specified number of spaces.

PRINT SPC(R9); “HERE”

SPEED

Sets speed of execution from 0 to 255 (default is 255).
50 SPEED = 100

SQR()

Returns the square root of a variable or number.
PRINT SQR(64)

STOP

Halts execution and prints line number where break occurs.

(The CONT command will restart program at next instruction
after STOP command.)

100 STOP

STORE

Records array values on tape (DOS 3.3).
STORE Z

10 STORE 2

STORE
Writes variables currently in memory to VAR file to be recov-
ered with RESTORE (ProDOS).

STORE FRIENDS/ADDRESSES

STRS()

Converts number/variable into string variable.

20 T= 123 : T$= STR$(T) : TT$= “$” + T$ + “.00”
TAB()

Sets horizontal tab from within a PRINT statement.
PRINT TAB(RO); HERE”

257

APPENDIX E

TAN()

Provides the tangent of a number or variable.
40T = 34 :V = BB

BOR = T + V: PRINT TANR)

TRACE

Turns on TRACE function for display of program execution
(turned off with NOTRACE).

TRACE

UNLOCK
Removes LOCK status from file on disk, allowing it to be re-
moved with DELETE statement or to be overwritten (DOS).

UNLOCK TAX CHART
VAL()

Used to convert string to numeric value.
30 H$ = “123” : PRINT VAL(H$)

VERIFY

Examines disk file to check for errors. If there are no errors,
nothing happens (DOS).

VERIFY TAX CHART

VLIN AT

Draws vertical line in lo-res graphics AT given horizontal
position.

50 VLIN 1,30 AT 10

WAIT

Stops execution until memory location values meet given
conditions.

80 WAIT —16384,128

WRITE

In making text files, specifies filename to which following
PRINT statements will be written (DOS).

50 D$ = CHR$(13) + CHR$(2)
60 PRINT D$“OPEN NAMES’: PRINT D$“WRITE NAMES”
70 PRINT ‘“TOM” : PRINT “DICK” : PRINT “HARRY”’

258

N I

-

.3

w3

- |

Glossary

XDRAW
Used with shape tables to draw in complementary color a
specified shape on hi-res screen. Similar to DRAW.

70 XDRAW 3 AT 150,55

259

Index

$. See variable, string
%. See percent sign
.. See colon
?. See PRINT
“Address labels” program 184-85
AND 75
animation 136
APPEND 166
Apple publications 206-7
Applesoft 15, 25
Applesoft BASIC 33, 131
token chart 229-32
Apple user groups 205-6
arrays 81-86
multidimensional 84-86
ASCII 113-14
characters 233
hexadecimal /decimal lists 217-18
BAS files 18
BASIC program 4, 207, 209-10
baud rate 13
BINARY.FINDER 164
BIN files 18
BLOAD 113
blocking 78, 101
blurred text 132
branching 71-87
computed branches 78
BRUN 113
BSAVE 113
binary file 124-25
graphics 145
business programs 222-23
bytes 4
“/Calendar plot” program 216-17
CALL 113, 123-24
CAT 17
CHAIN 162-63
CHR$ 113-15, 217
circles 142
CLOSE 160
colon 24, 58-59
color 131-32, 140, 186
in QuickDraw II 197
comma 58-59
compiler 210

260

computer languages 207-10
assembly 207
BASIC 207, 209-10
C language 209
COBOL 209
Forth 208-9
FORTRAN 209
Logo 209
Pascal 208
concatenation 99-100
control characters 114-16
control key 22
controller card 6
control panel 12-14, 25
counters 67-68
DATA 62-63
database programs 220-22
data manipulation 104-5
DEL 41
Desktop 16
desktop publishing 9
Digital Oscillator Chip (DOC) 200
DIM 83
“Disk Locator” program 213-15
disks 7, 224
booting 15
booting with DeskTop 16
booting without Desktop 17
formatting 16
formatting without Desktop 18-20
installing drive 6
Display 26
DOS 15
DRAW 153
editing 40-46
editor/assemblers 207-8
END 34, 60
error messages 40, 102, 241-43
esc key 21
EXEC 160
EXEC files 159-63
automatic commands 163
exiting 103
FILE MANAGER 168-70
FLASH 64
fonts 190

-]

