v i ELEMENTARY compatars 84—

- —— ——— s i i S - \A

THE
ELEMENTARY
COMMODORE-64

ccceccccceccecccccccccccccecccce

u .\u ODOODDODODDODOODDODDOD U) ﬂU) w) U O m_u

_

DD TN JND I D 10 I ID I I IS B0 R0 I D B0 B0 I B0 JD JD IR0 I IO I

THE
ELEMENTARY

COMMODORE-64

By
William B. Sanders, Ph.D.

San Diego State University

Nlustrations by
Martin Cannon

DATAMOST

First Printing December 1982
Second Printing March 1983
Third Printing May 1983

COPYRIGHT © 1983 by DATAMOST, INC.

. This Manual is published and copyrighted by DataMost, Inc. Copying,
duplicating, selling or otherwise distributing this product is hereby
expressly forbidden except by prior written consent of DataMost, Inc.

The word Commodore and the Commodore logo are registered trade-
marks of Commodore Business Machines.

Commodore Business Machines was notin any way involved in the writing
or other preparation of this manual, nor were the facts presented here
reviewed for accuracy by that company. Use of the term Commodore
should not be construed to represent an endorsement, official or other-
wise, by Commodore Business Machines.

DATAMOST, INC. publishers

8943 Fullbright Avenue '
Chatsworth, California 91311 ISBN 0-88190-001-X

ccocccccococccococcocccoccoccocccacc

3933979303330 30D0203233D239553)))

Acknowledgements

Several people helped directly or indirectly in the creation of ELEMEN-
TARY COMMODORE-64. First and foremost, | owe a great deal to Eric
Goez who taught me and several others how to program. Not only did
Eric patiently show how to make the computer do all sorts of wonderful
things, but he also sparked the imagination of the group of novices of
which | was a member.

Stephen Murri of Commodore, Inc. was extremely helpful. Not only did
he supply DATAMOST with a prototype of the COMMODORE-64 which |
used until production models were available, Mr. Murri sent all kinds of
other information for getting the most out of this new machine. Also of
Commodore, Inc., Diane LeBold supplied me with relevant issues of Com-
modore’s magazines, Power Play and Commodore: The Microcomputer
Magazine. All in all, | could not have asked for better support than what
Commodore supplied.

Dave Gordon of DATAMOST INC. provided a world of support for the
book's production. Marcia Carrozzo edited the manuscript for style and
consistency, making the work a good deal clearer. Martin Cannon did the
art work in a way that communicated ideas creatively and visually. He
gave life to the notion that a picture is worth a thousand words. The rest
of the staff at DATAMOST were equally helpful and friendly.

Finally, my wife Eli and sons Billy and David, and even our dog Cassiopea,
put up with the inconvenience of a writer in the house. To every one of
these people | owe a debt of gratitude, but as in all such efforts, if anything
goes wrong, it is only the author who is to blame. Therefore, while | happily
give those who assisted credit, any of the book’s shortcomings are the
sole responsibility of the author.

TABLE OF CONTENTS

Preface
Chapter 1 Introduction.........................ooiiil 11
Hooking Up Commodore-64...........ccciiiiiiieiennn, 14
[0 1= @ T 1 S PO 20
The C-64 Keyboardcoviiiiiiiiiiiinienennnnnns 25
SUMMAIY o iitttttttiiiitiitiiaeaaseresasaasnenseees 29
Chapter 2 Getting Started 31
Your First Command!coiiiiiiiiiiineiernenennnns 31
Your First Program!ooiiiiiiiiiiiiiiiinnennnns 33
Setting Up A Program.......oceviiieeiieeeiieneennnneeans 34
Using Your Editor.....oovvieiiiii i 40
Elementary Math Operationsccoiveieeennnn. 45
SUMMANY i iiitieereeeineeeeeessnenasaasesasansans 48
Chapter 3 MovingAlongcoiiiiinnns. 49
Variables .. .vviiiiii i i i it e 49
Inputand Outputoiiiiiiiiiiii i e 58
Looping With FOR/NEXTciviiiiiiiiiiiiiiieineennnns 63
SUMMANY ittt eiiiinneeetrssssasnnsoanassssnsnsss 69
Chapter 4 BranchingOut 71
BranChing.....oooiiiiiiiiiiiiiinineiniinianeeceeenns 71
Relationals . .ovuveeeie e iiiiiiiininnnieanaaannnns 74
AND/OR/NOT . ittt ieiit i iiiiiainaeeeananans 76
SUDIOULINES ...ttt iiiiiiiiiiiiiiiiiite i 79
Array vttt eaeeerentess et easntesasraeennaes 84
SUMMANY ittt et it iinneeetrtnsnensiaeaesaaaanasses 90
Chapter 5 OrganizingTheParts........................ 91
Formatting Text........ooviiiiiiiiiiiiininnenannnnnns 91
Unraveling Stringsooveiiiiiiiiiiiiiiiiiiiiiiianeens 93
String Formattingovviiiiiiiiiiiiiiiiiiiiiiiine 94
SettingUp DataEntrycooviiieiiniiiiinnnannnees 104
Setting Up Data Manipulationccovennn. 105
Organizing Outputcoovviiiiiiiiiii i 107
“SCroll Control . ..ovvviiniiiiiii ittt 109
SUMMANY . .viiinttriitesnueeenneesenseesnsssssnnsenns 110
Chapter 6 Some Advanced Topics..................... 113
The ASCIl and CHR$ Functionsccoveeeinnnn. 113
POKES and PEEKScciiiuiiniiieiieeiniinnnennns 116
POKingthe Text Screen........ccvvieieiiinnnninenenss 120
Lotsof SOUNdoiiiiiiiiiiiieeerneeninennnenaaanons 124
SUMMANY . .iiiiittrinteeersieeenaesssnsosenaasssssssans 127

gcoeoccoecCcCcCccceccccCcccoCcoccCcoccC o

D2NS IS JN0 RED TS JE IS R0 IS RS 2D D B D JD 2 B0 JD D I BB TR0 D TS I

Chapter 7 Using Graphics 129
Screen GraphiCs.....ovviiieeeeieennineeneeeennns ... 130
Coloring Your Graphicscovviiiiiiieeennnnnnnnnnns 132
Sprite GraphiCscoviiiiiiiiii i e 145
SUMMANY ittt ettt eeeineeeneereesnennnnnns 155

Chapter 8 Dataand TextFiles 157
Data Files and Your Cassette 157
OPEN, INPUT, PRINT,CLOSEciiiiiienninnnnnns 160
Sequential Filescvviiiiiiiiiii it iiiinneennns 166
SUMMAIY ittt ittt tiiiennenaneaaseseonnennns 173

Chapter 9 Youand YourPrinter 175
Printing Texton Your Printer.............cociiiiiiiiet, 176
CHRStO The RESCUB. . .evvvit e iieeeeeeeeeneannns 180
Printing Graphicscoiiiiiiiiiii ittt 186
SUMMANY ittt ittt ittt eiiiieeeeeeeenannnnnns 191

Chapter 10 Programs, Hintsand Helps 193
C-64 User Groups and Magazines............ccveeenenn. 193
C-64 Speaks Many Languages..........ccoeevvininnnnnn. 196
SOt ROULINES . . oe vt it iet et ie e ciieieeieneeneenns 201
Shortcuts and Function Keysccovveniennnn.. 202
Utility Programscooiiiiiiiiiniiiiiii e 204
WOrd ProCessorsoviiiininnieeiieinrreenneennnnnns 204
Data Base and Business Programsovonn. 207
Graphics Packagesccoviiiiiiiininienennnneennns 208
Hardwarecooiiiiiiiin it iianeriinneenns 209
SUMMANY .ottt iiiiiiiitiiitineinnasereerenenennnnns 210

Commodore-64Commands 213

ScreenDisplayCodescovviiiiinne 219

INdeX. ... i et e 221

Preface

My first formal introduction to the workingé of a computer was in 1966. At

.. that time our wise mentor told us that if we learned the lowest level oper-

ations of a computer, we would be set for life. As a result of this philosophy,
we were taught how to count in binary and make conversions to octal and
then to decimal. We wrote code for the computer using only “0's” and
“1's”! However, we also learned how to write programs in a language
called FORTRAN, a high level language. Compared to the binary and
octal code, FORTRAN was easy. The problem was that we never really
sat down and programmed at a terminal, and so while we had a terrific
theoretical understanding of the workings of computers, we never learned
very much about interacting with a computer. (We used punch cards, sent
our programs over the telephone lines to a computer at UCLA, and waited
a week to get our results. If we had an error, we had to send the entire
program back for another try.) '

Since that time, both computers and the people who use them have changed.
To learn how to use a computer, it is unnecessary to learn everything
about how they work or the theory behind their operation. It is true that
by having a detailed understanding of the theory and operation of com-
puters one can do more with them, but it is something that does not have
to be done at the outset. One can learn how to program, and at a later
date learn the more technical details of a computer’s operation. After all,
most people learn to drive without knowing the intricacies of the internal
combustion engine of their automobile.

Another major change in computers has been in the transition from “maint
frames” and “terminals” to small individual computers. Your Commodoret

64 is not merely a terminal. It is a whole computer. Therefore, you are not.

dependent on using a piece of a larger computer, but you get the whole
thing all to yourself. As a result, you are not subject to a set of policies
and regulations for getting “on line” or paying for the time you use. You
make your own policies and are the captain of your own computer ship.
Therefore, it is unnecessary to spend a lot of time discussing the orga-
nizational aspects of accessing the CPU (Central Processing Unit), time-
sharing, and all of the other aspects of dealing with a computer several
people use simuitaneously. We will go right to the heart of the matter
programming YOUR computer.

The purpose of this book is primarily to teach you how to work your com-
puter and program in the language called BASIC. It is ELEMENTARY, and
so while you will learn a good deal, don't expect to learn everything about

ccccccccccCccCccccccecCccccceCcoeecCecc

570 755 150 10 T T T Y6 To o o o T T T0 THI0 JIo Yo 0 T T T T T

working with your Commodore-64. Once you are finished with this book,
you will realize how much more you can do wnth your computer. The more
you learn, the more you will find to learn. Howevér, by following the instruc-
tions and keying in the examples, you will learn how to write programs
with most of the instructions in the version of BASIC on your Commodore-
64.

As a final note, don't expect to learn everything right away. Be patient with
yourself and your computer, and you will be amazed at how much you will
learn. If you do not understand a command or a procedure, you can always
come back to it later. Try different things and play with your programs.
Think up different projects you would like your computer to do and then
try writing a program to do what you want. By all. means, though, do not
be afraid to make an attempt. With each step or attempt you will make
some progress. While it may be slow at times, the accumulated knowledge
will eventually lead to understanding.

3002022002222 0023D302200300

JJ3IJI3D3DDI3I3I3I3D23DII3I2I93II3I32IIIIIJID

CHAPTER 1

Introduction

This book is intended to help you operate your new COMMODORE-64
computer, get started programming and make life easier with your com-
puter. It is not for professional programmers or more advanced applica-
tions. It is only the first step, and it is for BEGINNERS on the COMMO-
DORE-64 computer. Everything will be kept on an introductory level but,
by the time you are finished, you should be able to write and use programs.

1

To best use ELEMENTARY COMMODORE-64 it is suggested that you
start at the beginning and work your way through step-by-step. | have tried
to arrange the book so that each part and section logically follows the
one preceding it. Skipping around might result in your not understanding
some important aspect of the computer’s operation. The only exception
to this rule is the last chapter where | have put a number of suggestions
for programs you might want to buy in order to help you write programs
(called UTILITY PROGRAMS). Also, there are descriptions of programs
for doing other things such as business, word processing and so forth.
When you're finished with this chapter, it would be a good idea to take a
quick peek at some of the programs described in the last chapter to see
if any of them fit your needs while you're learning about your COMMO-
DORE-64. You don't have to purchase any of them but, depending on
your interests and needs, you will find some of them very useful.

The first thing to learn about your computer is that it will not “bite” you. It
requires a certain amount of care. There are ways you can destroy disk-
ettes, tapes, and information but, by following a few simple rules you
should be all right. All of us have used sophisticated electronic equipment,
such as our stereos, televisions, and video-tape recorders; and there is
a certain amount of care they require. Otherwise, there is no need to fear
them. Likewise, your computer is electronic. if you pour water or other
liquids on the computer while the power is on, you're likely to damage it.
Using reasonable care, go ahead and put it to use. Remember, it is vir-
tually impossible to write a program which will harm the hardware (or
electronic circuits) in your machine. At worst, one of your programs might
erase the information on a tape or diskette. Throughout this book there
will be tips about how to do things the right and wrong way but, for the
most part, treat your computer as you would your microwave oven, garage
door opener or radio - with care but without fear.

At this stage of the game it is unnecessary to learn a lot of computer
jargon; some of this jargon is necessary to help you understand how your
computer operates. As we go on, more new terms will be introduced but,
for the most part the text will be in plain English. Nevertheless, you should
know the following just to get started.

HARDWARE

Hardware refers to the machine and all of its electronic parts. Basically,
everything from the keyboard to the wires and little black chips in your
computer is considered “hardware.” You will also hear the term “firmware.”
This is another type of hardware on which programs are written. Called
“proms” or “eproms,” these chips have information stored in them just as
tapes and disks do. Firmware is either inside your computer or in car-
tridges or boards you plug into the back of your COMMODORE-64. A

12

coccccccccccccccccccoccccceccecco

7999933355555 53013333I33)3)D)1)

biological analogy of hardware is the physical body, most importantly the
brain, and firmware is like “inherent” intelligence or “transplanted”
intelligence.

SOFTWARE

Software consists of the programs which tell the computer to do different
things. Whatever goes into the computer’s memory is software. It is anal-
ogous to the mind or ideas. Treating the hardware as the brain, any idea
which goes into the hardware is the software. Software is to computers
as records are to stereos. Software operates either in Random Access
Memory (RAM) or Read Only Memory (ROM) memory. (Firmware is hard-
ware with “burned in” software.)

RAM You may hear people talk about expanding their RAM. This is the
part of the computer’s memory into which you can enter information in
the form of data and programs. The more memory you have, the larger
the program and more data you can enter. Think of RAM as a warehouse.
When you first turn on your computer, the warehouse is just about empty
(it says it has 38911 BASIC BYTES FREE); but as you run programs and
enter information, the warehouse begins filling up. The larger the ware-
house the more information you can store there, and when it is full, you
have to stop. COMMODORE-64's come with 64K of RAM. The “K” for

13

computerists refers to “kilobytes” or “thousands-of-bytes”, but the actual
number is 1024 bytes. (The new disk storage systems are measured in
“megabytes” or “millions-of-bytes” - 102400 bytes to be precise. The next
time you're at a cocktail party, mention megabytes and you'll really impress
everyone.) For now, all you need to know about “bytes” is that they are a
measure of storage in computers. The more bytes, the more room you
have. Think of them in the same way you would “gallons,” “inches” or
“meters” - simply a unit of measure.

ROM A second type of computer memory is ROM meaning “Read Only
Memory.” This type of memory is “locked” into your computer’s chips. Your
COMMODORE-64's programming language, called BASIC, is stored in
ROM. The difference between ROM and RAM is that whenever you turn
off your computer, all information in RAM evaporates, but ROM keeps all
of its information. Don’t worry, though, you can save whatever is in RAM
on diskettes and tape and get it back. We'll see how that is done later.

Now that you know a few terms and enough not to fear your computer,
let's get it cranked up and running. If you already have your computer all
hooked up and working properly, you can skip the next section and go
directly to the “Power On!” section of this chapter.

Hooking Up Your Commodore-64 and
Peripheral Equipment

The LAST thing you should do after reading this section is plug in your
COMMODORE-64 and turn it on. Everything else should be done first.
If you bought your computer without a tape recorder or disk drive, it will
work fine, but you will need a Commodore Cassette Unit or a disk drive
to save information. If you have just the computer, skip to the section on
hooking up your TV set to the computer.

TAPE RECORDER

If you are using a tape recorder, either with or without a disk operating
system, hooking it up is quite simple. On your Commodore C2N Cassette
Unit is a cable to connect it to the computer. Take the cable and insert it
into the slot in the back of your computer that is the smaller of the two on
the left side. (Right behind the “4,” “5” and “6” keys.) Make sure that it is
lined up correctly with the “teeth” in the slot, and do not use excessive
force when connecting it. That is all there is to it! Your cassette recorder
is now ready to operate. Use ordlnary cassette tapes - usually 5 minute
tapes are the best.

14

Ci‘CgCC cccccccccccccoccccoccocccceccec

D23 IJIJDIJI3II3IIDDIJDIJIDIJIDI)IDII DI

DISK DRIVE

With the COMMODORE-64 you should use the VIC-1541 disk drive. (The
VIC-1540 will not operate correctly with the COMMODORE-64 unless you
get a special additional chip for it.) To connect your disk drive, attach one
end of the disk cable to the serial socket in the back of your computer
(the one right next to where the cassette tape recorder is connected behind
the “7” and “8” keys) and the other end to the socket in the back of your
disk drive, directly above the “fuse.” Now plug the power cord for your
disk drive into the 3-pronged socket between the on/off switch and the
fuse. When everything else is connected, you can plug your disk power
cord into a wall socket and flip the switch to ON. Do not do it now. (NOTE:
Unlike the cassette tape recorder that draws its power through the com-
puter, the disk drive needs to be plugged into a separate power source.)

TV OR MONITOR

In order to see what's going on in your computer, you need a TV set. On
some computers it is necessary to purchase an RF modulator, but your
COMMODORE-64 comes with a built-in RF modulator. Just plug one end
of the connecting cable that comes with your COMMODORE-64 into the
jack in the back of your computer, directly behind the “+” key, and the

15

other end into the “box” that you attach to your TV. The “box” is attached
to the antenna leads marked “VHF” on the back of your TV set, and the
switch on the box is flipped to “computer.” Finally, there is a switch in the
back of your computer right next to where you connect the TV cable.
Switch it to channel 3 or 4 depending on what channel is “free” in your
area. If it is-switched to the right (relative to facing the front of your key-
board), it is set for channel 3, and for channel 4 if switched to the left.
Then set your TV dial to channel 3 or channel 4. Once that's done you
are all set.

Another option you can use with your COMMODORE-64 is a monitor
instead of a TV set. Basically, a monitor is the same as a TV except it has
higher resolution and is quite useful if you're doing a lot of word process-
ing. To connect to a monitor, you will have to purchase a special connector
and cable and connect it to the port right next to the serial port. The 5-
Pin DIN audio cable found in stereo and electronic stores is probably a
good bet, for it is possible not only to connect your computer to a monitor,
but you can also connectit to an audio system (your hi-fi set). The following
descriptions of monitors and TV sets are the range of video devices you
can use with your COMMODORE-64.

TYPES OF TV SETS

TVs come in a “jillion” different shapes, sizes, etc.; either a color or black
and white will work fine. BE CAREFUL in the selection of the TV set you
buy! Not all televisions work well with your COMMODORE-64; so ask first
before you buy. When | bought my TV set, a color one for the graphics, |
simply looked at the color TV's being used on the computers in the stores
and bought the same make and model at an “El Cheapo” discount house.
An inexpensive way to-get clear text is to purchase a black and white set.
it has better resolution than a color set, is less expensive, and is good for
word processing. Best of all, though, you can get one for as little as $50
and used ones for even less. Whatever the case, check to make sure that
the TV set you purchase will work with your COMMODORE-64.

TYPES OF MONITORS

Green Screen — This type of monitor gives a green on black display and
can be bought for between $100 and $200. The green and black display
is quite good for people doing a lot of word processing and non-graphic
programming since it is easy on the eyes. However, since this display
presents only green and black, it is not too good for color graphics.

16

cccccccccccccccccccccccccc

DDIJIJIJDDIIIIIDDDIIIIDIIIIIII)

Black and White — This monitor is essentially the same as the green
screen, but is in black and white instead of black and green. However, it
is more expensive than black and white TV sets, and while it gives better
resolution than a television set, the extra cost may not be worth the dif-
ference. If you are considering the purchase of a black and white monitor,
compare the resolution with a black and white TV set first to see if the
extra cost is justified.

Color — This type of monitor is the most expensive, but for people who
work a lot with graphics, it is probably worth the added cost. It provides
the high resolution for seeing graphics in detail. The very best color mon-
itors require a special interface. Make sure you can get one for your
COMMODORE-64 before buying.

PRINTERS

This section simply tells you how to hook up your printer and a little about
the different kinds of printers. If your printer is already hooked up and
working, take a look at Chapter 9 for tips on maximizing your printer's use.

Types of Printers
There are three basic kinds of printers.

DOT MATRIX — First, the most popular kind of printer is the “dot matrix”
printer. This printer has a number of little pins which are fired to form little
dots that print out as text or graphics. The advantage of dot matrix printers
is their relatively low cost and the fact that many of them can do both text
and graphics. The improved quality of text printing of dot matrix printers
gives an almost “letter quality” product, and usually can give you several
different type faces. In Chapter 9 there are several examples of different
printing modes on dot matrix printers. We will be using the VIC-1515

~ printer by Commodore for most of our examples since it is directly com-

patible with the COMMODORE-64. (Interfaces for parallel dot-matrix printers
are available. See LETTER QUALITY below.)

LETTER QUALITY — Second, for people whose major use of their com-
puter is to do word processing, there are “letter quality” printers. Most of
these are “daisy wheel” printers and type characters in much the same
way as a typewriter does. Each symbol has a molded image as on type-
writer heads. These printers are not good for graphics, but for the user
who wants top notch looking letters, manuscripts, reports and other written
documents, this type of printer is the best. They tend to be relatively
expensive, however, and for most written materials, dot matrix printers

17

are fine. The thing to do before you buy is compare. Special interfaces
will be needed to connect a letter quality printer to your COMMODORE-
64, so make sure you get a demonstration with the correct interface before
buying a printer. Since the COMMODORE-64 has a serial port (instead
of a parallel port), you will probably want to get a printer that is serial
compatible. However, Xitel, Inc. (2678 North Main Street #1, Walnut Creek,
CA 94596, 415-944-9277) makes a parallel interface for the COMMO-
DORE-64 which allows you to hook up to a parallel printer.

THERMAL — Third, for those people who are really on a budget, there
are “thermal printers.” These printers work with a special kind of paper,
usually on a roll, and make a “picture” of what is on the computer screen.
They can easily handle both text and graphics, but the quality of output is
relatively low and the paper is very expensive. The best feature of these
printers is their small size and light weight, and for people who travel with
their computers and need print-outs, they can be handy. Like dot-matrix
and letter quality printers, however, make sure you can interface it to your
COMMODORE-64 before purchase.

FREE ADVICE

Before you buy a printer, decide what you will need it for and then
look at the features of the different kinds before buying!!! And by all
means, ask to see a demonstration on a COMMODORE-64. Never
let a salesperson convince you a certain printer will work without
seeing a demonstration. Even a salesperson with the best intentions
(e.g. they think a certain printer is the best for your needs) may not
realize that the model cannot be interfaced to your machine. Only
a demonstration is sufficient to remove all doubts!

If you purchase a VIC-1515 or similar Commodore printer, connecting it
is very simple. If you have a disk system, connect one end of the cable
to the empty slot in the back of the disk drive and the other to the printer.
This is called “daisy chaining” the printer. If you do not have a disk drive,
connect the cable to the jack next to where the cassette tape cable is
connected in the back of your computer. (The same jack where you would
. connect your disk drive.) In the back of the printer is a switch that can be

flipped to “T;" “5,” or “4." Flip the switch to “4” (The “T” position is for
“test” and the “5” position is for identifying the device as “device 5” We
will be using the printer as “device 4" in our examples, so switch it to
position “4.") v

18

ccccoeccCccCccCccoeccCccCcCccCcccccoccCccococccaeccec

5933333333331 1333313)333333))

CAUTION
NEVER insert or remove cables or interfaces to your computer while
the POWER IS ON! Even if you are rich and can afford to buy new
chips every time you blow them by messing with the hardware on
your COMMODORE-64 while the power is on, you might give your-
self the SHOCK of a lifetime by doing so. :

Other Gadgets

Besides the disk drive, TV/monitor, and printer, most new users do not
have anything else to hook up at this point, so you can skip on to the next
section. However, if you plan on expanding your COMMODORE-64 or
have other gadgets you bought with your system, you had better read the
following section. :

Many Ports of Call

The nicest feature of the COMMODOF(E-64 is its expandability and adapt-
ability. The various ports and slots on your computer can be used to add
many different devices to enhance your system. :

MODEM -— A MODEM is a device which allows your computer to com-
municate with other computers over telephone lines. These devices usu-
ally require that you hook up your telephone to a part of the modem, or
place the phone in an acoustic sender/receiver. The VICMODEM can be
used with the COMMODORE-64 simply by inserting it into the “User Port,’
right next to the cassette port and connecting your telephone line to it.
Not only can the modem be used to call up computer bulletin boards, but
you can access such information centers as The Source to get everything
from weather reports to airline tickets! The only modification needed to,
use this inexpensive modem ‘is-to remove line 400 in the listing in the
manual that comes with the VICMODEM. o

Z-80 CP/M — This cartridge goes right into the cartridge slot to turn your
machine into a Z-80 based computer enabling you to access the vast
array of CP/M software. With over 2000 CP/M software programs avail-
able, there is little you will not be able to access.

19

More Wonderful Gadgets — There are numerous other cartridges and
interfaces to make the COMMODORE-64 into a multi-faceted machine.
Special interfaces will allow you to access and use a variety of peripherals
such as various disk drive systems, printers and devices made for other
computers. So while the COMMODORE-64 is a terrific microcomputer all
by itself, it is fully expandable to make it even better.

POWER ON!
System Check-out

Now that you have your COMMODORE-64 all set to go, you simply plug
it in, along with your TV or monitor, disk drive and printer, turn on the
power and let her rip! On the right-hand side, next to the port where your
power supply cord goes, is a switch. Turn it to the ON position and turn
on your TV set. If everything is connected, your TV screen will display the
following:

**** COMMODORE 64 BASIC V2 ***
64K RAM SYSTEM 38911 BASIC BYTES FREE
READY.

If you have a color TV, the letters will be in light blue against a dark blue
background and a light blue border. Directly below the READY. message
is a little blinking square. It is called the “cursor,” indicating your computer
is waiting for you to press some keys and tell it what to do. Press the
RETURN key several times and the cursor will move down the side of the
screen. The message on top will scroll off the top of your screen. Your
cursor is now at the bottom of the screen. To get it to the top, press the
key marked CLR/HOME in the upper right hand corner of your keyboard.
Now the cursor will pop to the upper left hand corner. That done, you know
your keyboard and computer are all set. We will return to the keyboard in
a bit, but first, let's check out your printer, disk drive and/or cassette tape
recorder.

To see if your printer is working correctly, put in the following program
EXACTLY as it appears below:

First write in the word NEW and press RETURN. (<RETURN> means
press the button marked “RETURN.")

cooccccoccccccccococcoocccac

793033995033 03032035)30)0)

10 OPEN7,4 <RETURN>
20 PRINT#7, “MY PRINTER IS WORKING!” <RETURN>
30 CLOSE7 <RETURN>

Make certain you have written the program as it appears above. If there
are even minor differences, change it so that it is precisely the same. Put
the ribbon and some paper into your printer. Now, turn on your printer and
write in the word RUN on your computer and <RETURN>. If your printer
is attached properly, it will print out the message, “MY PRINTER IS
WORKING!” If a “SYNTAX ERROR"” or some other error message jumps
on the screen, it means that you wrote the little test program improperly;
so go back and do it again. If the system “hangs up” - the screen goes
blank and nothing happens - check to make sure the printer is turned on
and the switch on the back is flipped to “4." If it still doesn't work, turn off
the power on the printer and computer and review the steps for hooking
up your printer.

Booting Disks

Assuming your system is working correctly, let's “boot” a diskette on your
VIC-1541 disk drive. (If you have another type of disk system, see the
manual that comes with your disk drive.) This will get your Disk Operating
System (DOS - pronounced “DAS”) operating. Here’s how. Turn on your
disk drive by flipping the switch located in the back of the drive to the ON
position. The red light will light and some noises will come out for a second
and then the red light will go off and the green light will come on. At this
point insert a BLANK SOFT SECTORED diskette (NOT the TEST/DEMO

21

diskette that comes with your drive) with the littie square notch oriented
to the left with the disk label facing upwards. Now close the door on the
disk drive until it clicks shut. At this point you can format your diskette.

(NOTE: Once a disk is formatted, you should NOT format it again unless
you want to remove all programs from the diskette.) Enter the following:

OPEN15,8,15 <RETURN>
PRINT#15, “N0:MYDISK,20" <RETURN>

. The disk will whirl around for a while and eventually stop. At this point you
must “initialize” your diskette. To do so enter the following:

PRINT#15, “10” <RETURN>

Now you are all set. Each time you put a disk into your drive, you must
initialize it with the above command. Once a diskette is formatted with the
“N0:" (N is for NEW, but not the same “NEW" that is used to clear your
computer's memory!), you need not do it again. However, you must ini-
tialize the diskette each time you put it into the drive.

WARNING!!

The term “initialize” on your COMMODORE drive means to “get it
ready for use.” On other computers, “initialize” means to “format”
the diskette. Remember, only format a diskette once, but initialize
it every time you put it into the drive. “Initializing” your diskette on
your COMMODORE drive will not erase any programs. “Format-
ting” with the “N” command will erase programs! If you have a “write
protect” tab covering the notch in your diskette, it will protect the
programs on that diskette from accidental erasure. A “write-pro-
tected” diskette cannot be formatted or overwritten; so if you have
a diskette you do not want ruined, make sure it has a write-protect
tab over the notch. Never format your TEST/DEMO diskette which
comes with your disk drive.

To see if everything is working correctly, enter the following:
LOAD “$",8 <RETURN>

When the red light goes off, enter
LIST <RETURN>

gcccccccccccCcccCcccccccocooccocccoccec

DIEDIED IED TN I B0 B0 N0 B0 D B0 D I IO RN BN BB IND IO D IS BND B0 BN D |

Now you should see the name of your diskette displayed. As you add
programs to your diskette, they will be added to the directory and listed
when you enter the “$” command as shown above and LIST. (See Chapter
9 for more details on using your disk system.)

To retrieve a program from disk, simply LOAD it, and then RUN it. Using
your TEST/DEMO diskette, load one of the programs by entering the
following:

LOAD “<PROGRAM NAME>"8

Your screen will first indicate it is searching for the program and then
loading it. When you are prompted with “READY., simply enter

RUN <RETURN>

to execute the program.

LOADing And RUNning Programs From Tape

The procedure for loading and running programs from tape is quite simple.
The following steps show you how:

STEP 1. Make sure your tape recorder is connected and rewind
it to the beginning. If you have a tape with programs on it, use it
to test loading. (A game cassette <not cartridge> will work fine.)
If you do not have a tape with a program on it, enter the following
program:

NEW <RETURN>

10 PRINT “<YOUR NAME>" <RETURN>
20 END <RETURN>

SAVE “ME” <RETURN>

Rewind tape and press REC and PLAY keys simultaneously on
your recorder. When the recorder stops and the READY. prompt
comes on your TV screen, press STOP and rewind your tape.

STEP 2. Turn on your computer and when you get the cursor,
write in the following: .

LOAD “<PROGRAM NAME>" <RETURN>

STEP 3. Press the PLAY button on your tape recorder as your
computer will prompt you to do. At this point the screen will go
blank for a while, and when it reappears you will see the messages

SEARCHING FOR <NAME OF PROGRAM>

FOUND <NAME OF PROGRAM>

<PRESS THE COMMODORE KEY - LOWER LEFT HAND
CORNER OF YOUR KEYBOARD>

The screen will go blank again for a while and when it reappears
the second time it will read,

LOADING
READY.

STEP 4. At this point your program is all loaded and ready to go.
Enter the word RUN, and your program will then execute. If you
used our example program, your name will simply be printed on
the screen. Rewind your tape now so that it will be ready for the
next time.

(NOTE: On the COMMODORE-64 it is necessary to press the COM-
MODORE key during the loading process. Your cassette manual may not
mention that fact since your computer may be newer than the latest ver-
sion of the recorder’s manual.)

If you have both a tape and disk system and you don't want to wait
for the longer loading time of tapes every time you run it (especially
when you start accumulating several programs on tape), why not
transfer your tape files to disk? Just boot your DOS, put a formatted
disk into the drive, initialize it, and then load your program on tape.
Once your tape program is loaded, simply write in SAVE “<name
of file>",8 and now your tape program is on disk! Makes life simpler.

TAPE TO DiSK TRANSFER

CARTRIDGE PROGRAMS

When you purchase cartridge programs for your computer, simply insert
the cartridge into the cartridge port and turn on your computer. It will
automatically run the program for you.

24

O'CV‘ ccccccccCcceccccccecccccocccceccCeco

DJED 2N TS T T S TS T I TS D J0 D JD D B N 2D I B0 TD I IS BN I

The Commodore-64 Keyboard
Almost Like a Typewriter: The Famillar Keys

If you are familiar with a typewriter keyboard, you will see most of the
same keys on your COMMODORE-64. For the most part, they do almost
the same thing as your typewriter keys. If you type in the word COM-
PUTER, hitting the same keys you would on a typewriter, the word “COM-
PUTER” appears on the screen just as it would on paper in a typewriter.
However, the upper-case (capital letters) and lower-case letters do not
work exactly the same as a typewriter. On the COMMODORE-64, you
have to shift into the “upper/lower-case” mode by pressing the “Com-
modore Key” (the little one in the lower left hand corner with the Com-
modore logo on it) and the SHIFT key simultaneously. When you do that,
your keys will work more like a typewriter. When you want upper-case,
simply press the SHIFT key and a letter to get upper-case as you would
on a typewriter. Also, the screen has only 40 columns instead of 80 like
most typewriters. Of course, you cannot type just anything on the screen.
If you start typing away, you'll get a SYNTAX ERROR every time you press
RETURN unless you put in the proper commands. Otherwise, though,
think of your keyboard as you would a typewriter keyboard. (NOTE: In
most of the programming examples, we will be using upper-case only.)

Keys You Won’t See On a Typewriter

While most of the keys on your COMMODORE-64 look like those on a
typewriter, many do not and they are important to know about. The fol-
lowing keys are peculiar to your computer; you will soon get used to them
even though they will be a bit mysterious at first:

COMMODORE KEY {Commodore Logo} — This key, located in the lower
lefthand corner of your keyboard, is used for shifting between upper case
only and upper/lower case (with SHIFT key) and for printing the left hand
graphics on the keys. Press the COMMODORE key and the “S” key simul-
taneously. Instead of getting an “S” you will get a checkerboard on your
screen.

CTRL (Control) — In the upper left hand corner of your keyboard is the
CTRL key, called the “control key.” By pressing the CTRL key and one of
the color keys (keys with numbers 1 through 8) you are able to change
the colors on the screen. Try holding the CTRL key down and pressing
the keys with numbers 1 through 8. You will get different colored cursors
by doing so. If you press the CTRL key and the “9"” key, you will get reverse
printing. Try pressing CTRL-9 (the CTRL and 9 keys simultaneously) and
then entering some letters. Now try CTRL-9 and then CTRL-3 and press
the space bar several times. Using the CTRL key will give you interesting
effects. To turn off the reverse effects, simply press RETURN, or CTRL-
0. By now you probably realize that the markings on keys 1 through 0 (e.g.
BLK on the “1” key) stand for the characteristics you get when you press
that key and the CTRL key simultaneously.

RUN/STOP and RESTORE — These two keys are on opposite sides of
your keyboard, but they are used together. The RUN/STOP key used by
itself will stop a program execution. Using the RUN/STOP key and the
RESTORE keys together, you restore your program to the default condi-
tions. For example, if you've been following the examples, you are prob-
ably stuck with some other colored cursor than the light blue one we
started with. Press the RUN/STOP and and RESTORE keys simultane-
“ously, and your screen will clear and everything will be restored to normal.
If you ever get into a jam and your computer “freezes” up, the RUN/STOP
and RESTORE keys will un-jam it, and you will not lose the program in
memory. Think of them as “panic buttons” or “reset” keys.

CLR/HOME (Clear Home) — In the upper right hand corner is a very
important key, the CLR/HOME key. In computer talk, “HOME” refers to
placing the cursor in the upper left hand corner of the screen, and CLR
(clear) means to clear the screen. To test this key, press the RETURN key

¢gccccccccccccccocccccccccccoccec o

DIEDIED N0 NS B0 IR BN D 1D BB D B0 RN BN B IR I N BN D D BN D BN I |

several times so that the cursor is at the bottom of the screen. Now press
the CLR/HOME key, and the cursor will pop to the top of the screen. Now
press SHIFT-CLR/HOME and your screen will clear and the cursor will
again be at the top of the screen. (Enter some text on the screen to see
the difference between shifted and non-shifted CLR/HOME).

CRSR (Cursor) KEYS — In the lower right hand corner of your keyboard
are the cursor keys. They are used to move the cursor around the screen
without affecting anything on the screen. The arrows on the keys indicate
the shifted and non-shifted direction of the keys. To get used to using
them, here’s a little exercise. Press SHIFT-CLR/HOME and then place the
cursor right in the middle of the screen without using any other keys. If
you can do that, you can use the keys fine. When the cursor keys are used
within quotation marks in PRINT statements, funny things begin to hap-
pen. Your computer is reading the cursor as something to print to the
screen. For example, if you enter

PRINT “{PRESS DOWN CRSR KEY 10 TIMES} HELLO”
<RETURN>

you will get a series of inverse “Q's” when you press the “CRSR down”
key, and when you press RETURN the message “HELLO” will be spaced
10 places below the line on which you entered the command.

RETURN — The RETURN key is something like the carriage return on a
typewriter. In fact, you may ses it referred to as a “Carriage Return” or
“CR” in computer articles. It works in an analogous manner to a type-
writer’s carriage return, because the cursor bounces back to the lefthand
side of the display screen after you press it. However, there are other uses
for the RETURN key which will be discovered as you get into programming.

Arrow and Pi keys — In the upper left hand corner of your keyboard is
an arrow key which simply prints out a graphic horizontal arrow for prompts
in programs. However, the vertical arrow key on the right side of your
keyboard does have functions other than graphic display. In the non-shifted
position the key is used for exponentials of numbers. For example, enter
PRINT 2 1 2 and RETURN. Your screen will print “4,” the value of 2 to
the second power. Now enter PRINT SHIFT- 1 <RETURN> and you will
get 3.14159265, the value of Pi.

INST/DEL — This key is an “editing key” to INSert or DELete text. In
Chapter 2, we will explain how it works.

KEYBOARD GRAPHICS — On the front of most of the keys there are
various graphic symbols. These graphics can be accessed by pressing
the key with the desired graphics and either the SHIFT key or COMMO-
DORE key. The graphics on the right are accessed with the SHIFT key
and the ones on the left with the COMMODORE key. (The graphics on
the right cannot be directly accessed from the keyboard when in the upper/
lower case mode.) See if you can print all of the different graphic char-
acters to the screen using the SHIFT and COMMODORE keys.

FUNCTION KEYS — On the far right side of your keyboard are the “func-
tion keys,” numbered from “f1” through “f8.” These keys can be accessed
by special commands from your programs. Since they are more advanced,
their use has been reserved for Chapter 10. For the time bsing, you will
not be using them, but if you have some programming experience, you
might want to take a look at Chapter 10 to see how they can be accessed
and employed in programs.

SOME NEW MEANINGS FOR OLD KEYS — Some of the familiar keys
have different meanings for the computer than we usually associate with
the key symbols. Many are math symbols you may or may not recognize.
In the next chapter, we will illustrate how these keys.can be operated and
discuss them in detail. For now let’s just take a quick look at the math
symbols.

SYMBOL MEANING

+ Add

- Subtract

* Multiply (different than conventional)
/ Divide (different than conventional)
1 Exponentiation

In addition to some of the new representations for math symbols, other
keys will be used in a manner in which you are not accustomed. As we
go on, we will explain the meanings of these keys, but just to get used to
the idea that your COMMODORE-64 has some special meanings for keys
we'll show you some more here which will have special meanings later.

- SYMBOL MEANING
$ Used to indicate a string variable.
: Used to indicate “end of statement” in program.
% Indicates an integer variable.
? Can be used as PRINT command.
28

ccecccocccccccccoecccccccccocacc

DIND NS I JED JED BN R0 RN N0 IS5 B0 R D B B D B0 IR0 B D D I B B BN

Don't worry about understanding what all of these symbols do for the time
being. Simply be prepared to think in “computer talk” about symbols. As
you become familiar with the keyboard and the uses and meanings of
these symbols, you will be able to handle them easily, but the first step is
to be aware that the different meanings exist.

SUMMARY

This first chapter has been an overview of your new machine. You should
now know how to hook up the different parts of your COMMODORE-64
and get it running. Also, you should be able to boot and initialize a disk,
CATALOG the contents of a disk, and run a program from disk or tape.
You should know some of the basic DOS commands for manipulating files
on your diskette. Finally, you should be familiar with the keyboard and
know what the cursor means. At this point there is still much to learn, so
don't feel badly if you don’t understand everything. As we go along, you
will pick up more and more, and what may be confusing now, later will
become clear. Have faith in yourself and in no time you will be able to do
things you never thought possible.

The next chapter will get you started in learning how to program your
COMMODORE-64. lt is vitally important that you key in and run the sam-
ple programs. Also, it is recommended you make changes in them after
you have first tried them out to see if you can make them do slightly
different things. Both practical and fun (and crazy!) programs are included
so that you can see the purpose behind what you will be doing and enjoy
it at the same time.

5900900000000 202200902009599

DI IDDIDIDIDIDDIDIDIDIDIDDIDDIDIDIDIIDIIDIDIDIDIIDIDID

CHAPTER 2

Ladies and Gentlemen, Start Your Engines
Introduction

This chapter will introduce you to writing programs in the language known
as BASIC. Commodore-64 BASIC is different from some other versions
of the language; if you are already familiar with BASIC, you will find these
differences. However, if you are new to the language, then you will find
programming in BASIC very simple. To get ready, turn on your computer;
when the “READY” sign comes up on your TV, you are all set to begin
programming. If something else is on your screen, press the RESTORE
and RUN/STOP key simultaneously and key in NEW to clear memory.

Your Very First Command!

K '////
T \\)\'

41////

.fu/»

PRINT

Probably the most often used command in BASIC is PRINT. Words enclosed
in quotation marks following the PRINT command will be printed to your
screen, and numbers and variables will be printed if they are preceded by
a print command. It is used to command your computer to print output to
the screen or printer from within a program or in the Immediate mode.
You may well ask what the difference is between the Immediate and Pro-
gram mode. Let’s take a look.

immediate Mode — The Immediate mode executes a command as soon
as you press RETURN. For example, try the following:

PRINT “THIS IS THE IMMEDIATE MODE” <RETURN>

If everything is working correctly, your screen should look like this:

PRINT “THIS IS THE IMMEDIATE MODE”
THIS IS THE IMMEDIATE MODE
READY

See how easy that was? Now try PRINTing some numbers, but don't put
in the quote marks. Try the following:

PRINT 6 <RETURN>
PRINT 54321 <RETURN>

As you can see, numbers can be entered without having to use quote
marks. As we will see later, the actual value of the number is placed in
memory rather than a “picture” of it. ' .