-

e

-3

3

1

FOR 64

formatting text 91-92

GET 61, 125-26

GOSUB 77
computed 79-80

GOTO 72, 102

GR 131

graphics 131-54
commercial programs 223-24
drawing board program 141-42
drawing in high resolution 138-39
high-resolution 131, 137
low-resolution 131, 134, 136
preserving screen 137-38
super high resolution 195

hardware 4

HELLO program 21

hexadecimal 118, 148-50
conversion chart 235-39

HGR 131, 138

HGR2 131

HOME 34

HPLOT 138

HTAB 91

IF 72

ImageWriter 28, 179
control codes 183

immediate mode 33-34

INPUT 60

Integer BASIC 25

INVERSE 64

joysticks 224

keyboard 21-24

LaserWriter 187, 209

LEFT$ 95-96

lines 132-35

LIST 36

loops 64-68
nested 65-67

math operations, elementary 46-47

memory 113-14, 117
accessing 114
locations 113

MID$ 95-96

modem 12-13, 189, 224-25

modem port panel 29

monitors 7
types 8
versus television 7

mouse 13

moveto statement 188

music programs 224

NEW 72

NEXT 64, 67

NORMAL 64

NOT 75

numbering programs 36
nybble 149
ON 78
ONERR 101-2
OPEN 160
Options 26
OR 75
padding 103
paddles 93, 122
formatting with 93
labeling 122
PEEK 103, 113, 117-18, 122-23, 127
percent sign 24, 188
PLOT 134
POKE 43-44, 113, 117-23, 127, 131,
143
POSITION 167
PostScript 187, 209
precedence 47-48
PRG.LISTER 181
PRINT 24, 33, 35
printer
control codes 181-83
port panel 28
test program 15
printers 8-11, 179-90
dot-matrix 9
graphics 186
ink-jet 10
laser 9-10
letter-quality 9
plotter 10
thermal 10
printing photographs 190
PRINT LEN(A$) 94-95
ProDOS. See DOS
“Program header”” program 215-16
program mode 34
“Quick Apple-Betize”’ program 210-11
QuickDraw II 195-99
calls 195-99
RAM 4-5, 11
RAM cards 12
RAM drive 12
random access files 159, 170-71
random numbers 139
READ 62-63
recalling programs 38
relationals 73-81
strings and 81
REM 35
reset key 22
RIGHT$ 95-96
RND 139
ROM 4-5
ROT 153

261

RUN 17, 38-39

SAVE 37-38

SCALE 153

scan lines 197

scroll control 108

semicolon 58-59

sequential text files 159, 164-70

setting traps 101-2

shapes 146-54
manipulation of 153

showpage statement 188

slots 11

software 4

“Sort menu”’ program 212-13

sound 27, 122-23, 199-201
registers 200-201

SPC(N) 91

SPEED 97

string 24, 57, 93-100, 104
formatting 93-100
length 94-95
manipulation 104
rationals and 81

?SYNTAX ERROR 40

system speed 27-28

TAB(N) 91

262

TEXT 34
text files 159-74
converting BAS files into 160
TEXT:HOME 120
THEN 72
toggle 144
toolboxes 195
TXT files 18
UNLOCK 18
utility programs 218-19
VAR files 18
variables 53-58
string 24, 57
types 56-57
VLIN 132-33
VTAB 91
WAIT 113, 125-26
windows 119-20
word processors 219-20
WRITE 160
XDRAW 153
zero character 184

% IR B

o= .._‘

-

A

.

i

S

A New Apple for Everyone

The Apple IIGS computer, which just became available in the fall
of 1986, is a welcome addition to the Apple II series. Its color
graphics and sound capabilities, faster processing time, greater
memory, and wide availability of quality software make it the
latest success in a new generation of home computers.

The Elementary Apple IIGs is all you'll need to become
familiar and comfortable with this exciting new machine. You'll
learn in easy, logical steps how to set up the computer, load soft-
ware, and write your own programs. Abundantly illustrated with
examples, The-Elementary Apple 1IGS contains the necessary infor-

mation that will have you up and running in no time.
; Andbefore you know it, you'll progress from learning to
enter short-programs to using variables, strings, DATA statements,
and loops within your own programs.

Here’s just some of what you'll find in The Elementary
Apple IIGs:

/)#Detailed instructions on hooking up and operating your IIGS

~and its peripherals

* A step-by-step guide to creating and using your own programs

* Numerous examples and clearly written tutorials for hands-on
guidance in developing application programs

* Information about various types of printers, plus how to inter-
pret printer manuals and use printer control codes

* An introduction to the built-in graphics and sound toolboxes

» Utility programs, and hints and tips for expanding your knowl-
edge of software available for the IIGS

* Handy quick-reference appendices and much, much more

The Elementary Apple 11Gs will ease your way toward un-
derstanding and using this powerful machine-to its maximum ca-
pabilities. Written in the clear and concise style that has become
a hallmark of COMPUTE! Publications, it’s just what you need to
make a practical start with this exciting new computer.

ISBN 0-87455-072-6

: SOIl A1ddV

ATRJUIWI[H Y.

Bodks

’.

	2022_12_04_07_30_36
	2022_12_04_07_33_43
	2022_12_04_07_31_13