Program Mode — This mode “delays” the execution of the commands
until your program is “RUN.” All commands which begin with numbers on
the left side will be treated as part of a program. Try the following.

10 PRINT “THIS IS THE PROGRAM MODE” <RETURN> -

nothing happens, right?
Enter the RUN command and your screen should look like this:

10 PRINT “THIS IS THE PROGRAM MODE”
THIS IS THE PROGRAM MODE

ccccccccccCccccccccccccccceccec

j))))))))))))))))))))))D))

Your Very First Program!
Clearing the Screen and Writing Your Name

Let's write a program and learn two new commands. First, the new com-
mands are CLR/HOME and END. The CLR/HOME command clears the
screen and places the cursor in the upper left hand corner. The CLR/
HOME command is a one key command made by pressing the SHIFT
key and CLR/HOME keys at the same time. In the Program Mode, the
CLR/HOME appears as a little heart on your TV, entered as PRINT “{CLR/
HOMEY}". Don't worry, though, it will work fine like that. The END command
tells the computer to stop executing commands. From the Immediate
mode write in the CLRHOME command to see what happens. Now let's
write a program using {CLR/HOME}, END and PRINT. From now on, press
the RETURN key at the end of each line. Throughout the rest of the book,
| will no longer be putting in <RETURN> except in reference to entries
in the Immediate mode.

10 PRINT “{CLR/HOME}" : REM A LITTLE HEART WILL
APPEAR ON YOUR SCREEN

20 PRINT “<YOUR NAME>".

30 END

RUN <RETURN>

All you should see on the screen is your name, READY. and the blinking
cursor. Now we're going to introduce two shortcuts which will save you
time in programming and in memory. First, instead of entering new line
numbers, it is possible to put muitiple commands on the same line by
using a colon “:” between commands. Also, instead of typing in PRINT,
you can key in a question mark “?". Try the followmg program to see how
this works.

10 ? “{CLR/HOME}”
20 ? “<YOUR NAME>" : END
RUN <RETURN>

It did exactly the same thing, but you did not have to put in as many lines
or write out the word PRINT. Neat, huh? Now, as a rule of thumb, ALWAYS
begin your programs with PRINT “{CLR/HOME}". This will help you get
into a habit that will pay off later when you're running all kinds of different
programs. There will be exceptions to the rule but, for the most part, by
beginning your programs with {CLR/HOMEY}, you will start off with a nice
clear screen rather than a cluttered one.

While we're just getting started it will probably be a good idea to use the
colon sparingly. This is because it is easier to understand a program with
a minimum number of commands in a single line. Later, when you become.
more adept at writing programs and want to figure out ways to save mem-
ory and speed up program execution, you will probably want to use the
colon a good deal more. Also, we want to make liberal use of the REM
statement. After the computer sees a REM statement in a line, it goes on
to the next line number, executing nothing until it comes to a command
which can be executed. The REM statement works as a REMark in your

program lines so that others will know what you are doing and as a reminder

to yourself what you have done. Just to see how it works, let's put it in our
little program.

10 PRINT “{CLR/HOME}” : REM THIS CLEARS THE SCREEN
20 PRINT “<YOUR NAME>" : END

30 REM THIS MAGNIFICENT PROGRAM WAS CREATED BY
<YOUR NAME>

Now RUN the program and you will see that the REM statements did not
affect it at alll However, it is much clearer as to what your program is doing
since you can read what the commands do in the program listing.

Setting Up a Program
Using Line Numbers

Now that we've written a little program let's take a look at using line num-
bers. In your first program we used the line numbers 10, 20 and 30. We
could have used line numbers 1, 2 and 3 or @, 1 and 2 or even 1000, 2000
and 3000. In fact, there is no need at all to have regular intervals between
numbers, and line numbers 1, 32 and 1543 would have worked just fine.

However, we usually want to number our programs by 10's starting at 10.
You may well ask, “Wouldn't it be easier to number them 1, 2, 3, 4, 5,
etc.?” In some ways maybe it would but overall it definitely would not!

Here’s why. Type in the word LIST <RETURN>, and if your program is .

still in memory it will appear on the screen. Suppose you want to insert a
line between lines 20 and 30 that prints your home address. Rather than
re-writing the entire program, you only have to enter a line number with a
value between 20 and 30 (such as 25) and enter the line. Let's try it, but
first remove the END command in line 20.

25 PRINT “<YOUR ADDRESS>"
RUN <RETURN>

cccccccocCccccccccccococcocecc

JD2DIIJIJIDII32IIIJIIIIJIJIIIJIJIJIJIJI DI

Aha! You now have your name and address printed on the screen. You
had to write in only one line instead of retyping the whole program. Now
if we had numbered the program by 1’s instead of 10's, you would not
have been able to do that since there would be no room between lines
numbered 2 and 3 as there was between 20 and 30. You would have to
rewrite the whole program. Now, with a small program, this would not be
much of a problem, but when you start getting into 100 and 1000 line
programs, you'll be glad you have space between line numbers!

Listing Your _Program

As we just saw, using the word LIST gives us a listing of our program. To
make it neat, type in (SHIFT) CLR/HOME and LIST <RETURN>, and
you'll get a listing on a clear screen. However, once you start wrmng longer
programs, you won't want to list everything but only portlons ‘Let's exam-
ine the options available with the LIST command

WHAT YOU WRITE -WHAT YOU GET-

LIST Lists entire program

LIST 20 Only line 20 is listed (or-any line num-
ber you choose.)

LIST 20-30 All lines from 20 to 30 inclusive are
listed (or any other range of lines you

, choose).

LIST -40 Lists from the begmnmg of the pro-

gram to line 40 (or any other line num-
: ber chosen).

LIST 40- : Lists from line 40 (or any .other line

number chosen) to the end of the

program.

Try listing different portions of your program with the options available to
see what you get. The following commands will give you some examples
of the different options:

LIST 25
LIST 20-
LIST -20
LIST 25-30

WANNA HAVE SOME FUN?
Usually you will want to use the LIST command from the Immediate
mode as you write your program. However, you can use it from within
a program. Just for fun, add the following line to your program:

40 LIST

RUN your program and see what happens. Believe it or not, there
are some very practical applications we will see in some programs
much later in the book. For the time being, though, it's just for fun.
Now, back to some serious stuff.

Saving Your Program

Suppose you write a program, get it working perfectly and then turn off
your computer. Since the program is stored in the RAM memory, it will go
to Never-Never Land, and you will have to write it in again if you want to
use it. Fortunately, it is a simple matter to SAVE a program to your diskette.
Let's use our program for an example of SAVEing a program to disk. Make
sure your program is still in memory by LISTing it and if it is not, re-write
it. Make sure a formatted and initialized disk is in the drive and write in
the following: (If you are not certain about disk formatting and initialization,
review the section covering those items in Chapter 1.)

SAVE “0:MY PROGRAM",8

The disk will start whirling and the red light will glow on the disk drive.
This means the disk drive is writing your program to disk. When the red
light goes out, write in LOAD“$",8 and when the READY prompt appears,
enter LIST. You will be presented with a directory of the disk. If you see:

MY PROGRAM

in the directory, that means your program has been successfully saved to
disk.

Saving Programs on Tape
To save a program to tape, put a blank cassette in your tape recorder and

rewind it. Press the RECORD button and the PLAY button together on
your tape recorder and write in SAVE “MY PROGRAM". The tape recorder

occcccoccoccccccccccccccocccec

D20 1 5 T TS 20 0 T TS JD N0 20 T TS I T IS T J0 T I B0 IS D T

will start spinning and the message OK will appear on the.screen along
with the message SAVING MY PROGRAM. When it is done, the READY
prompt will reappear on the screen. Your program is now SAVEed to tape.
Unlike SAVEing to disk, you do not have to enter a “port number” (e.g. 8)
since the Commodore-64 defaults to the cassette drive with the SAVE
command.

gor

Retrieving Your Programs

To make sure you have SAVEd a program to disk or tape, completely turn
off your Commodore-64 and then turn it on again. Go ahead and do it.
Initialize your diskette by entering OPEN 15,8,15 and PRINT#15,
“INITIALIZE®". Then LOAD"$",8 and LIST your disk directory. You should
be able to see your program (MY PROGRAM) in the directory. Now enter
LOAD “0:MY PROGRAM", 8. The disk drive will whirl for a while, and then

37

your program will be loaded and the READY prompt will reappear. LIST
and RUN your program to made sure it's the same one you SAVEd. If it
is the same, you know you have successfully SAVEd it to disk.

If you have a tape casseite, just press the PLAY button on your recorder
and enter LOAD “MY PROGRAM.” The tape will whirl looking for the
program and then load it, responding with a READY when completed.
LIST and RUN it to make sure it's the correct one.

A SAFETY NET
As you begin writing longer programs, every so many lines, you
should SAVE your program to disk or tape. In this way, if your dog
-accidentally trips over your cord and turns off your computer, you
won't lose your program and have to shoot the offending pooch.
Saves both programs and dogs.

Now that you have SAVEd and LOADed programs, let's look at another
neat trick. Remembering you SAVEd your file under the name MY PRO-
GRAM, let's change the contents of that file. First, add the following line
and then LIST your program:

W drond In cese

Its

gccccocCccoccCccccCcccccccoccccccceoccec

DI)DIDDIDIDDIIDIDIDIIIDIDIDDIIDDIIDIID

27 PRINT “<YOUR CITY, STATE & ZIP>" A

Your program is now different from the program you SAVEd in the file MY
PROGRAM since you have added line 27. Now write in

SAVE “@0:MY PROGRAM", 8 <RETURN>

Clear memory with NEW, LOAD the file MY PROGRAM and LIST it. As
you can see, line 27 is now part of MY PROGRAM. To update a program,

- LOAD it, make any changes you want, and then SAVE it under the same

file name using the “@" before the “0". However, BE CAREFUL. No matter
what program is in memory, that program will be SAVEd when you enter
the SAVE command. Therefore, if your disk has PROGRAM A and you
write PROGRAM B and then SAVE it under the title PROGRAM A, it will
destroy PROGRAM A and the SAVEd program will actually be PROGRAM
B. Also, if you have a really important program, it is a good idea to make
a “back-up” file. For example, if you saved your current program under
the file names MY PROGRAM and MY PROGRAM BACK-UP, it would
have two files with exactly the same program. To really play it safe, save
the program on two different diskettes.

1 TOLD YOU SO DEPT.
Sooner or later the following will happen to you: You will have several
disks or tapes, one of which you want to format or save programs
on. You will pick up the wrong diskette or cassette, one with valuable
programs on it. There will be no write protect tab on the diskette or
cassette, and after you format it or overwrite programs on it and
" blow away everything you wanted to keep, you will realize your
mistake and say, “1&$#”1%&", and kick your dog. You cannot prevent
that from happening at least once, believe me. Therefore, to insure
that such a mistake is not irreversible, do the following: MAKE BACK-
UP’s. Take your ORIGINAL and put it somewhere out of reach, and
when you accidentally erase a disk or tape, you can make another
copy. Remember, if you fail to follow this advice, your dog will have
sore ribs. Be kind to your dog.

Using Your Editor: Fixing Mistakes On the Run
The Error Message and Repairing Them

By now you probably entered something and got a ?SYNTAX ERROR,
?SYNTAX ERROR IN 30 (referring to line 30 or any other line where an
error is detected) or some other kind of error message, such as REDO
FROM START, which told you something was amiss. This occurs in the
Immediate mode as soon as you hit RETURN and in the Program mode
as soon as you RUN your program. Depending on the error, you will get
a different type of message. As we go along, we will see different mes-
sages depending on the operation. For now, we will concentrate on how
to fix errors in program lines rather than the nature of the errors them-
selves. This process is referred to as “editing” programs. (See APPENDIX
A for a complete list of error messages.)

Deleting Lines

The simplest type of editing involves inserting and deleting lines. Let's
write a program with an error in it and fix it up.

NEW<RETURN>

10 PRINT “{CLR/HOME}”

20 PRINT “ AS LONG AS SOMETHING CAN"

30 PRINT : “GO WRONG" : REM LINE WITH ERROR

occccoecCccCccCccCcccCcccccccccoccCcccoccec

DJ)DDIDIDIDIIDIDIDIIDIIIDIDIIIDII)D

40 PRINT “IT WILL"
50 END
RUN <RETURN>

If the program is written exactly as depicted above you will get a ?SYNTAX
ERROR IN 30. Now write in,

30 <RETURN>
LIST <RETURN>

What happened to line 307! You just learned about deleting a line. When-
ever you enter a line number and nothing else, you delete the line. We
have already learned how to insert a line; so to fix the program, enter the
following:

30 PRINT “GO WRONG”

Now run the program. It should work fine. The error was inserting the
colon between the PRINT statement and the words to be printed. Another
way you could have fixed the program was simply to re-enter line 30
correctly without first deleting it, but | wanted to show you how to delete
a line by entering the line number.

Using the Commodore-64 Editor

Within your COMMODORE-64 is a trusty editor. To see how to work with
your editor, we’'ll write another bad program and fix it. OK, write the fol-
lowing program and RUN it.

NEW

10 PRINT “{CLR/HOME}"

20 PRINT “IF | CAN GOOF UP A PROGRAM "
30 PRINT “I CAN” : FIX IT: REM BAD LINE

40 END

RUN <RETURN>

Allright, you got a ?SYNTAX ERROR IN 30. To repair it, instead of rewriting
line 30 do the following:

STEP 1. LIST your program
STEP 2. Press SHIFT and CRSR (up/down cursor - the left CRSR

key right below the RETURN key) and “walk” the cursor to LINE
30.

41

STEP 3. Now, using the right CRSR key, “walk” the cursor to the
right until it is just to the right of the first colon.

STEP 4. Press the INST/DEL until the colon and quote mark
after CAN disappear.

STEP 5. Press the right CRSR key until the cursor is right over
the colon. Now press SHIFT INST/DEL and the colon will jump
a space to the right.

STEP 6. Now simply enter a quotation mark after the “T” in the
word “IT” in the space you INSerTed with your editor. Press
RETURN and you're all finished.

Now LIST the program again; Line 30 should now be correct. Now RUN
the program. You should have seen the statement, IF | CAN GOOF UP A
PROGRAM | CAN FIX IT. Let's learn more about the editor. Put in the
following program: (Remember, in COMMODORE-64 BASIC, we can use
question marks to replace PRINT statements. If you LIST the program
before you run it, you will see that all of the question marks have magically
been transformed to PRINT statements.)

10 ? “{CLR/HOME}”

20 ? “SOMETIMES | LIKE TO WRITE LONG, LONG, LONG,
LONG LINES " : WHEW! - . .

30 ?*AND SOMETIMES | LIKE SHORT LINES”

40 END

LIST <RETURN> (See what happened to the question marks.)
RUN <RETURN>

OK, after you ran the program it went El Bombo. The problem was that
we stuck in that WHEW! without a PRINT statement or quote marks after
the colon had terminated the line, or, alternatively, a REM statement before
WHEW!. To repair it, LIST the program, “walk” the cursor up to line 20
using the CRSR key, and starting at line 20, retrace the line up to where
the mistake was made. To make it simple, remove the second quote mark,
leave the colon in place, and add a quote mark after the word WHEW!\.
Since the colon is now inside the quote marks, it will be printed as part
of the PRINT statement and be ignored as a line termination statement.
Press RETURN. Now RUN the program.

Now let’s take a look at a feature of the COMMODORE-64 editor that
might cause some problems. Enter the following BUT DO NOT HIT
RETURNII: '

ccoccccccCcccocCccCccCcccCccccocccocecec

23D I2II32II3II3I2I3IIIIIIIIIIIID)

20 PRINT “I LIKE TO COMPUUUUUUT

Whoops! There’s a mistake, but you haven't finished the line. No sweat.
Just press (SHIFT) H-CRSR and back the cursor over the multiple “U’s”
and re-enter it correctly. (H-CRSR is “horizontal CRSR key” and V-CRSR
is “vertical CRSR key.") However, you find that when you press the CRSR
key, instead of walking the cursor, you get inverse vertical lines or brackets.
With the up/down CRSR you get big blue dots and inverse “Q’s.” What's
going on!??

Not so elementary, Watson. As we noted in Chapter 1, the COMMO-
DORE-64 gives you the option of printing those inverse characters inside
a set of quotation marks, and to make them you have to press the CRSR
keys. To make repairs, simply press RETURN and then using the CRSR
keys walk up and make the repairs. As you will see, the CRSR keys are
now working fine, even inside the quotation marks. (HINT: Let's face i, it
would have been a lot easier simply to press the INST/DEL key a bunch
of times to get rid of those offending “U’s,” but then you would never have
learned why your CRSR key went nuts inside the quotation marks.)

WATCH OUT FOR ‘RUNDY’

After editing with the COMMODORE-64, | have often entered RUN
over the READY prompt, ending up with “RUNDY". Of course, instead
of having the program RUN, it gives a ?SYNTAX ERROR. On some
computers, as soon as you press RETURN, the remaining char-
acters on the line are forgotten if the cursor has not been passed
over them. Therefore, if you are used to other kinds of computers,
watch out for RUNDY!

More Editing

Let's do a few more things with your editor before going on. We'll practice
some more with inserting characters and numbers, but we will also see
how to edit groups of characters. So, let's see how we can use the editor
to do more with “insertions.” Try the following little program:

10 PRINT “{CLR/HOME}"
20 PRINT “NOW IS THE TIME FOR ALL GOOD MEN";

~ 30 PRINT “TO COME TO THE AID OF THEIR COUNTRY"
40 END

So far so good, but you meant to include women as well as men in line
20. You could retype the entire line, but all you really need to add is AND
WOMEN after MEN. Also, it's really boring to have everything in upper
case. Let's change the line to include women and make it both upper and
lower case:

'STEP 1. Press the “COMMODORE" and SHIFT simultaneously,
and everything will go to lower case characters.

STEP 2. “Walk” the cursor up to the beginning of the LINE 30
using the CRSR keys and then place the cursor to the right of
the first quotation mark.

STEP 3. Press the SHIFT and INST/DEL keys to make enough
spaces to include “and women” and enter “and women.”

STEP 4. To make the sentence correct, place the cursor over
the “n” in “now” in LINE 20 and press SHIFT and “N"” to capitalize
the first letter of the sentence.

,After these repairs you now have upper and lower case. When you RUN
your program it should read:

Now is the time for all good men and women to come to the aid
of their country.

You will save yourself a great deal of time if you use the editor rather than
retyping every mistake you make. (You will save yourself even more time
using a commercial editor.) Therefore, to practice with it, there are a sev-
eral pairs of lines below to repair. The first line shows the wrong way and
the second line in the pair shows the correct way. Since “little” things can
make a big difference, there are a number of changes to be made. How-
ever, as you will soon see, those little mistakes are the ones we are most
likely to get snagged on. Practice on these examples until you feel com-
fortable with the editor - time spent now will save you a great deal later.

Editor Practice

50 PRINT TO BE OR NOT TO BE”

50 PRINT “TO BE OR NOT TO BE”"

10 PRINT {CLR/HOME}

10 PRINT “{CLR/HOME}"

80 PRINT “A GOOD MAN IS HARD TO FIND”

80 PRINT “A GOOD PERSON IS HARD TO FIND”
40 PRINT “CLR/HOME” PRINT “WE'RE OFF!

40 PRINT “CLR/HOME” : PRINT “WE'RE OFF!"

occcoccccCccocCccccccoecCccccccccaecCcco

399559593330 D52333)3D09533)333)3)0)

If you fixed all of those lines, you can repair just about anything. Once
you get the hang of it, it's quite simple.

ELEMENTARY MATH OPERATIONS

So far all we've just PRINTed out a lot of text, but that isn't too different
from having a fancy typewriter. Now, let's do some simple math operations
to show you your computer can compute! Enter the following:

CLR/HOME
PRINT 2 + 2

This is what your screen should look like now:

PRINT 2 + 2
4

Big deal, so the computer can add - so can my $5 calculator and my 7
year old kid. Who said computers are smart? The programmer (you) is
who is smart. OK, so let's give it a little tougher problem.

CLR/HOME
PRINT 7.87 * 123.65

Still nothing your calculator can't do, but it'd be a little rough on the 7 year
old.

As we progress, we can include more and more aspects of mathematical
problems. In the next chapter we will see how we can store values in
variables and a lot of things that would choke your calculator. For now,
though, we’ll simply introduce the format of mathematical manipulations.
The “+" and “—" signs work just as they do in regular math, and the “ x”
is replaced by “*” (asterisk) for multiplication and the “+ " is replaced by
the “/” (slash) for division.

observe a certain order in which problems are executed. This is called
“precedence.” Depending on the operations we use, and the results we
are attempting to obtain, we will use one order or another. For example,
let's suppose we want to multiply the sum of two numbers by a third number
- say the sum of 15 and 20 multiplied by 3. If you entered

As v);:egin dealing with more and more complex math, we will need to

3*15 + 20

you would get 3 multiplied by 15 with 20 added on. That's not what you
wanted. The reason for that is precedence - multiplication precedes addi-
tion. To help you remember the precedence, let’s write a little program you
can run and then play with some math problems in the Immediate mode
to see the results and refer to your “Precedence Chart” on the screen.
(This little program is quite handy, so save it to disk or tape to be used
later.) ‘

10|PRINT “{CLR/HOME}"

20 PRINT “1. - (MINUS SIGNS FOR NEGATIVE NUMBERS -
NOT SUBTRACTION)"

30 PRINT “2. T (EXPONENTIATION)”

40 PRINT “3. * / (MULTIPLICATION AND DIVISION)”

50 PRINT “4. + — (ADDITIONS AND SUBTRACTIONS)"
60 PRINT “ALL OTHER PRECEDENCE BEING EQUAL"

70 PRINT “PRECEDENCE IS FROM LEFT TO RIGHT”

80 PRINT “YOUR COMPUTER FIRST EXECUTES” -

90 PRINT “THE NUMBERS IN PARENTHESES, WORKING”
100 PRINT “ITS WAY FROM THE INSIDE OUT”

110 PRINT "IN MULTIPLE PARENTHESES.”

Try some different problems.and see if you can get what you want.
Re-ordering Precedence

Once you get the knack of the order in which math operations work, there
is a way to simplify organizing math problems. By placing two or more
numbers in PARENTHESES, it is possible to move them up in priority.
Let's go back to our example of adding 15 and 20 and then multiplying by
3, but this time we will use parentheses.

PRINT 3 * (15 + 20)

Now since the multiplication sign has precedence over the addition sign,
without the parentheses we would have gotten 3 times 15 plus 20. How-
ever, since all operations inside parentheses are executed first, your com-
puter FIRST added 15 and 20 and then multiplied the sum by 3. If more
than a single set of parentheses is used in an equation, the innermost is
executed first, working its way out.

CE'MCC caoccccccccccCcccCccceccccoceccocec

DI DI IDIDDI DI DIIDIIDIDIIDIIDIDIIIIIID

THE PARENTHESES DUNGEON

To help you remember the order in which math operations are exe- -
cuted within parentheses, think of the operations as being locked
up in a multi-layer dungeon. Each cell represents the innermost
operation with the cells lined up from left to right. Each “prisoner”
is an operation surrounded by walls of parentheses. To escape the
dungeon, the prisoner must first get out of the innermost cell. Then
the prisoner goes to his right and releases any other prisoriers in
their cells. Next they break out of the “cell-block” and finally out into
the open. Unfortunately, since operations are “executed,” this is a
lethal analogy for our poor escaping “prisoners.” Do some of the
examples and see if you can come up with a better analogy.

The following examples show you some operations with parentheses.

PRINT 20 + 10 * (8 — 4)

PRINT (12.43 + 92)/3 1 (11 - 3)
PRINT 22 * 3.1415 * 22 * 3.1415
PRINT(9 + 3)/(15 - 5)

PRINT — 10/2*((12 + 7) + (8 — 4))

Now try some of these problems in the proper format expected by your
computer:

Mulitiply the sum of 4, 9 and 20 by 15

Multiply 35-by 35 and the result by. pi {SHIFT 1 }. The vertical
arrow/pi key is located between the asterisk and RESTORE keys.
(You realize that this will compute the area of a circle with a radius
of 35. To find the area of any other circle, just change 35 to
another value.) Pi {SHIFT -1 } is treated just like any other number
you enter, but to save time, you need only a single key. Pretty
neat, huh?

Add up the charges on your long distance calls and divide the
sum by the number of calls you made. This will give you the
average expense of your calls. Remember, though, you have to
do this in one set of statements in a single line. Do the same
thing with your checkbook for a month to see the average (mean)
amount for your checks.

47

Summary

This chapter has covered the most basic aspects of programming. At this
point you should be able to use the editor in your COMMODORE-64 and
write commands in the Immediate and Program (deferred) modes. Also,
you should be able to manipulate basic math operations. However, we
have only just begun to uncover the power of your computer; at this stage
we are treating it more as a glorified calculator than a computer. Never-
theless, what we have covered in this chapter is extremely important to
understand because it is the foundation upon which your understanding
of programming is to be built. If there are parts you do not understand,
review them before continuing. If you still do not understand certain oper-
ations after a review, don't worry. You will be able to pick them up later.
However, it is still important that you try and get everything to do what it
is supposed to do and what you want it to do.

The next chapter will take us into the realm of computer programming and
increase your understanding of your COMMODORE-64 considerably. If
you take it one step at a time, you will be amazed at the power you have
at your fingertips and how easy it is to program. Also, we will be leaving
the realm of calculator-like commands and getting down to some honest-
to-goodness computer work. This is where the fun really begins.

'CCCC'CI‘(C ccccccccccoecccoceccecoccecaec

D)IJ) I DD DIDIIJIDIDIDIDIDIIDIDIDIIIIIIIDIDD

CHAPTER 3

Moving Along
Introduction

In the last chapter we saw how to get started in executing commands in
both the Immediate and Program mode. From now on we will concentrate
our efforts on building from the foundation set in Chapter 2 in the Program
mode - tying various commands together in a program. We will, however,
use the Immediate mode to provide simple examples and to give you an
idea of how a certain command works. Also, as we learn more and more:
commands, it would be a good idea if you started saving the example
programs on your disk or cassette so that they can be used for review
and a quick “look-up” of examples. Use file names that you can recognize,
such as VARIABLE EXAMPLE or HOW TO SUBROUTINES, and
REMEMBER each file has to have a different name. Be sure to number
example file names (e.g. ARRAYS 1, ARRAYS 2, etc.).

Variables
Perhaps the single most important computer function is in variable com-
mands. Basically, a variable is a symbol which can have more than a

single value. If we say, for example X = 10, we assign the value of 10 to
the variable we call “X.” Try the following:

X = 10 <RETURN>

READY.
PRINT X <RETURN>

Your computer responded
10
Now type in
X=55.7 <RETURN>
READY.
PRINT X <RETURN>
This time you got

56.7

Each time you assign a value to a variable, it will respond with the last
assigned value when you PRINT that variable. Now try the following:

X = 10 <RETURN>
Y = 15 <RETURN>
PRINT X + Y <RETURN>

Your COMMODORE-64 responded with
25

As you can see, using numbers, variables can be treated in the same way
as math problems. However, instead of using the numbers, you use the
variables. Now let's try a little program using variables to calculate the
area of a circle.

10 PRINT “{CLR/HOME}"

20 Pl = (SHIFT) 1 : REM USE THE “PI” CHARACTER RIGHT
NEXT TO THE ‘RESTORE'’ KEY. : :

30 R = 15: REM R IS THE RADIUS OF OUR CIRCLE

40 PRINT PI * (R * R) : REM THIS GIVES US PI TIMES THE
SQUARE OF THE RADIUS

50 END

When you RUN the program, you will get the area of a circle with a radius
of 15. If you change the value of “R” in line 30, it is a simple matter to
quickly calculate the area of any circle you want! Since our example
“squares” a number, why don't we use our exponential sign “ 1 ". Change
line 40 to read:

40 PRINT PI * (R 1 2) : REM SAME KEY AS THE “PI” SIGN
BUT YOU DON'T SHIFT TO PRINT IT.

That saves typing, doesn't it? RUN the program again and see if you get
the same results. You should. Also, change the value of R to see the areas
of different circles. : ‘

Variable Names

When you name a variable, the computer looks only at the first two char-
acters. For example, if you name a variable NUMBER, all your computer
is interested in is NU. Try the following:

NUMBER = 63
PRINT NU

cccccccccccccccccccccceccecceccec

DD NS IND IND N0 TN JD NS I R0 I I B0 D I I I I LD B0 I B B B I

You got 63 even though you only entered the first two characters of the
variable you called NUMBER. Now try this next one:

NUMBER = 123
PRINT NUDE

The value 123 is printed because the only characters of interest to the
computer are still the first two; so even if you undress NUMBER you still

get 123!

Now it may seem that the best thing to do is to use variable names with
only two characters. While you're getting used to variables, that's probably
not a bad idea. However, as you get into more and more sophisticated
programs, it helps to use variable names which are descriptive. For exam-
ple, the following program uses MEAN as a descriptive variable name:

10 PRINT “{CLR/HOME}”
20A=15:B=23:C =38
30OMEAN=(A+B+C)/3
40 PRINT MEAN

\@ END

51

If the above program were a hundred or more lines long, you would know
what the variable MEAN does - it calculates a “mean.” Now you'd have to
be careful not to have another variable named MEATBALL or some other
name beginning with “ME", but it would certainly make it easier to under-
stand what it does.

When naming variables do not use “reserved words” (i.e. programming
commands) or reserved variables, and do begin variable names with a
letter. There are only 3 reserved variables, Tl, TI$ and ST, Let's look at
some examples of what is and what is not a valid variable name:

PRINT = 987 (Invalid name since PRINT is a reserved word.)

R1 = 321 (Valid name since first character is a letter.)

1R = 55 (Invalid since first character is not a letter.)

FORT = 222 (Invalid since variable name contains reserved
word FOR.))

PR = 99 (Valid name even though reserved word PRINT begins
with PR, as only part of the reserved word is used in variable
name.)

TO = 983 (Invalid name since TO is a reserved 2 character
word).

TI = 99999999 (Invalid since Tl is a reserved variable for time.
ADFETDCVRRWRDAAF = 10 (Valid name, but really dumb.)

It is also possible to give values to variables uSing other variables or a
combination of variables and numbers. In our example with the variable
MEAN we defined it with other variables. Here are some more examples:

T=A*"@B+0)
N=N+1
SUM =X +Y + 2

Types of Variables
Real Variables

So far we've used only “real” or “floating point” variables in our examples.
Any variable which begins with a capital letter and does not end with a
dollar sign ($) or percentage sign (%) is a real variable. The value for a
real variable can be from + or —2.93873588E-39 to + or
—1.70141183E +38. The “E” is the scientific notation for very big num-
bers. For the time being, don't worry about it. But if you get a result with
such a letter in a numeric result, get in touch with a math instructor. At
this juncture, figure you can enter numbers in their standard format from

occccocccoccccccccccccccococccc

DIND N0 NS NS I I N RS D B LD B0 D B B0 B0 B0 B0 B D B0 LD BB B0 I

0.01 to 999,999,999. (if your checkbook debit or income tax payments
have a scientific notation in them, leave the country.) Think of real varia-
bles as being able to hold just about any number you would need, along
with the decimal fractions.

Integer Variables

Integer variables contain only “integer” or “whole” numbers - ones without
fractions. The following are some examples:

AB% = 345

K% = R% + N%

ADD% = ADD% + NUM%
WXY% = 88 + LR%

The values of integer variables can range from — 32767 to + 32767 and,
like real variables, only the first two characters are read. However, the
“o%” is always read, no matter how many characters are used. So a var-
iable named WA% is the same as WAX%. Also, a variable named ABC
is different from one named ABC%; therefore, both variables could be
used in the same program and each be considered unique. As they have
a lower range than real variables, integer variables have limited applica-
tions; however, integer variables take up less memory and execute faster
than real variables and so they have many useful applications. They can
be used in mathematical operations in the same way as are real variables,
but since they do not store fractions, operations using division and similar
fraction operations must be done with care. Try some of the following
operations from the Immediate mode to see how they work:

A% = 15:B% = 21:C% = B% + A% : PRINT C% <RETURN>
36

LL% = 17 :JJ% = LL%/ 5 : PRINT JJ% <RETURN>

3

Z% = —11 :XY% = Z% + 51 : PRINT XY% <RETURN>

40

String Varlables

String variables are extremely useful in formatting what you will see on
the screen. Like real and integer variables, they are sent to the screen by
the PRINT statement. However, rather than printing only numbers, string
variables send all kinds of characters, called “strings,” to the screen. String
variables are indicated by a dollar sign ($) on the end of a variable. For
example, A$, BAD$, G$, and PULLS$ are all legitimate string variables. (In
computer parlance, we use the term “string” for the dollar sign. Thus, our

examples would be called “A string,” “BAD string,” etc.) String variables
are defined by placing the “string” in quotation marks, just as we did with
other messages we printed out.

Let's try out a few examples from the Immediate mode:

ABC$ = “ABC" : PRINT ABC$ <RETURN>

G$ = “BURLESQUE” : PRINT G$ <RETURN>

KAT$ =“CAT” : PRINT KAT$ <RETURN>

NUMBERS$ = “123456789" : PRINT NUMBER$ <RETURN>
B1$ = “5 + 10 + 20" : PRINT B1$ <RETURN>

In the same way that real and integer variables use only the first two
characters, a string variable must begin with a letter and use non-reserved
words. More importantly, you probably noticed in our examples that num-
bers in string variables are not treated as numbers but rather as “words”
or “messages.” For example, when you PRINTed B1$, instead of printing
out “35” (the sum of 5, 10 and 20), B1$ printed out exactly what you put
in quotes, 5 + 10 + 20. Do not attempt to do math with string variables.
(In later chapters we'll see some tricks to convert string variables to numeric-
real or integer- variables, but for now just treat them as messages.)

Now let's put all of our accumulated knowledge together and write a pro-
gram which uses variables. We will start a little program which will allow
you to subtract a check from your checkbook and print the amount. This
program will be the beginning of something we will later develop to give
you a handy little program with which to do checkbook balancing.

10 PRINT “{CLR/HOME}"

20 BALANCE = 571.88 : REM ANY FIGURE WILL DO.
BALANCE (BA) IS A REAL VARIABLE

30 CHECK = 29.95 : REM WHAT YOU LAST SPENT IN THE
COMPUTER STORE. CHECK (CH) IS A REAL VARIABLE.

40 B$ = “YOUR BEGINNING BALANCE IS $”

50 C$ = “YOUR CHECK IS FOR $”

60 NB$ = “YOUR NEW BALANCE IS $”: REM B$, C$ AND NB$
ARE STRING VARIABLES

70 PRINT B$;BALANCE

80 PRINT C$;CHECK

90 N = BALANCE - CHECK

100 PRINT NB$; N

110 END

occccccccccccccccccccccccc C

D2J2IJDD2I2I3I3II9I92I3IIII3II)IIIIIJIIID

Since this is a fairly long program for this stage of the game, make sure
you put in everything correctly. For the computer, it is critical that you
distinguish between commas, semi-colons, periods, etc. Also save it to
disk. To play with it, change the values in lines 20 and 30.

Let's quickly review what we have done.

STEP 1. First we defined the real variables “BALANCE” and
“CHECK” (which your COMMODORE-64 read as BA and CH
since it cares only about the first two characters.)

STEP 2. Then we defined sfring variables B$, C$, and NBS$ to
use as labels in screen formatting.

STEP 3. Fmally, we printed out all of our information usmg our
variables with one new variable, “N”, defined as the difference
between BALANCE and CHECK.

Note how we formatted the “OUTPUT” (what you see on your screen) of
our PRINT statements. The semi-colon “;” between the variables accom-
plished two things: (1) it told the computer where one variable ended and
the next began, and (2) it told the computer to PRINT the second variable
right after the first one. Thus, it took the string variable NB$

YOUR NEW BALANCE IS $#

and stuck the value of the real variable N right after the dollar sign (exactly
where we placed the hatch #). Later we will go more into the formatting
of OUTPUT, but for now let's take a quick look at using punctuation in
formatting text. We will use the comma “,” and semi-colon “;” and “new
line” to illustrate basic formatting. Put in the following little program:

NEW <RETURN>
10 PRINT “{CLR/HOME}”
20 A$ = "HERE” : B$ = “THERE” : C$ = “WHERE"
30 PRINT AS$; : PRINT B$; : PRINT C$; : REM SEMI-COLONS
35 PRINT
40 PRINT A$, : PRINT B$, : PRINT C$,: REM COMMAS
- 45 PRINT : REM A ‘PRINT BY ITSELF GIVES A VERTICAL
‘SPACE’ IN FORMATTING
50 PRINT AS$: PRINT B$: PRINT C$: REM ‘NEW LINES’
60 END

Now RUN the program. As you should see, the litile differences in lines
30, 40, and 50 made big differences on the screen. The first set is all
crammed together, the second set is spaced evenly across the screen,
and the third set is stacked one on top of the other. As we saw in the
previous program, semi-colons put numbers and strings right next to one
another. However, using commas after a PRINTed variable will space
output in groups of four across the screen, and using “new lines” in the
form of colons or new line numbers will make the output start on a new
line. A PRINT statement all by itself will put a vertical “linefeed” between
statements. Try the following little program to see how PRINT statements
all by themselves can be used.

NEW <RETURN>

10 PRINT “{CLR/HOME}"

20 PRINT “WHENEVER YOU PUT IN A PRINT STATEMENT";
: REM NOTE PLACEMENT OF SEMI-COLON

30 PRINT “ ALL BY ITSELF, IT GIVES A ‘LINEFEED""

40 PRINT

50 PRINT “SEE WHAT | MEAN?"

60 END

cccccCccccCcccccCccccccCcccoCccocCccoccCcco

DIED NS TN IS I I IO BN D D D B0 B0 I IS 20 B0 B0 B0 B B IS D B IS

Play with commas, semi-colons, and “new lines” with variables and string
variables until you get the hang of it. They are very important and are the
source of program “bugs.”’

BUGS and BOMBS

We've mentioned “bugs” and “bombs” in programs but never really
explained what they meant. “Bugs” are simply errors in programs
which either create 2SYNTAX ERRORSs or prevent your program
from doing what you want it to do. “Debugging” is the process of
removing “bugs” “Bombing” is what your program does when it
encounters a “bug.” This is all computer lingo; if you use it in your
conversations, people will think you really know a lot about com-
puters or have a bug in your personality.

Input and Output (1/0)

Input and output, often referred to as I/O, are ways of putting things into
your computer and getting it out. Usually we put IN information from the
keyboard, save it to disk or tape, and then later put it in from the disk drive
or cassette recorder. When we want information OUT of the computer, we
want it to go to our screen or printer. This is what I/0O means. So far, we
have entered information IN the computer from the keyboard either in the
Program or in the Immediate mode. Using the PRINT statement, we have

sent information OUT to the screen. However, there are other ways we

can INPUT information with a combination of programming and keyboard
commands. Let’s look at some of these ways and make our CHECKBOOK
program a lot simpler to use.

INPUT

The INPUT command is placed in a program and expects:some kind of
response from the keyboard and then a RETURN. (A RETURN alone will
also work, but the response is read as “.) It must be part of a program
and cannot be used from the Immediate mode. (If attempted from the
Immediate mode, there will be an 2ILLEGAL DIRECT ERROR message.)
Let’s look at a simple example:

NEW <RETURN>

10 PRINT “{CLR/HOME}"

20 INPUT X : REM ‘X' IS A NUMERIC VARIABLE SO ENTER
A NUMBER

30 PRINT X

40 END

RUN the program and your screen will go blank and a “?” along with a
blinking cursor will sit there until you enter a number and then the computer
will PRINT the number you just entered. Really interesting, huh?

Let's try INPUTing the same information but using a slightly different for-
mat. The nice thing about INPUT statements is that they have some of
the same features as PRINT statements for getting messages on the
screen. Look at the following program:

NEW <RETURN>

10 PRINT “{CLR/HOME}"

20 INPUT “ENTER YOUR AGE "; X

30 PRINT “{CLR/HOME}" : PRINT : PRINT : PRINT
40 PRINT “YOUR AGE IS ”; X

occccccocccccccoccccccccccococccce

DJIJDIDIDIDDIDIDIIDIIDIDIDIIDIDIDIIDIDIIII)

Now RUN the program. You will see that the presentation is a little more
interesting. Also notice we did not put an END command at the end of
the program. In COMMODORE-64 it is not necessary to enter an END
command, but it is usually a good idea to do so. As we get into more
advanced topics, we will see that our program can jump around, the place
we want it to END will be in the middle, and we will need an END statement
so that it will not crash into an area we don't want it to go. So, while an
END command really has not been necessary up to now, it is nevertheless
a good habit to develop.

Let's soup up our program a little more with the INPUT statement.

NEW <RETURN>

10 PRINT “{CLR/HOME}"

20 INPUT “ENTER YOUR NAME —> "; NA$

30 PRINT

40 INPUT “ENTER YOUR AGE —-> "; AG%

50 PRINT

60 INPUT “PRESS <RETURN> TO CONTINUE "; RT$

70 ? “{CLR/HOME}" : 2 : ? : 2 : ?: ? : REM USING “?” AS
SUBSTITUTES FOR PRINT

80 PRINT NAS; “ IS ”; AG% ; “ YEARS OLD. " : REM BE CARE-
FUL WHERE YOU PUT YOUR QUOTE MARKS AND SEMI-
COLONS IN THIS LINE

90 END

Now we’re getting somewhere. You can enter information as numeric or
string variables and the OUTPUT is formatted so you know what's going
on. As your programs become larger and more complicated, it is very
important to connect your string variables and numeric variables in such
a way that it is easy to see what the numbers on the screen mean. Let's
face it, a computer wouldn't be very helpful if it filled the screen with
numbers and you didn’t know what they meant! Line 60 is the format for
a pause in your program. RT$ doesn't hold any information but since
INPUT statements expect something from the keyboard, a variable, RT$
(for RETURN), is as good as any.

GETing Information

The GET statement is something like the INPUT statement, except it is
executed as soon as you hit a key. To see how it works, try the following
program. You should note that to be of use, GET must be put into a little
“loop” routine.

NEW <RETURN>

10 PRINT “{CLR/HOME}"

20?:?7:?:7?

30 PRINT “ ENTER A NUMBER FROM 1-9 ”;

35GETN:IFN <1 ORN > 9 THEN 35 : REM NOTE FORMAT
IN THIS LINE

07?:7

50 PRINT “ HIT ANY KEY TO CONTINUE ”;

55 GET K$: IF K$ = “” THEN 55 : REM USED AS A PAUSE
UNTIL A KEY IS PRESSED

60 ? “{CLR/HOME}" : ?:?:7:7

70 PRINT “YOUR NUMBER IS -->" ; N

80 END

Notice that the GET statement is executed as soon as you hit a key. With
an INPUT statement you first enter information and then press the RETURN
key before the program executes. The good thing about the GET state-
ment is that it is a faster way to enter and execute from the keyboard; the
problem is that you can only enter a single character before the program
takes off again. If you press the wrong key there is no chance to correct
the error before pressing the RETURN key as there is with the INPUT
command.

ccoocccoccocccccoccccocccocccoccccc

DDJ2IJ2DIIJ2IDI92II3I2I3I93I3II3IIIIIII)DIJD

READiIng In DATA

A third way to enter data into a program is with READ and DATA state-
ments. However, instead of entering the data through the keyboard, DATA
in one part of the program is READ in from another part. Each READ
statement looks at elements in DATA statements sequentially. The READ
command is associated with a variable which looks at the next DATA
statement and places the numeric value or string in the variable. Let’s
look at the following example:

NEW <RETURN>
10 PRINT “{CLR/HOME}"
20 READ NA$: REM READS NAME
30 READ OC$: REM READS OCCUPATION
40 READ SN : REM READS STREET NUMBER
50 READ ST$: REM READS STREET NAME
60 READ CT$: REM READS CITY
70 READ SA$: REM READS STATE
80 READ ZIP : REM READS ZIP CODE
90 PRINT : PRINT ; PRINT
100 REM BEGIN PRINTING OUT WHAT ‘READ’ READ IN. (BE
CAREFUL TO PUT IN EVERYTHING EXACTLY AS ITIS LISTED.)
110 PRINT NA$
120 PRINT OC$
130 PRINT SN; “ " ; ST$
140 PRINT CT$; “,"; SA$;“ "; ZIP
150 END
1000 DATA DAVID GORDON, SOFTWARE TYCOON, 8943,
FULLBRIGHT
1010 DATA CHATSWORTH, CALIFORNIA, 91311

In the DATA statements there is a comma separating the various elements,
unless the DATA statement is at the end of a line. If you have one of the
elements out of place or omit a comma, strange things can happen. For
example if the READ statement is expecting a numeric variable (such as
the street address) and runs into a string (such as the street name) you
will get an error message. Think of the DATA statements as a stack of
strings and numbers. The first element of the DATA is removed from the
stack each time a READ statement is encountered in the program. The
next READ statement looks at the element on top of the stack, moving
from left to right. Go ahead and-SAVE this program and let's put an error
in it. (SAVE it first, though, so you will have a correct listing of how READ
and DATA statements work.) '

LIST the program to make sure you have it in memory and enter the
following line:

61

/\/

4.
V.,
&, N

85 READ EX$

Now RUN the program and you should get an 20UT OF DATA ERROR
IN 85. The error occurred because you have a READ statement without
enough DATA statements (or elements); so, be sure that 1) there are
enough elements in your DATA statements to take care of your READ
statements, and 2) the variables in your READ statements are compatible
with the elements of the DATA statements. (i.e. Your numeric variables
read numbers and string variables read strings.) To repair your program,

simply type in
1020 DATA WORD

This will give it something to READ. (Of course you could have DELETEd
line 85).

If an element is a DATA statement (and is enclosed in quotation marks),
all the characters inside the quotes are considered to be a single string
element. For example, make the following changes in your program and
RUN it:

cecoccccccocccccCccCcccCccCccccCcccccoccec

DIED JD I B0 I B0 RN IS BN T BD B B0 B0 B B I B0 B B B0 RS B B0 B

145 PRINT EX$
1020 DATA “10 DOWNING ST, LONDON, 45, ENGLAND”

Both numbers and commas were happily accepted by a READ statement
with a string variable since they were all enclosed in quotation marks. Now
remove the quote marks and RUN it again. This time it only printed up to
the first comma, ‘10 DOWNING ST’ but the string variable EX$ had no
problem accepting a numeric character! (However, since it read the ‘10’
as a string, it cannot be used in a mathematical operation.) Experiment
with different elements in the DATA statements to see what happens. Also,
just for fun, put the DATA statements at different places in the program.
You will quickly find that they can go anywhere and are READ in the order
of placement in the program.

Looping With FOR/NEXT

The FOR/NEXT loop is one of the most useful operations in BASIC pro-
gramming. It allows the user to instruct the computer to go through a
determined number of steps, at variable increments if desired, and exe-
cute them until the total number of steps is completed Lets look at a
simple example to get started.

NEW <RETURN>
10 PRINT “{CLR/HOME}"
20 NA$ = “<YOUR NAME>"
30 FOR | = 1 TO 10 : REM BEGINNING OF LOOP
40 PRINT NA$
50 NEXT | : REM LOOP TERMINAL
- 60 END

Now RUN the program and you will see your name printed 10 times along
the left side of the screen. That's nice, but so what? OK, not too impres-
sive, but we will see how useful this can be in a bit. First let's look at
another simple illustration to show what's happening to “I” as the loop is
being executed.

NEW <RETURN>

10 PRINT “{CLR/HOME}"
20FORI =1TO 10

30 PRINT |

40 NEXT |

As we can see when the program is RUN, the value of “I" changes each
time the program proceeds through the loop. Think of a loop as a child
on a merry-go-round. Each time the merry-go-round completes a revo-
lution, the child gets a gold ring, beginning with one and ending, in our
example, with 10.

TRIVIA

As you begin looking at more and more programs, you will see that
the variable “I” is used in FOR/NEXT loops a lot. Actually, you can
use any variable you want, but the “I” keeps cropping up. Like your-
self, | was most curious as to why programmers kept using the letter
“l,” and after several moments of exhaustive research | found out.
The “I” was the “integer” variable in FORTRAN (an early computer
language), and it was used in “DO loops” since it was faster. The
“I" also can be interpreted to stand for “increment.” | told you it was
trivia.

Having seen how loops function, let's do something practical with a loop.
We'll fix up the CHECKBOOK program we've been playing with.

in our souped up CHECKBOOK program, we are going to use variables
in many ways. First, our FOR/NEXT loop will use a variable. We'll stick
with tradition and use “I". Second, we will use a variable to indicate the
number of loops to be executed. We will use N%, an integer variable.
Third, we will use variables for the balance, the amount of the check, and
the new balance. This program is going to be a little longer, so be sure to
SAVE it to disk every 5 lines or so. For cassette, SAVE it about every 10
lines.

NEW <RETURN>

10 PRINT “{CLR/HOME}"

20 CB$ = “CHECK BOOK”

30 PRINT : PRINT : PRINT CB$

40 INPUT “HOW MANY CHECKS? ->" ; N%

50 INPUT “WHAT IS YOUR CURRENT BALANCE? ->" ;BA
60 REM BEGIN LOOP

70 FOR 1 = 1 TO N%

80 PRINT “YOUR BALANCE IS NOW $";BA

90 PRINT “ AMOUNT OF CHECK #";I; “-> ";

100 INPUT CK : REM VARIABLE FOR CHECK

110 BA = BA - CK : REM KEEPS A RUNNING BALANCE
120 NEXT | : REM TOP OF LOOP

ccccccoCccCccccccccCccccCccccccoccCeco

DIED IS IND IS IS N0 BN IS B0 2N D I IS S B RS B0 B0 D B0 I I B0 D 1D

130 ? “{CLR/HOME}” : REM CLEAR SCREEN WHEN ALL
CHECKS ARE ENTERED

140 PRINT : PRINT : PRINT

150 PRINT “YOU NOW HAVE $”; BA ; “ IN YOUR ACCOUNT”
160 PRINT : PRINT “ THANK YOU AND COME AGAIN ”

170 END

Our checkbook program is coming along, making it easier to use, and that
is the purpose of computers. Now, let's look at something else with loops.

Nested Loops

With certain applications, it is going to be necessary to have one or more
FOR/NEXT loops working inside one another. Let's look at a simple appli-
cation. Suppose you had two teams with 10 members on each team. You
want to make a team roster indicating the team number (#1 or #2) and
member number (#1 through #10). Using a nested loop, we can do this
in the following program:

NEW <RETURN>

10 PRINT “{CLR/HOME}"
20FORT = 1 TO2:REMT FOR TEAM #

30 FORM = 1 TO 10 : REM M FOR MEMBER #
40 PRINT “TEAM #” ; T ; “PLAYER #"; M

50 NEXT M
60 NEXT T
70 END

Wi "
.::/M///"'

ey,

In using nested loops, it is important to keep the loops straight. The inner-
most loop (the “M loop” in our example) must not have any other FOR or
NEXT statement inside of it. Think of nested loops as a series of fish
eating one another, the largest fish’s mouth encompassing the next largest
and so forth on down to the smallest fish.

Look at the following structure of nested loops:

FORA=1TON
FORB =1TON
FORC =1TON
FORD =1TON
NEXT D
NEXT C
NEXT B
NEXT A

Note how each loop begins (a FOR statement is executed) and is termi-
nated (encounters a NEXT statement) in a “nested” sequence. If you have
ever stacked a set of different sized cooking bowls, each one fits inside
the other; that is because the outer edge of one is larger than the next
one. Likewise, in nested loops, the “edge” of each loop is “larger” than
the one inside it and “smaller” than the one it is inside.

Stepping Forward and Backwards

Loops can go one step at a time, as we have been using, or they can step
at different increments. For example, the following program “steps” by 10.

NEW <RETURN>

10 PRINT “{CLRHOME}"

20 FOR | = 10 TO 100 STEP 10
30 PRINT |

40 NEXT |-

This allows you to increment your count by whatever you want. You can
even use variables or anything else that has a numeric value. For example

NEW <RETURN>
10 PRINT “{CLR/HOME}"
20K=5:N=25

30 FOR | = KTON STEP K
4PRINTI

50 NEXT

ccccoeccccceccccccccccccccccocco

DIND J0 T0 TS T T T TS B0 T T T T TD TS D JD TS TR0 T J0 J0 T TS D)

Go ahead and RUN the program. But WAIT!!, you say. In line 50 you
detect a BUG, a typo and big mistake. After the word NEXT, there should
be an “I” but there is none, right? Well, actually, in COMMODORE-64
BASIC you really do not need it, and you can save a little memory if you
use NEXT statements without the variable name. Even in nested loops,
as long as you put in enough NEXT statements, it is possible to run your
program without variable names after NEXT statements. However, it is
good programming practice to use variable names after NEXT state-
ments, especially in nested loops so that you can keep everything straight.

Itis also possible to go backwards. Try this program:

NEW <RETURN>

10 FORI = 4 TO 1 STEP -1

20 PRINT “FINISHING POSITION IN RACE =";|
30 NEXT |

As we get into more and more sophisticated (and useful) programs, we
will begin to see how all of these different features of COMMODORE-64
BASIC are very useful. Often you may not see the practicality of a com-
mand initially, but when you need it later on, you will wonder how you
could program without it!

T can
ALSO make

IT 60
BACKWwARDS/

67

IN CASE YOU WONDERED

You may have noticed that the lines inside the loops were indented.
If you tried that on your COMMODORE-64 you probably found that
as soon as you LISTed your program, all the indentations were gone.

~ Unfortunately, that will happen, and without special utilities there's
nothing you can do about it. However, don't worry about it. It is a
programming convention for clarity to indent or “tab” loops to make
it easier to understand what the program is doing, but they do not
affect your program at all. '

Counters

Often you will want to count the number of times a loop is executed and
keep a record of it in your program for later use. For example, if you run
a program that loops with a STEP of 3, you may not know exactly how
many times the loop will execute. To find out, programmers use “counters,’
variables that are incremented, usually by +1, each time a loop is exe-
cuted. The following program illustrates the use of a counter:

NEW <RETURN>

10 PRINT “{CLR/HOME}

20 FOR| = 3 TO 99 STEP 3

30 PRINT |

40N = N + 1 :REM THIS IS THE COUNTER

50 NEXT |

60 PRINT : PRINT “YOUR LOOP EXECUTED "; N ; “ TIMES."

The first time the loop was entered, the value of “N” was 0; when the
program got to line 40, the value of 1 was added to N to make it 1 (i.e. 0
+ 1 = 1). The second time through the loop, the value of N began at 1,
then 1 was added. At the top of the loop, line 50, the value of N was 2.
This went on until the program exited the loop. When all of the looping
was finished, presto!, your N told you how many times the loop was exe-
cuted. Of course, counters are not restricted to counting loops, and they
can be incremented by any value, including other variables, you need.
For example, change line 40 to read:

4ON=N+("2)

RUN your program again and your “counter total” will be a good deal
higher.

MCNC(C'CCCCCCCCCC“CCC‘CCCC(CCCC

D)D) I IDIDIDIDDIDIIDIDIIIIIDIDIDIIIDIDDIIIDDIDIDD

Summary

This chapter has begun to show you the power of your computer, and we
have really began programming. One of the most important concepts we
have covered is that of the “variable.” The significant feature of variables
is that they “vary” (change depending on what your program does). This
is true not only with numeric variables, but also with string variables. The
various input commands show how we enter values or strings into vari-
ables depending on what we want the computer to compute for us. Finally,
we have learned how to loop. This allows us, with a minimal amount of
effort, to tell the computer to go through a process several times with a
single set of instructions. With loops we can set the parameters of an
operation at any increment we want, and then sit back and let our COM-
MODORE-64's go to work for us.

However, we have only just begun programming! In the next chapter we
will begin getting into more commands and operations that allow us to
delve deeper into the COMMODORE-64's capabilities and make our pro-
gramming jobs easier. The more commands we know, the less work it is
to write a program.

5999909020022 002D0223D0200000

3395939393 05300505D539350053395939590)00))

CHAPTER 4

Branching Out
Introduction

In this chapter we will begin exploring new programming constructs which
will geometrically increase your programming ability. We will be examining
some more sophisticated techniques, but by taking each a step at a time,
you will begin using them with ease. Later, when you are developing your
own programs, be bold and try out new commands. One problem common
to new programmers is a tendency to stick with the simple commands
they have learned to get a job done. After all, why use “complicated”
commands to do what simpler ones can do? Well, the answer to that has
to do with simplicity. If one “complicated” command can do the work of
10 “simple” commands, which one is actually simpler? As you get into
more and more sophisticated programming applications, your programs
can become longer and subject to more bugs. The more commands you
have to sift through, the more difficult it is to find the bugs; therefore, while
itis perfectly OK to write a long program using a lot of simple commands
while you're learning, begin thinking about short-cuts through the use of
the more advanced commands.

Related to this issue of maximizing your knowledge of different commands
is that of letting the computer perform the computing. This may sound
strange at first, but often novices will figure everything out for the computer
and use it as a glorified calculator. In the last chapter you may remember
that we set up a counter to count the times a loop was executed when we
used a STEP 3 loop. We could have figured out how many loops were
executed instead of letting the computer do it with the counter, but that
would have defeated the purpose of programming! So, as you learn new
commands, see how they can be used to perform the calculations you
had to work out yourself.

Branching

So far all of our programs have gone straight from the top to the bottom
with the exception of loops. However, if our COMMODORE-64 is to do
some real decision making, we must have some way of giving it options.
When a program leaves a straight path, it is referred to as either “looping”
or “branching.” We already know the purpose of a loop, but what is a
branch? Well, using the IF/THEN and GOTO commands, we will see. (In
fact, with the GET statement in the last chapter, we sneaked these com-

71

mands in.) Consider the following program: (NOTE: By now you should
know enough to clear memory with a NEW command, so | won't keep on
insulting your intelligence by putting one at the beginning of each program.)

10 PRINT “{CLR/HOME}"

20 PRINT “CHOOSE ONE OF THE FOLLOWING BY NUMBER:"
30 PRINT

40 PRINT “1. BANANAS”

50 PRINT “2. ORANGES”

60 PRINT “3. PEACHES"

70 PRINT “4. WATERMELONS”

80 PRINT

90 INPUT “WHICH? ”; X

100 PRINT “{CLR/HOME}"

110 IF X = 1 THEN GOTO 200

120 IF X = 2 THEN GOTO 300

130 IF X = 3 THEN GOTO 400

140 IF X = 4 THEN GOTO 500

150 GOTO 10 : REM THIS IS A ‘TRAP’ TO MAKE SURE THE
USER CHOOSES 1, 2, 3, OR 4

200 PRINT “BANANAS” : END

300 PRINT “ORANGES” : END

400 PRINT “PEACHES” : END

500 PRINT “WATERMELONS" : END

72

cccccoccCcCcccccccccccccococccoccec

DI DI IDIDDIDIDIDIIDIDIDIIDIDIDIIIDIDDIIDIIIID

As you can see, your computer “branched” to the appropriate place, did
what it was told and ENDed. Not very inspiring | admit, but it is a clear
example. Now, let’s try something a little more practical for ‘your kids to
play with in their math homework.

10 PRINT “{CLR/HOME}”

20 AG$=" ADDITION GAME ": PRINT AG$

30 PRINT : PRINT

40 INPUT “ENTER FIRST NUMBER -->" ; A

50 PRINT

60 INPUT “ENTER SECOND NUMBER-->" ; B

70 PRINT

80 PRINT “WHAT IS ”; A; “+" ;B ;: INPUT C

80 IF C = A + B THEN GOTO 200

100 PRINT : PRINT “THAT'S NOT QUITE IT. TRY AGAIN. :
PRINT

110 GOTO 80

200 PRINT “ THAT'S RIGHT! VERY GOOD ”

210 PRINT

220 PRINT “WOULD YOU LIKE TO DO MORE? (Y/N): ”;
230 GET ANS$: IF AN$="" THEN GOTO 230

240 IF AN$ = “Y” THEN PRINT“{CLR/HOME}” : GOTO 30
250 PRINT“{CLR/HOME}" : PRINT : PRINT : PRINT

260 PRINT “HOPE TO SEE YOU AGAIN SOON" : END

As you can see, the more commands we learn, the more fun we can have.
Just for fun, change the program so that it will handle muitiplication, divi-
sion, and subtraction.

WHAT’S IN A NAME?
Kids (of all ages) like to have their names displayed. See if you can
change the above program so that it asks the child's name; then
when the program responds with either a correction or affirmation
command, it mentions the child’s name. (e.g. THAT'S RIGHT! VERY
GOOD, SAM). Use “NA$” as the name variable.

Let's look carefully at our program to learn something about IF/THEN
statements. First, note in line 240, the branch is to clear the screen
(PRINT*{CLR/HOME}") if AN$ = “Y". If any other response is encountered
it ends the program. You may ask why the program did not branch to line
30 regardless of the response since the “GOTO 30" command is after a
colon, making it a new line. Good point. The reason for that is after an IF
statement, when the response or condition is null, the program immedi-
ately drops to the next LINE NUMBER. That is, any statements after a
colon in a line beginning with an IF statement will only be executed if the
condition of the IF statement is met. Secondly, the condition of AN$ is
queried as being a “Y” and not simply a Y without quotes. Since the user
INPUTs a Y and not a “Y”, we assume that the program will accept a Y,
but remember AN$ is a “string” and not a numeric variable. Therefore in
the setting of the conditional, we must remember what kind of variable we
are using. On the other hand, if we used a numeric variable, such as AN
or AN%, we could have entered a line such as,

IF AN = 1 THEN....

Relationals

So far we have only used “=" to determine whether or not our program
should branch. However, there are other states, referred to as “relation
als,” that we can also query. The following is a complete list of the rela-
tionals we can employ:

SYMBOL MEANING
= Equal to
< Less than
> Greater than
<> Not equal to
>= Greater than or equal to
<= Less than or equal to
74

cccccccccccccocccccccococcoccoccoccec

4

5797939959553 D53939393D033D5D0D05333)D0)

T AM » A
THE (THERS!

THEY'RE AW

& me!

Now let's play with some of these, and then we’ll examine them for their
full power. Here are some quickie programs:

10 PRINT “{CLR/HOME}’

20 INPUT “NUMBER 1-->";A

30 INPUT “NUMBER 2-->";B

40 IF A > B THEN GOTO 100

50 IF A < B THEN GOTO 200

60 IF A = B THEN GOTO 300

100 PRINT “NUMBER 1 IS GREATER THAN NUMBER 2" : END
200 PRINT “NUMBER 1 IS LESS THAN NUMBER 2" : END
300 PRINT “NUMBER 1 IS EQUAL TO NUMBER 2”

10 PRINT “{CLR/HOME}"

20 INPUT “DO YOU WANT TO CONTINUE? (Y/N)”; AN$
30 IF AN$ <> “Y” THEN END

40 GOTO 10

75

10 PRINT “{CLR/HOME}”

20 INPUT “HOW OLD ARE YOU? "; AG%

30 IF AG% >= 21 THEN GOTO 1060

40 PRINT“{CLR/HOME}" : PRINT : PRINT “SORRY, YOU'VE
GOT TO BE 21 OR OLDER TO COME IN HERE!” : END

100 PRINT“{CLR/HOME}”" : PRINT : PRINT “WHAT WOULD
YOU LIKE TO DRINK?”

OK, you have the idea how relationals can be used with IF/THEN com-
mands; note they work with strings as well as numeric variables. However,
there is another way to use relationals. Try the following from the Imme-
diate mode:

A=10:B=20:PRINTA=B

Your computer responded with a 0, right? This is a logical operation. If a
condition is false, your COMMODORE-64 responds with a 0; but if it is
true, it responds with a — 1. Now try the following little program.

10 PRINT “{CLR/HOME}’

20A =10
30B =20
40C=A>B
50 PRINT C

When you RUN the program, you again get a 0. This is because the
variable C was defined as A being greater than B. Since A was less than
B the variable C was 0 or “false.” Now, let's take it a step further:

10 PRINT “{CLR/HOME}"

20A = 10
30B =20
40C=A>B

50 IF C = 0 THEN PRINT “A IS LESS THAN B” : END
60 IF C = -1 THEN PRINT “A IS GREATER THAN B”

Later, we will see further applications of these logical operations of the
COMMODORE-64. For now, though, it is important to understand that a
true condition is represented by a “—1” and a false condition by a “0".

AND/OR/NOT

Sometimes we need to set up more than a single relational. Suppose, for
example, that you are organizing your finances into 3 categories of expenses:
(1) Under $10, (2) between $10 and $100, and 3) over $100. With our
relationals it would be simple to compare input under $10 and over $100.

ccccoccccccccCccoccccoCcocCccocccCcoccec

DJ3IJI3I3D3D3I3D3D3I2I3D3D03I32I3I3I3D03I3III2II)

But what if we wanted to do something in between. In this case we might
have some difficulty without added commands. The AND, OR and NOT
statements allow us to set ranges with our relationals.

AND If all conditions are met then true

OR If one condition is met then true

NOT If condition is not met then true.
For example:

10 PRINT “{CLR/HOME}"

20 INPUT “ENTER AMOUNT -->$"; A

30 IF A < 10 THEN 100

40 IF A > 10 AND A <= 100 THEN 200

50 IF A > 100 THEN 300 .

100 PRINT “ PETTY CASH " : GOTO 400

200 PRINT “ GENERAL EXPENSES ” :GOTO 400
300 PRINT “ BIG BUCKS ”

400 PRINT “ DO YOU WISH TO CONTINUE? *;
410 GET AN$: IF AN$="" THEN 410

420 IF AN$ < > “Y” AND AN$ < > “N" THEN PRINT “ANSWER
‘Y’ OR 'N' PLEASE " : GOTO 400

430 IF AN$ = “Y” THEN 10

440 PRINT“{CLR/HOME}" : PRINT “GOODBYE"

In line 40 we set the conditional branch to be BOTH greater than 10 and
equal to or less than 100. The variable “A” had to meet both conditions
to branch. Similarly, in line 420, using the AND statement again, we made
sure that the response had to be either “Y” or “N”.

If you are very perceptive, you may have asked yourself about some fishy
format in the program. There are conditional IF/THEN lines that simply
say THEN 100 and stuff like that. What's going on? Shouldn't there be a
GOTO statement there? Again, we have slipped in another feature of
COMMODORE-64 BASIC. When using IF/THEN statements, it is possible
to drop the GOTO on a branch and simply put in the line number. However,
note that we have used GOTO statements elsewhere in the program where
no conditional is used within the same line or within a single set of colons.
Until you become more familiar with programming you might want to keep
your GOTO statements after IF/THEN statements, but they are not required.

You may have had another question which involves the AND statement
in line 420. In normal English if we say something is not “Y” or “N” we

mean that it must be one or the other. However, in programming, if we
use OR, we are telling the program to branch if either condition is met.
Thus, if we wrote line 420 as,

420 IF AN$ < > “Y” OR AN$ < > “N” THEN PRINT “ANSWER
'Y’ OR 'N’ PLEASE ” : GOTO 400

the program would have branched if AN$ was not equal to EITHER “Y”
or “N”. Thus, for example, if we responded with a “Y”, that “Y” would have
NOT been equal to “N” and so the program would have branched to
“ANSWER ‘Y’ OR ‘N’ PLEASE” - not what we intended. To check this,
change the AND to an OR in line 420 and RUN the program.

Now, let's use the OR and NOT statements in a program:

10 PRINT “{CLR/HOME}”

20 READ A

30 READ B

40 READ C

50 DATA 10,20,30

60IFA+B=CORA<BORA - B = CTHEN 100

70 END

100 PRINT“{CLR/HOME}” : PRINT “ONE OF 'EM MUST BE
TRUE”

Looking at line 60 we can see that A — B does not equal C; however, A
+ B does equal C and A is less than B. Using the OR statement, only
one statement has to be true to branch. Now, let’s try the following program:

10 PRINT “{CLR/HOME}”

20 READ A : READ B : READ C

30 DATA 10,20,30

40Z=A-B=C

50 IF NOT Z THEN 100

60 END : :
100 PRINT “ THAT'S RIGHT! A - B = C IS NOT RIGHT! - DID
| SAY THAT RIGHT?”

As can be seen from the example, it is possible to use the “negation” of
a formula to calculate a branch condition. In most cases, you will use < >
(not equal) or the positive case, but at other times it will be simpler to

employ NOT.

cccoccoccccccceccCccCcCccCccccccccceccecc

2J) DI I DIIDIIIDIIIIDIIIDIIIIIIII)

Subroutines

Often in programming there is some operation you will want your computer
to perform at several different places in the program. Now, you can repeat
the instructions again and again or use GOTO's all over the place to return
to your original spot after branching to the operation. On the other hand,
you can set up “subroutines” and jump to them using GOSUB and get
back to your starting point using the RETURN command. Up to a point
the GOSUB command works pretty much like the GOTO command since
it sends your program bouncing off to a line out of sequence. Also, the
RETURN command is something like GOTO since it also sends your
program to an out-of-sequence line. However, the GOSUB/RETURN pair
is unique in what it does. Let's take a look at a simple example to see how
it works:

10 PRINT “{CLR/HOME}"

20 A$ = “HELLO” : GOSUB 100

30 A$ = “HOW ARE YOU TODAY?” : GOSUB 100
40 A$ = “I'M FINE” : GOSUB 100

50 END

100 PRINT A$

110 RETURN

Our example shows that a GOSUB statement works exactly like a com-
mand on the line itself except that it is executed elsewhere in the program.
The RETURN statement brings it back to the next statement after the
GOSUB statement. Using the GOSUB/RETURN pair it is much easier to
weave in and out of a program than using GOTO since the RETURN
automatically takes you back to the jump-off point.

To better illustrate the usefulness of GOSUB, let's change line 100 to
something more elaborate. Try the following. (Note: We will be getting
ahead of ourselves a bit with this example, but the following is meant to
illustrate something very useful in GOSUB'’s.)

100 L = LEN (A$)/2 : PRINT TAB(20 — L) ; A$

Now when you RUN the program, all of your strings are centered. As you
can see, a single routine handled all of the centering. Instead of having
to rewrite the routine every time you want a string centered, you simply
use a GOSUB to line 100.

NEATNESS COUNTS

We really have not discussed the structure of programs too much
up to this point. In part, this is because it was not really necessary.
However, as our instruction set grows, so too does the possibility
for errors. By now, if you haven't made an error, you haven't been
keying in these programs! You can to minimize errors, especially
using GOSUB's, by organizing them into coherent “blocks.” Basi-
cally, a “block” is a subroutine within a range of lines. For example,
you might block your subroutines by 100’s or 1000’s, depending on
how long the subroutines are. Thus, you might have subroutines
beginning at lines 500, 600 and 700. it doesn’'t matter if the subrou-
tine is 1 line or 10 lines, as long as it is confined to the block. It is
easier to debug, easier for others and you to understand what is
happening in the program, and in general a good programming
practice.

Computed GOTO and GOSUB

Now we're going to get a little fancier, but in the long run, it will result in
clearer and simpler programming. As we have seen, we can GOTO or
GOSUB on a “conditional” (e.g. IF A = 1 THEN GOTO 200). The easier
way to make a conditional jump is to use “computed” branches using the
ON statement. For example,

ccoccccccCcccocccCccocccccccocco

D2IJIJDIIIDIDIIIIIII>IDIDIDIDIIIIIIII

10 PRINT “{CLR/HOMEY}"

20 INPUT “ENTER A NUMBER FROM 1 TO5” ; A
30IFA<10RA>5THEN 20 : REM TRAP

40 ON A GOSUB 100,200,300,400,500 : REM COMPUTED
GOSuB ’

50 PRINT “DO YOU WISH TO CONTINUE? (Y/N)” ;
60 GET ANS$: IF AN$ = “” THEN 60

70 IF AN$ < > “Y” THEN END

80 GOTO 10 - .

100 PRINT “ONE” : PRINT : RETURN

200 PRINT “TWO” : PRINT : RETURN

300 PRINT “THREE” : PRINT : RETURN

400 PRINT “FOUR” : PRINT : RETURN

500 PRINT “FIVE” : PRINT : RETURN

To format a computed GOSUB/GOTO enter a variable following the ON
command. The program will then jump the number of “commas” to the
appropriate line number. If a 1 is entered, it takes the first line number, a
2, the second, and so forth. It's a lot easier than entering, “IF A = 1
THEN GOSUB 100 : IF A = 2 THEN GOSUB 200 : etc.” However, it is
necessary to use relatively small numbers in the “ON” variable since there
is a limited number of subroutines. If your program is computing larger
numbers, just convert the larger numbers into smaller ones by changing
the variables. For example:

10 PRINT “{CLR/HOME}"

20 INPUT “ENTER ANY NUMBER--> "; A

30IFA<100 THENB = 1

40IFA>= 100 ANDA <200 THENB = 2

50 IFA>= 200 THENB = 3

60 ON B GOSUB 100, 200, 300 : REM COMPUTED GOSUB
ON ‘B’ VARIABLE

70 PRINT “DO YOU WISH TO CONTINUE?(Y/N)";

80 GET ANS : IF AN$ = “” THEN 80

90 IF AN$ < > “Y” THEN END

95 GOTO 10

100 PRINT “LESS THAN 100" : RETURN

200 PRINT “MORE THAN 100 BUT LESS THAN 200 " : RETURN
300 PRINT “MORE THAN 200" : RETURN

RUN the program and enter any number you want. Since the program is

branching on the variable B and not on A (the INPUT variable), you will
not get an error since the greatest value of B can only be 3.

81

Now let's get back to relationals and see how they can be used with
computed GOSUBS. Remember, in using relationals, the only numbers
we get are 0's and 1's for false and true respectively. However, we can
use these 0's and 1’s just like regular numbers. Try the following:

10 PRINT “{CLR/HOMEY}"
20X=1:¥Y=2:Z2=3

30A=X<Z
40B=Y>2Z
50C=2Z2>X

60 PRINT “A + A =" ;A + A

70 PRINT: PRINT“A + B=";A + B

80 PRINT:PRINT'A+ B +C=";A+B+C
90 END

Now before you RUN the program, see if you can determine what will be
printed by lines 60, 70 and 80. Once you have made a determination,
RUN the program and see what happens. Go ahead and do it. How'd you
do? Let's go over it step by step.

1. Since X is less than Z, A will be “true” with a value of one
(—1). Therefore A + A (—1 + —1) will equal —2.

2. Since Yis notless than Z , (Y = 2 and Z = 3, remember) B
will be “false” with a value of 0. Therefore, A + B (—1 + 0) will
total —1.

3. Since Z is greater than X, C will be “true” with a value of —1.
Therefore A + B + C(—1 + 0 + —1) will equal —2.

If you got it right, congratulations! If not, go over it again. Remember, very
simple things are happening, so don't look for a complicated explanation!

Now that we see how we can get numbers by manipulating. relationals,>

let's use them in computed GOSUB's. The following program shows how:

10 PRINT “{CLR/HOME}"

20 INPUT “HOW BIG WAS THE HOME CROWD?”; HC

30R =1 + (HC >= 500) + (HC >= 1000)

40IFR =0THENR = 2

50IFR = -1 THENR =3

60 ON R GOSUB 100,200,300

70 PRINT : INPUT “DO YOU WISH TO CONTINUE? (Y/N) ”;
ANS

80 IF AN$ < > “Y” THEN END .

ccoececCccceeccccccceacccacc

DI I I I IDIDIDDIDIIIDIIIDIIIIIIDIIII)

90 GOTO 10

100 PRINT “{CLR/HOME}" : PRINT “THE HOME CROWD WAS
NOT VERY BIG - LESS THAN 500" : RETURN

200 PRINT “{CLR/HOME}" : PRINT “THE HOME CROWD WAS
A PRETTY GOOD SIZE - BETWEEN 500 AND 1000." : RETURN
300 PRINT “{CLR/HOME}” : PRINT “THE HOME CROWD WAS
VERY BIG - 1000 OR OVER! " : RETURN

This program is hinged on line 30’s formula or algorithm. Let's see how it
works:

1. There are 3 conditions:

a. HC is less than 500
b. HC is between 500 and 1000
c. HC is greater than 1000

2. If the first condition exists, both HC > = 500 and HC > = 1000
would be false. Thus 1 + 0 + @ = 1. Therefore R = 1.

3. If HC is > = 500 but less than 1000 then HC >= 500 would
be true but HC >= 1000 would be false. Thus we would have
1 + (—1) + 0 = 0. Convert the value of R to 2.

4, Finally if HC is both >= 500 and > = 1000 then our formula
would resultin 1 + (—1) + (—1) = —1. Convert the value of
Rto 3.

REST AREA

At this point let's take a little rest and reflection. In programming,
there is no such thing as THE RIGHT WAY and THE WRONG WAY.
Certain programs are more efficient, faster or take less code and
memory than others, but the computer makes no moral judgments.
If a program does what you want it to do, no matter how slowly it
does it or how long it took you to write it, it is “right.” In the above
example we used an algorithm with relationals to do something we
could have done with more code. Don't expect to use such formulas
right off the bat unless you have a strong background in math. If
you're not used to using algorithms, don’t expect to understand their
full potential right away. The one we used is relatively simple. You
will find far more elaborate ones as you begin looking at more pro-
grams. The main point is to keep plugging ahead. With practice you
will learn all kinds of little shortcuts and formulas. If you get stuck
along the way, just keep on going. Remember, as long as you can
get your program running the way you want it to, you're doing the
“right” thing.

Strings and Relationals

Before we leave our discussion of computed GOTO’s and GOSUB's with
relationals, let's take a look at how relationals handle strings. Try the
following:

A$ = “A’ : B$ = “B” : PRINT B$ > A$ <RETURN>

Surprised? In addition to comparing numeric variables, relationals can
compare alphabetic string variables with “A” being the lowest and “Z” the
highest. So if we ask is B$ greater than A$, we get a “— 1" (true) since
B$ was a B and A$ was an A. Now you might be wondering what on earth
you could possibly want to do with this knowledge. Well, in sorting strings
(like putting names in alphabetical order) such an operation is crucial.
Later on we will show you a routine for sorting strings, but for now let's
make a simple string sorter for sorting two strings.

10 PRINT “{CLR/HOME}”

20 INPUT “WORD #1 --> " ; A$

30 INPUT “WORD #2 --> " ; B$

40 PRINT : PRINT : PRINT

50 IF A$ < B$ THEN PRINT A$: PRINT B$
60 IF A$ > B$ THEN PRINT B$: PRINT A$

Just what you needed! A program which will put two words in alphabetical
order! '

Arrays

The best way to think about arrays is as a kind of variable. As we have
seen, we can name variables A, D$, KK%, X1 and so forth. An array
uses a single name with a number to differentiate different. variables.
Consider the following two lists, one using regular string variables and
the other using a string array:

STRING VARIABLE STRING ARRAY
P$ = “PIG” AMS(1) = “PIG”

C$ = “CHICKEN" AMS$(2) = “CHICKEN"
D$ = “DOG" AMS$(3) = “DOG"

H$ = “HORSE" AMS$(4) = “HORSE"

Now if we PRINT H$ we'd get HORSE and if we PRINT AM$(4) we'd also
get HORSE. Likewise, we could use arrays for numeric variables such as:

cccoccccccccccccccccocccoccoccec

520 0 0 T T T W0 T Y0 Ts T 0 T T W0 T T o s T A T T 0 M

A1) =1
A@) =2
A@) =3
A(4) = 4 etc.

Again you may well ask, “So what? Why not just use regular numeric or
string variables instead of arrays?” Well, for one thing, using arrays makes
it easier to keep track of what you're doing in a program. For another,
using arrays saves a lot of time. Consider the following program for INPUTing
a list of 10 names using a string array.

10 PRINT “{CLR/HOME}"
20FORI=1TO 10

30 PRINT “NAME #"; | ; : INPUT NAS$(l)
40 NEXT | :

50 FOR | = 1 TO 10 : PRINT NAS$(I)

60 NEXT |

Now, write a program which does the same thing using non-array varia-
bles. It would take a lot more code to do so, but go ahead and try it. Use
the variables NO$ through N9$ for the names just to see what it would
take.

If you re-wrote the program, you saw how much time using arrays saved.
Before going on, let's take a closer look at how the program worked with
the FOR/NEXT loop and array variable:

1. The FOR/NEXT loop generated the numbers sequentially so
that the array would be the following:

FORI=1TO10

NA$(1) <--First time through loop
NA$(2) <--Second time through loop
NA$(3) <--Third time through loop
NAS$(4) etc.

NAS$(5)

NA$(6)

NAS$(7)

NA$(8)

NAS$(9)

NA$(10)

NEXT |

2. Each string INPUT by the user was stored in a sequentially
numbered array variable.

3. Output, using the PRINT statement, was generated by the
FOR/NEXT loop sequentially supplying numbers to be entered
into array variables.

Now to get used to the |dea that an array variable is a variable, enter the
following:

A(10) = 432 : PRINT A(10) <RETURN>

XYZ(9) = 2.432 : PRINT XYZ(2) <RETURN>

R2D2$(1) = “BEEP!” + CHR$(7) : PRINT R2D2$(1)
<RETURN>

J%(5) = 321 : PRINT J%(5) <RETURN>

OK, maybe it didn’t take all that to convince you that an array is a variable
with a number in parentheses after it, but it's easy to forget and think of
arrays as something more exotic than they are.

THE DiMension of an ARRAY

If you've been very observant, you may have noticed we haven't gone
over the number 10 in our array examples. The reason behind that is
because once our array is larger than 10 we have to use the DIM (dimen-
sion) statement to reserve space for our array. (Actually 11 array elements
are automatically dimensioned - @ to 10.) The following is an example of
the format for DIMensioning an array.

10 PRINT “{CLR/HOME}"
20 DIM AB(150) : REM DIMENSION OF ARRAY VARIABLE ‘AB’
30FOR I = 1 TO 150

40 AB(l) = |
50 NEXT |

60 FOR | = 1 TO 150
70 PRINT AB(l),

80 NEXT |

RUN the program as it is written. It should work fine. Now delete line 20
by simply entering 20. (Remember how we learned to delete single line
numbers by entering that number?) Now RUN the program and you will
get an error for not DIMing the ARRAY. (?BAD SUBSCRIPT ERROR IN
40 - that's because there was no DIM statement in Line 20). So, whenever
your arrays are going to have more than 11 values from 0 to10, be sure
to DIM them.

86

ccccCcccccCcccccccccccCcccceocceccoc

JI2DDI I DD DI DI D)D)

)

BETTER SAFE THAN SORRY DEPT.

Many programmers always DIM arrays, regardless of the number
in the array. It is perfectly all right to do so, and statements such as
DIM X$(3) or DIM N% (5) are valid. Often, when copying programs
from books or magazines, you may run across these lower level
DIM statements not because they are necessary, but rather because
the programmer thinks it's a good idea to DIM all arrays as part of

programming style and clarity.

Muiti-dimensional Arrays

So far, we have examined only single dimension arrays. However, it is
possible to have arrays with two or more dimensions. Let's begin with two-
dimensional arrays, and examine how to use arrays with more than .a
single dimension.

The best way to think of a 2-dimensional array is as a matrix. For example
if our array ranged from 1 to 3 on two dimensions the entire set would
include: A(1,1) A(1,2) A(1,3) A(2,1) A(2,2) A(2,3) A(3,1) A(3,2) and A(3,3).
By laying it out on a matrix, we can think of the first number as a row and
the second as a column. This makes it much clearer:

COLUMN COLUMN COLUMN
#1 #2 #3
ROW #1 A(1,1) A(1,2) A(1,3)
ROW #2 A(2,1) A(2,2) A(2,3)
ROW #3 A(3,1) A(3.2) A(3,3)

Again, it is important to remember that each element in the array is simply
a type of variable. To drum that into your head do the following:

XV$(3,1) = “'M A VARIABLE” : PRINT XV$(3,1) <RETURN>
JK%(2,2) = 21 : PRINT JK% <RETURN>
MM (1,1) = 3.212 : PRINT MM(1,1) <RETURN>

OK, so you were reminded a bit much; but in order to use arrays to their
fullest advantage in programs, they must be envisioned as an orderly set
of variables and not something else. Now let's use a 2-dimension array
in a program. Our program will be to line up people in a 12 member
marching band.

87

10 PRINT “{CLR/HOME}”
20 DIM BA$(4,4) : REM MAKE 3 ‘ROWS’ AND 3 ‘COLUMNS’
30 FOR | = 1 TO 4 : REM ROWS

40 FORJ = 1 TO 4 : REM COLUMNS

50 READ BA$(l,J)

60 NEXT J

70 NEXT |

90 DATA RALPH, PAT, DARLENE, FRANK, HORACE, DAVID,
KARL, ERIC

95 DATA MARY, TOM, SUE, PETE, JACK, NANCY, BETTY, BILL
100 REM OUTPUT BLOCK

110 FOR | = 1 TO 4 : REM ROWS

120 FOR J = 1 TO 4 : REM COLUMNS

130 PRINT BA$(1,J) , : REM COMMA WILL FORMAT OUTPUT
4 ACROSS

140 NEXT J

150 NEXT |

When you RUN this program, all of your band members will be lined up.
However, you could have done the same thing with a single dimension
array since all that “lines them up” is the use of the comma to format the
PRINT statement in line 130. So what's the big deal about a 2-dimension
array? Well, to see, let's add some lines to our program:

160 PRINT : PRINT “HIT ANY KEY TO CONTINUE *;

170 GET ANS:IF AN$ = “” THEN 170

180 PRINT “{CLR/HOME}" : PRINT “WHAT ROW & COLUMN
WOULD YOU LIKE TO SEE? "

190 INPUT “ROW #-> ";R

200 INPUT “COL #->",C

210 PRINT : PRINT BA$(R,C); “ IS IN ROW ”; R; “ COLUMN ”;
Cc

220 PRINT : PRINT “MORE?(Y/N) ";

230 GET M$: IF M$ = “” THEN 230

240 IF M$ = “Y” THEN 180

Now you can locate the value or contents of a specific array on two
dimensions. In our example if you know the row number and column
number, you can find the band member in that position. The use of 2-
dimensional arrays in problems dealing with matrixes is an important
addition to your programming commands.

It is also possible to have several more dimensions in an array variable.
As you add more and more dimensions, you have to be careful not to
confuse the different aspects of a single array. Sometimes, when a muiti-
dimensional array becomes difficult to manage (or use), it is better to

cccccccccccccccccccccoeccoccecac

DD DIJ3DI2DDI3DIIJDIIJIDIDIDIDIIIIIIDI D)

break it down into several 1- or 2-dimensional arrays. But just for fun, let's
see what we might want to do with a 3 dimensional array with the following
program : (By the way, this problem is based on an actual application!)

10 PRINT “{CLR/HOME}”

20 PRINT “WINECELLAR ORGANIZER "

30 PRINT : PRINT “HOW MANY RACKS,ROWS, COLUMNS?”
35 INPUT “(ENTER EACH SEPARATED BY A COMMA)";RK,R,C
40 DIM WI$(RK,R,C)

50 INPUT “HOW MANY BOTTLES TO STORE? ";N%

60 PRINT : FOR | = 1 TO N%

70 INPUT “RACK #-> ";RA

80 INPUT “ROW #-> ";RO

90 INPUT “COL #-> ";CO

100 INPUT “NAME OF WINE : ";WN$

110 WI$(RA,RO,CO) = WN$

120 NEXT |

200 REM ROUTINE FOR CHECKING CONTENTS OF WINE
CELLAR

210 PRINT “{CLR/HOME}" : INPUT “WHICH RACK # WOULD
YOU LIKE TO CHECK? ";RR

220FORI=1TOR

230 FORJ=1TOC

240 IF WI$(RR,1,J) = “” THEN WI$(RR,I,J) = “EMPTY”

250 PRINT “RACK #";RR;"“ ROW #";I;* COLUMN #”;J;* CON-
TAINS ";WI$(RR,1,J)

260 NEXT J

270 NEXT |

280 END

Now that was a pretty long program, but go over it carefully to make sure
you understand what it is doing. Again, let me remind you that the 3-
dimensional array is just a variable with a lot of numbers in parentheses.
Also, note on line 35 how we INPUT several values with a single INPUT
statement. We used the format

INPUTA, B, C

and as long as the operator (program user) is told to enter the appropriate
number of responses and separate each with a comma, every thing will
work fine. Also, it would be a good idea to save this program on a disk as
an example of a multi-dimensional array.

Summary

We covered a good deal in this chapter. If you understood everything,

excellent! If you did not, don’t worry; with practice, it will all become very

clear. Whatever your understanding of the material, though, experiment

with all the statements. Be BOLD and daring with your computer’s com-

mands. As long as you have a disk or cassette on which you can practice
“your skills, at worst you will erase a few programs!

We learned that your COMMODORE-64 computer can compute! Using
the IF/THEN commands and relationals we can give the computer the
power of “decision making.” Using subroutines it is possible to branch at
decision points to anywhere we want in our program. Computed GOTOs
and GOSUBs allow the execution to move appropriately with a minimal
amount of programming.

Finally, we examined array variables. Arrays allow us to enter values into
sequentially arranged variables (or elements). Using FOR/NEXT loops it
is possible to quickly program multiple variables up to the limits of our
DiMensions. Not only do arrays assist us in keeping variables orderly,
they save a good deal of work as well.

In the next chapter, we will begin working with commands which help
arrange everything for us. As our programs become more and more
sophisticated, we will need to keep better track of what we're doing. We
can create clear useful programs by organizing our programs into small,
manageable chunks.

cccccccccccccccccccccccccc

D) DD DD DIIDDIDDIIIIDIDIIIIDIIIIDI DD

CHAPTER 5

Organizing the Parts
Introduction

Unless we organize as we accumulate more and more information, work,
or just about anything else, things get confusing. Good organization allows
us to do more and to handle more complex and larger problems. These
principles hold with programming. As we learn more commands, we can
do more things; but the more we do, the more likely we are to get tangled
up and lost.

Formatting output is one of the areas which is likely to be the first to suffer
from “overflow.” Variables get mixed up, arrays are misnumbered and the
screen is a mess. In order to handle this kind of problem, we will deal
extensively with text and string formatting. Not only will we be able to put
things where we want them, but we will do it with style!

The second major area of disorganization is /O (INPUT/OUTPUT). Some
of the problem has to do with formatting, but even more elementary is the
problem of organizing the input and output so that data is properly ana-
lyzed. Data has to be connected to the proper variables and be subject
to the correct computations. Thus, in addition to examining string for-
matting, we will also look at organizing data manipulation.

Formatting Text

In Chapter 1 we said that the COMMODORE-64 keyboard works like a
typewriter in many ways. One feature of a typewriter is its ability to set
“tabs” so that the user can automatically place text a given number of
spaces from the left margin. With your COMMODORE-64, you can TAB
and SPC. Let's look at what each of these means:

COMMAND MEANING

TAB (N) Used within PRINT statement to place next
character N spaces from left margin

SPC (N) Used within PRINT statement, creates speci-

fied number of spaces. (SPC starts printing
non-space 1 space after N). '

{HOME} Places cursor in upper left hand corner of
screen. Use the CLR/HOME key without
pressing SHIFT key.

91

Now, to better see how these commands format text output, lets USE
THEM!

10 PRINT “{CLR/HOME}" : PRINT : PRINT

20 PRINT TAB (20);“TAB TO HERE”

30 PRINT SPC(20);"SPC TO HERE”

40 PRINT “{HOME}";"UP HERE!” : REM PRESS THE CLR/HOME

KEY WITHOUT THE SHIFT KEY - YOU'LL GET AN INVERSE
N “S”

50 FOR | = 1 TO 20 : PRINT : NEXT : PRINT “DOWN HERE”

When you RUN this program, note that when you used the {HOME} com-
mand, it did not clear the screen. Rather, it placed the cursor at the top
of the screen, leaving what was printed in lines 20 and 30 on the screen.
Also, we were able to produce a vertical tab by using an empty PRINT
statement in line 50 to take the text down to vertical position 20 on the
screen. Again, the other text on the screen was not erased. Now let's have
a little fun with our commands. Here’s a little program which will give you
an idea of how to place text within your program.

92

ococccccCcccccccCccccccccccCcccoccocceccoc

J)IJ)IDIDIDDIIIIDIDIDDIDIDIDIDIIIDIDIIIDIIIIII

10 PRINT “{CLR/HOMEY}” : FOR | = 1 TO 4 : PRINT : NEXT
20 INPUT “ENTER MESSAGE--> "; MS$

30 PRINT : INPUT “HORIZONTAL PLACEMENT (1-40) -> "; H
40 PRINT : INPUT “VERTICAL PLACEMENT (1-25) -> "; V

50 PRINT “{CLR/HOME}”

60 FOR VER = 1 TO V : PRINT : NEXT VER : PRINT TAB(H);
MS$

70 PRINT : PRINT “HIT ANY KEY TO CONTINUE OR ‘Q’ TO
QUIT *;

80 GET A$: IF A$ =" THEN 80

90 IF A$ < > “Q" THEN 10

100 END

As you can see, variables can be used with formatting statements. Thus,
TAB (H), is read in the same way as TAB(10) or TAB(15) or any other
number between 1 and 40. Using the above program, what do you think
would happen if you entered “THIS IS A LONG STRING", a HORIZONTAL
placement of 39 and a VERTICAL placement of 257 Since the maximum
TAB is 40 and the maximum vertical placement is 25, the string (MS$)
will go over the boundaries. Go ahead and try it to see what happens. In
fact, it would be a good idea to test the limits of TAB and vertical placement
with this program to get a clear understanding of their paramsters.

Unraveling Strings

Our discussion of strings up to this point has involved “whole” strings.
That is, whatever we define a string to be, no matter how long or short,
can be considered a “whole” string. For. example, if we define R$ as
“WALK"” then we can consider “WALK"” to be the whole of R$. Likewise, if
we defined R$ as “A VERY LONG AND WORDY MESSAGE” then, “A
VERY LONG AND WORDY MESSAGE" would be the whole string of R$.
There will be- occasions, however, when. we want to use only part of a
string or tie several strings together. (When we get into data base pro-
grams, we will find this to be very important.) Also, there are applications
where we will need to know the length of strings, find the numeric values
of strings, and even change strings into numeric variables and back again.

TRUST ME!

I hate to admit it, but when I first learned about all of the commands
we are about to discuss, | thought, “Boy, what a waste of time!” It
was enough to get the simple material straight, but why in the world
would anyone want to chop up strings and put them back together
again? If you want only a certain segment of a string, why not simply
define it in terms of that segment? And if you want a longer string,
then just define it to be longer! Those were my thoughts on the
matter of string formatting. However, | have now come to the point
where | find it very difficult to even conceive of programming without
these powerful commands. So, trust me! String formatting com-
mands are terrific little devices to have, and if you do not see their
applicability right away, you will as you begin writing more programs.

String Formatting

We will divide our discussion of string formatting into four parts: 1) Cal-
culating the length of a string; 2) Locating parts of strings; 3) Changing
strings to numeric variables and back again; and 4) Tying strings together
(concatenation).

Calculating the LENgth of Strings.

Sometimes it is necessary to calculate the length of a string for formatting
output. Happily, your COMMODORE-64 is very good at telling you the
length of a particular string. By the command, PRINT LEN (A$) you will
be given the number of characters, including spaces, your string has. Try
the following little program to see how this works:

10 PRINT “{CLR/HOME}"

20 INPUT “NAME OF STRING-> "; A$

30 PRINT A$; “ HAS "; LEN(AS); “ CHARACTERS”
40 PRINT : PRINT “ MORE?(Y/N) ";

50 GET ANS$: IF AN$ = “” THEN 50

60 IF AN$ = “Y” THEN 20

Now to see a more practical application, we will look at a modified version
of the centering routine we used in the last chapter.

10 PRINT “{CLR/HOME}”

20 PRINT “ENTER A STRING LESS THAN 40 CHARACTERS”
1 INPUT“-> "; S$

30 PRINT “{CLR/HOMEY}”

O:CJCCCCCCC ccccccccccccccccc

D)D) DIDDDIDIDIDIIDIIIDIIIDIIDIIDIDIIDD

40 L = 20 - LEN(S$)/2 : PRINT TAB(L); S$

50 FOR | = 1 TO 20: PRINT : NEXT : : PRINT “HIT ANY KEY
TO CONTINUE OR ‘Q’ TO QUIT 7;

60 GET A$: IF A$ = “" THEN 60

70 IF A$ < > “Q” THEN PRINT “{CLR/HOME}" : GOTO 10

80 END

KA/ --Vow ONY OF
You CHARBCTERS_ DO VE
_ have Mere?

Now that we can see how to compute the LENgth of a string and then
use that LENgth to compute our tabbing, let's see how we can control the
input with the LEN command. Suppose you want to write a program which
will print out mailing labels, but your labels will hold only 30 characters.
You want to make sure all of your entries are 30 or fewer characters long,
including spaces. To do this we will write a program which checks the
LENgth of a string before it is accepted.

10 PRINT “{CLRFHOME}" ‘

20 PRINT “ENTER A NAME LESS THAN 30 CHARACTERS
INCLUDING SPACES” '

30 INPUT “DO NOT USE COMMAS -> "; NA$

40 IF LEN (NA$) > 30 THEN GOTO 100 : REM TRAP

50 PRINT : PRINT NA$

60 PRINT : PRINT “ANOTHER NAME?(Y/N) ";

70 GET AN$: IF AN$ = “” THEN 70.

80 IF AN$ < > “Y” THEN END

90 GOTO 10

100 PRINT “{CLR/HOME}” : PRINT “PLEASE USE 30 CHAR-
ACTERS OR LESS ”

110 PRINT : GOTO 20

95

Now break the rule!!! Go ahead and enter a string of more than 30 char-
acters to see what happens. (If your computer gets snotty with you, you
can always re-program it. It helps to periodically remind it of that fact.) If
the program was entered properly, it is impossible to enter a string of more
than 30 characters.

From the above examples, you can begin to see how the LEN command
can be useful in several ways. There are many other ways that this com-
mand can reduce programming time, clarify output, and compute infor-
mation. The key to understanding its usefulness is to experiment wnth it
and see how other programmers use the same command.

Finding the MiDdle$, LEFT$, and RIGHTS parts of a string.

Suppose you want to use a single string variable to describe three different
conditions, such as “POOR FAIR GOOD”, but you want to use only part
of that string to describe an outcome. Using MID$, LEFT$ and RIGHTS,
it is possible to PRINT only that part of the string you want. For example,
the following program lets you use a single string to describe three dif-
ferent conditions:

10 PRINT “{CLR/HOME}’
20 X$ ="POOR FAIR GOOD”
30 PRINT “HOW DO YOU FEEL TODAY? (<P>0OO0R, <F>AIR
OR <G>00D)";
40 GETF$: IF F$ = “” THEN 40
50 IF F$ = “P” THEN PRINT LEFT$(X$,4)
60 IF F$ = “F” THEN PRINT MID$(X$,6,4)
- 70 IF F$ = “G” THEN PRINT RIGHT$(X$,4)
80 PRINT : PRINT : PRINT “ANOTHER GO?(Y/N) ”; :
90 GET ANS : IF AN$ = “” THEN 90
100 IF AN$ = “Y” THEN 10

Let's face it, it would have been easier to simply branch to PRINT ‘GOOD’
‘FAIR’ or ‘POOR’ and no less efficient. But, no matter, it was for purposes
of illustration and not optimizing program organization. Let's see what the
new commands do. .

COMMAND MEANING

MID$(AS,N,L) Finds the portion of A$ beginning at Nth
character L characters long.

LEFT$(A$,L) Finds the portion A$, L characters long
starting at the LEFT side of the string.

RIGHT$(AS,L) Finds the portion of A$, L characters long

starting at the RIGHT side of the string.

ccccccccoccccccccoccccoccoccccc

22IJIJIJIJDIJIIDIIDIIIIIIDIIIIIIII)

To give you some immediate experience with these commands, try the
following:

W$ = “WHAT A MESS” : PRINT LEFT$(W$,4) <RETURN>
G$ = “BURLESQUE” : PRINT MID$(G$,4,3) <RETURN>

X$ = “A PLACE IN SPACE” : PRINT RIGHT$(X$,5) : PRINT
RIGHT$(X$,3)

<RETURN>

Another trick with partial strings is to assign parts of one string to another
string. For example:

10 PRINT “{CLR/HOME}”

20 BIG$ = “LONG LONG AGO AND FAR FAR AWAY”

30 LITTLE$ = MID$(BIGS,11,3)

40 AWY$ = RIGHT$(BIG$,4)

50 LG$ = LEFT$(BIG$,4)

60 PRINT : PRINT : PRINT AWY$; “":LG$;" ":LITTLE$

70 REM BEFORE YOU RUN IT, SEE IF YOU CAN GUESS THE
MESSAGE.

For an interesting effect, try the following little program:

10 PRINT “{CLR/HOME}”" : FOR | = 1 TO 10 : PRINT : NEXT
20 INPUT “YOUR NAME--> "; NA$

30 FOR | = LEN(NA$) TO 1 STEP -1 : PRINT MID$(NAS$,1,1); :
NEXT |

40 FOR | = 1 TO 1000 : NEXT | : REM DELAY LOOP

45 REM ** LINE 50 USES THE NON-SHIFTED CLR/HOME KEY

46 REM ** NOTE HOW IT FUNCTIONS TO PLACE THE CUR-
SOR VERTICALLY **

47 REM ** IN CONJUNCTION WITH THE LOOP **

50 PRINT “{HOME}" : FOR V = 1 TO 11 :PRINT : NEXT V

55 REM ** IN LINE 60 ‘K LOOP’ SLOWS IT DOWN FOR SLOW
MOTION EFFECT **

60 FOR | = 1 TO LEN(NAS$) : PRINT MID$(NA$ 1,1); : FORK
= 1TO 50 : NEXT K : NEXT |

70 FOR VT = 1 TO 5 : PRINT : NEXT VT: PRINT TAB (5);
“WANNA DO IT AGAIN?(Y/N) ";

80 GET ANS: IF AN$ = “” THEN 80

90 IF AN$ = “Y” THEN 10

97

Now you have probably been wondering ever since you got your computer
how to make it print your name backwards. Well, now you know! (If your
name is BOB you probably didn't notice it was printed backwards - try
ROBERT.) Actually, the above exercise did a couple of things besides
goofing off. First, it is a demonstration of how loops and partial strings (or
substrings) can be used together for formatting output. Second, we showed
how output could be slowed down for either an interesting effect or simply
to give the user time to see what's happening.

Since we're on the topic of speed, let's learn how to use your COMMO-
DORE-64's clock. Remember we pointed out that TI$ was a “reserved
variable,” and now we will see why. Try the following in the Immediate
Mode:

TI$ = “161030" <RETURN>
Now wait a few. seconds and enter,

PRINT TI$ <RETURN>
The value of TI$ changed from 101030 to something else! If you waited
for just a few seconds, 101030 changed to 101050 or somewhere in that

range. To see what is happening, let's break it down into hours, minutes
and seconds.

ococccoccococccccccccocococeecocococ

D2J) DI DD DI DI DIIIIIDIIIIIDI I

10 10 30 = 10 hours 10 minutes 30 seconds.

We'd say that time is 10:10 and 30 seconds on a normal clock. Well, that'’s
exactly what TI$ does. It ticks off the seconds, then minutes and finally
hours. To see this better, let's make a little clock program.

10 PRINT “{CLR/HOME}” : PRINT “COMMODORE-64 CLOCK”
20 FOR | = 1 TO 4 : PRINT : NEXT : PRINT “ENTER TIME (00
HRS 00 MINS 00 SECS)”

30 INPUT TI$

40 PRINT “{CLR/HOME}"

50 PRINT “{HOME}" : FOR | =1 TO 10 : PRINT : NEXT : PRINT
“COMMODORE TIME-> ";TI$: GOTO 50

When you run this program, be sure to enter all 6 digits for hours, minutes
and seconds. For example, if the time you want to enter is 8:14, enter
081400, not just 814.

Besides using TI$ for a clock to display time on your screen, you can also
use it for a timer in your programs. By first setting a value for TI$ and then
checking it in your program, you can have timing for responses. The fol-
lowing is a simple math game which adds the element of time:

10 PRINT “{CLR/HOME}”: FOR | = 1 TO 5 : PRINT :

NEXT : TI$ = “000000"

20 INPUT “ENTER 1ST NUMBER->"; A

30 INPUT “ENTER 2ND NUMBER->"; B

40 PRINT : PRINT “WHAT IS"; A ; “+"; B;

50 INPUT C

60 IF A + B < > C THEN 200

70 IF TI$ > “000010” THEN GOTO 100

80 PRINT : PRINT “THAT'S RIGHT!I!!" : FOR X = 1 TO 1000 :
NEXT : GOTO 10

100 PRINT “{CLR/HOME}” : PRINT : PRINT : “YOU RAN OUT
OF TIME!"

110 FOR TM = 1 TO 1000 : NEXT TM : GOTO 10

200 PRINT “THAT'S NOT QUITE RIGHT” : INPUT “PRESS
RETURN TO CONTINUE”;CR

210 GOTO 10

Examine the program carefully. Note how the time is checked in line 70
and how it is reset to “000000” each time the process is restarted.

Changing Strings To Numbers and Back Again

Now we're gomg to learn about changing strings to numbers and numbers
to strings. If you're like me, when | first found out about these commands,
| thought they were pretty useless. After all, if you want a string use a
string variable, and if you want a number use a numeric variable. Simple
enough, but again, once you understand their value, you wonder how you
could do without them. To get started, let's RUN the following program:

10 PRINT “{CLR/HOME}"

20 FOR | = 1 TO 5 : READ NA$(l) : NEXT |
30FORI =1TO5

40 X(l) = VAL(RIGHT$(NA$(I),1))

50 NEXT |

60 FOR | = 1 TO 5: PRINT “OVERTIME PAY= §"; X(I) * (1.5 *
7) : NEXT |

70 DATA SMITH 7, JONES 8, MCKNAP 6, JOHNSON 2,
KELLY 3

Using DATA which were originally in a string format, we were able to
change a portion of that string array to a numeric array. By making such
a conversion, we were able to use our mathematical operations on line
60 to figure. out the overtime pay for someone receiving time and a half
at seven dollars ($7) an hour. Well, that's pretty interesting, but we don't
have a list of who got what and the total overtime paid! Why don't you try
it yourself. Change the program so that everyone’s name appears with
the amount of overtime they received and a total overtime paid. (Hint: You
are looking for the substring LEFT$ (NA$(I), LEN (NA$(l) —2)) since you
want to drop the number and space after each name.) When you get it,
write me a letter to show me how you figured it out.

it always helps to do a few immediate exercises with a new command to
get the right feel, so try these:

A$ = “123" : PRINT VAL(A$) + 11 <RETURN>
Q$ = “99.5” : PRINT VAL(QS$) * 7 <RETURN>
SALE$ = “44.95" : PRINT “ON SALE AT HALF PRICE ->$";

VAL(SALE$) / 2 <RETURN>
DO$ = “$103.88" : DN$ = “$18.34" : PRINT VAL
(RIGHT$(DO$,6))

+ VAL (RIGHT$(DN$,5)) <RETURN>

NOTE: Since you may want to SAVE the above examples on tape or disk,
Jjust add line numbers and SAVE them as little programs.

100

ccoococcococcoccococeCcCcoCc

\
/

GNE

DI2DDI3I3D3D7I3IDI3D3DI3D3D0D3DD03D0D03ID03D0D

From Numbers to Strings

All right, now let's go the other way. We saw why we might want to change
strings to numbers, but we may also want to change numbers to strings.
To make the conversion we use the STR$ command. For example, look
at the following program:

10 PRINT “{CLR/HOME}’

20 PRINT “ENTER A NUMBER WITH 5 DIGITS ”: INPUT *
AFTER THE DECIMAL POINT * ; A

30 A$ = STR$(A) , :

40 PRINT : PRINT LEFT$ (A$,4)

As you can see, you have truncated the number to 3 characters including
the decimal point. (Change LEFT$ to RIGHT$ in line 40 and you will get
the rightmost 4 <not 3> characters of the string. No one knows why it
does this with numbers converted to strings. Do you?) Now, let's do some
in the immediate mode to get the idea firmly into your mind, and a little
later we will do something very practical with these commands.

A = 5.00 : A$ = STR$(A) : PRINT A$ <RETURN>

V = 2345 :V§ = STR$(V) : PRINT V§ <RETURN>

BUCKS = 2236 : BUCKS$ = STR$(BUCKS) : PRINT
LEFT$(BUCKSS$,2) <RETURN>

101

Remember these commands. When you are dealing with decimal points
you will often find them handy.

Tying Strings Together: Concatenation

We have seen how we can take a portion of a string and PRINT it to the
screen. Now, we will tie strings together. This is called CONCATENATION
and is accomplished by using the “+" sign with strings. For example:

10 PRINT “{CLR/HOME}"

20 INPUT “YOUR FIRST NAME -> "; NF$
30 INPUT “YOUR LAST NAME -> "; NL$
40 NA$ = NF$ + NL$

50 PRINT NA$

A little messy, huh? However, you can see how NF$ and NL$ were tied
together into a single larger string. Now, change line 40 to read

40 NA$ = NF$ + “” + NL$
This time when you RUN the program, your name will turn out fine. Not
only did we concatenate string variables, we also concatenated strings
themselves. For example, it is perfectly all right to do the following:

PRINT “ONE” + “ONE” <RETURN>

Now there isn't much you can do with ONEONE, but we can see the
principle of operation with concatenating strings.

One of the problems with the way your COMMODORE-64 formats num-
bers is that it drops @'s off the end. For example, try the following:

102

‘Cif ccccococccoecccccccccccCccccccCcoCcocccccococ

DI DI IDDIIIDIDIIDIIDIIDIDIDIIIIDIIIIII)

PRINT 19.80
PRINT 5.00

In dealing with doliars and cents, this can be a real pain in the neck, and
it doesn’t look very good. So, using concatenation and our VAL and STR$
commands, let's see if we can fix that.

10 PRINT “{CLR/HOME}”

20 PRINT “BE SURE TO INCLUDE ALL CENTS!" : PRINT :
PRINT

30 INPUT “HOW MUCH SPENT?-> §”; S

40T=T+S

50 T$ = STR$(T)

60 T$ = “000” + T$: REM THIS IS TO INSURE THAT LEN(T$)
IS LONG ENOUGH

70 IF MID$ (T$, (LEN (T$) - 1),1) = “” THEN T$ = T$ + “0” :
GOTO 90 }

80 IF MID$ (T$, (LEN (T$) -2),1) <> “” THEN T$ = T$ + “.00”
90 PRINT : PRINT : PRINT “YOU NOW HAVE SPENT $;
RIGHTS$(T$, LEN(TS) -3)

100 PRINT “PRESS ANY KEY TO CONTINUE OR ‘Q’ TO QUIT”;
110 GET R$: IF R$ = “" THEN 110

120 IF R$ = “Q” THEN END

130 GOTO 10

This may look pretty complicated, but let's break it down to see what has
been done.

" 1. We entered numeric variables in line 30 and computed their
sum in line 40.

2. The sum represented by T was then converted to a string
variable T$ in line 50.

3. In line 60 we “padded” T$ with three 0's to give it a minimum
length we will need in lines 70 and 80.

4. Line 70 computes the second from the last character in T$. If
that character is a decimal point (.) then we know it must be a
figure which dropped off the last cent column. (e.g. 5.4, 19.5,
etc.). So we tack on a 0, and jump to line 90.

103

5. Line 80 computes the third from the last character, and if it is
not a decimal point (.) then we know it must have dropped all the
cents completely - an even dollar number. So we tack on the
decimal point and two 0's (.00).

6. Finally, in line 90 we print out our results but first dropping the
“padding” we added in line 60 using RIGHT$. The statement
‘LEN (T$)-3’' computes the length of T$ and subtracts three, the
unwanted three 0's.

All of this may seem a bit complicated just to get our @'s back, but actually,
the entire process was done in 5 lines (50 through 90). SAVE the program,
and when you need those 0's in your output, just include those lines! (Be
careful, though, this will not work with subtraction when you get below

$11).
Setting Up Data Entry

Now that we have a firm grip on numerous commands, it is time we begin
thinking seriously about organizing our programs. First we must arrange
our data entry in a manner that we ourselves and others can understand.
This involves blocking elements of our program and deciding what vari-
ables and arrays we will be using. Also, when we enter data, we want to
make sure that we are entering the correct type of data; so we have to
set “traps” so that any input which is over a certain length or amount can
be checked against our parameters. Let's look at a way to make our strings
a certain length (no shorter or longer than a length we want). We've already

" discussed how to keep strings to a maximum length, so let's see how to
keep them to a minimum as well. This latter process is referred to as
“padding.”

10 PRINT “{CLR/HOME}"
20FOR| = 1 TO8:PRINT : NEXT | : INPUT “YOUR COMPANY-
->" CM$
30 IF LEN(CM$) <= 10 THEN 70
40 IF LEN(CM$) > 10 THEN PRINT “10 OR FEWER CHAR-
ACTERS PLEASE” : REM TRAP FOR TOO LONG A NAME
42 REM PRESS THE CTRL AND 9 KEYS SIMULTANEOUSLY
{CTRL-9} IN LINE 45
“45 PRINT :PRINT “{CTRL-9}HIT ANY KEY TO CONTINUE->
50 GET A$: IF A$ = “” THEN 50
60 GOTO 10
70 IF LEN(CMS) < 10 THEN CM$ = CM$ + “X": GOTO 70 :
REM PADDING

104

C"?/(EC'CfC'Cﬁ(ﬁ'J(iC,‘CCC ¢cccccceccoccocccocaec

DD IJIJDID2DIDIDIIDIIDIDIIJIIDIIIID D)

80 PRINT “{CLR/HOME}" : FOR | = 1 TO 8 : PRINT : NEXT :
PRINT “THE COMPUTER HAS DECIDED THAT "
90 PRINT CM$; “ SHOULD GIVE YOU A RAISE!"

Now if YOUR COMPANY <CM$> is less than 10 characters, you will see
some “Xs” stuck on the end. These were put there to show you how
padding works. Now change the “X” to “ " <a space> in line 70 and see
what happens. Go ahead. The second time you run the program, if your
company’s name is less than 10 characters, there are a lot of blank spaces
after the company name. To remove the spaces, we would enter:

75 IF MID$(CM$,LEN(CMS$),1) = “ " THEN CM$ =
LEFT$(CM$,(LEN(CM$)-1): GOTO 75 '

Setting Up Data Manipulation

Once you have organized your input, the next major step is performing
computations with your data. There are essentially two kinds of data
manipulation you will deal with:

1. NUMERIC - Manipulating numeric data with mathematical
operations.

2. STRING - Manipulating strings with concatenation and sub-
string commands.

Most of the string manipulations are for setting up input or output, so we
will concentrate on manipulating numeric data. We will use a simple exam-
ple which keeps track of three manipulations: (1) additions (2) subtractions
and (3) running balance. This will be our checkbook program we started
earlier.

10 PRINT “{CLR/HOME}”

20 REM ### BEGIN INPUT & HEADER BLOCK ###

30 CB$ = “ =COMPUTER CHECK-BOOK= ":L = 20.- LEN

(CBS$) / 2: PRINT TAB(L);“(CTRL-9)"; CB$: REM =HEADER=

40 FOR | = 1 TO 4 : PRINT : NEXT : INPUT “ENTER YOUR

CURRENT BALANCE-> $";BA

50 PRINT : PRINT: PRINT “1. ENTER DEPOSITS” : PRINT
: PRINT “2. DEDUCT CHECKS” '

55 PRINT : PRINT “3. EXIT”

60 FOR| = 1TO7:PRINT : NEXT : PRINT “(CTRL-9) CHOOSE

BY NUMBER ”; : INPUT A

105

70 ON A GOTO 100,200,400

80 GOTO 60: REM TRAP

90 REM END OF INPUT BLOCK

100 REM #4## DATA MANIPULATION ROUTINE NO. 1 ###
110 PRINT*{CLR/HOME}” : FOR | = 1 TO 6 : PRINT : NEXT:
INPUT “ENTER AMOUNT OF DEPOSIT $";,DP

120 BA = BA + DP: REM RUNNING BALANCE

130 PRINT : PRINT : PRINT “YOU NOW HAVE $”;BA;" IN YOUR
ACCOUNT”

140 PRINT : INPUT “(CTRL-9)MORE DEPOSITS? (Y/N) ”; AN$
150 IF AN$ = “Y” THEN 110

160 PRINT : INPUT “WOULD YOU LIKE TO DEDUCT CHECKS?
(Y/N) "; AN$

170 IF AN$ = “N” THEN GOTO 400

180 IF AN$ = “Y” THEN GOTO 200

190 PRINT"{CLR/HOME}" : GOTO 160: REM TRAP & END OF
DATA MANIPULATION ROUTINE NO.1 _

200 REM ### DATA MANIPULATION ROUTINE NO. 2 ###
210 PRINT*{CLR/HOME}" : FOR | = 1 TO 6 : PRINT : NEXT.
INPUT “ENTER AMOUNT OF CHECK $";CK

220 BA = BA - CK: REM RUNNING BALANCE

230 PRINT : PRINT “YOU NOW HAVE $";BA* IN YOUR
ACCOUNT”

240 PRINT : INPUT “MORE CHECKS? (Y/N) - ‘Q" TO QUIT ”;

ANS$

250 IF AN$ = “Y” THEN 210

260 IF AN$ = “Q" THEN 400

270 PRINT : INPUT “ANY DEPOSITS? (Y/N) "; AD$

280 IF AD$ = “Y” THEN 100

290 GOTO 240: REM TRAP & END OF DATA MANIPULATION
BLOCK NO. 2

400 REM ### TERMINATION BLOCK ###

410 PRINT“{CLR/HOME}" : FOR | = 1 TO 400: PRINT “$";:
NEXT

420 PRINT “YOU NOW HAVE A BALANCE OF $";BA

This program is designed to provide a simple illustration of how to block
data manipulation. However, there are some problems with it in the output.
We are not getting the 0’s on the end of our balance! This is an “output”
problem we will discuss in the following section, but before we continue,
make sure you understand how we blocked the data manipulation. We
used only three variables:

106

C:C coccccccCcccccccCcccocccococccococec

D)DIDDIDI3DIIDIIDDIDIIIDIDIDIIIDIID)

BA = BALANCE
CK = CHECK
DP = DEPOSIT

When we subtracted a check, we simply subtracted CK from BA; and
when we entered a deposit, we added DP to BA. In this way we were able
to keep a running balance and, at the very end, BA was the total of all
deposits and checks. By keeping it simple and in blocks we were able to
jump around and still keep everything straight.

Organizing Output

Let's go back to our program and repair it so that our balance will have
the 0's where they belong. This is essentially a problem of output because
all of the computations have been done. They correctly tell us our balance,
but it doesn't look right with the missing @'s. However, we would rather not
have to enter the lines for converting our balance into a string variable
every time the running balance is printed. Therefore, we will put the sub-
routine for our conversion in a block. Looking at our COMPUTER CHECK
BOOK program, it just so happens that there is a block available in the
300's - our luck is with us! We'll use that block to format our output.

300 REM ### FORMAT OUTPUT ###

310 BA = BA + .001:PLACE = 1:BA$ = STR$ (BA): IFBA <
001 THEN BA$ = “0.00": GOTO 340

320 IF MID$ (BA$,PLACE,1) < > “’ THEN PLACE = PLACE
+ 1: GOTO 320

330 BA$ = LEFT$ (BA$,PLACE + 2)

340 RETURN

350 REM END OF OUTPUT BLOCK

Now we simply change a few lines in our program so that when there is
an output of our balance, it will jump to the subroutine between lines 300
and 350 and then RETURN to output BA$. The following lines in our
COMPUTER CHECKBOOK program should be changed and/or added:

125 GOSUB 300
130 PRINT : PRINT : PRINT “YOU NOW HAVE §$”; BAS; “IN
YOUR ACCOUNT”

225 GOSUB 300

230 PRINT : PRINT “YOU NOW HAVE $”; BA$; “ IN YOUR
ACCOUNT”

415 GOSUB 300 ,

420 PRINT “YOU NOW HAVE A BALANCE OF $”; BA$

107

Now if you put everything together properly, you should have a handy little
program for working with your checkbook. Just to make sure you got
everything, here’s the complete program with all the subroutines and
changes we made:

10 PRINT “{CLR/HOME}”

20 REM ### BEGIN INPUT & HEADER BLOCK ###

30 CB$ = “ =COMPUTER CHECK-BOOK= ": L = 20 - LEN
(CB$) / 2: PRINT TAB(L);*(CTRL-9)"; CBS$: REM =HEADER=
40 FOR | = 1 TO 4 : PRINT : NEXT : INPUT “ENTER YOUR
CURRENT BALANCE-> $";BA

50 PRINT : PRINT: PRINT “1. ENTER DEPOSITS” : PRINT :
PRINT “2. DEDUCT CHECKS”!

55 PRINT : PRINT “3. EXIT"

60 FOR | = 1 TO 7 : PRINT : NEXT : PRINT “(CTRL-9) CHOOSE
BY NUMBER ”; : INPUT A

70 ON A GOTO 100,200,400

80 GOTO 60: REM TRAP - -

90 REM END OF INPUT BLOCK

100 REM ##3# DATA MANIPULATION ROUTINE NO. 1 ###
110 PRINT“{CLR/HOME}” : FOR | = 1 TO 6 : PRINT : NEXT:
INPUT “ENTER AMOUNT OF DEPOSIT $";,DP

120 BA = BA + DP: REM RUNNING BALANCE

125 GOSUB 300

130 PRINT : PRINT : PRINT “YOU NOW HAVE $";BA$;" IN
YOUR ACCOUNT”

140 PRINT : INPUT “(CTRL-9)MORE DEPOSITS? (Y/N) "; AN$
150 IF AN$ = “Y” THEN 110

160 PRINT : INPUT “WOULD YOU LIKE TO DEDUCT CHECKS?
(Y/N) ";' AN$

170 IF AN$ = “N” THEN GOTO 400

180 IF AN$ = “Y” THEN GOTO 200

190 PRINT“{CLR/HOME}" : GOTO 160: REM TRAP & END OF
DATA MANIPULATION ROUTINE NO.1

200 REM ### DATA MANIPULATION ROUTINE NO. 2 ###
210 PRINT“{CLR/HOME}" : FOR | = 1 TO 6 : PRINT : NEXT:
INPUT “ENTER AMOUNT OF CHECK $";CK

220 BA = BA - CK: REM RUNNING BALANCE

225 GOSUB 300

230 PRINT : PRINT “YOU NOW HAVE $”:BA$;" IN YOUR
ACCOUNT" ‘

24(2?$ PRINT : INPUT “MORE CHECKS? (Y/N) - ‘Q° TO QUIT ”
AN

250 IF AN$ = "Y” THEN 210

108

cccccCccccCccccccccccccccoccccococcoccec

D)D) DDIDIDDDIIDDIIIDIDIIIIDIIDIDIIDDI)

260 IF AN$ = “Q" THEN 400

270 PRINT : INPUT “ANY DEPOSITS? (Y/N) "; AD$

280 IF AD$ = “Y” THEN 100

290 GOTO 240: REM TRAP & END OF DATA MANIPULATION
BLOCK NO. 2

300 REM ### FORMAT OUTPUT ###

310 BA = BA + .001:PLACE = 1:BA$ = STR$ (BA): IF BA <
.001 THEN BA$ = “0.00": GOTO 340

320 IF MID$ (BA$,PLACE,1) < > “r THEN PLACE = PLACE
+ 1: GOTO 320

330 BA$ = LEFT$ (BA$,PLACE + 2)

340 RETURN

350 REM END OF OUTPUT BLOCK

400 REM ### TERMINATION BLOCK ###

410 PRINT“{CLR/HOME}” : FOR | = 1 TO 400: PRINT “$";:

NEXT

415 GOSUB 300 : REM NOTE THAT A ‘GOSUB’ CAN GO BACK-

WARDS IN LINE NUMBERS! ,

420 PRINT “YOU NOW HAVE A BALANCE OF $";BA$

Scroll Control!

One of the big problems in output occurs when you have long lists which
will scroll right off the screen. For example, the output of the following
program will kick the output right out the top of the screen:

10 PRINT “{CLR/HOME}" .
20 FOR | = 1 TO 100 : PRINT | : NEXT

Instead of numbers, suppose you have a list of names you have sorted
or some other output you wanted to see bsfore they zipped off the top of
the screen. Depending on the desired output, screen format and so forth
there are several different ways to control the scroll. Consider the following:

10 PRINT “{CLR/HOME}" -
20 FOR I = 1 TO 100
30 IF | = 20 THEN GOSUB 100
40 IF | = 40 THEN GOSUB 100
50 IF | = 60 THEN GOSUB 100
60 IF | = 80 THEN GOSUB 100
70 PRINT | : NEXT |
80 END
100 PRINT : PRINT :PRINT “(CTRL-9) HIT ANY KEY TO CON-

109

TINUE " ;
110 GET A$: IF A$ = “” THEN 110
120 PRINT “{CLR/HOME}” : RETURN

REMEMBER!! You, not the computer, are in CONTROL! You can have
your output any way you want it. To use more of the screen, you could
have the output tabbed to another column after the vertical screen is filled.
For example:

10 PRINT “{CLR/HOME}"

20FOR| = 1 TO 40

30 IF | > 20 THEN GOSUB 100

50 PRINT | : NEXT |

80 END

100 PRINT “{HOME}" : FOR J=1 TO (I-20) : PRINT : NEXT J:
PRINT TAB (10);

110 RETURN

You get the idea. Format your ouput in a manner which best uses the
screen and your needs and get that scroll under control!

Summary

The formatting of programs makes the difference between a useful and
a not-so-useful application of your computer. The extent to which your
program is well organized and clear, the better the chances are for simple
yet effective programming. Formatting is more than an exercise in making
your input/output fancy or interesting. It is a matter of communication
between your COMMODORE-64 and you! After all, if you can't make
heads or tails of what your computer has computed, the best calculations
in the world are of absolutely no use.

In the same way it is important to have your computer tell you what you
want, it is also important to write your programs so that you and others
can understand what is happening. By using “blocks” it is easier to organ-
ize and later understand exactly what each part of your program does.
Obviously, it is possible to write programs sequentially so that each com-
mand and subroutine is in an ascending order of line numbers; but to do
so means that you will have to repeat simple and/or complex operations
which could be better handled as subroutines. Also, it will be considerably
more difficult to locate bugs and make the appropriate changes. In other
words, by using a structured approach to programming, you-make it sim-
pler not more difficult.

110

ccccccccccccCccccccccccccecceccec

5200 10 1 T 0 s 1 T T T T T T T Y T Yo o o o o o MU MO M

Finally, you should begin to see why there are commands for substrings
and all the fuss about TABs. These are handy tools for organizing the
various parts in a manner which gives you complete control over your
computer’s output. What may at first seem like a petty, even silly, command
in COMMODORE-64 BASIC, upon a useful application, can be appreci-

“ated as an excellent tool. Therefore, as we delve deeper .into your com-

puter, look at the variety of commands as mechanisms of more efficient
and ultimately simpler control and not a complex “gobbleygook” of “com-
puterese” for geniuses. After all, if you've come this far, you should realize
that what you know now looked like the work of “computer whizzes” when
you first began.

M

20220000 D00) D DD DD 20 ODODDDDDOO

D)D) D DD DDIDIIDIDIDIIDIDIDIDIDIDIDIIIDIDI DD

CHAPTER 6

Some Advanced Topics
(But Not Too Difficult Once You Get To Know Them)

Introduction

The topics of this chapter are more “code like” and contain the kinds of
commands that look frightening. At least that's how | interpreted them
when | first saw them. Many of the functions can be done with commands
we already know, but many cannot. Still others, as we will see, can be
accomplished better using these new commands. Like so much else you
have seen in this book, what at first may appear to be “impossible” is
really quite simple once you get the idea. More importantly, by playing
with the commands, you can quickly learn their use.

The first thing we will learn about is the ASCII code. ASCII (pronounced
ASS-KEY) stands for the AMERICAN STANDARD CODE for INFORMA-
TION INTERCHANGE. Essentially, this is a set of numbers that have been
standardized to mean certain characters. In COMMODORE-64 BASIC
the CHR$ (character string) command ties into ASCII and can be used to
directly output ASCII. As we will see, the CHR$ command is very useful
for outputting special characters.

The next commands have to do with directly accessing locations in your
computer's memory. The first, POKE, puts values into memory and the
second, PEEK, looks into memory addresses and returns the values there.
We will examine several different uses of these two commands. These
commands are essential for producing certain types of graphics and sound.

The ASCII Code and CHR$ Functions

In a couple of places we have used control characters in programs, such
as CTRL-9. In the program all we saw was something like the following:

PRINT “{INVERSE R}": REM CTRL-9

What that means is that we enter the CTRL-9 between the quote marks,
but an inverse “R” is there. Unfortunately, we cannot see the CTRL-9
when we list our program to printer or screen; so we have to use a REM
statement to let us know what's there or remember that an inverse “R” is
really a CTRL-9. Another way to access any characters we want, including

113

control characters, is to use CHR$ commands and the ASCII code. In
APPENDIX A there is a.complete listing of ASCII which you will want to
examine. Whenever we want to access a character, we just enter the
CHRS$ and the decimal value of the character we want. For example enter
the following:

PRINT CHR$(65) <RETURN>
You got an “A". That's simple enough and not too interesting. On the other
-hand, try the following little program, and I'll bet you couldn’t do it without
using the CHR$ function: '

10 PRINT CHR$(147) : REM USES ASCIl FOR CLR/HOME
20 QU$ = CHR$(34) : REM USES ASCII VALUE FOR QUOTE

MARKS
30 FOR | = 1 TO 20 : PRINT : NEXT : PRINT CHR$(18);“HIT
ANY KEY TO CONTINUE OR ”; -

40 PRINT QU$; “Q”; QUS$; “ TO QUIT *;
50 GET ANS : IF AN$ = “” THEN 50

60 IF AN$ = “Q” THEN END
70GOTO10

RUN the program and look carefully. Note the quotes around the Q. If we
tried to PRINT a quote mark, the computer would think it got a command
to begin printing a string. However, but defining QU$ as CHR$(34) we
were able to slip in the quote marks and not confuse the output! (Just for
fun, see if you can do that without using the CHR$ command.) Also, did
you notice how we began the program? Instead of using the CLR/HOME
key, we used CHR$(147). We did not have to put in the quote (“) marks
around CHR$(147) as we did with CLR/HOME. Likewise, we used CHR$(18)
instead of a CTRL-9 to set the inverse mode. To see what different char-
acters you have available, RUN the following program:

%ﬁ‘mﬁ"‘:#&:%%

114

occocccoccccccCcccccccCccccccoccec

D2J2IJIJDDI2IIIJIJIIIIJIJIJDIIJIJIIIIIIID

10 PRINT CHR$(147)
20 FOR | = 32 TO 127 : PRINT CHR$(l); : NEXT
30 FOR | = 158 TO 191 : PRINT CHR$(l) ; : NEXT

Voila! There you have all of your symbols. Before we go on, though, let’s
see some other symbols simply by pressing two keys. Hold down the
COMMODORE key (in the lower left hand corner of your keyboard) and
press the SHIFT key. The first set of letters were printed in lower case and
the symbols, beginning with the “spade” changed to upper case letters.
Thus, depending on whether or not the lower case letters are “on” or “off,’
CHRS$s will output different symbols. Now, to watch funny things happen
to your screen RUN the following program.

10 PRINT CHR$(147)
20FORI=0TO31
30 PRINT CHRS(I) ; : NEXT

Not much happened since in that range of ASCII (from 0 to 31) you ran
through the control characters. In fact, your system “locked up,” and you
will have to press RUN/STOP and RESTORE together to get everything
back. To get used to your increased power over your computer, try the
following little programs:

10 PRINT CHR$(147)
20 LB$ = CHR$ (54) : RB$ = CHR$(52)

30 CO$ = “COMMODORE” + CHR$(45) + LB$ + RB$
40 L = 20 - LEN (COS$)/2 : PRINT SPC(L); CO$

50 FOR | = 1 TO 20 : PRINT CHR$(32) : NEXT

10 PRINT CHR$(147)

20 PRINT CHR$(18); CHR$(28); : FOR | = 1 TO 35 : PRINT
CHR$(32) ; : NEXT

30 PRINT CHR$(5) : REM BEFORE YOU RUN THIS, SEE IF
YOU CAN FIGURE OUT WHAT WILL HAPPEN

On the last program, you will get an idea of the use of CHR$ commands
with graphics. The red bar was created using CHR$(32), a space, after
the color red had been set with CHR$(18) <CTRL-9> and CHR$(28)
<CTRL-3>. In the next chapter on graphics, we will use the CHR$ com-
mand a good deal in creating pictures, charts and graphs. (By the way,
to reset everything to normal, use the RUN/STOP and RESTORE keys.)

The following program is a handy little device for printing out all of the

CHR$ values to screen. Save it to tape or disk to use as a handy reference
guide to look up CHR$ values and symbols.

115

CHR$ MAP

10 PRINT CHR$(147)

20 GOSUB 300

30FOR| = 33TO 99

40 IF | = 34 THEN GOTO 400

50 PRINT I; “. ="; CHR$(l),

60 NEXT

70 PRINT : PRINT “HIT ANY KEY TO CONTINUE”;
80 GET A$: IF A$ = “” THEN 80

90 PRINT CHRS$ (147)

100 GOSUB 300 :

110 FOR | = 100 TO 127: PRINT I;“. =" ; CHRS$ (I), : NEXT
120 FOR | = 161 TO 191 : PRINT I; “. ="; CHR$(l), : NEXT

130 PRINT : PRINT : END
300 FOR | = 1 TO 4 : PRINT “CHR$ / S", : NEXT

310 RETURN

400 PRINT I; “. ="; “"", : REM THERE ARE 2 SHIFT 7'S
BETWEEN THE QUOTE MARKS

410 GOTO 60

The program, CHR$ MAP, can be used as a handy reference for you to
look up the CHRS$ values of different symbols. You may have noticed that
the program branches to a subroutine at line 400 if | = 34. The reason
for that is because once a quotation mark - CHR$(34) - is encountered,
inverse brackets will be printed in the rest of the output. To avoid that, we
made a “phony quote mark” using two apostrophes (SHIFT 7). This left
a gap between 34 and 35, but it looks a lot better than all those inverse
brackets! Also, we left out CHR$ values which would either lock up the
display, clear the screen, change the colors or somehow mess up the
output. See if you can make a program which will include useful CHR$
values (such as CTRL-9 and colors) but not destroy the output.

POKES and PEEKS:
Looking Inside Your Commodore-64’s Memory

At first you won't have too many uses for POKES and PEEKS, but as you
begin exploring the full range of your computer’s capacity, they will be
used more and more. Basically, a POKE command places a value into a
given memory location and a PEEK command returns the value stored in
that location. For example, try the following:

'POKE 2048, 255 : PRINT PEEK (2048) <RETURN>

116

occcocccocccocccocococococcCccc

DD 2D JED T D D T IS JD IS B0 T B0 JD IS B I B0 B0 I O TD IS TS T

You should have gotten “255” since the POKE command entered that
value into location 2048 and PRINT PEEK (2048) printed out the value of
that address. That's relatively simple, but more is going on than storage
of numbers.

The key importance of POKE and PEEK involves what occurs in a given
memory location when a given value is entered. In some locations nothing
other than the storage of the number will occur, as in our example above.
However, with other memory locations, very precise events occur. What
we will do in the remainder of this section is to examine some of the more
useful locations for POKEing and PEEKing in your COMMODORE-64. We
will not be getting into the more complex elements of POKEs and PEEKS,

however.

117

A TALE OF TWO NUMBER SYSTEMS

When using POKEs and PEEKs, we use decimal numbers for
accessing locations. However, much of what is written about special
locations in your PROGRAMMER'S REFERENCE GUIDE available
for your COMMODORE-64 is written in HEXADECIMAL, generally
referred to as HEX. Since we've used decimal notations for counting
all our lives, it seems to be a “natural” way of doing things. However,
decimal is simply a “base 10" method of counting and we could use
a base of anything we wanted. For reasons | won't get into here
“base 16, called HEXADECIMAL, is an easier way to think about
using a computer’s memory, and that's why so much of the notation
we see is in HEX. HEX is counted in the same way as decimal
except it is done in groups of 16, and it uses alphanumeric char-
acters instead of just numeric ones. You can usually tell if a number
is HEX since they are typically preceded by a dollar-sign (e.g. $45
is not the same as decimal 45), and often there are alphabetic
characters mixed in with numbers. (e.g. FC58, AAB, 12C). The
following is a list of decimal and hexadecimal numbers.

Decimal Hexadecimal
0 $0
1 $1
2 $2
3 $3
4 $4
5 $5
6 $6
7 $7
8 $8
9 $9

10 $A

11 $B

12 $C

13 $D

14 $E

15 $F

16 $10

118

cccccccccccccCcCccccccCcCcCcoccCcocccoccoccoec

N
\
/

C

D)I)IDIDIDDIDIDIDIDIIDIIIDIIIIDIIIDIIIDIIDID

<

As you can see, instead of starting with double digit numbers at 10, hex-
adecimal begins double digits at decimal 16 with a $10. In the major
memory locations of interest in your COMMODORE-64 PROGRAM-
MER’'S REFERENCE GUIDE, both the decimal and hexadecimal num-
bers are given.

A ROTTEN TRICK!!

When you start POKEing and PEEKing into different locations of
your COMMODORE-64, you will not always get what you expect.
In the decimal addresses from 2048 through 40959, you will be
pretty safe since this is the User Basic area. However, other loca-
tions are the “homes” of special routines which will react directly to
anything POKEd into them. For example, if you POKE 768,255 :
PRINT PEEK (768), your machine will lock up, and not even RUN/
STOP and RESTORE will unlock it. You have to turn your computer
off to free it up. Now if you slipped that into one of your programs
and gave it to a friend, it would lock up his machine, and that would
be a Rotten Trick! Of course, you wouldn't ever do anything like that.
Would you?

119

FRANKLY, T'VE
NEVER HAD ANY
PROBLEM UnTH
HExADECImAL !

Now let's take a look at some places to POKE. We will begin with your
text screen.

Poking the Text Screen

Another use of POKEs is to enter a character to a location on your text
screen. Each character has a different value between 0 and 255. Your
screen can be envisioned as a set of addresses on a 40 by 25 grid begin-
ning with decimal location 1024 and ending at 2023. That gives you exactly
1000 locations on your screen where you can place text. The addresses
are contiguous, and by using FOR-NEXT loops it is a simple matter to
enter sequential lines of text. Or, using POKES, you can put text anywhere

on the screen you want. To get an idea of what you will see, try the
following POKEs:

PRINT CHR$(147) :POKE 1190, 1 : POKE 1191, 129 <RETURN>
PRINT CHR$(147) : FOR | = 1880 TO 1890 : POKE |, 81 : NEXT
<RETURN> ’

PRINT CHR$(147) : FOR | = 1240 TO (1240 + 255) : POKE |I,
I - 1240 : NEXT <RETURN>

120

ccocococcoccocccococeacd C‘C‘C{C‘C Cc C C

DI DI IDDIIDIDIIDIIDIDIIDDIIDIIIDIIIIIIID

The first line showed different addresses for normal and inverse “A” located
at adjacent addresses. The next exercise used a sequence of addresses
from 1880 to 1890 and put in a white ball at each location. Finally, the
third exercise used adjacent memory locations to insert a sequence of
ASCII characters.

The following program will introduce you to the concept of an “offset” in
programming. Basically, an offset is a number which will add or subtract
a specified value. There are two different offsets in the program to note.
The firstis “127,” used in determining the maximum address for the loops
beginning in lines 20 and 40. Since we want to POKE in 128 characters
(from 0 to 127), we set our first offset to 127 and then terminate our screen
location at the offset plus our beginning location. Since we begin at 0
(1024-1), we will end at 127 because that is our offset. Secondly, we use

. an offset.of 128 in line 50 to get the inverse characters we generated in

our first set. That is because any character we POKE in from 0 to 127 has
the inverse same character at a value of the first character plus 128. Thus,
for any character we want to display in mverse, we sumply add 128 to the
original POKE value.

10 PRINT CHR$(147)

20 FOR | = 1024 TO (1024 +127)

30 POKE |,(I-1024) : NEXT

40 FOR | = 1424 TO (1424 +127)

50 L = |-1424 : POKE I,L+ 128 : NEXT
60 FOR | = 1 TO 15 : PRINT : NEXT

i21

You might wonder why line 60 was included. Take it out and see what
happens. The reason for that is because the cursor follows the line num-
bers in the program and not the screen locations being POKEd. Therefore,
you can POKE in a screen character from the HOME position on the
screen, and even though the location will output a character to the bottom
of the screen, the cursor will remain near the top. Try it and see.

In order to easily see what characters are produced with different values
we POKE into screen locations, the following program allows you to INPUT
avalue and then displays the character on the screen for you. Of particular
interest in this program are lines 50 and 60. Line 50 prints out a message
and ends it with a blank instead of a semi-colon. However, when the
program is RUN, the character output is right next to the end of the string
we entered in line 50. The reason for that is we POKEd the output in a
screen address right next to the end of our string. We could have placed
a semi-colon, comma or blank at the end of line 50 and the output would
have been in the.same place. Try it and see.

10 PRINT CHR$(147)

20 PRINT CHRS$ (19) : PRINT: PRINT : INPUT “ENTER A NUM-
BER FROM 0 TO 255-> ”; X

30 IF X > 255 THEN 20

40 PRINT CHR$(19) : FOR | = 1 TO 11 : PRINT : NEXT

50 PRINT “THE CHARACTER FOR”; X ; “IS *

60 POKE (1504 + 25), X

70 PRINT : PRINT : CHR$(18); “HIT ANY KEY TO CONTINUE
OR ‘Q' TO QUIT";

80 GET HKS$: IF HK$ “” THEN 80

90 IF HK$ < > “Q” THEN 10

Accessing Machine Language Subroutines

The SYS command can be a useful tool in speeding up your programs. A
SYS command “runs” a machine-level subroutine in your computer's ROMs
or in memory. in the COMMODORE 64 PROGRAMMER'S REFERENCE
GUIDE there is a listing of your computer’s ROM. (Also in the October/
November, 1982 issue of COMMODORE, a ROM listing can be found on
pages 90-93.) Along the far left side are the starting addresses of the
various subroutines which can be SYSed from your BASIC program. The
problem is that the listing is in HEXADECIMAL and you have to make the
SYS's with decimal values. There are programs and charts available for
converting hexadecimal to decimal. However, for the beginner, it would
probably be more confusing than enlightening to go into either the con-

122

ccoccococccoccoocooccococccoec

DD ID DI DI DIIIDIIDIIDIIDIDIIIIDI)

version process or explain the monitor listing. Instead, we will make a list
of some handy SYS's, and when you are more advanced, you can see
how these SYS's jumped to a machine-level subroutine.

CHART IT!

In addition to having labels stuck all over my computer, | have a
number of charts. The nice thing about a chart is that it has every-
thing from a single category together in one place. You should make
or buy or somehow get your hands on charts which will summarize
SYS's, POKEs, and other handy locations and addresses. Also, in
several computer magazines you can find charts. Make copies of
the charts and, using rubber cement, paste them to cardboard and
keep them handy.

MINI SYS CHART
SYS 58692 Same as CLR/HOME
SYS 58726 Same as HOME
SYS 59903 Clears entire line of text
SYS 59062 Advance cursor
SYS 59626 Scrolls up a line
SYS 59137 Back to previous line

Try some of the above SYS's in your programs to see their effect. Here
are some programs to play with SYS. :

10 SYS 58692

20 FOR | = 1 TO 800 : PRINT “X”; : NEXT

30 REM SOMETHING TO FILL THE SCREEN
_ 40 SYS 58726 : REM HOME CURSOR

50 FOR | = 1 TO 10 : PRINT : NEXT

10 SYS 58692
20 FOR | = 1 TO 200 : SYS 59062 : NEXT
30 PRINT “HOW'D | GET HERE?"

10 SYS 58692

20 FOR | = 1 TO 840 : PRINT “&”;: NEXT
30 FOR SCROLL = 1TO 12

40 FOR PAUSE = 1 TO 400 : NEXT PAUSE
50 SYS 59626 : REM SCROLL

60 NEXT SCROLL

123

A Lot Of Sound

Now that we have seen that besides simply POKEing numbers in empty
memory locations, we can also POKE in values at special locations to get
some immediate result, we are ready to take a look at the COMMODORE-
64's fantastic music capabilities. Actually, we won't be dealing just with
music, but just about any sound we want. However, like the rest of this
book, we will keep it simple and provide programs and instruction on how
to get started.

To begin with, when we start making sounds, we will be using a special
chip in the COMMODORE-64. It's called a 6581 chip or SID' SOUND
SYNTHESIZER CHIP. Up to now we've been involved with the 6510 micro-
processor chip - the heart of your machine. Basically, we will be POKEing
in values to the 6581 and getting back sound through our TV set. So
before we go any further, turn up the sound on your TV, (If you have hooked
up a monitor without a speaker, these exercises will not work.) At first
what we will be doing will look extremely complicated, but as we go on, it
will become simpler since we will see that we can make certain settings
and SAVE these settings to tape or diskette, and then enter notes or
sounds with only a few numbers.

124

ccocococcccoecccccccocccococecec

)OI DIDDIDI3IIIIDIDIDIDIIDIIIII)IDID

To begin let’s take a look at the locations we will be POKEing and what
they do.

1. VOLUME. This sets the volume of the output to a maximum
of 15. Usually we will want to set the volume at this level when
we are getting used to the sounds which can be produced. We
will use the variable VL for volume.

2. ATTACK/DECAY and SUSTAIN/RELEASE. These two fea-
tures refer to how fast a note rises to and then falls from its
maximum volume level (attack/decay) and the rate to carry the
note at a certain level before releasing it (sustain/release). We
will use the variable AD for attack/decay and SR for sustain/
release.

3. WAVEFORM. The waveform determines how sound will be
produced. There are only 4 waveforms we will be using: Triangle
= 17, Sawtooth = 33, Pulse = 65 and Noise = 129. We will
use the variable WV for waveform, and TR for triangle, SW for
sawtooth, PL for pulse, and NS for noise.

4. HIGH/LOW FREQUENCY. These values make specific notes,
each note requiring a single high and low frequency value. HF
will denote high frequency and LF will denote low frequency.

As each of the above locations in the 6518 are POKEd, different sounds
are emitted. For example, if we POKE VL,10 our volume value would be
10, and so we would have high/medium volume level. However, before
we can POKE our variables, we have to define them first. So, let's start
our program by defining the above variables. (Save the first part of the
program on tape or disk as “SOUND VARIABLES” so that whenever you
want to write a sound or music routine, you won't have to re-type all of the
values.)

10 PRINT CHRS$ (147)

20 VL = 54296 : REM VOLUME LOCATION

30 AD = 54277 : REM ATTACK/DECAY LOCATION

40 SR = 54278 : REM SUSTAIN/RELEASE LOCATION

50 WF = 54276 : REM WAVEFORM - SET AT 17, 33, 65, OR

129
60 HF = 54273 : LF = 54272 : REM HIGH AND LOW
FREQUENCY

125

Now that we have defined the variables to POKE, we will add the values
to be POKEd in. In order to get a good idea of what is happening and the
kind of results you will get with different values, we will make a series of
INPUT statements so that you can easily test out different sounds and
notes depending on what values you use.

100 PRINT : PRINT : INPUT “VOLUME (15=MAX)";V%

110 INPUT “ATTACK/DECAY (MAX=240)"; AK%

120 INPUT “SUSTAIN/RELEASE (MAX =240)"; SL%

130 INPUT “WAVEFORM (17,33,65, OR 129) ; WV%

140 INPUT “HI-FREQ, LO-FREQ (ENTER 2 VALUES SEPA-
RATED BY COMMA)”; H%,L%

150 INPUT “DURATION"; D%

160REM ===================

Now we have a routine for entering the values for the locations we will
POKE. All that's left is to output the values and listen to our sounds!

126

cccCcccocCccCccCcocCccccccecccococccocecoc

D320 I3I22II3I9IIIIII)IJI)IJ)

200 POKE VL, V%

210 POKE AD, AK%

220 POKE SR, SL%

230 POKE HF, H% : POKE LF, L%

240 POKE WF, WV%

250 FOR DU = 1 TO D% : NEXT DU

260 POKE WF, 0 : POKE AD, 0 : POKE SR, 0 : POKE HF, 0 :
POKE LF, 0: REM TURN EVERYTHING OFF

270 GOTO 10 : REM DO IT AGAIN

Be sure the sound on your TV is turned up and RUN your program. Try
all different kinds of combinations until you begin getting what you want.

Summary

This chapter has ventured into the' COMMODORE-64's memory. While
you are not expected to understand all of the nuances of our discussion,
it is hoped that you have a general idea of how ASCII values work and a
little about addresses and locations. Most important is that you have tried
out some of the commands introduced and attempted to use them in your
programs. The more you use different commands, the more you begin to
understand what is happening.

The CHRS$ function introduced ASCII values. Some of the uses of CHR$
allow us to access characters not available in our programming.

The POKE command enters a value to a decimal address and the PEEK
command retrieves a value from an address. Special locations in your
COMMODORE-64's memory have special functions, such as the ASCIi
screen values. More advanced uses of POKE and PEEK can provide a
way of virtually writing machine-level subroutines.

127

.u,uuuuuuuuuuuuuuuuuuuuuuwwu

DD DD IDIDIDDIDDIDIIDIDDDIDIDIDDIDDIDIDIDIDDIDIDD

CHAPTER 7

Using Graphics
Introduction

One of the nicest features of the COMMODORE-64 is its graphics capa-
bility. Basically, there are two kinds of graphics: (1) Screen Graphics and
(2) Sprite Graphics. Screen graphics are something like text except that
we use a lot more color and figures instead of letters and numbers. The
way the graphics are used, however, we can access both graphics and
text simultaneously. This feature is especially useful for labeling our graph-
ics, such as charts or figures we may wish to create. As a matter of fact,
if you have pressed the “Commodore key” and shift key and one of the
other keys simuitaneously, you may already have accessed some of your
computer’s graphics capabilities.

Sprite graphics are wholly different from screen graphics, and they are a
good deal more difficult to use. However, sprite graphics give you an
incredible amount of flexibility and power in creating figures in fine detail,
especially animated ones for game applications. Once you become adept
at using sprite graphics, there are limitless possibilities for the creation of
colorful animated characters.

129

Screen Graphics

Screen graphics are very simple to use, since you can enter figures directly
from the keyboard. To create a single figure you simply PRINT that figure
in the same way you would a letter or number. For example, if you

PRINT “{SHIFT-Z}"

you will get a diamond figure. However, to create more interesting graph-
ics, you will want to enter commands from the Program Mode. One way
this can be done is by writing a series of PRINT statements, entering the
drawing as you go along. For example, let's make a graphic playing card.
We'll keep it simple and program a two of spades. (It would be a good
idea to SAVE this program to disk or tape, as well as the others in this
section. SAVE them under different file names since, even though some
will have the identical results, they are programmed differently.)

130

cccccccccccccccccccceccccecceccec

D2J2IJDDIDDIDIJI)IDIJIJIJIDIIDIIDI)IIIDII)

10 PRINT CHR$(147)

20 PRINT “{SHIFT-U} {7 SHIFT-D’s} {SHIFT-1}"

30 PRINT “{SHIFT-G} 2 {SHIFT-A} 5 SPACES {SHIFT-H}"

40 PRINT “{SHIFT-G} 7 SPACES {SHIFT-H}"

50 PRINT “{SHIFT-G} 3 SPACES {SHIFT-A} 3 SPACES {SHIFT-
H}”

60 PRINT “{SHIFT-G} 7 SPACES {SHIFT-H}"

70 PRINT “{SHIFT-G} 3 SPACES {SHIFT-A} 3 SPACES {SHIFT-
H}”

80 PRINT “{SHIFT-G} 7 SPACES {SHIFT-H}”

90 PRINT “{SHIFT-G} 5 SPACES 2 {SHIFT-A} {SHIFT-H}"

100 PRINT “{SHIFT-J} {7 SHIFT-F's} {SHIFT-K}"

When you are finished writing the program you should be able to see a
“Two of Spades” on your screen - even before you RUN the program.
When you do RUN it, the screen will clear and a “Two of Spades” will
appear in the upper left hand corner of your TV. In the same way, you can
draw anything else you want with the different shapes and characters on
your keyboard. REMEMBER, to get the figure on the right side of the key,
use the SHIFT key, and to print the characters on the left side of the key,
use the COMMODORE key.

Let's take another look at our “Two of Spades” and see if we can improve
the program. First, note that lines 40, 60 and 80 are identical, as are lines
50 and 70. Instead of having to re-write those lines, let's use our GOSUB
commands, treating the repeated lines as subroutines. Using your editor,
change line 40 to line 200 and line 50 to 300. Now add a colon and
RETURN after lines 200 and 300. Then change lines 40, 60 and 80 to
read GOSUB 200, and lines 50 and 70 to read GOSUB 300. Add line 110
END. The program should now look as follows:

10 PRINT CHR$(147)

20 PRINT “{SHIFT-U} {7 SHIFT-D's} {SHIFT-1I}"

30 PRINT “{SHIFT-G} 2 {SHIFT-A} 5 SPACES {SHIFT-H}"

40 GOSUB 200

50 GOSUB 300

60 GOSUB 200

70 GOSUB 300

80 GOSUB 200

90 PRINT “{SHIFT-G} 5 SPACES 2 {SHIFT-A} {SHIFT-H}"

100 PRINT “{SHIFT-J} (7 SHIFT-F's) {SHIFT-K}"

110 END

200 PRINT “{SHIFT-G} 7 SPACES {SHIFT-H}” : RETURN

300 PRINT “{SHIFT-G} 3 SPACES {SHIFT-A} 3 SPACES {SHIFT-

H}” I: RETURN

131

Now that didn't save a lot of programming time, but if you begin to think
of screen graphics as you would any other program, you will want to look
for shortcuts to-save both memory space and minimize programing redun-
dancy. Now, to see how easy it is to change the two of spades to a thr¢e
of hearts, using your editor, change the 2 of spades in lines 30 and 90 to
a three of hearts - 3 (SHIFT-S), and the spade in line 300 to a heart. Now,

change line 60 from GOSUB 200 to GOSUB 300. This time when you -
RUN the program, you have an entirely different card and you made only.

a few changes. Try out different suits and see if you can make an entire
deck.

EDIT ITI!

If you did not use your editor to change the above lines, you are
working too hard! All that is required when you edit a line is to enter
the changes and hit RETURN. To change a line to a different line
number, simply enter the new line number over the old line number.
For example, to change line 40 in our original “Two of Spades” to
line 200, simply use the cursor key to walk up to line 40, place the
cursor over the “4”, enter “200” and press RETURN. When you
LIST the program, line 40 will still be there in its original form, but
there will now be a line 200 identical to line 40.

Coloring Your Graphics

If all of the graphics we did were in the two shades of blue on your screen,
it would be pretty dull. However, if you do not have a color TV or monitor,
the colors will appear as different shades of black and white or green (if
you have a green screen monitor). The different color patterns will create
different density in the lines and figures you create. If you have something
other than a color TV or monitor, it is best to experiment with white (using
CHR$(5) or CTRL-2) until you get used to the commands. Later when you
get used to the line patterns created on a non-color screen, you can mix
them for different effects.

Assuming you have a color screen, it might be necessary to adjust your
TV/monitor to get the proper colors. One way we can do that is to make
a color test chart program. The following program uses only half of your
COMMODORE-64's range of colors, but that is because we can only
access half using the keyboard or CHR$ commands. We'll get to the
second half of your colors in a bit, but for now we’ll make our color chart
so that you can adjust your TV set. (Leave out the REM statements when
you enter the program.)

132

oacccccccccccccCccCccccoccccccccceccec

DD I IDIDIDIDDIDIIIDIDIDIIDIDIDIDIDIDIDIDIDID

10 PRINT CHR$ (147) : FOR V = 1 TO 7 : NEXT V : REM
CLEARS SCREEN AND TABS DOWN 7 PLACES

20 FOR | = 1 TO 8 : READ C(l) : NEXT : REM READS IN THE
CHR$ VALUES FOR THE COLORS IN DATA STATEMENT IN
LINE 100

30FORJ=1TO8

40 PRINT CHRS$ (18); CHR$(C(J)); : FORK = 1 TO 30 : PRINT
CHR$(32); : NEXT K : REM TURNS ON THE “COLOR ACCEP-
TOR” {CHR$(18)} AND THE NEXT COLOR AND THEN PRINTS
30 SPACES. N

50 PRINT : NEXT J : PRINT CHR$(5)

60 PRINT SPC(10); “COLOR CHART”

100 DATA 5, 28, 30, 31, 144, 156, 158, 159 : REM THE CHR$
CODES FOR THE COLORS

Run the program and adjust your set. Once that's done, we can begin
doing more with different colors.

BACK TO NORMAL

Since we will be changing the screen to all kinds of colors, remem-
ber, to get it back to normal just press the RUN/STOP and RESTORE
keys simultaneously.

Let's go back to our “Two of Spades” program. Since spades are black,
let's turn our card from light biue to black. To do that, LOAD your “Two of
Spades” program into memory and add the following line:

15 PRINT CHR$(18); CHR$(144)
That was easy. Do the same with the “Three of Hearts” program, but
instead of using CHR$(144) use CHR$(28) for red. Play with the different

colors for a while to see what you get. The following chart shows the color
and its associated CHR$ value.

133

COLOR CHR$ VALUE
White 5

Red 28

Green 30

Blue 31

Black 144

Purple 156

Yellow 158

Cyan 159

Now let's make a simple bar graph using a combination of screen graphics
and a little text at the bottom of the screen.

10 PRINT CHR$(147)

20 INPUT "“TITLE OF PLOT"; T$

30 PRINT : PRINT : INPUT “HOW MANY PLOTS (1-7)"; P% :
IF P% > 7 THEN 10

40 FOR C = 1 TO P% : READ C(C) : NEXT C

50 FOR I = 1 TO P%

60 PRINT “VALUE OF PLOT#" ; I ; : INPUT “(1-20)"; P(l) : IF
P(l) > 20 THEN 60
70 NEXT |

134

cccocccccccccccccocccoecCcccecceco

DJ2IJDDIDI3IIDIJDIIJIIDIJIDIJIDIIDIIDI)

80 REM *** END INPUT BLOCK ***

100 PRINT CHR$ (147) : S=4

110 FOR | = 1 TO P%

120 PRINT CHR$(19)

130 FORV = 0 TO (20 - P(l)) : PRINT : NEXT V

140 FOR PT = 1 TO P(l)

150 PRINT CHR$(18) ; CHR$(C(l)); SPC(S) ; CHR$(32) ;
CHR$(32) : NEXT PT

160 PRINT CHR$(5) ; TAB(S) ; | : S=S+4

170 NEXT | : PRINT CHR$(28); : FOR LN = 1 TO 39 : PRINT
CHR$(100); : NEXT LN

180 L = 20 - LEN(T$)/2 : PRINT CHR$(5); SPC(L); T$

190 GET A$: IF A$ = “” THEN 190

200 REM *** END OUTPUT BLOCK ***

500 DATA 5, 28, 30, 144, 156, 158, 159 : REM CHR$ COLOR
CODES EXCEPT FOR BLUE

RUN the program and see how nicely you can present data graphically.
The program is severely limited in that it only does a maximum of 7 plots
and values from 0 to 20. It is simple to change the number of plots above
7 - just change the trap value to a higher number, change the number of
colors, change the offset (S variable) and make the bars narrower by
using 1 CHR$(32) in line 150. Changing the values to above 20 requires
more sophisticated manipulations, however. This is because 20 repre-
sents the maximum length of a vertical plot and still puts in the material
at the bottom of the screen. Using a 2 bar plot, we will examine how to
enter any range of numbers we want.

10 PRINT CHR$(147)

20 PRINT : PRINT : INPUT “MAX VALUE->";MV

30 N = 1:NN = MV : REM FOR MORE PRECISE CALCULA-
TIONS LETN = .1

40 IFNN>20 THENN = N + 1:NN = MV /N: GOTO 40

50 FOR| = 1TO 2

60 PRINT “PLOT VALUE”; I; : INPUT PV())

70 PV(l) = INT (PV(l) / N)

80 NEXT |

90 REM *** END INPUT BLOCK ***

100 PRINT CHR$(147); : FORPL = 1 TO 2

110 C$ = CHR$(32) + CHR$(32) + CHR$(32) + CHR$(32) :
REM MAKING BARS 4 SPACES WIDE

120 PRINT CHR$(19): FOR V=0 TO (20-PV(PL)) : PRINT: NEXT
130 FOR PT = 1 TO PV(PL) : PRINT CHR$(18); CHR$(28);
SPC(PL * 10); C$: NEXT PT

135

140 NEXT PL
150 FOR LN = 1 TO 39 : PRINT CHR$(30); CHR$(100); : NEXT
160 PRINT CHR$ (5)

170 PRINT SPC(9); “PLOT 1”; SPC(5); “PLOT 2”;

180 GET A$: IF A$ = “” THEN 180

In order to understand what happened, we will go over the significant lines
and explain each.

1. In line 30 the variable NN is defined to equal the maximum
" value (MV) entered in line 20.

2. In line 40, the crucial line for creating a proportional scale, NN
is compared with 20 to find if the maximum value is greater than
20. If it is greater, then the counter variable N is incremented by
1 and NN is re-defined to be the value of MV divided by N and
looped back to the beginning of the line for another comparison.
As soon as the value of N increases to a point where the maxi-
mum value, MV, divided by N is not greater than 20, the loop
exits. Whatever the value of N is at that time will be used in the
rest of the program to divide any value entered.

FOR EXAMPLE:

The value of MV is established to be 100. Since 100 is
greater than 20, 1 is added to N and 100 is divided by 2
resulting in the value of NN equaling 50. Since 50 is still
larger than 20, N is incremented to 3. When MV is divided
by 3, the result is 33.33. Again it is larger than 20, so there
is another loop. The loop repeats until N is equal to 5. Now
MV divided by N equals 20. This time, when the compar-
ison to 20 is made, it is found that NN is not larger than
20 and so the line is exited and the value of N is established
at 5. No matter what value is entered, as long as it does
not exceed the maximum value, there will be no errors
since all plot values PV (1), etc., will be divided by 5. Since
100 is the maximum value to be entered, 20 is the maxi-
mum value that will be charted.

3. Two values for PV (l) are entered in line 60, and in line 70
PV(l) is divided by N. The INT command is introduced to provide
an integer (whole) number for charting.

4. In line 110, C$ is defined as the concatenation of 4 spaces,
CHR$(32). This is to make our graph bars 4 spaces wide.

136

ccccccoeccCccccccccccccCcoCcccccccccoccec

DJ2IJDDIDIIDIDIDIDIDIIIDDIDIIIDIIDIIIDI)

5. Lines 120 through 140 chart our plots, very much like what
was done in our first chart program.

FOR THE PERFECTIONIST WITH SOME TIME

We incremented N by 1 each time we passed through our test loop
in line 40. If we wanted to get a finer value, we could have incre-
mented N by .1 or .01 or even .0001! This would give us a nearer
minimum value by which to divide PV(1) and still keep it proportional.
However, it would take longer for the loop to find the minimum value
of N. Change the program to see the different results in the charts.
The smaller the increment, the closer to the top of the chart the

maximum value will appear, but the longer the program will take to
execute.

We have spent a good deal of time working on charts in screen graphics,
but it is important to see the practical applications of such graphics. Often
users simply see screen graphics as something to draw mosaic pictures
on and nothing else; but, as we have seen, it is possible to make very
good practical use of them as well. Now let’s have a little fun with animation
before going on to POKEing graphics in the screen.

Animation in screen graphics can be used in games and for special effects.
However, we will only touch upon some elementary examples to provide
you with the concepts of how animation works. Basically, by placing a
figure on the screen, covering it up and then putting it in a new position,
you can create the illusion of moving figures. It works in exactly the same
way as animated cartoons. A series of frames are flashed on the screen
sequentially. Even though each individual frame has a stationary figure,
by rapidly flashing a series of such frames, the figures appear to move.
You computer does the same thing. For example, the following little pro-
gram appears to bounce a ball in the upper left hand corner:

10 PRINT CHR$(147)

20 PRINT “{SHIFT-Q} " : REM SPACE BETWEEN SHIFT-Q AND
SECOND QUOTATION MARK ‘

30 FOR I = 1 TO 100 : NEXT

40 PRINT CHR$ (19) : PRINT “ {SHIFT-Q}” : REM SPACE
BETWEEN FIRST QUOTATION MARK AND SHIFT-Q

50 FOR | = 1 TO 100 : NEXT

60 PRINT CHR$(19) : GOTO 20

137

What appeared to be a moving “ball,” was actually a figure being placed
on the screen, erased, and then replaced in a different location. Now let's
do the same thing on the vertical axis and use cursor movement within
our program. Also, just for fun, let's add some sound and special effects.

10 PRINT CHR$(147) : REM *** BEGIN ANIMATION BLOCK ***
20FORI1 =1TO25

30 PRINT TAB(20); “{SHIFT-Q} {UP-CURSOR}” : REM AWHITE
AND INVERSE BALL WILL APPEAR ON YOUR SCREEN

40 FOR J = 1 TO 50 : NEXT J : REM DELAY LOOP TO SLOW
MOVEMENT

50 PRINT TAB(20); “{SPACE}" : REM PUTS SPACE WHERE
BALL WAS

60 PRINT : REM FORCE DISPLAY DOWN ONE LINE

70 NEXT |

80 GOSUB 200

90 PRINT TAB(20); “*” : REM *** END ANIMATION BLOCK ***
100 GET A$: IF A$ = “” THEN 100

110 END

200 REM *** SOUND EFFECTS ***

210 POKE 54296,15 : POKE 54277,20 : POKE 54278,60 : REM
SET VOLUME, ATTACK/DECAY AND SUSTAIN/RELEASE

220 POKE 54273,5 : POKE 54272,185 : POKE 54276,129 : REM
SET HIGH/LOW FREQUENCY AND WAVEFORM

138

ccooccococcococccococcococcoccc

755 15 T T Ji0 o o o o s o o 0 T T T T T TS T T0 T J0 Te T

230 FOR DU = 1 TO 50 : NEXT DU : REM SET DURATION
240 POKE 54277,0 : POKE 54278,0 : POKE 54276,0 : RETURN
: REM TURN OFF SOUND AND RETURN

By experimenting with different algorithms, you can create a wide range
of effects. If you have played arcade games with movement and sound,

" you now have an idea of how they were created. Now, go ahead and start

working on that SUPER SPACE BLASTER ALIEN EATER game.

- Now that we have an idea about how we can make things move, let's do

some more work with color. First, we will see how to change the back-
ground color and border of our screen, and then we will examine the
screen and color memory maps in the COMMODORE-64 to put anything
anywhere in any color on our screen.

To begin, let's go back to our “Two of Spades” program. Now we already
noted that the card should be black instead of light blue, but every card
player also knows that “green felt” is the correct background for the “table.”
To change the background and border colors, we use the following POKES:

POKE 53281, (0-15) Background Color
POKE 53280, (0-15) Border Color

Load your “Two of Spades” into memory, press CTRL-1 to change the
drawing color to black, and now POKE 53281,5. When you RUN the
program now, you will have a black card on a green background. Since
the borders of card tables are made of wood, let's change the border to
brown with a POKE 53280,9. There’s our black two of spades on what
looks more like a card table! (To get everything back to normal, remember
to just press RUN/STOP and RESTORE.)

It is quite simple to change the colors of the background and borders. The
following are the color codes for the 16 colors you can access.

0 BLACK 4 PURPLE 8 ORANGE 12 GRAY 2

1 WHITE 5 GREEN 9 BROWN 13 LIGHT GREEN
2 RED 6 BLUE 10 LIGHT RED 14 LIGHT BLUE

3 CYAN 7 YELLOW 11 GRAY 1 15 GRAY 3

To get used to what's available, the following program gives you a quick
trip through the various background and border colors.

139

10 PRINT CHR$(147)

20 BG = 53281 : BD = 53280 :

30 INPUT “BACKGROUND COLOR ”; B1 : IF B1 > 15 THEN
30

40 INPUT “BORDER COLOR”; B2 : IF B2 > 15 THEN 40

50 POKE BG,B1 : POKE BD,B2

60 GOTO 10

When you RUN the program, experiment with different text colors as well
by pressing CTRL and keys 1 through 8. You will find that certain text
colors are more or less clear with certain background colors. (White on
white is very difficult to read!)

You may have noticed that we were able to change the border and back-
ground colors to 16 different hues, but we still can get only 8 colors for
our keyboard characters. To access all colors for our keyboard characters,
we will have to understand the COMMODORE-64's screen and color
memory maps. As you know, your screen is a 4@ by 25 matrix. Each
element of the matrix is represented by an address in your computer’s
memory. Your screen’s memory map begins at 1024 and ends at 2023,
giving you 1000 locations to put something on the screen. By POKEing
these locations with different values, you are able to place characters on
the screen anywhere you want. Each character has a code, very much
like CHR$ codes, except the code numbers are different, and rather than
PRINTing them, you POKE them. For example, the code for the letter “A”
is 1. If you POKE a location between 1024 and 2023 with “1” an “A” will
appear there. For example, clear your screen and POKE 1475,1. In the
middle of your screen, a white “A’ appears. But note the location of your
cursor. It is still near the top of your screen. That is because you did not
PRINT the letter at the location of the cursor, but instead you accessed a
memory location. To watch these memory locations fill up with “As” enter
the following from the Immediate Mode:

FOR | = 1024 TO 2023 : POKE |, 1 : NEXT

Now to see the different codes, key in the following little program which
will give you a run-through of the codes in the middle of your screen:

10 PRINT CHR$(147)

20FORI| = 0 TO 127

30 POKE 1484, |

40 FORJ = 1 TO 200 : NEXT J : NEXT |

Now let's take an animated tour of our screen. We'll start with location
1024 and travel with an arrow (code 62) to location 2023.

140

cococcocococcococcocccoCcocococec

DI DI DI DIIDIIDIDIDIIDIDIDIIIDI)III)

10 PRINT CHR$(147)

20 BG = 1024 : ES = 2023

30FOR| =BG TOES:POKEI, 62:FORJ = 1 TO5 : NEXT
J:POKE |, 96

40 FORK = 1 TO 5 : NEXT K : NEXT |

To create animation on our screen, we first POKEd an arrow, gave it a
short delay, then POKEd a space (code 96) in the same location, gave it
a short delay, and then went on to the next memory location. Using mem-
ory screen locations, we have far more power over characters and ani-
mation, for we can go from any point to another without having to. worry
where the cursor is. Let's go back to our bouncing ball, but this time do it
with POKEs.

10 PRINT CHR$(147)
20 FOR | = (1024 + 20) TO 1984 STEP 40
30 POKE 1,81 : FORD = 1 TO 10 : NEXT D
- 40 POKE 1,96 : FOR X = 1 TO 10 : NEXT X : NEXT |
50 FOR | = (1984 + 20) TO 1024 STEP -40
60 POKE 1,81 : FORD = 1 TO 10 : NEXT D
70 POKE 1,96 : FOR X = 1 TO 10 : NEXT X : NEXT |
80 GOTO 20

Note that we started with the top left corner and added an offset of “20”
to put the ball into the middle of the screen. Then we reversed the process
in line 50 .

Now let's look at the color memory map. It begins at location 55296 and
ends at location 56295. Again, it is 1000 locations, and think of it as an
overlay on your screen map. The upper left hand corner of your screen
map is 1024 and on your color map it is 55296. First, we will POKE in a
character on your screen map and then a color for that character on your
color map.

POKE 1024,81 <RETURN>
POKE 55296,8 <RETURN>

First the ball appeared and then it was colored orange, a color you did
not have for your characters before now.

Now at this juncture you may be asking yourself, “How in the world am |

expected to figure out one of a thousand screen locations, then one of
127 character codes and then superimpose a thousand different color

141

map locations with one of 16 colors on top of the screen map and get it
in the correct place?” Actually, it is not as difficult as it sounds, and like
everything else having to do with such calculations, let your computer do
the work! The following is a step-by-step outline of how to set up a program
to do your calculations using variables.

BS = 1024 <-Beginning location of your screen map.
BC = 55296 <-Beginning location of your color map.

CS = XXXX <-Current location (with XXXX being a number
from1024 to 2023) of your character on the screen.

OF = CS - BS <-Your offset based on the difference between
your current location and the starting location on the screen map.

CC = BC + OF <-Color map location to place color.

C1 = XX <-Character code for screen character with XX being
a value from 0 to 127.

C2 = XX <-Color code with XX being a value from 0 to 15.

Essentially, the way to determine the mutual location for the screen and
color map is to have your computer count the number of locations between
the beginning of the map and the current location. Since both maps use
sequential addresses, the same offset can be used for both maps. The
following program uses the above variables and allows you to place char-
acters anywhere you want them.

10 PRINT CHR$(147)

20 BS = 1024 : BC = 55296

30 INPUT “SCREEN LOCATION (1024-2023)" ;CS
40 INPUT “CHARACTER CODE (0-127)”; C1

50 OF = CS - BS : CC = BC + OF

60 INPUT “COLOR CODE (0-15)”; C2

70 POKE CS,C1 : POKE CC,C2

80 GET A$: IF A$ = “” THEN 80

90 GOTO 10

Play with the program until you get used to the idea of what codes give
you different characters and colors in various locations. Once you're fin-
ished, try the following program to give you a “Beaded Curtain” and show
another way to create effects with color using programmed POKEs.

142

ccooccoCccccceccCcoCcccoCcecccoccocec

D2J2DIDD3DDDIIDIII3I3I3I3I3IIIIII)

10 PRINT CHR$(147)

20 BS = 1024 : ES = 2023 : REM BEGINNING AND ENDING
ADDRESSES OF SCREEN MAP -

30 BC = 55296 : EC = 56295

40 FOR | = BSTOES : POKE I, 81 : NEXT |

50 FOR C = BC TO EC STEP 2 : POKE C,8 : NEXT C

60 FORNC = (BC + 1) TO EC STEP 2 : POKE NC,4 : NEXT
70 FOR C = BC TO EC STEP 2 : POKE C,5 : NEXT C

80 FOR NC = (BC + 1) TO EC STEP 2 : POKE NC,6 : NEXT
90 GET S$: IF S$ = “” THEN 90

100 PRINT CHR$(147)

Suppose you don't want to have to look up every character you key in.
Let's say you want to write your name or a chart heading or anything else
simply by using an INPUT statement and the keyboard. Well, you can use
the screen map and POKE in characters. To do this, we will have to learn
anew command, ASC. The ASC command converts the first character of
a string to a CHRS$ code. For example, the ASCII code for an “A” is 65. If
you keyed in

PRINT ASC(“A")
you would get

65

Now, since the CHR$ values won't do you any good for POKEs, we will
have to convert the CHR$ value to a POKE value. If you look at your
screen display codes and ASCII and CHR$ codes, you will see that the
ASCII alphabet begins at 65 and the screen codes at 1. To convert one
to the other, we simply add or subtract 64, depending on which way we
want to convert. Since we want to convert ASCII into screen codes, we

will subtract 64 from whatever ASC value we determine. For example, key
in the following: '

10 PRINT CHR$(147)

20 INPUT “ENTER LETTER FROM A-Z: ": A$
30 A = ASC(A$) : A1 = A-64

40 POKE 1024,A1

50 GOTO 20

As you saw, every time you keyed in a letter, that letter would appear in
white in the upper left hand corner of your screen (location 1024).

143

Now that we know how to get a single letter in a single location, let's see
if we can get entire strings on the screen. To do this, we must do the
following:

1. Define or INPUT our string

2. Break up our string into individual letters so that we can get
the ASCII values for each character. (The ASC command reads
only the left-most character of a string.)

3. Convert the ASCII values into screen display codes.
4. POKE in the codes.

Using our offset of 64, this means that we will have to use our MID$
command to examine each character. However, when we come to a space
(ASCII value 32), we will run into trouble since 32 - 64 is a negative
number. To fix that, we’'ll set a trap for spaces and define them with the
correct POKE value - which also just happens to be 32! To keep things
simple, we’ll use the upper left hand corner of our screen to print our
strings.

10 PRINT CHR$(147)

20 PRINT : PRINT : INPUT “YOUR NAME:"; NA$

30 BS = 1024 : BC = 55296

40 DIM A (LEN(NAS)) , A1(LEN(NA$)) : REM DIMENSION OUR
ARRAYS IN CASE THE NAME IS LONGER THAN 11

50 FOR | = 1 TO LEN (NAS$)

55 IF ASC(MID$(NAS,1,1)) = 32 THEN A1(l) = 32 : NEXT | :
REM TRAP FOR SPACES

60 A(l) = ASC(MID$(NAS,1,1)) : A1(l) = A(l) - 64 : REM CON-
VERT FROM ASCII TO SCREEN CODE

70 NEXT |

80 FOR P = 1 TO LEN(NA$) : POKE BS + P, A1(P) : NEXT P
- REM POKE IN THE CODE

100 REM *** CHART COLOR ***

110 INPUT “COLOR CODE (0-15)"; C2

120 FOR C = 1 TO LEN(NA$) : POKE BC + C,C2 : NEXT C
130 GET W$: IF W$ = “” THEN 130

140 RUN

144

ccoccoccccccccecCcccccccccCccococ

DI IJDIDDDII2I2IIIDIIIIIDIIIJIJIJIJI)

Now if you entered a period (.), you got an ILLEGAL QUANTITY ERROR
IN 60. This is because the period, like the space, has an ASClI value of
less than 65. If you want to fix the program to accept periods, take a look
at line 55 where we trapped spaces. Try entering a similar trap for periods
in line 56 so that you can enter periods without getting an error. Otherwise,
you should now be able to see how to POKE characters in from the
keyboard and write programs using strings to be POKEd in the screen
map. '

Sprite Graphics

Now that we have an idea of how to go about using graphics on the 40
by 25 screen, let's take a look at a very powerful aspect of your COM-
MODORE-64, sprite graphics. First off, we’ll have to explain what “sprites”
are and what you may want to use them for. Essentially, a sprite is a figure
in memory. Depending on what you place in special memory locations,.
you will get different figures or “sprites.” They can be used in animation
and game development, but they also may be used to liven up virtually
any presentation.

¥ g wart
. o kg: bow L J.
d it 4y Cose
attention--/

145

The good news about sprites in your COMMODORE-64 is that you have
a tremendous amount of control in their creation since you enter them in
a translated binary code. The “bad” news is that they are a bit tricky to
understand. However, if we organize ourselves into the basic components
of programming sprites, the effort will be worth the trouble. To pique your
interest let's start with a simple example. Key in the following, and you will
get a little “Sprite Space Fighter” We'll explain what happened later on,
but for now, key in the program and watch what happens.

10 PRINT CHR$(147)

20 BG = 53248 : REM BEGIN GRAPHICS CHIP

30 TU = BG + 21 : REM TURN ON ADDRESS FOR SPRITE
llxx"

40 S1 = 2: REM VALUE OF SPRITE 1

50 L = 2040 : REM BEGINNING LOCATION OF SPRITE
POINTER

60 SS = 832 : REM START OF STORAGE LOCATION FOR
SPRITE DATA

70 SL = 13 : REM BLOCK WHERE DATA STORED (13TH
BLOCK)

80X1 =BG + 2:Y1 = BG + 3:REMX,Y MOVE ADDRESSES
90 REM *** END VARIABLE DEFINITION BLOCK ***
200FORR = 0 TO29: READD : POKE SS + R, D :NEXTR
: REM READ IN DATA TO CONSTRUCT SPRITE FROM LINES
500-520

210 POKE TU, S1 : REM TURN ON SPRITE #1

220 POKE L + 1, SL : REM READ IN SPRITE DATA FOR
SPRITE #1

230 POKE Y1, 100 : REM VERTICAL LOCATION AT 100

240 FORH = 0 TO 255

250 POKE X1, H : NEXT H : REM HORIZONTAL LOCATION
260 GOTO 240 : REM CONTINUOUS LOOP

270 REM **** END SPRITE CREATION AND MOVEMENT BLOCK
500 DATA 2, 0, 64, 2, 0, 64, 2, 24, 64

510 DATA 2, 60, 64, 2, 102, 64, 3, 255, 192

520 DATA 2, 60, 64, 2, 24, 64,2, 0, 64, 2, 0, 64

Now if everything is done correctly, you should see a little “space fighter”
move horizontally across your screen. There’s a lot more you can do with
sprites, but let's use the above example to explain what is happening.

The first concept to examine is that of binary arithmetic. If we conceive of

our sprites as little dots on the screen which are together in blocks, we
can understand both binary math and sprites. To begin, we will examine

146

Cccccc

|
/

ccoccocccccccccccococcoccec

(2D NS 20 20 D TN B0 0 I BN B0 B0 D BN B0 B0 D LD B0 I B 0 BN I I

an 8 bit byte, numbered from 7 to 0, each containing a 0 or 1 - the only
two numbers in the binary system.

7 6 5 4 3 2 1 0

0 1 0 1 1 0 1 0

For your computer to do math, it must convert everything into the binary
system, and the 6510 microprocessor in your COMMODORE-64 does
this in chunks called “bytes” 8 “bits” long. The above binary number
“01011010” is translated into the decimal number “90", and whenever you
key in “90", your computer translates it into “01011010".

It makes this conversion automatically, but in order to make sprites, it will
be necessary for you to do it. However, it is really quite simple. In binary
arithmetic, since we have only 2 digits, whenever we run out of unique
combinations, we tack on a 0 to the end and start over again. We do the
same in decimal math. For example, when we get to 9 in decimal, we start
over with a “1” and tack on a “0” to get 10. Counting in binary, we have
the following:

0=0
1=1
10 =2
11 =3
100 = 4
101 =5
110 = 6
111 =7
1000 = 8

it is just like when we reach 9, 99, or 999, we start over with 1 and add
another digit. In binary, we start over with 11, 111, 1111, etc. since we
have only 0 and 1 to work with. However, because we are not used to
working in a binary system, we have to have a simple way to convert
binary to decimal. in your COMMODORE-64 manual on page 78 there is
an excellent little program to convert binary into decimal, and | strongly
recommend you use it to make your conversion when you start making
sprites. (However, add the following line for a smooth exit: 11 IF A$ =
“X” THEN END : REM EXIT PROGRAM BY ENTERING X.)

Another simple way of making conversions is to remember that each bit

has a different value whether there is a 0 or 1 in the bit. Let’s look at these
values and how they can be used for conversion:

147

“On Value” 128 64 32 16 8 4 2 1

BitNumber 7 6 5 4 3 2 1 0

0 1 0 1 1 0 1 0

0+64+ 0O+ 16 +8+0+2+0=90

To get our decimal value, just add the sum of the “on values” together.

Now the obvious question is “Why bother?” Well, since sprites are made
up of little dots or “pixels” which are created by the various bits being
“on”, we can create any shapes we want by turning on the combination
of bits we want. Then by converting the binary patterns to decimal we can
POKE in the bit patterns from BASIC. To begin, let's see how our “space
fighter” in the above program was created. Here's what you'll need:

1. Some graph paper.
2. A pencil and clean eraser
3. Aruler

* On the graph paper, draw a 24 wide by 21 long matrix. Divide the matrix

vertically into 3 parts. Each part will be 8 squares wide and 21 deep. Each
row has 3 parts, each made of 8 squares. The 3 parts represent 3 bytes,

148

ccccCccCccCccCccccCcCccCccccccccceccoccecc

DDIDD2D2I3I3II3I3IDIIDIIIDIIJIIJ D)

just as in our figure above. Since we have 21 rows and 3 bytes in each
row, we have a total of 21 x 3 or 63 bytes in our “block.” Each block
represents 1 sprite. We don't have to use the entire block, but we must
think of our sprites in terms of these blocks. We will read our rows from
left to right, stopping at each new byte. If you use the binary conversion
program from your COMMODORE-64 manual, enter the numbers from
the leftmost “square” or “bit” to the rightmost square in'the byte. DO NOT
MIX BYTES.

Let's take a look at the following figure and see how the sprite data is
created.

1 2 3
838|380 on-[f38200n-

1 0,00

2 0,0,0

3 0,00

4 0,00

5 0,00

6 2,064 -

7 2,064

8 2,2464

9 |doddt-f » 1. 2,60,64

10 ... 2,102,64
Row 1" 3,255,192

12 2,60,64

13 |- 2,24,64

14 2,064

15 2,084

16 0,00

17 0,00

18 : 0,00

19 | 000

20 0,00

21 0,00

“Sprite Fighter”

In our sprite, we did not enter any information until Row 6. We could enter
DATA 0,0,0 for Rows 1-5, but unless we want our sprite in the middie of
the block in memory, there is no reason to do so. (In some applications
there is reason to do so!) Likewise, we had no information in the last 6
rows, and we can leave them blank or enter 0's. In applications where you

.use several sprites in the same memory locations, you will want to fill the

block to erase any unwanted pixels when you want one figure replaced
by another. Let's look at a row and see how we converted a piece of our

drawing.

149

BYTE #1

“On Value” 128 64 32 16 8 4 2 1

Bit Number 7 6 5 4 3 2 1 o0

o o0 o0 o0 0 o0 1 o0

0+ 0+ 0+ 0+0+0+2+ 0= 2

BYTE #2

“On Value” 128 64 32 16 8 4 2 1

Bit Number 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

0+ 0+ 0+ 0+0+0+2+ 0= 0

BYTE #3

“On Value” 128 64 32 16 8 4 2 1

Bit Number 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 0

0+64+ 0+ 0+0+ 0+ 0+ 0 =64

Now, while the process is admittedly somewhat involved and exacting, it
is more a matter of organization than complexity. After all, it is relatively
simple to draw a sprite on graph paper once you have your plot set up,
and since you can draw fairly detailed shapes your efforts are rewarded.
Also, if you draw sprites like the one in the example, certain rows repeat
themselves; so once you have figured out the values for a row, all you
have to do when they are repeated is to enter the identical data.

150

cccccccCccCccccccccccccccecccceccecec

DIIDDI2IDIDIDIIDDIJIJIDIDIDIIDIIDIIDIDIDI)

SAVE YOUR SPRITES

Once you have figured out a sprite and have all the data laid out, it
would be wise to save that sprite to disk. By using line numbers
over 500, in subsequent applications just load the data for the sprite
into memory, and then program the parameters from lower line num-
bers (i.e. commands that turn on graphics, order moves, READ
DATA, etc.). This will save you the trouble of having to re-do figures
you have already worked out. Also, you can change part of your
sprite to make new sprites. So if you save your sprite drawings, you
can add or modify lines. Rather than having to begin all over again,
you can modify existing sprites to create what appear to be entirely
new ones simply by adding new DATA.

Now that we see how to create sprites, the next step is to get them to do
tricks for us. First of all, we have to be aware of the layout of the area
through which we move. Basically, it is a 320 by 200 matrix. We can move
320 dots or pixels horizontally and 200 vertically. However, your sprite is
24 pixels across and 21 down. When it is drawn, it will appear to “enter”
the side of the screen a part at a time, as though it is moving as a whole
from somewhere in your TV set. For moving it, though, think of your screen
as a football field, 320 yards by 200 yards, and the “play” is the X,Y
coordinates on that field. Location 160,100 would put you right in the
middle. Increasing the X value moves you to the right and increasing the
Y value moves you down.

Before we get to movement, first we have to get the sprite data into mem-
ory and turn on the graphics and sprite. In our sample program we used
the variable BG for the beginning location of graphics, “Begin Graphics.”
(BG = 53248). Most of the other needed locations are an offset of BG;
so as we define more variables, we incorporate BG along with the nec-
essary offset. The following variables will be used:

BG = 53248 <-Begin graphics

TU = BG + 21 <- Make a given sprite appear or disappear.
TU stands for “Turn On” a given sprite or set of sprites.

S1 = 2 <- Value of sprite #1. Sprite values are:

PRReg
oW nnn

- 0 H N =

[}

151

S5 = 32
S6 = 64
S7 = 128

L = 2040 <- Beginning of data handling. Offset of sprite by sprite
number, not sprite value. For example, Sprite @ = @, Sprite 1 =
1, Sprite 2 = 2, etc. Uses 2040 to 2047 for storing data pointers,
not actual data. SS = 832 <- Beginning of Sprite Storage. This
is where the actual data are stored. Three groupings of data
storage 832, 896 (832 + 64), and 960 (895 + 64) can be used.
They must be kept separate and not overlap unless you want to
create double or triple sized sprites. We only used the first one.

SL = 13 <- Storage “block” (832/63) for beginning at 832. For
sprites stored at beginning location 895 SL = 14, for 958 SL
= 15.

X1 =BG + 2:Y1 = BG + 3 <-The X and Y coordinates for
Sprite #1. All X and Y values are paired, beginning with 0,1 for
Sprite 0, 2,3 for Sprite 1, 4,5 for Sprite 2, etc.

Now that we see what our variables mean, let's go through the program
step by step beginning with line 200 to see what we did to make everything
work:

FORR = 0TO 29 : READ D:POKE SS + R,D : NEXTR.
Here we read in our data from lines 500 - 520 and stored it in
sequential locations beginning at 832 (SS + 0).

POKE TU, S1. This turned on sprite 1.

POKE L + 1, SL This indicated that the data should be for sprite
#1 found in block SL.

POKE Y1, 100. The Y or vertical location should be at 160, about
the middle of the screen.

FORH = 0 TO 255
POKE X1, H : NEXT H This moved the sprite from the horizontal

location @ to 255. The vertical location remained at 100, giving
us horizontal movement only.

152

cccccccccccccccccccccecceccecceccecec

DIJ2IJDI2I3IIIJIIIJIDIDIIDIIDIIIIDIIIIDID

If you do not understand everything at this point, don't feel bad. The
important points are not why information is stored at certain locations
instead of others or why “blocks” are POKEd. Look at the sequence of
commands, and see what happens if you make changes in the values.
For example, if you wanted to turn on Sprite #3 instead of #1, what values
would you have to change? If you wanted your sprite to move vertically
instead of horizontally or zig zag, how could that be done? Well, the way
to find out is to enter changes and review the above material until your
sprites behave as you expect.

Color, Expansion and Full Horizontal Control With
Sprites

Now that we understand something about creating and moving sprites,
let's see how to change their color, expand them and get them to move
all the way across the screen. Taking our example program, we will expand
both the vertical and horizontal axes of our sprite. We will use the following
variables:

EX = BG + 29 <- Address of X axis expansion
EY = BG + 23 <- Address of Y axis expansion

Add the following to your program:

85EX =BG + 29 :EY = BG + 23
225 POKE EX,S1 : POKE POKE EY,S1

Now when you RUN the program, your sprite runs across the screen in
a larger size. You want to change the color? OK, lets add some more
variables:

C = BG + 39 <- Beginning of color address.

C1 = C + 1 <- Color address for Sprite #1. Use sprite number
as offset (0 to 7).

POKE C1, 2 <- Color red (2) selected. Use colors 0 - 15.

To get your colors in the program add the following lines:

87C=BG+39:C1=C +1
227 POKE C1,2

Now you should have a big red “Sprite Fighter” moving across your screen.

Change the colors by entering different values to be POKEd into C1 in
line 227.

153

The next step is to get our sprite to move all the way across the screen.
This involves “turning on” the “most significant byte” or MSB. However,
rather than worrying about what an “MSB” is, think of it as a “screen
extender” or the “rightmost screen movement.” We will first turn it on,
move our sprite, then turn it off and go back to our original movement.
The results will be a continuously moving sprite across the full length of
the screen.

RS = BG + 16 <- Right screen address.

Now, we will move the last 64 dots to the right side of the screen using a
loop from 0 to 63. Add the following lines:

88RS = BG + 16

252 POKE RS, S1

254 FOR HH = 0 TO 63 : POKE X1, HH : NEXT HH
256 POKE RS, 0

Now that we have seen the bag of tricks we can do with our sprites, let's
add another sprite to our program. We will move both sprites indepen-
dently of one another, color them different colors and have them in dif-
ferent sizes. First we have to draw another sprite. By sheer coincidence,
I just happen to have another “Space Sprite” on hand. First add the fol-
lowing DATA lines for our new sprite:

600 DATA 0, 8, 0, 0, 28, 0, 3, 255, 224, 6, 127, 48, 12, 62, 24
610 DATA 24, 28, 12, 112, 8,7

We will now create our second sprite using Sprite #4. Add (or change)
the following lines in your program:

40S1 =2:S4 = 16

80X1 =BG +2:Y1=BG+3:X4 =BG + 8:Y4 =BG
+9

87C=BG+39:C1=C+1:C4=C+4

205 FORR = 0 TO 20 : READ D: POKE (SS + 64) + R, D :
NEXT R

210 POKE TU, S1 + S4

220 POKEL + 1,SL:POKEL + 4,SL + 1

227 POKE C1, 13 : POKE C4, 10

245 POKE X4, H : POKE Y4, H

154

cccccoccCccccccccccccccccceccecceoccec

DI IR IR I I IR I IR I I I I I IR IR I IR IR I

That's all there is to it. Now to see what we've done, line by line.

Line 40: We added the value of Sprite #4 which is 16

Line 80: The X and Y values of Sprite #4 are added.

Line 87: The color address for Sprite #4 is defined.

Line 205: We read in the data for our second sprite and, using
an offset of 64, stored the data in block #14.

Line 210: We turned on both Sprite #1 and Sprite #4.

Note that this was done by adding the values of the two sprites
rather than making two separate POKEs.

Line 220. The offset for the address pointer was POKEd in for
the second sprite and we indicated that it could be found in the
next block, SL + 1.

Line 227: We added color to Sprite #4 - Color #10, light red.
Line 245: The X and Y locations for Sprite #4 were added.

That's about it for sprites, and whatever you want to do with them is left
to your imagination. They are a bit more complicated than what we have
dealt with previously, but if you remember to organize your programs into
blocks, have recognizable variables and pay attention to the sequence,
there is a great deal you can do with sprites. You may have noticed that
animation is actually simpler with sprites than with previous animation we
studied. We did not have to follow our sprites with an “erase,” and you
might notice that one sprite can pass “behind” another. So, while there is
a good deal of figuring to be done, there is more you can create with
sprites than with other forms of animation.

Summary

This chapter has taken us into the world of computer graphics. Beginning
with screen graphics, we saw how we could mix graphics and text together
to create graphs. Then we saw how we could animate screen figures by
putting them in different screen locations, erasing them and then re-enter-
ing them at another location. We also found out how to color our graphics
both from the keyboard and from POKEing the color screen on top of the
figures we had entered. By programming with “offsets” we were able to
coordinate our figures and colors.

The final part of our exploration into graphics took us into the world of
sprites. Beginning with a drawing on graph paper, we transferred our
creations to the computer’s memory by translating our figures into binary
images. Then we learned how to store the information into memory and
bring out an animated sprite. Next, we added color and expanded both
the size of our sprites and their placement on the screen. Finally, we saw
how to create and animate muitiple sprites simultaneously.

155

As a final note on graphics, it should be pointed out that besides being
fun and artistic, computer graphics can be put to other practical uses as
well. We saw, for example, how to create graphs with screen graphics,
but you can also use sprite graphics in programs to make them clearer
and more interesting. We naturally think of games when working with
sprites and animation, but do not limit your use of graphics to the obvious.
See how they can be employed to enhance information for your computer
or used in some other creative manner.

156

occcoccccccccCccCcccCccocCcocccoccecoec

DIED NN IS NS B0 TN N0 RS D B0 S B0 I B B0 B B IS B0 B0 B I B0 D B

CHAPTER 8

Data And Text Files With The Tape And
Disk System

Introduction

In this chapter we are going to learn more about some advanced appli-
cations with the tape and disk system. We will be covering two types of
files: (1) Data files.and (2) Sequential Text Files. There are many similar-
ities between data and sequential text files. Your disk system’s data files
are a type of sequential file, and we might even consider the way in which
your cassette stores data to be a form of sequential text file. However, for
the sake of clarity we will discuss each separately.

Before beginning, | want to point out that the COMMODORE floppy disk
system is a very sophisticated and smart device. For beginners, it can be
difficult to understand some of its more advanced applications, and there
is a very real risk of destroying programs and data on your disk. Therefore,
in this section, we will take each step slowly, and even at the risk of
redundancy, explain the various functions of commands dealing with your
disk system. Also, we will not be dealing with the most advanced features
of the disk operating system, for they are beyond the scope of this book.
However, we will be going to a “middle” range of sophistication, and it is
strongly advised for those of you with a disk system to use a blank for-
matted disk on which you have not accumulated programs. By doing so
you will not inadvertently destroy valuable data and programs. (This comes
from the voice of experience, having clobbered numerous disks myself!)

Data Files and Your Cassette

Wouldn't it be nice if, after keying in a lot of data, you could save it to your
tape? For example, let's say you have created a really nice sprite which
takes up 21 rows of a sprite matrix, and you want to use that sprite in a
different program than the one for which you originally developed it. Instead
of having to re-enter all the sprite data, you could just load the the data
into any program you wanted. Well, using data files, you can do that and
a lot more. You can save any kind of data, numeric or string, to tape and
then using a special set of commands we will learn, load that data directly
into your program. You can create a check book program which saves all
of your check entries and balances to tape, make a mailing list that cre-
ates, saves and retrieves names, addresses and telephone numbers, or
even a list of your favorite recipes.

157

In Chapters 1 and 2 we discussed how to SAVE a program and retrieve
it with LOAD on your COMMODORE-64 using the Commodore C2N Cas-
sette Unit. Both of these commands are executed in the Immediate Mode.
The commands we will now discuss are executed from the Program Mode,
~ butthey too function to load and save information to your tape. They simply
do it in a different format. To begin, we will review the different commands
for working with data files, and then we will work with some programs
employing these commands.

X mv

OPEN, INPUT#, PRINT# and CLOSE

In order to prepare your cassette for reading or writing information from
within a program, the tape file must first be “prepared” with an OPEN
statement. The format is as follows:

OPEN N,1,(0,1 or 2),“FILE NAME"

158

occcocccocccccccccccccccccccocceccoc

JDI2ID2IDIIDIIIIIJIIDIIIIDIIIIDIIDID)

1) First, “N” can be any integer from 1 to 255 to reference the file. For
example, you might want to reference your file with number 21 (but any
number between 1 and 255 would do just as well); so you would write:

OPEN 21,etc.

2) Second, since the device is the cassette recorder, the second number
would be “1”. Your cassette is always addressed as “1” and your disk as
“8"-

OPEN 21,1,etc.

3) Third, your file is prepared for reading with a 0, and writing with a 1 or
a 2. If you want to write with an End-Of-File marker, use a “1”, and for an
End-Of-Tape marker use a “2".

OPEN 21,1,0,etc. <-Read a file.
OPEN 21,1,1,etc. <-Write a file with an End-Of-File marker.
OPEN 21,1,2,etc. <-Write a file with an End-Of-Tape marker.

4) Fourth, provide a reference name for your file. For example, let's say
you want to save your sprite data of a rocket you made, called “SPRITE
ROCKET". You would write

OPEN21,1,1,“SPRITE ROCKET”
or

OPEN21,1,2,“SPRITE ROCKET”
To read that data, you would write, ;

OPEN21,1,0,"SPRITE ROCKET"
it may appear to be somewhat involved, but once you get used to it, it is
very simple. At the same time, it is quite flexible as well, since it is possible
to open a number of different files simply by giving them different names.
But usually you will want to CLOSE a file before OPENing another. To
close a file, just enter CLOSE and the file number. In our example, we
would enter:

CLOSE21

So while there is a lot to remember in OPENIng a file, there is not much
when it comes to CLOSEing one.

159

The next command involves writing data to tape. Using the PRINT# com-
mand we can do this. The format for PRINT# is

PRINT#,N,D

where “N”-is the file number and “D” is the data. For instance, sticking
with our example, to print a number or string to tape, we would enter:

PRINT#21,etc.

If our data were strings, we would enter:
PRINT#21,A$

or if numeric
PRINT#21,A (or A% for integers)

It is important to remember that PRINT# is not the same as PRINT, and
you cannot substitute a question mark (?) as is possible when using PRINT.
That is, if you entered ?#, you'd get an error when you ran the program
even though when you LISTed it, it would appear as PRINT#. Just to show
you, enter the following:

10 ?#1,5
20 PRINT#1,5

RUN the program and you will get 2SYNTAX ERROR IN 10. Now, RUN
20, and you will get ?FILE NOT OPEN ERROR IN 20. The format in line
20 is correct, but since the file is not open you get an error. Now LIST the
program, and lines 10 and 20 look identical! This is one case where LIST
will not help in debugging a program. You must remember to write ‘out
PRINT# whenever you use it instead of using the “?” shortcut.

In the same way that PRINT# “prints” data to your tape, INPUT# “inputs”
information into your computer from the tape. It has the same format as
PRINT# using the OPENed file’s number and reads in numeric or string
variables.

INPUT#21,A (or A% for integer numbers) <- Numbers
INPUT#21,A$ <-Strings

Finally, we have the GET# statement which is formatted exactly like
INPUT#, but like the GET command, it gets only 1 character at a time.

160

ccocccoccccocccccccccccccoccccccoccc

DJ2IDIDIDIIDIDIDIDIDIDIIDIDIIDDIIDIIIDI)

However, it can read commas, colons and other characters which INPUT#
cannot. It will not be used very much since most applications will want
more than a single character, but when you want to read special char-
acters not available with INPUT#, GET# will come in handy.

At this point we have commands to open a file, read from or write to a file
and close a file. However, before we continue, there is a spscial variable,
ST, which we have to examine. The variable ST is reserved for checking
your tape to see if it is finished entering data. If ST = 0, then more data
is coming in. The End-Of-File or End-of-Tape marker has not yet been
read. Therefore, we can loop back to read more data using ST within an
IF/THEN statement. For example, the following format can be used

20 INPUT#21,A$
30 PRINT A$
40 IF ST = 0 THEN 20

Line 40 checks to see if there is more data, and if there is , it loops back
to line 20 to get it.

Now that we have seen all of the commands for reading and writing files
from and to tape, let's take a look at an application. We might as well use
a practical application; so we will make a list of our friends’ phone num-
bers. Whenever we want to call a friend, just read the list from tape. First,

we must create a list to enter names and save them to tape. After we have
done that, we will write a program to retrieve the names and numbers.

10 PRINT CHRS$ (147)

20 REM *** ENTER DATA ***

30 INPUT “HOW MANY NAMES TO ENTER"; N%
40 PRINT : DIM NAS$(N%), PH$(N%)

50 FOR | = 1 TO N%

60 PRINT “NAME#"; | ; : INPUT" (FIRST LAST)"; NAS(1)
70 INPUT “PHONE(XXX-XXXX)"; PH$(I)

80 NEXT |

100 REM *** SAVE DATA TO TAPE ***

110 OPEN1,1,1,“FRIENDS’ PHONES"

120 FOR | = 1 TO N%

130 PRINT#1,NAS(l)

140 PRINT#1,PHS$(I)

150 NEXT |

160 CLOSE1

161

To use this program, get a blank tape and rewind your cassette. RUN the
program, and you will be prompted to PRESS RECORD & PLAY ON TAPE
when you have entered all the names and numbers you want. As soon as
you press the play and record buttons, your screen will go blank and your
tape recorder spindies will begin turning. When all the information is saved,

the recorder will stop and the screen will reappear indicating that all your
data has been saved. (Tape storage is relatively slow compared to disks,
so to save time it is suggested to use just a few names (3 or 4) at first.)

Now, let's see if everything worked out according to plan. To do that we
need a program to read our data, and we will use INPUT# to read the
names and numbers. Since both the names and phone numbers were
saved as strings, we can do the whole thing with a single string variable
we will call DA$ for “DATA STRING.” (Remember to rewmd your tape
before RUNing this program!)

10 PRINT CHR$(147)
20 OPEN1,1,0,“FRIENDS’ PHONES”
30 INPUT#1,DA$

40 PRINT DA$

50 IF ST = 0 THEN GOTO 30

60 CLOSE1

When you RUN this program, you will be prompted to PRESS PLAY ON
TAPE. When you do so, the screen will go blank, and after a bit your text
screen will reappear with all the names and phone numbers you entered.
At this point you may say, “Now just a minute here! | entered that data as
two different string arrays, and this program read only a single string
variable! What happened to the arrays and how was it possible to get all
that information back with a single variable?”

The answer to that question can be seen in how the data is stored and
‘'what our program did. While the file was OPENed, we INPUT# whatever
data came along. As soon as it was in memory, we PRINTed it with our
BASIC PRINT statement, not the PRINT# statement we use to print infor-
mation to tape. The computer did not care whether the data entered into
memory was a name or phone number, only a string, and as soon as that
string was in memory it PRINTed to the screen. However, since the screen
was blank, we could not see it being printed. In line 50 the program checked
to see if there was more information in the file and if there was, it simply
picked up and printed the next string, regardless of whether it was a name
or a phone number. To test this, simply enter PRINT DA$ from the imme-
diate mode, and the last entry will be printed to the screen.

162

cococcoccocoCcceccoccoccocCcaoocococcec

DIED TN JND D D IS I B0 R0 LD IS B0 B0 D RS B D B0 B0 B0 B B D IO BN |

Now, let's make our program a little fancier and more useful. If you use
this program to store friends’ phone numbers, the list will eventually cover
more than a single screen. Therefore, you will be able to see only the last
screenful of names and phone numbers. What we need is a program to
search for and find a specific name and then close the file and print the
name and number to the screen as soon as it has been located.

10 PRINT CHR$(147)

20 INPUT “NAME TO LOCATE”;NA$

30 OPEN1,1,0, “FRIENDS’ PHONES”

40 INPUT#1,DA$

50 IF DA$ = NA$ THEN GOTO 100

60 IF ST = 0 THEN GOTO 40

70 PRINT “NAME NOT FOUND”

80 CLOSET

90 END

100 REM ** PRINT OUT NAME AND NUMBER ***
110 PRINT DA$: REM PRINT THE NAME FOUND
120 INPUT#1,DA$: REM GET THE NUMBER

130 PRINT DA$: REM PRINT THE NUMBER

140 CLOSE1

Now you have a handy program for storing names and numbers to tape
and retrieving a single name and number you want to call. The next prob-
lem is updating your file without having to re-enter all of the names. That
is, once you have made your phone list, you may want to add new names
but you do not want to key in all the names you already have on your list.
Can this be done? Yes, but first we have to read all the names into memory
from tape and then write them back to tape. There are several ways this
can be done, and our example is simply one way. We will do the following:

1. Load all the names and numbers on the tape into an array.
2. Input the new names and numbers on the end of the array.
3. Rewind the tape and resave the old and new data to tape.

10 PRINT CHR$(147)

20 DIM NA$(30), PH$(30) : REM DIM VALUE SHOULD BE
NUMBER OF NAMES ON LIST PLUS THE NUMBER OF NAMES
YOU WISH TO ADD

30 OPEN1,1,0,“FRIENDS’ PHONES”

40 N = 0 : REM INITIALIZE COUNTER VARIABLE

50 INPUT#1,NA$(N)

60 INPUT#1,PH$(N)

163

70N = N+1

80 IF ST = 0 THEN 50

90 CLOSE1

100 REM *** NEW DATA ENTRY ***

110 INPUT “HOW MANY NEW NAMES";NN

120 FOR | = (N+1) TO (N+NN)

130 INPUT “NAME";NAS$(I)

140 INPUT “PHONE";PH$(1)

150 NEXT |

200 REM *** COMBINE OLD AND NEW DATA AND PUTITON
TAPE ***

210 NP = N + NN : REM COMBINED TOTAL OF ALL NAMES
220 OPEN 1,1,1,"FRIENDS’ PHONES”

230 FOR| = 0 TONP
240 PRINT#1,NA$(I)

250 PRINT#1,PH$(I)

260 NEXT |

270 CLOSE1

Make sure io rewind your tape as soon as all of the old data are loaded.
In fact, it would probably be a good idea to insert a line to remind you. So
add,

105 PRINT CHR$(147) : PRINT “REWIND TAPE NOW!” : PRINT
: INPUT “PRESS RETURN TO CONTINUE";RT$

That ought to remind you.

Now let's go back to see how we can save sprite information on tape.
Also, we will see how we can load the information from tape and execute
a program using the tape data. There is a word of caution in order, how-
ever. Sometimes there is more information on the tape than we want, and
so it is important to load into memory just what we want and ighore every-
thing else. This is a little inconvenient.since we have to keep an eye on
all of our data and know how many pieces of data make up our sprite.
However, since that information is necessary anyway, our jOb is not too
difficult. :

To get started, we will create a sprite and save it to tape We'll make one
which looks something like a rocket.

10 PRINT CHR$(147) : REM *** CREATE SPRITE ***

.20 DIM RS(63)
30 FOR | = 0 TO 32 : READ RS(I) NEXT

164

C C ccococoocCcccCcceccccccCcoccCcocoCcocoec

DIJ)DID DI IDIDIDIDIDIDDIDIDIIDIIIDIDIIIIIDD

40 DATA 30, 0, 0, 31, 0, 0, 31, 128, 0, 31, 255, 192, 31, 255,
240, 31, 255, 248 ,

50 DATA 31, 255, 240, 31, 255, 192, 31, 128, 0, 31, 0, 0, 31, 0,
0

60 FOR | = 33 TO 62 : RS(l)=0 : NEXT | : REM FILL IN THE
REST OF THE SPRITE BLOCK WITH BLANKS (0'S)

100 *** REM BEGIN DATA STORAGE TO TAPE ***

110 OPEN1,1,1, “ROCKET SPRITE"

120 FOR | = 0 TO 62

130 PRINT#1,RS(])

140 NEXT |

150 CLOSE!

We created the sprite just as we would if it were part of a program torun
the sprite. However, to insure that no “garbage” got into our sprite block,
we filled the remaining empty “boxes” in our block with “0's” When we
load the data from tape, we will know that no matter what sprite is to be
loaded, there are 63 (@ to 62) pieces of information to be loaded. This
takes the guess work out of loading sprites from tape. By using the max-
imum number of bytes in a sprite block, the smallest or largest sprite will
still be 63 bytes. This is because we filled in the empty bytes with 0's to
bring the total to 63 if the sprite was less than 63.

Now, let's load the sprite from tape and run it in a program. Be sure to
save the following program, for with it you can load from tape any sprite
you want and run it. This will save a good deal of time since, rather than
having to write a sprite routine every time you want to run a different sprite,
just load the program, set your cassette tape at the beginning of a sprite
and run the program. You can do this with any sprite you want.

10 PRINT CHR$(147)

20BG = 53248 : TU = BG + 21:S1 = 2:L = 2040: SS =
832:SL = 13

30X1 =BG +2:Y1 =BG + 3

40 REM *** END VARIABLE DEFINITION BLOCK ***

50 REM

100 REM *** READ DATA FROM TAPE ***

110 OPEN1,1,0,“ROCKET SPRITE” : REM YOU CAN LOAD ANY
SPRITE YOU WANT

120 DIM R(64)

130 FOR | = 0 TO 62

140 INPUT#1, R(l)

150 NEXT |

160 CLOSE1 : REM ALL DATA READ INTO MEMORY SO CLOSE

165

THE TAPE FILE

200 REM *** SPRITE CREATION BLOCK ***
210 FORJ = 0 TO 62

220 POKE SS + J, R(J)

230 NEXT J ;

240 POKE TU,S1

250 POKE L + 1, SL -

260 POKE Y1, 100

270 FORH = 0 TO255
280 POKE X1, H : NEXT H
290 GOTO 270

No doubt you recognize our sprite program from Chapter 7, but instead
of reading DATA statements to get the sprite values, it does it from tape.
Note we did not use the ST variable to check to see if the data was
completely read in, but instead we closed the file as soon as we had
loaded 63 sprite values. This is to eliminate the possibility of any extra
“noise” that might creep .in from the tape. Also, it should be pointed out
that it is possible to load multiple sprites using this method. This is possible
by either reading multiple sprites saved to a single file, or, more usefully,
sprites from different files. Simply remember to use all of the methods for
manipulating and creating sprites we discussed in Chapter 7 with the only
difference being that we get our data from tape rather than from DATA
statements.

Sequential Files and the Disk System

If you do not have a disk system, you can skip this section and go on to
the next chapter. However, if you are considering purchasing a disk drive
for your COMMODORE-64, the following material will be of interest. In
many respects storing data on disks is similar to storing it on tape except
the storage and retrieval process is much quicker. In fact, all of our exam-
ples in the previous section can be operated with the disk system with
only a few minor changes in the format.Therefore, to get started, we will
see how we can store data to disks using a slightly different format than
we did with tape. To do this we will examine the OPEN, CLOSE, INPUT#,
PRINT# and GET# commands for disk.

OPEN — To open a disk channel, we access the device number “8”
instead of “1” as we did with the tape. Having initialized the disk with the
file number “15”, we will OPEN another file number, say “9”. Thus, we
would enter '

OPENS,8,etc.

166

¢coccccoecccocCcccoeCccccccoccccococec

D)DIJIDDIDDIDIDIDIIIDIDIIDIII)DII)

Rdfarence Nois o o BhsK o @asseffe

Instead of using code numbers 0, 1 and 2 to write, read or write End-of-
Tape, we use READ and WRITE, or more simply, R and W. However, we
format it differently. We OPEN the file beginning with the file number and
the device number and then enter the secondary address, and the rest
of our file handling commands are in quotation marks. The secondary
address should not be 15, which is used in error handling, or 0 and 1
which are used by the operating system for loading and saving programs.
The secondary address can be any number from 2 to 14. We will use “9”
to keep things simple.

OPENS9,8,9,etc.

We begin the quotation marks with the drive number, “0” in the case of a
single drive, followed by a colon and then the file name.

OPEN9,8,9,“0: FRIENDS’ PHONES, etc.”

Next, we enter the type of file we will be using. For the time being we will
use sequential files, indicated by SEQ. Finally we enter READ or WRITE,
depending on whether we want to save information to disk (WRITE) or
retrieve it from disk (READ). Thus, our file OPENing routine would look
like this:

OPENS,8,9, “0: FRIENDS’ PHONES, SEQ, WRITE”
Fortunately, INPUT#, PRINT# and GET# numbers use the same format
as we did with tape. The number following each command is the second-
ary address. So, if we wanted to PRINT# in our example, we would write,

PRINT#9

167

since “9” is the secondary address. (Note: The number “9” is also the
primary address, and by using the same number for both the primary and
secondary addresses, we can minimize confusion.)

Now to see how all of this goes together, we will re-do our original “FRIENDS’
PHONES” program we created for tape. The data entry block is identical,
and so we will only do the block which saves the information to disk.

100 REM *** SAVE DATA TO DISK ***
110 OPEN9,8,9, “0:FRIENDS’ PHONES, SEQ,WRITE”
120 FOR | = 1 TO N%

130 PRINT#9, NA())

140 PRINT#9, PH(l)

150 NEXT |

160 CLOSE9

As can be seen, the main difference between tape and disk is in the format
in Line 110. Otherwise, the disk and tape writing format is identical. Like-
wise in retrieving information from disk, there are more similarities than
differences between tape and disk. Also note that we were able to use
the ST variable with disk /O (input/output) as we were with tape.

10 PRINT CHR$(147)

20 OPEN9,8,9, “0:FRIENDS’ PHONES, SEQ,READ”
30 INPUT#9,DAS

40 PRINT DAS$

50 IF ST=0 THEN GOTO 30

60 CLOSE9

To save some time, you can substitute “S” for “SEQ" and “R" for “READ".
With these abbreviations Line 20 would read:

20 OPEN9,8,9, “0:FRIENDS’ PHONES, S,R"

Similarly, it is possible to do the same with the other file status words, but
you can never use abbreviations with file names.

Before going on to some more techniques using the disk system, there is
adifferent technique for updating files than used with tape. As you remem-
ber from our tape program, we first read in all the data from our old file,
added new data, then rewound the tape, and simply wrote over the old
material. The same technique works with a disk, but instead of rewinding,
we use a special format when OPENing the file when we prepare to write
over it. The following block shows how this is done. Note again the sim-
ilarities and differences between it and the one we used for tape.

168

ccccococCccCcccCccccceccccccococecec

D20 IS R0 2D RS T B I B B B0 D B D B0 B B0 B D I B0 D I I I

200 REM *** COMBINE OLD AND NEW DATA AND PUT IT ON
DISK ***

210 NP = N+NN : REM COMBINE TOTAL OF ALL NAMES
220 OPEN9,8,9,"0:FRIENDS’ PHONES, S, W”

230 FOR | = 0 TONP

240 PRINT#9, NA$(I)

250 PRINT#9, PH$(I)

260 NEXT |

270 CLOSE9

The key to overwriting an existing file is the "@” symbol. You will remember
that in SAVEing over any existing file on disk we used the same format.

Now that we have seen how to do a number of programs individually, let's
make a single program which will 1) Write files, 2) Read a single file or all
the files, and 3) Add to a file. However, instead of using names and phone
numbers, let's use names and addresses.

169

10 PRINT CHR$(147) : RESTORE : CLR

20 PRINT “***"; CHR$(18);“FILE MASTER"; CHRS$(146); "
30 PRINT : PRINT : FOR | = 1 TO5: PRINT I : PRINT :NEXT
40 PRINT CHR$(19): PRINT : PRINT : FOR | = 1 TO 5 : READ
D$: PRINT SPC(5); D$: PRINT : NEXT

50 DATA CREATE NEW FILE, ADD TO EXISTING FILE, READ
ALL FILES, READ SINGLE FILE

60 DATA EXIT

70 PRINT : PRINT CHR$(18); “CHOOSE BY NUMBER”;
CHR$(146) ‘

80 GET A : A < 1 THEN 80

90 ON A GOTO 100, 200, 400, 500, 700

100 REM *** CREATE A FILE ***

110 PRINT CHR$(147) : PRINT : PRINT

120 INPUT “HOW MANY NAMES"; N%

130 OPEN9,8,9, “0:ADDRESS LISTS,W"

140 PRINT#9,N% : REM ENTER NUMBER OF NAMES IN FILE
150 DIM NA$(N%), AD$(N%), CT$(N%), SA$(N%), ZI$(N%)
160 FOR | = 1 TO N%: GOSUB 1000 : GOSUB 2000 : NEXT
170 CLOSE9

180 GOTO 10

200 REM *** ADD TO EXISTING FILE ***

210 PRINT CHR$(147) : PRINT : PRINT

220 INPUT “NUMBER OF NAMES TO ADD"; NN%

230 OPENO,8,9, “0:ADDRESS LIST,S,R" ‘

240 INPUT#9,N%: REM SEE HOW MANY NAMES ARE IN
EXISTING FILE

250 NP% = N% + NN%

260 DIM NAS(NP%), ADS(NP%), CT$(NP%), SA$(NP%),
ZIS(NP%)

270 FOR | = 1 TO N% : GOSUB 3000 : NEXT

280 CLOSE9 _

290 OPEN9,8,9, “@0:ADDRESS LIST,S,W”

300 PRINT#9, NP%

310 FOR | = (N%-+ 1) TO NP% : GOSUB 1000 : NEXT

320 FOR | = 1 TO NP% : GOSUB 2000 : NEXT

330 CLOSE9

340 GOTO 10

400 REM *** READ SUBROUTINE ***

410 OPENS,8,9, “ADDRESS LIST,S,R”

420 INPUT#9,N%

430 DIM NAS(N%), AD$(N%), CT$(N%), SA$(N%), ZI$(N%)
440 FOR | = 1 TO N% : GOSUB 3000 : NEXT

450 CLOSE9

170

cccccccccccccccccccccrococecccoccec

D)D) DDIDIDDIDIIDIDIIDDIDIIIIDIIDIIIDIDID DI

460 FOR | = 1 TO N% : GOSUB 4000 : NEXT

470 PRINT : PRINT “HIT ANY KEY TO CONTINUE”

480 GET A$: IF A$="" THEN 480

490 GOTO 10

500 REM *** SEARCH SUBROUTINE ***

510 PRINT CHR$(147)

520 INPUT “NAME TO FIND”; NA$

530 OPENG,8,9, “ADDRESS LIST,S,R"

540 INPUT#9,N%

550 DIM NA$(N%), AD$(N%), CT$(N%), SA$(N%), ZI$(N%)
560 FOR | = 1 TO N%: GOSUB 3000

570 IF NAS$(l) = NA$ THEN GOSUB 4000

580 NEXT

590 CLOSE9

600 PRINT: PRINT: PRINT: PRINT “HIT ANY KEY TO CONTINUE"
610 GET ANS : IF AN$ = * THEN 610

620 GOTO 10

700 REM** EXIT ***

710 END
1000 REM *** INPUT SUBROUTINE ***
1010 PRINT “NAME#"}1;

1020 INPUT NAS$(l)

1030 INPUT “ADDRESS”; AD$(l)

1040 INPUT “CITY”; CT$(l)

1050 INPUT “STATE”; SA$(l)

1060 INPUT “ZIP CODE”; ZI$(l)

1070 RETURN

2000 REM ** PRINT# SUBROUTINE ***
2010 PRINT#9,NAS$(])

2020 PRINT#9,AD$(])

2030 PRINT#9,CT$(l)

2040 PRINT#9,SA$(])

2050 PRINT#9,ZI$(1)

2060 RETURN

3000 REM *** INPUT# SUBROUTINE ***
3010 INPUT#9,NA$(])

3020 INPUT#9,AD$(])

3030 INPUT#9,CT$(l)

3040 INPUT#9,SA$(l)

3050 INPUT#9,ZI$(1)

3060 RETURN

4000 REM *** PRINT SUBROUTINE ***
4010 PRINT NA$(]) : PRINT AD$(I): PRINT CT$(1):*, ";SA$(l);
“ v ZIS()

4020 RETURN

17

Now that was a long program! When writing such a program, it is a good
idea to save your file about every 10-15 lines so if you accidentally lose
it, you can retrieve most of your work. It is important to note several
aspects of this program, including a new command, CLR. The CLR com-
mand clears all variables and arrays. That is important in this kind of
program since you may want to do different things with it while it is in
memory. For example, you may want to add to your address list and then
locate a single name. By clearing the variables and arrays every time you
go back to the menu, you will not have incorrect values.

variables --

Another important aspect to note is how the program is blocked into sub-
routines. Not only does this make it easier to read, but you can save a
good deal of programming time by such organization. For example, in
both the “READ” and “SEARCH” subroutines, the “INPUT#” subroutine
is used. Thus, instead of having to key in the INPUT# commands more
than once, the program simply jumps to the single subroutine. In the next
chapter we will add a subroutine to print out the names and addresses to
a printer, and instead of re-writing the entire program, all it takes is adding
on another subroutine!

A final item you may have wondered about is using a string array for Zip
Codes, ZI$(n). Why didn’t we use a real variable? Well, a characteristic
of the COMMODORE 64 we noted was its propensity to drop leading “0's”
with real and integer variables and arrays. If your Zip Code is 07734, you
wouldn't want your computer to say it was “7734". By using a string array,
we retain the leading “0".

172

cccccccccccccccccccccccceccec

DIJ2DIJDDIIII3I3I3IIJIJIJDIDIIJI)II)DIIIID

Summary

In this chapter we learned how to save a lot of time by saving files to tape
and disk. Data can be saved to your cassette tape for use later within a
program. This is handy since it allows you to enter data at one time and
then use it later without having to key in the data all over again. Of course
this can be done within a single program using READ and DATA state-
ments, but the user is stuck with that program for using the data. By storing
it on tape, it is possible to use it in many different programs. This is
especially handy with sprites you have created.

Using a disk system, it is possible to store data in sequential files much
like saving data to tape. However, disks access the data much faster than
tapes, and it is possible to have a single program do several different
things with data files on disks. The “File Master” program showed how a
single program could be used to create, append, and read single or mul-
tiple files. Care has to be taken to keep everything straight with such a
program, but using sequential files increases the power of your computer
a great deal. The practical applications of such programs are immense.

173

)DDDDDDDDDDDDDDDIDIDDDDDDDDOD

DD DIJIJDIIDDIDIJIIDIDIIDIDIDIDIIIIDIIIID

CHAPTER 9

You and Your Printer

Introduction

By now you should be used to “outputting” information to your screen,
cassette or disk. When you write in PRINT “HELLO” you “output” to your
screen. When you SAVE or PRINT# something, you “output” to your tape
or disk. In the same way that you access your screen, tape or disk, you
can access your printer. It is simply another “output” target. However, you
cannot LOAD, INPUT or in some other way get anything from your printer
as you can from your keyboard, tape or disk. (How are you going to get
the ink off the paper and back into memory?)

The procedures for getting material out to your printer and using your
printer’s special capabilities require certain procedures not yet discussed,
however. Therefore, while much of what we will examine in this chapter
will not be new in terms of the language of commands, it will be new in
terms of how to arrange those commands. Also, we will see how we can
use the printer in ways which have been done poorly using the screen.
For example, no matter how long a program listing is, it can be printed
out to the printer, while long listings on the screen scrolled right off the
top of the screen into Never-Never land. Likewise, in Chapter 8, we made
a handy little program for storing friends’ phone numbers and another one
for storing names and addresses. With a printer we can print-out our
phone numbers or run off mailing labels with commands which output
information to the printer.

There are a lot of printers on the market for computers. However, to keep
things simple and to show the maximum use of your COMMODORE-64
with a printer, all examples will be with Commodore’s VIC-1515 printer.
This printer will provide all graphic and text features you will need, and it
is easily interfaced to the COMMODORE-64 system. Besides, it is a very
inexpensive printer. If you have another printer and an interface for the
COMMODORE-64, then you will have to rely heavily on your printer’s
manual. Unfortunately, many printer manuals are not very good for begin-
ners since they tend to use highly technical descriptions of how to interface
and operate their printers. Therefore, pay special attention to the codes
used to turn on or off special features of your printer. This is usually done
with a CHR$ command from BASIC, and so, usually all you will have to
do is to follow the instructions in this book using the appropriate code
from your printer’s manual.

175

old bo(L‘ .

m (COr'fo

E

BEFORE YOU BUY A PRINTER!I

The most important aspect in purchasing a printer is making certain
it will interface with your COMMODORE-64. Many times over-
enthusiastic salespersons will tell buyers all the qualities of a printer
and naively believe they can be used on any computer. This is
simply not true! In order for a printer to work with a computer, it
must have the proper interface, and the best printer in the world will
not work with your COMMODORE-64 without such an interface.
Therefore, when you buy a printer other than one made specifically
for your COMMODORE-64, make sure to buy the proper interface
for it. The only certaini way to insure the printer works with a COM-
MODORE-64 is to have it demonstrated with your computer. The
VIC-1515 and VIC-1525 printers by COMMODORE will work with
the COMMODORE-64, but otherwise you should have the printer’s
ability to work with your computer shown to you.

Printing Text On Your Printer

The first thing you will want to do with your printer is to print some text in
“hardcopy.” (“Hardcopy” is a really impressive term computer people use
to talk about print-outs on paper. Use the term and your friends will be
amazed.) Like your cassette tape and disk drive, it is necessary to first
go through a number of steps to channel information to your printer. Let's
review those steps first.

176

¢ccoccccCccCcccCccCccCcccccccccccocccecceccec

DD 2D JND D D J0 JD JD ID B0 T0 J0 IS IS IO ID I ID D B0 I J0 B0 B0 I

OPEN — First, you OPEN a channel to your printer. On the VIC-1515,
there is a switch in the back to make the device number 4 or 5. We will
use the “4” in our examples, so check to make sure the switch is flipped
to “4” before proceeding. (Remember on your disk drive the device num-
ber is “8.") The sequence for OPENing the channel to your printer is to
enter a number between 1 and 255 (we'll use lucky “7”) and the device
number,4. Here's how:

OPEN?7,4

Now your printer is ready to receive instructions to “7”, the logical file
number we used.

CMD — The CMD command tells your computer to send output to your
printer. You must use the file number (7 in this case) and not the device
number (4). For example, enter

CMD7

oo

the
+ on e dovble 7.

and you will hear your printer “crank” up and print-out READY, as it usually
prints to the screen. However, you will notice that it did not print READY
to your screen. Now enter

FOR! = 1 TO 10 : PRINT : NEXT

177.

and your printer will feed your paper 10 lines, just as it would to the screen
had you not directed output to the printer with the CMD command. Until
you turn off the output to your printer it will go there instead of to your
screen.

There is an important output difference between your printer and your
screen which should be noted. Enter

FOR | = 1 TO 80 : PRINT “X”";: NEXT

and 80 “X's” will be printed to your printer in a single line. If the same
command were printed to your screen, it would take up two lines. This
is because your printer outputs 80 columns while your screen outputs
only 40.

PRINT# — You will remember that we use PRINT# in programs where
we want to print our information to our tape or disk. Well, with your printer
the same principle applies also. Let's say that you want to print-out only
a few things in a program and do not want everything going to the printer.
If you used CMD everything would go to the printer which would normally
go to the screen. However, using PRINT# only the information following
the PRINT# would. For example, suppose you want to have your screen
* prompt you with “Name?” and as soon as you enter the name it is printed
to your printer, you would want to use PRINT#. The format is

PRINT#7, NA$
or

PRINT#7, “CHARLIE TUNA"
or

PRINT#7, 12345

Let’s try a little program to print names to the printer to show how PRINT #
can be used in programs where you want to use both the screen and
printer.

10 PRINT CHR$(147)

20 PRINT : PRINT : PRINT “TURN ON YOUR PRINTER”
30 PRINT : PRINT : PRINT “HIT ANY KEY TO CONTINUE”
40 GET A$: IF A$="" THEN 40

50 PRINT CHR$(147)

178

CCCCcCceceeeeccccccecccccacc

DI I DIDDIIDII3IDII2I3IIIII3IIIID)

60 OPEN7,4

70 INPUT “NAME TO PRINT";NAS$
80 PRINT#7,NA$

90 INPUT “ANOTHER(Y/N)";AN$
100 IF AN$="Y" THEN 70

110 CLOSE7?

120 END

CLOSE — The final command in accessing your printer is CLOSE. As we
can see in the above program, it closes the channel to the printer and
turns it off. For the most part CLOSE works pretty much the same way as
it does with the tape and disk systems; however, there is an important
protocol involved. Before you CLOSE the channel to the printer, you must
enter PRINT#{fn} first. Therefore, if you OPEN a channel to the printer
and use the CMD command, you must first PRINT# before issuing a
CLOSE command. For example,

OPEN7,4

CMD 7

PRINT “HELLO HELLO”
PRINT#7

CLOSE7

If you issued the CLOSE command without the PRINT# command, you'
would run into problems.

Listing Programs

Since listing programs to one’s printer is a good way to de-bug a program
or send it to a friend, it would be convenient to have a utility program with
which we do just that. So, let’s write a program which will list your program
to the printer. We will keep it short so that we can tack it onto the beginning
of a program. To get started, load a program into memory and then add
the following lines:

1 OPEN7,4
2 CMD7

3 LIST 5-

4 END

When you RUN this program, it “turns on” the printer and LISTs a program
from line 5 to the end of the program. When you are finished, enter PRINT#7
and CLOSE? to close the channel and the file. Unfortunately, you cannot
turn off the CMD command from within the program using PRINT# and

179

CLOSE as we did using only the PRINT# command. So be sure to turn
it off from the immediate mode after a listing.

CHRS$ To the Rescue

The secret to using printers is in understanding what their control codes
mean and how to use those codes. For example, the following is a partial
list of codes provided with a CENTRONICS 737 printer:

MNEMONIC DECIMAL OCTAL HEX FUNCTION

ESC,SO 27,14 033,016 1B,0E Elongated Print
ESC,DC4 27,20 . 033,034 1B,13 Select 16.7 cpi
ESC,DC1 27,17 033,021 1B,11 Proportional Print

Now, for most first-time computer owners, that could have been written
by a visitor from another planet for all the good it does. However, there is
important information in those codes and, once you get to know how to
use them, it is relatively easy. :

To get started, forget everything except the “Decimal” and “Function”
columns. Now, taking the first row, we have decimal codes 27 and 14 to
get elongated print. To tell your printer you want elongated print you would
use CHR$(27) + CHR$(14). To kick that into your printer you would do
the following:

1. OPEN7,4
2. PRINT#7, CHR$(27) + CHR$(14) + “MESSAGE”

If you have a Centronics 737 or 739 printer, that would have printed the
string “MESSAGE” in an elongated print. Likewise, for the condensed
printing 16.7 cpi (characters per inch), you would have entered CHR$(27)
+ CHR$(20) and for the proportional type face, CHR$(27) + CHR$(17).
Once you get the decimal code, just enter that code to the printer and it
will do anything from changing the type-face to performing a backspace
function.

With other printers the same is true, but let's get back to the VIC-1515
printer we have been examining since it was designed with Commodore
computers in mind. As we will see, like the Centronics printers or any
other, the VIC-1515 and VIC-1525 also use CHR$ commands to access
the printer's different abilities. Let's look at the various CHR$ commands
associated with the VIC-1515:

180

ccocooccocccoCcccccoccoccacccccecc

D)DIJDDIDIDIDIDIIDIDIIIDIIDIIIIDIDID

CHR$ FUNCTION
10 & 13 Line feed

8 Graphic Mode

14 Double width

15 Back to standard

16 Address of start print position
27 Escape (used in conjunction with other codes)
145 Cursor up

17 Cursor down

18 Reverse printing
146 Turn off reverse

To see how the CHRS$ functions work, we will use a simple program which
will print-out your name. Since we already know how to print-out normal
text, we will begin with expanded text. Looking at our chart, we see that
CHR$(14) will expand our print-out; so we will use it in our program.
(Notice the lack of punctuation marks after the comma following the
PRINT#7.)

10 PRINT CHR$(147)
20 OPEN?7,4 : REM OPEN CHANNEL 7 TO DEVICE 4 (YOUR

PRINTER)

30 INPUT “YOUR NAME”; NA$

40 PRINT#7, CHR$(14) NA$: REM NOTE POSITION OF
CHRS$(14) AFTER PRINT#7

50 PRINT#7, CHR$(15) : REM RETURN TO NORMAL PRINT

60 CLOSE7

181

RUN the program and print-out some names and note the expanded
characters. (Try that on your typewriter!)

Now we have not done very much with upper and lower case so far, but
in printing text to your printer, there are many times you will want to have
upper and lower case characters. For example, in printing out names, you
may want your printer to print-out, '

Captain John W. Smith
instead of
CAPTAIN JOHN W, SMITH

but we need a special CHR$ command to do that. With the VIC-1515
printer the CURSOR DOWN mode, CHR$(17), will allow us to print upper
and lower case. To do this, change lines 40 and 50 in our above program
to the following:

40 PRINT#7, CHR$(17) NAS : REM PRINTS IN CURSOR DOWN
MODE _ ’

50 PRINT#7, CHR$(145) : REM RETURNS TO CURSOR UP
MODE

Now, press the COMMODORE key and SHIFT key simultaneously to put
your computer into the upper/lower case mode and RUN the program. If
you used the shift key for upper case and the non-shifted keys for lower
case, your printer gave you both upper and lower case. If you tried that
before we made the program changes, even if you had your computer in
the upper/lower case mode, your print-out would have given you graphic
characters for the shifted ones instead of upper case. Go ahead and try
it with the original program to see for yourself.

Another trick is to use both upper and lower case and the expanded mode
together. You just have to change the program so that both CHR$ com-
mands are there together. Again, change lines 40 and 50 to the following:

40 PRINT#7, CHR$(17) CHR$(14) NAS
50 PRINT#7, CHR$(145) CHR$(15) : REM RETURN TO CUR-
SOR UP AND STANDARD PRINT

When you RUN this program, you will see that it is possible to have more

than a single non-standard (i.e. non-default) mode operating simultane-
ously. On some printers, such as the EPSON MX-80FT with GRAFTRAX

182

cccococcocccoecocceccoc

\
7

cccococcococcoocc

D)D) DIDDIDIDIIDIDIDIIIDIIDIIIDDIIDDIIDID

PLUS, it is possible to not only have expanded print but also italicized,
condensed, double strike, emphasized and super/subscript type faces
and any combination of them together. Using CHR$, all of the different
type styles can be used separately or in combination with one another.
Finding the “CURSOR UP/DOWN" mode on other printers, however, may
be tricky since they were not made specifically for the COMMODORE-64.
(Remember to get a demonstration at the store where you buy your printer!)

Now that we have seen different ways to operate the type. faces on the
printer, let's do something practical. We will make a mailing label program
for the VIC-1515/1525 printer. Various label manufacturers make adhesive
labels with tractor-feed margins so that you can put them into your printer
just like your paper. Our program will make labels that will print the addres-
see’s name in expanded upper/lower case, the address in regular upper/
lower case, and the city, state and zip code in upper case only.

10 PRINT CHR$(147) : PRINT CHR$(14) : REM SHIFT TO
UPPER/LOWER CASE ‘

20 OPEN7,4

30 INPUT “NAME”; NA$

40 INPUT “ADDRESS”; AD$

45 PRINT CHR$(142) : REM SHIFT TO UPPER CASE
50 INPUT “CITY”; CT$

60 INPUT “STATE”; SA$

70 INPUT “ZIP CODE” ; ZI$

100 PRINT#7, CHR$(17) CHR$(14) NA$

110 PRINT#7, CHR$(15) CHR$(17) AD$

120 PRINT#7, CHR$(145) CT$ “, ” SA$ “ " ZI$

130 CLOSE7

As you will see when you RUN this program, the screen shifts to the mode
your print-out will be in. This helps the user see on the screen what he/
she will get on the printer. Note that different CHR$ codes are used to
shift the upper/lower case mode on the screen and on the printer. For
example, CHR$(142) shifts the screen to upper/lower case while CHR$(17)
shifts the printer to that mode. '

In order for the program to be more practical, we will need a few line feeds
at the end of the printing so that your labels can be properly aligned.
Depending on the size of your mailing labels, you will need a greater or
fewer number of line feeds. Insert the following line into your program and
adjust the size of the loop to align your labels properly.

183

125 FOR | = 1 TO 3 : PRINT#7 : NEXT : REM CHANGE “3”
TO THE CORRECT NUMBER OF LINE FEEDS FOR YOUR
LABELS

In Chapter 8, we promised to insert a subroutine in the “FILE MASTER”
program to print out the names and addresses to your printer. Well, that's
just what we're going to do. To make the changes, load your “FILE MAS-
TER” program into memory and make the following additions or changes
in the program. (Good grief! Don’t rewrite the whole thing!)

470 PRINT “HIT ANY KEY TO RETURN TO MENU OR ‘P’ FOR
PRINTER”

485 IF A$ = “P” THEN GOSUB 5000

525 INPUT “SCREEN(S) OR PRINTER(P)";0P$

570 IF NA$(l) = NA$(I) AND OP$ =*“S” THEN GOSUB 4000
575 IF NA$(l) = NA$(I) AND OP$ ="“P” THEN GOSUB 6000
5000 REM *** PRINTER SUBROUTINE ***

5010 OPEN7,4

5020 CMD?

5030 FOR | = 1 TO N% : PRINT NAS$(l) : PRINT ADS(l)
5040 PRINT CT$(1); “, ";SA$(1);* ”; ZI$(1) : PRINT

5050 NEXT

5060 PRINT#7

5070 CLOSE?

5080 RETURN

6000 REM ** PRINTER SUBROUTINE FOR ***

6010 REM *** SINGLE FILE ***

6020 OPEN7,4

6030 CMD7

6040 PRINT NAS(]) : PRINT ADS$(I) : PRINT CT$(I);", ; SAS());
" ZI8()

6050 PRINT#7

6060 CLOSE7

6070 RETURN

Sometimes you do not want your print-out to begin at the left hand side
of your paper or label. To position the starting point of your text, you use
CHR$(16) and the number of spaces from the left you wish to begin
printing. There are a number of different ways of doing this, but the sim-
plest is to first print CHR$(16) and the starting position in quotes along
with what you want printed. You must use a two-digit number; thus, if you
want to begin 5 spaces from the left, you must indicate it with “05” instead
of “5." For example, try the following:

184

coccoccccocccccccccoccocccocc

J)DIJ2DI3I3I3D3I2I3D03I3D3I2I3II3I3II92IIIII)

OPEN7,4
PRINT#7, CHR$(16)“05DOES THIS COMPUTE?"
CLOSE7

As you will see when you execute the above commands, your printer will
only print out “DOES THIS COMPUTE?” and not the “05" even though it
was in quotation marks. That was because the first two-digit number
encountered after the CHR$(16) was the “05”" Now add another “5” so
that the line reads,

PRINT#7, CHR$(16)"055DOES THIS COMPUTE?”

and you will get “5DOES THIS COMPUTE?” Thus, after the second digit
everything is treated as information to be printed out.

In some cases you may want to indicate the number of spaces using CHR$
instead of numbers within quotes. For example, you may wish to print text
at different positions determined by a loop and want your next position in
relation to the last, and so the position is determined by CHR$(l), with “I”
being the current loop position. This can be done, but it is tricky because
the CHR$ must be the ASCII value for the number. For example, a “05”
looks like this:

CHR$(0) CHR$(53)

Using the above example, you would print,

PRINT#7, CHR$(16) CHR$(@) CHR$(53) “DOES THIS
COMPUTE?”

Therefore, if computing the position using a loop, it is necessary to deter-
mine the position in terms of both the first and second digit as an offset
of the loop value. For most applications, it is best simply to enter the
nuer of positions within the quotation marks of the message to be
printed.

Before going on to printer graphics, we will examine how to use positioning
in a program. This is useful in making lists where columns are important.
For example, we can make a list of items for a garage sale. The first
column will be the item for sale, the second column the asking price for
the item, and the third column the actual price for which the item sold. We
will use INPUT statements so that all items can be entered from the
keyboard and used with an actual garage sale. (Who knows when you will
want to use it? So why not make it useful!)

185

10 PRINT CHR$(147)

20 PRINT : PRINT : INPUT “HOW MANY ITEMS”; N% : DIM
IT$(N%), AP(N%), SP(N%)

30 PRINT : FOR | = 1 TO N%

40 PRINT “ITEM #"; : INPUT IT$())

50 INPUT “ASKING PRICE”; AP(l)

60 INPUT “SELLING PRICE”; SP(l)

70 PRINT

80 NEXT

100 REM *** PRINTER FORMAT ROUTINE ***

110 OPEN7,4

120 PRINT#7, “ITEM”; CHR$(16) “15ASKING PRICE”;
130 PRINT#7, CHR$(16) “35SELLING PRICE”

140 PRINT#7, CHR$(10) : REM LINE FEED

150 FOR P = 1 TO N%

160 PRINT#7, IT$(P)

170 PRINT#7, CHR$(16) CHR$(49) CHR$(53) “$”; AP(P)
180 PRINT#7, CHR$(16) CHR$(51) CHR$(53) “$”; SP(P)
190 NEXT

200 CLOSE7

There are a couple of things to note in this program. First of all, notice
how we employed CHR$ code to indicate the positioning of the printed
text in lines 170 and 180. The combination of those codes is the same as
the “15” and “35” enclosed in quotations in lines 120 and 130. Second,
we used the CHR$(10) for a line feed. We could have used PRINT#7
without any code following it to get the same results, but there will be
times when you may wish to insert a line feed into the middle of a line
and CHR$(10) will come in handy. To make a really neat program, see if
you can figure out how to have the program compute the totals of the
asking price and selling price of the items. Also, it might be an interesting
addition to have a fourth column which keeps a tally of the differences
between the asking and selling prices. This is something which you should
be able to work out on your own! (Hint: Create a fourth array.)

Printing Graphics

Now that we have seen how to print text, we will look at graphics printing.
The simplest graphics to print are those from the keyboard. Using the
CURSOR UP mode, CHR$(145), we can print out the graphics from the
keys. For example, from the Immediate mode try the following,

OPEN7,4

PRINT#7, CHR$(145) “{COMMODORE-KEY-B}”
CLOSE7

186

cccccoccccccccccocCcocccoccccoccec

2D 2N D T I TN JED TS 2N TD JD 2D I R RS T JD B LD B B I IS IS

That will print out a “checkerboard” character just like the one on the left
side of the key. Now, since the default mode is CURSOR UP, it is unnec-
essary to enter CHR$(145) every time you print a graphic character but,
just to be sure, you should have it somewhere in your program.

To see all the different graphlc characters from your keyboard, run the
following program:

10 PRINT CHR$(147)

20 OPEN7,4

30 FOR | = 96 TO 127 : REM CHR$ RANGE OF SET #1

40 PRINT#7, CHR$(145) CHR$(l)

50 NEXT | ,

60 FOR J = 161 TO 191 : REM CHR$ RANGE FOR SET #2
70 PRINT#7, CHR$(145) CHR$(J)

80 NEXT J

90 CLOSE?

All of the characters on your keyboard were printed out for you, but with
patience you could have done the same from the keyboard. The CHR$(145)
is a bit superfluous, and you can get the same results if you remove it.
However, if CHR$(17) is there, you will have mostly blanks since that is
the “upper/lower” case, or CURSOR DOWN mode.

Making Your Own Graphic Characters On the
Pnnter

In Chapter 7 we showed how to create sprites using a binary coding
translation. Now we will do the same thing with printer graphics, but it is
far simpler. First of all, we will only be using a 7 by 7 matrix instead of a
24 by 21 matrix so there are far fewer calculations. The VIC-1515 printer
can actually make graphic characters in a 7 by 480 (!) matrix, but we will
stick with the 7 by 7 matrix to keep it simple. To get started, instead of
sending you off for some graph paper, we will make our own graph for our
matrix on the printer, explaining the process as we go along.

To begin, we use CHR$(8) to initiate the graphics mode. Then we “build”
a concatenated CHR$ that contains our graphic image. Since the bits are
added on the basis of the vertical position of each “pin” in the printer head,
we will be adding vertical “dots” instead of horizontal ones as we did with
sprite graphics. However, we will be using the same concepts as with
sprite graphics. The following is an outline of our 7 by 7 matrix:

187

o LN =

16
32
64
+128

By inserting “dots” into the blanks, we can create a figure, and this is
translated to a way in which the COMMODORE-64 can understand by a
vertical total of the positions the dots are in and adding 128. For example,
if we draw a square, we would have the first and last columns filled and
the top and bottom rows filled. Beginning with the first column, the value
wouldbe 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128, equaling 255. The
next 5 columns would have a dot at the top and bottom. A dot in the top
row would be 1 and one in the bottom row would be 64, and adding the
128 we would get 193. The last column would be the same as the first,
255. Therefore, we would want to create a CHRS$ that has the following
values:

255 193 193 193 193 193 255
for our box figure. To do this we could have a line that reads as follows:

BOX$ = CHR$(255) + CHR$(193) + CHR$(193) + CHR$(193)
+ CHR$(193) + CHR$(193) + CHR$(255)

but that (whew!) would take a lot of time. Instead it would be a lot simpler
to READ in the values as DATA statements as we did with the sprites and
concatenate the string, such as,

FORI=1TO7

READ GRAPHICS

GR$ = GR$ + CHR$(GRAPHICS)
NEXT

DATA 255,193,193,193,193,193,255

Now let's put it all together into a program.
10 PRINT CHR$(147)
20 FOR | = 1 TO 7 : READ GRAPHICS

30 GR$ = GR$ + CHR$(GRAPHICS)
40 NEXT

188

ccccccccCcocCccccecCcocccccoccoccocc

DIEDIED D TES D JND R0 D TN JND D N0 B0 N0 T T B B0 B0 L B0 B B B B

50 OPEN7,4

60 PRINT#7, CHR$(8) GR$

70 CLOSE7

100 DATA 255,193,193,193,193,193,255

When you RUN this' program, a little box will be printed. Nothing very
exciting, | admit, but now let's see how we can use that little box to make
a matrix to create new characters. The following program will make a 7
by 7 matrix for you and only requires making a few changes in the above

program:

10 PRINT CHR$(147)

20 FOR | = 1 TO 7 : READ GRAPHICS
30 GR$ = GR$ + CHR$(GRAPHICS)
40 NEXT

50 OPEN7,4

52FORY =1TO7

54FORX =1TO7

60 PRINT#7, CHR$(8) GR$;

62 NEXT X

64 PRINT#7

66 NEXT Y

70 CLOSE?

100 DATA 255,193,193,193,193,193,255

If you printed out the 7 by 7 matrix, you can see that, while it is functional,
it really printed more than was necessary. We only need single-sided
dividers between the cells. Besides, even though having the single box is
handy for making all different kinds of shapes, we might as well create
the exact graphics we need. However, if we let the computer do the “fig-
uring” for us, it can be relatively simple. To begin we will break up the task
into simple parts. First of all, we know that a straight vertical line is
CHR$(255). We will call it E$ since it “encloses” the sides of our box. We
also know that CHR$(193) will give us a top and bottom to our box, but if
we use it to make a matrix, we will have double lines separating our rows.
Therefore, we will only need a top line to begin with. That's easy since the
top dot is “1” so we just have to add “128” for CHR$(129). We need five
of those dots to create our top line, so we will create that with.a FOR/
NEXT loop of 5. (Remember in our 7 x 7 boxes, the E$ figure will take a
top position dot at either end.) Finally, at the end of our matrix we are
going to need a bottom line. Here, instead of drawing a single bottom line,
we will draw a bottom line of boxes made up of E$ and CHR$(193), the
latter to be designated as TB$ (for “top/bottom”). Therefore, the plan is
to first draw 6 lines of boxes with a top only and then, for our seventh line,

189

we will draw a row with both tops and bottoms. It is important to notice
that we are now using graphic figures much larger than our 7 x 7 matrix!
Here’s our improved program:

10 PRINT CHR$(147)

20 E$ = CHR$(255)

30FOR| = 1TO5:T$ = T$ + CHR$(129) : NEXT
40FOR| = 1TO5:TB$ = TB$ + CHR$(193) : NEXT
50 OPEN7,4

60 FORY = 1TO6

70FORX = 1TO7

80 PRINT#7, CHR$(8)E$ T$

90 NEXT X)

100 PRINT#7, E$: REM PUTS AN END ENCLOSURE ON
BOXES

110 NEXT Y

120FORX = 1TO7

130 PRINT#7, CHR$(8)E$ TB$;

140 NEXT

150 PRINT#7, E$

160 CLOSE7

Now that you have a better idea of what can be created, print up a batch
of matrixes and design some original printer graphics! You always wanted
your own logo, and now you can do it!

Repeat That Graphic!

The final element we will examine with your printer is the graphic repeat
one. Using CHR$(26) it is possible to make any number of graphic char-
acters repeat. However, the format for using repeat requires some care.
Use the following steps:

1. Get into the graphics mode with CHR$(8)
2. Issue the repeat command with CHR$(26)

3. Enter the number of repeats within a CHR$ command. Note:
This is different from what we saw with the position command.
You do not put in the ASCII code for the number of repeats, but
instead the actual number of times you want a graphic repeated.
For example, if you want a graphic to repeat 20 times, you would
use CHR$(20).

190

ccccCcccccccccccccrccccccococceccec

D7DDI3D2I3I3I3D3D3D3D3I23DII3I3II3IIII3I1II)

4. Enter the graphic character, usually followed by the CHR$
code for a semi-colon <CHR$(59)> so that the repetition will
occur on the same line.

Now let's make a simple program which will give us a “bar” of varying
lengths. This will show how you might begin a program which will make
a bar graph with bars of different lengths to represent your data.

10 PRINT CHR$(147) : PRINT : PRINT

20 INPUT “LENGTH OF BAR"; N

30 RP$ = CHR$(8) + CHR$(26) + CHR$(N) : REM GRAPH
ICS + REPEAT + NUMBER OF REPEATS

40 VL$ = CHR$(255) + CHR$(59) : REM OUR VERTICAL
LINE PLUS A SEMI-COLON

50 OPEN7,4

60 PRINT#7, RP$ VL$

70 CLOSE?

Notice how fast the bar is produced on your printer using the repeat func-
tion. Experiment with the command and mix it together with other printer
commands to produce anything you want to see in black and white.

Summary

When you got your printer, you may have thought the only thing you could
print was text in the same way a typewriter does. However, as we saw,
that was just the beginning. Besides printing text, it is possible to generate
different style type faces, position the text wherever you want and even
print graphics. Not only can you print the graphics from the keyboard, you
can also create your own printer graphics. Typewriters just cannot do that!

The secret to using printers with your COMMODORE-64 is the CHR$
function. In some ways CHR$'s are used as ASCII code in exactly the
same way as they are when output is to the screen; but in other ways they
are used either as special printer functions or, within certain sequences,
to produce print-outs. Unfortunately, it is not possible to simply access
your printer and have it automatically put what's on the screen onto paper.
However, by planning your program around output to the printer, just about
anything printed to the screen can be printed to your printer.

191

D2D2D23D0D2D2D2D2D22D23D22D2D23D2D2302D3D22303DD2300°

DJ) DD DI DIDIIDIDIDIDDIDIDDIIIDDIDIIDIIDDIDDII)

CHAPTER 10

Program Hints and Help
Introduction

Well, here we are at the last chapter. We've covered most of the com-
mands used for programming in BASIC on the COMMODORE-64 and
many tricks of the trade. However, if you are seriously interested in learn-
ing more about your computer and using it to its full capacity, there’s more
to learn. In fact, this last chapter is intended to give you some direction
beyond the scope of this book.

First, we will introduce you to the best thing since silicone - COMMO-
DORE-64 Users Groups. These are groups that have interests in maxi-
mizing their computer’s use. Second, | would like to suggest some peri-
odicals with which you can learn more about your COMMODORE-64

- computer. Third, we will examine some languages other than BASIC that

you can use on your COMMODORE-64. BASIC has many advantages,
but like all computer languages it has its limitations, and you should know
what else is available.

Next, we will examine some more programs. First, there will be listings of
programs that you may find useful, fun or both. The ones included were
chosen to show you some applications of what we have learned in the
previous nine chapters, enhancing what you already know. Then we will
look at different types of programs you can purchase. These are programs
written by professional programmers to do everything from making your
own programming simpler to keeping track of your taxes. Finally, we will
examine some hardware peripherals to enhance your COMMODORE-64.

Commodore-64 User Groups

Of all of the things you can do when you get your COMMODORE-64, the
most helpful, economical, and useful is joining a COMMODORE-64 User
Group. Not only will you meet a great group of people with COMMO-
DORE-64 computers, but you will learn how to program and generally
what to do and not to do with your computer. The club in your area will
probably be one with other COMMODORE computer users, such as PET
and VIC-20 users.

Usually the best way to contact your COMMODORE-64 User Group is
through local computer stores. Often stores selling COMMODORE-64

193

computers will have application forms, and some even serve as the meet-
ing site for the clubs. Other microcomputer clubs in your area may also
have COMMODORE-64 users in them, but if there is not an COMMO-
DORE club, join a general computer group. The help you will get will be
worth it.

To start your own COMMODORE-64 User’s group, post a notice and
meeting time and site in your local computer store. Write to:

Commodore User Clubs
c/o Editor

Commodore Magazine
487 Devon Park Drive
Wayne, PA 19087

and ask them to publish a notice that you want to start a COMMODORE-
64 club in your area. Your club will then be listed in Commodore and other
people in your area will soon join up.

Another way to get in touch with fellow COMMODORE-64 users is via a
VICMODEM. Dial up the computer bulletin boards in your area and look
for messages pertaining to COMMODORE-64's. Usually, you can get in
contact with other users very quickly this way. (Ask for the PMS {Public
Message System} numbers at your local computer store). If you don't see
any references to the COMMODORE-64, leave a message for people to
get in touch with you.

Commodore-64 Magazines

There are several periodicals with information about the COMMODORE-
64. Some microcomputer magazines are general and others are for the
COMMODORE-64 only. When you're first starting, it is a good idea to
stick with the ones dedicated to the COMMODORE-64 since there are
different versions of BASIC for non-COMMODORE-64 computers. When
you become more experienced, you can choose your own, but to get
started there are several good ones with articles exclusively on the COM-
MODORE-64. These are as follows:

Commodore: The Microcomputer Magazine
Commodore Business Machinés, INC. The Meadows, 487 Devon Park
Drive, Wayne, PA 19087— Commodore is a monthly publication with a

wide variety of articles and programs for the COMMODORE-64. Here you
will find programming te’c_hniques, tips for beginners, new hardware and

194

ccccccccccccccccoccccccocccocceccoccoc

DD JND JND D 1D D I IS T I T B0 JND 2D JND B0 B0 JD B0 IS B0 B0 R B I |

software available and various applications. Articles range from the simple
to the technical, and so regardiess of your level of expertise, you will find
this extremely useful. Subscriptions are $15.00 per year for 6 issues.

Powerplay

Commodore Business Machines, INC. The Meadows, 487 Devon Park
Drive, Wayne, PA 19087 A second magazine for your COMMODORE-64
is Powerplay, a quarterly publication dedicated to the more recreational
uses of your.computer. The articles and programs in this magazine are
primarily for home uses of your computer, ranging from games to tele-
communications. It is very educational and helpful for novices. Subscrip-
tions are $10.00 per year.

COMPUTE!

P.O Box 5406, Greensboro, NC 27403 — COMPUTE! is not dedicated
to the COMMODORE, let alone the COMMODORE-64, but it generally
has one or more articles on the COMMODORE-64 in each issue. More
than most other general computer magazines, COMPUTE! will provide
you with programs and programming techniques which can be applied to
your computer. Additionally, it has several general articles on program-
ming, hardware and software which you will find useful. Finally, there are
a good deal of bargains on software and peripherals to be found in the
magazine. Subscriptions are $20 for 12 issues.

195

Other Useful Publications

In addition to the above three magazines, there are several others that
you may find useful. Publications such as Creative Computing, Byte, Inter-
face Age, Popular Computing and Personal Computing all have had arti-
cles about the COMMODORE-64. The best thing to do is go through the
table of contents in the various computer magazines in you local computer
store. This will tell you at a glance if there are any articles or programs
for the COMMODORE-64. As more and more clubs begin springing up,
club newsletters can often be an invaluable source of good tips and pro-
grams for your computer, and they are a resource that should not be
overlooked.

Commodore-64 Speaks Many Languages

Besides BASIC, your computer can be programmed to run programs in
several other languages. In some cases, special hardware devices are
required to run the languages, and there is special software required as
well. We'll look at some of these other languages.

196

gccocccccccccccocCccoccCccoooacoccecc

DJJ)DIDIDIDDIIDIDIDIIDIDIDIDIIDDIDIIDDIDIDID

Assembly Language

Assembly language is a “low level” language, close to the heart of your
computer. It is quite a bit faster than BASIC and virtually every other
language we will discuss. To write in assembly language, it is necessary
to have an “assembler” to enter code. This language gives you far more
control over your COMMODORE-64 than BASIC, but it is more difficult to
learn, and a program takes more instructions to operate than BASIC.
(However, the object code is more compact, taking up fewer sectors on
your disk.) The COMMODORE-64 assembler now available requires the
1541 disk drive since the macro assembler and supporting programs are
on disk. Check with your dealer concerning future availability of assem-
blers available on a ROM pack or tape.

To learn how to program in assembly language, the following two books
were found to be the most useful:

1. COMMODORE 64 PROGRAMMER'S REFERENCE GUIDE
(Commodore)
This book can be purchased from your local book or computer
store or from:

Commodore Business Machines, INC.

The Meadows, 487 Devon Park Drive,

Wayne, PA 19087
This is a most useful book for programming with the COMMO-
DORE-64 assembler.

2, 6502 ASSEMBLY LANGUAGE PROGRAMMING by Lance A.
Leventhal (New York: Osborne/McGraw-Hill.)

The microprocessor in your COMMODORE-64 is a 6510, but the
instruction set is almost identical to the 6502. Therefore, while
learning assembly language, this book will be of great assis-
tance, especially as a reference guide to the functions of the
various opcodes and pseudo-opcodes. However, it is best used
in conjunction with the COMMODORE 64 PROGRAMMERS'S
REFERENCE GUIDE.

Other books are available for learning assembly level programming, and
you will find books for other 6502 computers, such as the Atari 869 and
Apple Il to be of some value. However, more works should soon be avail-
able for programming with various assemblers on the COMMODORE-64.

197

HIGH AND LOW LEVEL LANGUAGES

When computer people talk of “high” and “low” level languages,
think of high level being close to talking in normal English and low
level in terms of machine language, e.g. binary and hexadecimal.
Assembly language is a low level language, one notch above machine
level. The other languages we will discuss are high-level.

PASCAL

Pascal is a high-level language originally developed for teaching students
structured programming. It is faster than BASIC, but is not as difficult to
master as assembly language. It is probably the most popular high level
language next to BASIC. You will find different versions of Pascal, but the
language is fairly well standardized so that whatever version of Pascal
you purchase will work with just about any Pascal program. Check with
your dealer to see what versions are available for your COMMODORE-
64. To learn how to program in Pascal, there are several books available,
the following having been found to be among the best:

1. ELEMENTARY PASCAL: LEARNING TO PROGRAM YOUR
COMPUTER IN PASCAL WITH SHERLOCK HOLMES By Henry
Ledgard and Andrew Singer. (New York: Vintage Books.) This is
a fun way to learn Pascal since the authors use Sherlock Holmes
type mysteries to be solved with Pascal. It is based on the draft
standard version for Pascal called X3J9/81-003 and may be slightly
different from the version you have, but only slightly so.

2. PASCAL FROM BASIC By Peter Brown. (Reading,MA: Addi-
son-Wesley, 1982). If you understand BASIC, this book will help
you make the transition from BASIC to PASCAL. lt is written with
the PASCAL novice in mind but assumes the reader understands
BASIC.

FORTH

FORTH is a very fast high-level language, developed to create programs
that are almost as fast as assembly language but take less time to pro-
gram. Faster than Pascal, Basic, Fortran, Colbol, and virtually every other
high-level language, FORTH is programmed by defining “words” that exe-
cute routines. New words incorporate previously defined words into FORTH
programs. The best part of FORTH is that several versions are public

198

ccccocccoccocCcccCccocccccccCcocccoccocccCcocaoca

DJ)DIDIDDIDIIDIIIIDIDIIIDIDDIIIDIIIDIDIDID)D

domain. The Fig (FORTH Interest Group) FORTH version is in the public
domain, and if you are handy with assembly programming, you might even
be able to install your own. However, there are several FORTH vendors
who will be having FORTH for the COMMODORE-64. The best source to
learn about what is available is through the publication, FORTH Dimen-
sions (see below) and your magazines where COMMODORE-64 products
are advertised.

Good books on learning FORTH are only just now becoming available.
For learning FORTH, the following are recommended:

1. STARTING FORTH by Leo Bodie (Englewood Cliffs: Prentice-
Hall). Well written and illustrated work on FORTH for beginners.
Uses a combination of words from Fig, 79-Standard and
polyFORTH.

2. FORTH Dimensions Journal of FORTH INTEREST GROUP.
PO. Box 1105, San Carlos, CA 94070. This periodical has
numerous articles on FORTH and tutorial columns for persons
seriously interested in learning the language.

CP/IM

For the COMMODORE-64, there are several excellent CP/M programs
available. In fact, CP/M has one of the largest available public domain
libraries of any language. In order to get CP/M for your computer, it is
necessary to have a cartridge with a Z-80 microprocessor of which there

199

are several available. Many business programs, including word proces-
sors and data base programs, are available in CP/M, and for those pri-
marily interested in business and professional applications, CP/M is cer-
tainly something you will want to look into. The COMMODORE-64 has a
plug-in Z-80 pack that simply pops into the back of your computer. It comes
with a disk with CP/M operating system. When running CP/M on your
COMMODORE-64, the Z-80 microprocessor takes over operatlons from
the 6510. Essentially, with the Commodore Z-80 cartridge, youmave 2
computers! The Commodore Z-80 and Z-80 Reference Guide are avail-
able at your Commodore dealer. With CP/M, you can then install virtually
any program running on CP/M, including other languages such as Pascal
and FORTH.

Miscellaneous Languages

Besides the above languages, it is possible to get disks with COLBOL,
FORTRAN, LOGO, PILOT and other languages for specialized and gen-
eral applications. LOGO and PILOT, for example, are used in teaching
children programming, while COLBOL is used primarily in business appli-
cations. Before you spend time, money, and effort on another Ianguage,
though, it is highly recommended that you carefully examine your needs.
If your main interest is in developing your own programs, first learn BASIC
thoroughly and see what you can do with it. If it fits your needs, and its
relatively slow speed is sufficient for your uses, then your tlme will be
better spent improving your programming skills in BASIC. If your main
interest is in using application programs, then the language capability
depends on the programs you are using. Most importantly, in this context,
is whether or not you use CP/M. If you do, then you will need some kind
of Z-80 cartridge. Just about all other professionally produced programs
will run on a 48K COMMODORE-64 without any other added hardware.
(This includes programs written in Pascal, FORTH, etc.)

Finally, if you find that programming in BASIC is most suitable for you, but
you would like to speed up your programs, a simple way to do that is with
a compiler. Essentially, a compiler is a program that transforms your code
into a binary file which will run 4 to 5 times faster than COMMODORE-
64 BASIC. All you do is write the program in BASIC, compile it, and then
save the compiled program. From then on, you run your compiled program
as a machine language program. Ask your dealer about BASIC compilers
for the COMMODORE-64 as they become available. ‘

200

ccccccoccccccccccccccccccococccoccoco

DD IED IND N0 JND N B0 JD B0 B D B0 B0 B B D B0 LD B0 B IR0 B0 BN B I |

Sort Routine

This program will sort strings for you. It uses the “Quick Sort 2" algorithm,
which has been found to be the fastest sort for large numbers of strings.
Pay close attention to how the data are entered and connect up to the
sort routine between lines 100 and 440. There are many applications for
which you will find sorts useful. This example shows you how to get into
and out of a routine. In the many computer magazines and books available
for computers, you will find different algorithms, and it is a good idea to
save them so that they can be used in your programs.

10 PRINT CHR$(147)

20 INPUT “HOW MANY WORDS TO ENTER "; N%
30 DIM A$(N% + 1))

40 FORN = 1 TO N%

50 INPUT “ENTER WORD ";A$(N)
60Z =2+ 1

70 NEXT N

100 REM *** QUICKSORT 2 ***
110 PRINT CHR$(147)

12081 = 1

130 L(1) = 1

140 R(1) = N

150 L1 = L(S1)

160 R1 = R(S1)

17081 = S1 -1

180 L2 = L1

190 R2 = R1

200 X$ = A$(INT (L1 + R1)/2))
210C =C + 1

220 IF A$(L2) > = X$ THEN 250
23012 = L2 + 1

240 GOTO 210

250 C = C1

260 IF X$ > = A$(R2) THEN 290
270 R2 = R2 - 1

280 GOTO 250

290 IF L2 > R2 THEN 360

300S =S + 1

310 T$ = A$(L2)

320 A$(L2) = A$(R2)

330 A$(R2) = T$

3402 = L2 + 1

350 R2 = R2- 1

201

360 IF L2 < = R2 THEN 210

370 IF L2 > = R1 THEN 410

380S1 = S1 + 1

390 L(S1) = L2

400 R(S1) = R1

410R1 = R2

420 IF L1 < R1 THEN 180

430 IF S1 > 0 THEN 150

440 REM *** SORT COMPLETE ***

500 REM *** OUTPUT TO SCREEN IN ***
510 REM *** ALPHABETICAL ORDER *** |
520 FORN = 2TOZ + 1 &
530F = F + 1 |
540 IF F > 22 THEN GOSUB 1000

550 PRINT A$(N)

560 NEXT N

570 END |
1000 PRINT CHRS$(18) “HIT ANY KEY TO CONTINUE *
1010 GET ANS: IF AN$ = “” THEN 1010 |
1020 F = 0: PRINT CHR$(146)

1030 RETURN

Key Tricks

Before you read this, promise not to get angry. OK? All right, now you can
read on. Up to this point we have not used a number of short-cuts available
on your keys. This is because it was important for you to first get used to
the commands and how to use them correctly. Also, as we will see, the
short-cuts do not clearly show you what is happening on your computer
as fully as writing out the commands.

In Appendix D of your COMMODORE-64 USER’S GUIDE there is achart
that shows how to enter the first one or two letters of a command and
then SHIFT the second or third letter to get the entire command. This will
save you some time in programming, but it is difficult to read the command
until you get used to it. For example, put a program into memory andenter
“L {SHIFT-I} and RETURN. The command is the same as entering LIST
except you only have to make two key presses instead of four. Now, clear
memory and enter the following:

10 ? C {SHIFT-H} (147) : A$= “ALLRIGHT"
20 ? S {SHIFT-P} 10); R {SHIFT-1} (A$,5)

202 ;

ccoccococcoccccoccoccoccccoococococ

DIED D 1D 1N D IND BN D IS I I B B0 B0 B0 BD D B0 D B0 IR I B BN I

Before you RUN the program, can you guess what will happen? If you
cannot, don't feel bad since it is confusing, especially the way it appears
on the screen. When you RUN the program, it will clear the screen and
print the message “RIGHT” 10 spaces from the left side of the screen at
the top. Now LIST your program, and all the commands are clear. These
key short-cuts are handy in some cases and confusing in others. The LIST
command is usually from the Immediate Mode, and it is handy to use it
in the abbreviated fashion, but until you become better acquainted with
programming, these short-cuts may be more confusing than helpful. Use
the ones you feel comfortable with, and introduce them gradually.

Function Keys

To the right of your keyboard are four keys we have not mentioned yet.
They are called the “Function Keys” and are accessed by CHR$ values
from 133 to 140. To use them, a “keyboard scan” is set up, and when one
of the “8” keys (4 non-shifted plus 4 shifted) is pressed, the program
branches to a subroutine. They have applications where the user is expected
to interact with the program from the keyboard but the other keys are used
for INPUT of characters and keyboard graphics. For example, let's say
you wanted to have a program which would enter names until a certain
key was pressed. Since you would not want the key to be one with which
you entered characters for the name you are entering, you could use the
Function Keys. The CHR$ values from 133 to 140 are linked to the keys
1 through 8, with the non-shifted keys being from CHR$(133) to CHR$(136)
and the shifted keys from CHR$(137) through CHR$(140). For example,
CHR$(133) is for Function Key 1 (f1), CHR$(137) for “f2", CHR$(134) for
“f3", and up to CHR$(140) for “f8.” The following program illustrates how
to set up a program to use the Function Keys. Only keys 1, 5 and 8 are
used, with the program ending if key f5 is pressed.

10 PRINT CHR$(147)

20 GET A$

30 PRINT CHR$(19)

40 IF A$ = CHR$(133) THEN GOSUB 1000

50 IF A$ = CHR$(140) THEN GOSUB 2000

60 IF A$ = CHR$(135) THEN END

70 PRINT “CHOOSE FUNCTION KEY 1 OR 8"
80 PRINT “TO END PRESS FUNCTION KEY 5”
90 GOTO 20

1000 PRINT CHR$(147) : PRINT “YOU CHOSE FUNCTION KEY
1”

1010 PRINT “HIT ANY KEY TO CONTINUE”
1020 GET ANS : IF AN$ = *” THEN 1020

203

1030 PRINT CHR$(147) : RETURN
2000 PRINT CHR$(147) : PRINT “YOU CHOSE FUNCT ION KEY
8”

2010 PRINT “HIT ANY KEY TO CONTINUE”
2020 GET ANS$: IF AN$ = “” THEN 2020
2030 PRINT CHR$(147) : RETURN

Utility Programs
What's A Utillty |

Utility programs are programs which help you program or access dmprem
parts of your computer. In this section we will review some of the more
useful utility programs available at this time.

|

Currently, the best set of utilities come with Commodore’s REFERENCE
GUIDE. Included are utilities for accessing your disk, machine/assembly
level programming and other handy utilities for helping you program. For
those with disk systems, the DOS WEDGE program is a must, for it allows
much easier disk I/O than can be done without it. The program is available
on the WORD MACHINE and NAME MACHINE. Other disk utilities can
be found in computer magazine ads and at your dealer. There are several
other utilities on the market and in the public domain that will help you in
programming, and there are certain to be more available as time goes
on. The ones | have suggested are the most useful based on my own
experiences in programming. If you join a COMMODORE-64 Users Group,
you will learn about a lot more and other’s experiences. Like all other
programs that you are thinking of buying, ask other users about them and
get a demonstration of their use first!

Word Processors

Your COMMODORE-64 computer can be turned into a first class word
processor with a word processing program. Word processors turmyour
computer into a super typewriter. They can do everything from moving
blocks of text to finding spelling mistakes. Editing and making changes is
a snap, and once you get used to writing with a word processor, you’ll
never go back to a typewriter again. This book was written with a word
processor, and it took a fraction of the time a typewriter would have taken.
(Believe me, I've written 10 books with a typewriter!)

There are some limitations with word processors. First, the COMMO-
DORE-64 screen displays only 40 columns. Since the standard page size
is 80 columns, this bothers some people since what appears on the wn;lritten

O O cccococoCccooCcccccccoccoaeco

\
/

) C ;’

D) DD DIDIDIJIDIJIDIIDIIII)IDI)

™

T can wrile
Tuice as much

with 3 QVkmdl
Peassomr

page is different from what appears on the screen. However, since | write
material that will be printed out in everything from 40 to 132 columns, the
40 columns do not bother me. If you want 80 columns for your screen,
though, you can purchase adaptors that will provide 80 columns on the
screen for you. Using an 80 column adaptor, you can see exactly what
you will get when you print out your material. To give you some help in
making up your mind, the following are some features you might want to
look for:

1. Find/Replace.
Will find any string in your text and/or find and replace any one
string with another string. Good for correcting spelling errors
and locating sections of text to be repaired.

2. Block Moves.
Will move blocks of text from one place to another. (e.g. Move

a paragraph from the middle to end of document.) Extremely
valuable editing tool.

3. Link Files.
Automatically links files on disks. Very important for longer
documents and for linking standardized shorter documents.

205

|
i

4. Line/Screen Oriented Editing.
Line oriented editing requires locating begnnmng of line of text
and then editing from that point. Screen oriented edltlng allows
beginning editing from anywhere on the screen. The latter
form of editing is important for large documents and where a
good deal of editing is normally required.

5. Automatic Page Numbering.
Pages are automatically numbered without having to deter-
mine page breaks in writing text.

6. Imbedded Code.
In word processors, this enables the user to send special
.instructions directly to the printer for changing tabs, prmtlng
special characters on the printer and doing other thlng§ to the
printed text without having to set the parameters beforehand

and/or having the ability to override set parameters. ii
r

These are just a few of the things to look for in word processors. A§ arule

of thumb, the more a word processor can do, the more it costs. If you only
want to write letters and short documents, there is little need to Puy an
expensive word processor. However, if you are writing longer, more com-
plex and a wider variety of documents, the investment in a more sophis-
ticated word processor is well worth the added cost. If you have gpecnal-

ized needs (e.g. producing billing forms), you will want to look fo[r those

features in a word processor that meets those needs. Therefore, ‘Whlle a
word processor may not do certain things, it may be just what you want
for your special applications. As with other software, get a thorough dem-
onstration of any word processor on an COMMODORE-64 before laying
out your hard earned cash. The WORD MACHINE from Commodgre was
made for the COMMODORE-64, and it is a good one to examlnq to see
if it meets your needs and for comparative purposes. Compare it with
others your dealer may have available for the COMMODORE-64, apd then

make your choice on the basis of what you like best. ‘

As a cautionary note, word processors take a bit of time to Ieam to use
effectively. It is possible to start writing text immediately with most word
processors, but in order to use all of their features, some pra‘ctloe is
required. One of the strange outcomes of this is that once a user learns
all of the techniques of a certain word processor, he or she will §wear it
is the best there is! Therefore, avoid arguments about the best word

processor. It's like arguing politics and religion.

206

ccoccccccoccccccoecccccocCccoccocccococ

DIED N N0 D 1N I BN D I D I B0 RED B0 D BS 2D IS B D D B0 BN B B

Data Base Programs

When you need a program for creating and storing information, a “data
base” program is required. Essentially, professionally designed data base
programs are either sequential or random access files. When you use
one, all you have to do is to use the pre-defined fields provided or create
fields. For example, a user may want to keep a data base of customers.
In addition to having fields for name and address, the user may want fields
for the specific type of product the customer buys, dates of last purchase,
how much money is owed, date of last payment, etc.

Probably more than most other packages, data base programs should be
examined carefully before purchasing. Some of the more expensive data
bases can be used with virtually any kind of application, but if you're only
going to be using your data base to keep a list of names and addresses
to print out mailing labels, for example, a data base program designed to
do that one thing will usually do it better and for a lot less money. On the
other hand if your needs are varied and involve sophisticated report gen-
eration and changing record fields, then do not expect a simple, special-
ized program to do the job. Commodore produces a nice data base pro-
gram, NAME MACHINE, for keeping track of names on the COMMODORE-
64, and this can be used for several general purpose lists, such as names
and addresses, client names and similar files requiring names.

Business Programs

Business programs have such a wide variety of functions that it is best to
start with a specific business need and see if there is a program that will
meet that need. On the other hand there are general business programs
that are applicable to many different businesses. Specific business pro-

_grams include ones that deal only with real estate, stock transactions and

hospital nutritional planning. More general programs include “Electronic
Spreadsheets,” “Financial Planning,” and, as discussed above, data base
programs.

Unfortunately, business people often spend far too much for systems that
do not work. They believe that if one spends a lot of money on software
and hardware, it must be better than for a less expensive simpler system.
This thinking is based upon a “You Get What You Pay For” mentality, and
it leads to systems that are not used at all. Here is where a good dealer
or consultant comes in handy. First, since computers are getting more
sophisticated and less expensive, often you do not “Get What You Pay
For” when purchasing a big expensive one. Often all the business person
ends up with is a dinosaur system that is outmoded, too big and too

207

expensive for the needs. Some computer dealers specialize in helping
the business person. They will help set up the needed system in your
place of business, help train office personnel and provide ongoing sup-
port. These dealers will charge top dollar for your system and supporting
software, as opposed to the discount dealers and mail order firms; how-
ever, if you have any problems you will have someone who will come and
help you out. Since the COMMODORE-64 is so inexpensive to begin with,
the extra money spent on buying from a business supportive dealer is
well worth the little extra cost. Alternatively, there are several consultants
for setting up your system. If you use a consultant, get one who is an
independent without any connection to a vested interest in selling com-
puters. Contact one through your phone book and tell him you want to set
up a COMMODORE-64 system in your office and let him know exactly
what your needs are. If they are familiar with your system, they will know
the available software and peripherals you need. If they try to sell you
another computer, that probably means they are unfamiliar with your sys-
tem, and it is a good idea to try another consultant.

I do not mean to sound cynical, but | have encountered too many unhappy
business people who bought the wrong system for their needs. One busi-
nessman said he paid $14,000 for a computer system that never did work
for his requirements and finally bought a microcomputer system for about
a tenth of the price and everything worked out fine. This does not mean
that a business may not require an expensive mainframe to handle certain
business functions, and the COMMODORE-64 certainly has limitations.
However, before you buy any system, make sure it does what you want
and have it shown to you working in the manner you expect it to. Often
you will find that the less expensive new micros like the COMMODORE-
64 will actually work better than costly big machines.

Graphics Packages

In our chapter on graphics we discussed some of the COMMODORE-64's
capabilities with graphics. However, certain uses require either highly adv-
anced programming skills or a good graphics package. For example, it is
possible to draw on the screen in hi-resolution graphics, just as you would
with a pallet. The pictures produced can then be saved to disk or printed
out to your printer. Also, sprite editors, such as the one that comes on the
diskette with the COMMODORE-64 PROGRAMMER'S REFERENCE
GUIDE are becoming available. These programs allow you to concentrate
on the graphics themselves rather than the programming techniques nec-
essary to produce them. Check with your dealer and computer magazines
to see what is becoming available for the COMMODORE-64.

208

ccceccoccccococcccoeCcccccccccceccecec

DIEDIED D 2D TN JD D B0 D BN BN B0 B B N0 TN BN B B0 TED D N0 I B B

Hardware

The COMMODORE-64 is “expandable.” That means you can add various
attachments to it to make it do more than it does normally. In the back of
your machine there are 3 ports where hardware extensions can be attached,
and on the right side there are two additional sockets for game paddles
and /or a joystick. Game paddles and joysticks are used for games as
well as other programs. For games, they guide rockets, space ships and
characters against the forces of evil. However, they are also used for
drawing graphics and input in other programs as well.

Other hardware attachments are interfaces for various peripherals. One,
called an |IEEE Interface, can connect up to 15 (!) devices to your COM-
MODORE-64. Two companies that make IEEE interfaces for the COM-
MODORE-64 are

1. The Computer Works
2028 West Camel Back Road
Phoenix, AZ 85015
602-249-0611

209

2. Richvale Telecommunications
10610 Bayview Plaza
Richmond Hill, Ontario L4C 3N8
416-884-4165
(IEEE Interface with BASIC 4.0)

Like software, before you purchase an interface or peripheral, make sure
it works with your computer! Unfortunately, many hardware attachments
come with such poor documentation that without someone to show you
how to work it, it is aimost impossible to get them to operate properly.
More and more hardware will become available for the COMMODORE-
64, and by checking the ads in computer magazines and at your dealer,
you will be able to find exactly what you need.

Summary

The most important thing to understand from this last chapter is that we
have only scratched the surface of what is available for the COMMO-
DORE-64 computer. There is much, much more than a single chapter
could possibly cover and, as you come to know your COMMODORE-64,
you will find that the choice of software and peripherals is limited only by
the confusion in making up your mind. There were other items for the
COMMODORE-64 that came to mind, but this chapter and book would
have never ended were | to indulge myself and keep prattling on. The
software and hardware | suggested were based on personal preferences,
and | would suggest that you choose on the basis of your own needs and
preferences and not mine. Think of the items mentioned as a random
sampling of what one user found to be useful and then after your own
sampling, examination and testing get exactly what you need.

As you end this book, you should have a beginning level understanding
-of your computer’s ability. Whether you use it for a single function or are
- a dedicated hacker, it is important that you understand the scope of its
capacity to help you in your work, education and play. Itis not a monstrous
- - electronic mystery, but rather a tool to help you in various ways. You may
not understand exactly how it operates, but you probably do not under-
stand everything about how your car’s engine works either, but that never
prevented you from driving. Furthermore, like your car, you should think
of your computer as a vehicle that will take you where you want, and never
again consider it a machine that you must follow.

210

MC ccccccocccccCccCccccecccccccccococoecec

DIED D 2D IED IS N0 N0 B0 IS B0 IS RN RN D B0 D D N0 TD I B0 D NS IR0 TN

211

5939395900200 D0D320D00D2D23D030900000

DJD)7979505D0D55535333339393593I3I3)39)

COMMODORE-64 COMMAND EXAMPLES

This glossary is arranged in alphabetical order. The examples are set up
to show you how to use the commands and their proper syntax. In some
cases when a command has different contexts of usage, more than a
single example will be used. Some examples are given in the Inmediate
mode and some in the Program mode <those with line numbers> and
some with both. Results are given to show what a particular configuration
would create in some examples for clarification. Some commands of spe-
cialized use which were not covered in the text have been included here
for a more complete glossary.

ABS() Gives the absolute value of a number or variable.
PRINT ABS(-123.45)
<RESULT> 123.45

AND Logical operator used in IF/THEN statement.
140 IF A$ < > “Y” AND A$ < > “N” THEN GOTO 160

ASC() Returns ASCII value of first character in string.
PRINT ASC (“W"). or A$ = “COMMODORE-64" : PRINT ASC(A$)

ATN() Returns arctangent of number or variable.
PRINT ATN (123)
<RESULT> 1.56266643

CHR$() Returns the character with a given decimal value.
PRINT CHR$(65)
<RESULT> A

CLOSE Closes channel to device or file.
210 CLOSE?7 : REM 7 IS FILE NUMBER OF DEVICE OR FILE
BEING CLOSED.

CLR All variables are reset to zero.
120 CLR

CMD Sends output to an OPENed device or file specified by file number.
OPEN7,4
CMD7
LIST

CONT Continue program after a STOP or END statement in program
CONT :

213

COS() Returns to cosine of variable or number.
PRINT COS(123)
<RESULTS> -.887968907

DATA Strings or numbers to be read with READ statement.
1000 DATA 2, 345, HELLO, “WALK”

DEF FN() Defines a substitute function for real variable.
40 DEF FN K(X) = X* X
50 PRINT FN K(4)
(Results = 16 when RUN)

DIM Allocates maximum range of array.
130 DIM A$ (100)

END Terminates running of program.
200 END

EXP() Returns e=2.718289 to indicated power.
PRINT EXP (5)
<RESULTS> 7.69478526E +23

FOR Sets up beginning of FOR/NEXT loop and top limit of loop.
40 FOR1 = 1TO 100

FRE() Returns available memory.
PRINT FRE(0)

GET Halts execution until single entry received from keyboard.
30 GET A$: IF A$ = “" THEN 30

GET# Inputs one character from a previously OPENed device or file.

GET#12, R$(l)

GOSUB Branches to subroutine at given line number.
100 GOSUB 200

GOTO (or GO TO) Branches to given line number.
100 GOTO 200

IF/THEN Sets up conditional logic for execution.
60 IF A$ = “Q” THEN END

214

C‘fCCCC’CC ccccccccccccccccceccecc

DD DD N0 JD ID IND IND RN R0 B0 IED RN RN B R0 IED D N I B0 TED N D BN

INPUT Halts program execution until strings or numbers are entered and
RETURN key is pressed. May enter message within INPUT
statement.

90 INPUT “ENTER WORD-> "; W$(l)

100 INPUT “ENTER NUMBER -> "; A

110 INPUT “ENTER INTEGER NUMBER -> ”; N%
120 PRINT “HIT 'RETURN’ TO CONTINUE ”;

130 INPUT R$

INPUT# Takes data from a previously OPENed file or device.
200 INPUT#1, R$(l)

INT() Returns the integer value of real variable or number.
PRINT INT (123.45)
<RESULT> 123

LEFT$(,) Returns specifed number of characters from a given string
beginning with character at far left.
10 A$ = “GOODBYE"
20 PRINT LEFT$ (A$,4)
(Results = GOOD)

LEN Returns the length in terms of number of characters of a specified
string.
A$ = “COMPUTER AWAY"
PRINT LEN(AS)
<RESULTS> 12

LIST Lists program currently in memory.
LIST

LOAD Loads program from specified device.
LOAD “$",8 (Loads directory from disk)
LOAD “MYPROGRAM",1 or LOAD “MYPROGRAM” (Loads pro-
gram from tape.)

LOG() Returns logarithm of specifed number or variable.
PRINT LOG (123)
<RETURNS> 4.81218436
or
G = 123 : PRINT LOG (G)

215

MID$(, ,)Returnsaportion of astring beginning with the nth number
from the left to the length of the second number.
10 A$ = “WONDERFUL”
20 PRINT MID$(A$,4,3)
(Results = DER)

NEW Clears program in memory.
NEW

NEW (DISK) Formats diskette, ERASING any programs on disk. Requires
an OPENed channel to disk. “N” may be substituted for “NEW".
OPEN 15,8,15
PRINT#15, “NEW0: MYDISK,22”

NEXT Sets the top of the loop begun with FOR statement.
10 FOR1 = 1TO 100
20 PRINT “THIS”,
30 NEXT |

NOT Logical negation in IF/THEN statement.
60 IF A NOT B THEN GOTO 100

ON Sets up computed GOTO and GOSUB.
190 ON A GOSUB 1000,2000,3000

OPEN Opens channel to device or file.
500 OPEN1,1,1 “NAME LIST” (Opens tape file “NAME LIST")
OPEN?7,4 (Opens channel to printer)

OR Logical OR in IF/THEN statement.
130 IF A=10 OR B = 20 THEN GOTO 190

PEEK Returns memory contents of given decimal location.
170 PRINT PEEK (768)
180 IF PEEK(768) = 5 THEN GOTO 200

POKE Inserts given value in specified memory location.
POKE 768,10 (Sets memory location 768 to decimal value 10)

POS() Gives the current horizontal position of the cursor.

10 PRINT “THIS LINE”;: PRINT POS(0)
<RESULTS> THIS LINE 9

216

gccccccccccccccccccccccecceccecec

DIEDIED IED IED IND JD IND NN N0 IR0 1D RND RN JD B0 D BN JND TND D B0 I N0 RO NN |

PRINT Outputs string, number or variable to screen or printer. (Can sub-
stitute “?” for PRINT.)
PRINT 1;2;3; “GO”; F$; A; N%

PRINT# Sends output to specified OPENed device or file. (The question
mark (?) cannot be substituted when using PRINT#.)
250 PRINT#1, NA$(l)
or
OPEN7,4
PRINT#7 “HELLO COMMODORE-64"
<RESULTS> Prints message HELLO COMMODORE-64 to
printer.

READ Enters DATA contents into variable.
10 READ A : READ B$
20 DATA 5, “BATS”

REM Non-executable command. Allows remarks in program lines.
10 DIM A$(122) : REM DIMENSIONS STRING ARRAY “A$” TO
122

RESTORE Resets position of READ to first DATA statement.
10 FOR | = 1 TO 5 : READ A$(l) : NEXT
20 RESTDRE

RETURN Returns program to next line after GOSUB command
500 RETURN

RIGHT$ (,) Returns the rightmost n characters of given string.
10 A$= “DATAMOST” : PRINT RIGHT$(A$,4)
(Results = MOST)

RND() Generates a random number less than 1 and greater than or ~
equal to 0.
PRINT RND(5)
INT (RND (1) * (N) + 1) - Generates whole random numbers
from 1 to N, with N being the upper limit of desired numbers.

RUN Executes program in memory.
RUN

SAVE Records program on tape or disk.
SAVE “GRAPH PLOT” <tape>
SAVE “GRAPH PLOT” ,1,1 <tape with end of tape marker>
SAVE “GRAPH PLOT",8 <disk>

217

SIN() Returns the sine of variable or number.
PRINT SIN(123)
<RESULTS = -.459903491>

SPC() Prints specified number of spaces.
PRINT SPC(29); “HERE”

SQR() Returns the squareroot of variable or number.
PRINT SQR(64)

STOP Halts execution and prints line number where break occurs. (CONT
command will re-start program at next instruction after STOP
command.)

100 STOP

STR$() Converts number/variable into string variable.
20 T= 123 :T$= STRH(T) : TT$= “$" + T$ + “.00"

SYS. Calls and executes a machine language subroutine from decimal
addresses between 0 and 65535.
SYS 58692 <CLEARS SCREEN AND HOMES CURSOR>
10 FOR | = 1 TO 800: PRINT “X"; : NEXT
20 FOR | = 1 TO 20 : SYS 59626 : NEXT
<RESULTS> Prints 800 “X's” on the screen and then scrolls
(SYS 59626) 20 times.

TAB() Sets horizontal tab from within a PRINT statement.
PRINT TAB(20);"HERE”

TAN() Provides the tangent of number or variable.
40T =34:V=55
50 R = T + V: PRINT TAN(R)

VAL() Used to convert string to numeric value.
30 H$ = “123" : PRINT VAL(H$)

218

cccocccoccccccoccccccccccccccc

mwwmmmm&wu%mmmwmnnnunmﬂnnwmm&
(7)) m <«OMOO0OWUOI-"-¥JISZ0a0a0Cow
E n
D -
m Bl e - -Vvi A ~[e0N0D0DO088HO0800BNOD®OM
T 5| RRBF¥BRIB B8 5889TVIILCLNSLIR NG BB
L .
& o
=) =] Y]
2 ﬂnt]Al@mlu#s%&r()o...._ ~ O -~ N O ¢ 0 © N
E]
£ fo-vovoorocoeryoreer 2283 8RABED
M o
m @ O O TV O -~ L - -~ ¥ — EC OO OC = ® « 3 > 3 X >N
m@ABCDEFGHIJKLMNOPQRSTUVWXYZ[

cccccccccccccccccccecccccecceccecc

DEDEDEDEDEDEDRDEDEDED DD Q.Q DEDEDEDEDEORORORDRD RS

EEEREEE EEEEER R

: S

(| E0EQEDDI0OEDUS

flegsssssggzyozes

: N ¥
5| DOONOBM™AE0SHEBE

Y 388588859838858

mruvwxvz E\\\E

mummm@mmm_mm@umna

DIED D IED RED JND D ID N0 IS RND D BD IND BED D I D IND IO D D I D B0 IS

INDEX
A D
animation 137, 138 data base programs 207
AND/OR/NOT 76 data files (tape) 157
arrays 84 storing 158, 159

multi-dimensional 87, 88, 89
variable 84

arrow key 27

ASCII code 113

background color 139
backward steps 66, 67

BASIC 31

binary arithmetic 146, 147, 148
BOOTing disks 21

branching 71

bugs & bombs 57

business programs 207

C

cartridge programs 24
characters (graphics) 145
CHRS$ 113, 134, 180, 181
clear screen 33
CLOSE 160, 179
CLR/HOME 26
CMD 177
colon 33, 55, 56
color
background 139
graphics 132
memory map 116
screen 139
computed GOSUBs 80
Commodore key 24, 26
Commodore 64 User groups 193
concatenation 102
counters (loop) 68
CRSR keys 27
CTRL 26
cursor 27

‘updating 160, 161
DATA strings 61, 159
deferred (program) mode 32
deleting 40, 41
DIM 86
disk drive hook-up 15
DOS 21

E

Editing 40, 43, 44
editor 41

END 33

false 76

FOR/NEXT 63
formatting strings 55, 56
formatting text 55, 91
forward steps 66, 67
function 203

G
GET 60
GET# 162
GOSUB/RETURN 79, 80
GOTO 71,80
graphics 129
characters 145
printing 186, 187
repeat 190
screen 130
sprite 145, 146
graphics packages 208

hardcopy 176 -
hardware 12, 209
HEXADECIMAL 118

IF/THEN 71
Immediate mode 32
initialize disk 22
INPUT 58

INPUT# 160
INPUT/OUTPUT 58
integer variables 53

K

keyboard 25

new uses for old keys 28

special keys:
Arrow 27
CLR/HOME 26
Commodore key 26
CRSR 27
CTRL 26
function 28, 203
graphics 28
INST/DEL 27
Pi 27
RESTORE 26
RUN/STOP 26

L

languages 196
Assembly 197
BASIC 196
CP/M 199
Forth 198, 199
misc. 200
Pascal 198

LEFT$ 96

LEN 94, 95

line 34

LIST 36

listing your programs 35, 179

LOAD 23

loops 63
counters 68
nested 65

magazines 194
math operations 45
matrix 140, 187
memory locations 117
MID$ 96
modem 19
monitor 15

hook-up 16

types of 16

names of variables 50 -
nested loops 65
NEW 20, 22
numeric variables 101
changing to string variables 101

o

OPEN 159, 160, 177
organizing output 107
OUTPUT 58, 107

parentheses 47
partial strings 96
PEEK 116
pixels 148
POKE 116, 120
positioning
precedence 45. 46
PRINT 32
PRINT# 160, 178
printers 17,175
connecting 18
purchase of 176
types of:
dot matrix 17
letter quality 17
thermal 18
printing graphics 187, 188
Program (deferred) mode 32

222

C‘ cocccococCccccCcccCcCcCcooCcocCcooew C: C C

SRS N0 1S 1S 15 1D 15 b 15 TS 1D IS TS B T 0 b T 1D D D B0 MDD

Q
question mark (shortcut) 33

RAM 13
READ/DATA 61
READ (files) 167

real variables 52
RECORD/PLAY 36
relationals 74, 84
REM 34

repeat (graphics) 190
RESTORE 26
retrieving your program 37
RETURN 20, 27
RIGHT$ 96

ROM 14

RUN 21, 23

SAVE 36
to disk 36
to tape 36
screen border 139
screen graphics 130
scroll control 109
semi-colon 55, 56
short cuts 202
software 13
sort routines 201
sound 124, 125, 126
sprite graphics 145, 146, 147
animation 153
blocks of 154
ST (variable) 162
steps 66, 67
backward 66, 67
forward 66, 67
strings 84
arrays 84
changing to numeric
variables 100

DATA 61
formatting 94
LEN 94, 95
partial 96
sort 201
unraveling 93
variable 53
subroutines 79, 122
sys 122, 123

T

tape 157
data files 157
storing 158, 159
updating 160, 161
tape recorder hook-up 14
true 76
TV 15
hook-up 16
types of 16
types of variables 50

U
upper and lower case 25, 44

User groups 193

utilities 204

L'}

variables 49
arrays 84
integer 53
names of 50
numeric 101
real 52
string 563
types of 50

w

word processors 204 -
WRITE 167

b 4
zero (false) 76

'Z-80CP/M19

223

DDODHONDNDDODIDIDNDDIDDNIDIDNIDIIID

i i
g

YOU KNOW YOUR NEW COMMODORE COM-
' PUTER DOES MORE T HAN PLAY GAMES BUT

HOW ARE YOu GOlNG TO I.EARN TQ _REALIZE_ Y

| DATAMOST's highly successful Elementar SGr itsnke havmg a
/ [friendly, cheerful, easy-going teacher'at your Stde—-gently
- and clearly explaining everything you'wa *to know —and
carefully leading you from point to point. Just open the book

\\\\\\

| lanywhere and read a paragraph or two. one you doj youre | |

n‘ if you re already writing pmgrapk this as lots o
| and willsatisfy ’e rest of e family’

)

sire to partimpatel .

e

up the compu er, loading and saving programs oh elther disk |
oritape and usihg the powerful cursor commmands for easy

correcting The sample programs are fun ancl USE’FU! too. You |

will learn to create graphics, music and all sorts of handy
utrl!ties hke check- book balancers and file systems i

Nt - ‘:-f 2 '_r‘dv'“

sure to agree this bookis as marvelous andas ﬁﬁgﬁ@ly swesay.

{ | Step by step. chapters lead you through the prc;cess of hooknng , HH

» e

S

—

—

o

R

